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Abstract

This paper presents an adaptive control technique to deal with spacecraft attitude tracking and disturbance rejection
problems in the presence of model uncertainties. Approximate dynamic programming has been proposed to solve adaptive,
optimal control problems without using accurate systems models. Within this category, linear approximate dynamic
programming systematically utilizes a quadratic cost-to-go function and simplifies the design process. Although model-
free and efficient, linear approximate dynamic programming methods are difficult to apply to nonlinear systems or time-
varying systems, such as attitude control of spacecraft disturbed by internal liquid sloshing. To deal with this problem, this
paper develops a model-free nonlinear self-learning attitude control method based on incremental Approximate Dynamic
Programming to enhance the performance of the spacecraft attitude control system. This method combines the advantages
of linear approximate dynamic programming and the incremental nonlinear control techniques, and generates a model-free
controller for unknown, time-varying dynamical systems. In this paper, two reference tracking algorithms are developed
for off-line learning and online learning, respectively. These algorithms are applied to the attitude control of a spacecraft
disturbed by internal liquid sloshing. The results demonstrate that the proposed method deals with the unknown, time-
varying internal dynamics adaptively while retaining accurate and efficient attitude control.

Keywords: Nonlinear control, Adaptive control, Approximate Dynamic Programming, Incremental techniques, Fuel

sloshing.

1. Introduction

Spacecraft attitude control has been an active field of
research for decades. Researchers have extensively studied
non-adaptive nonlinear control methods for rigid satellites,
or with flexible parts that can be modeled, such as solar
panels. However, when unknown or uncertain dynamics are
involved, the mismatch between the model and real sys-
tem may degrade the performance of model-based meth-
ods. Liquid sloshing is one of the unknown and uncer-
tain dynamics interacting with the motion of the spacecraft
[1,2,3].

Unknown liquid sloshing causes unobservable internal
dynamics. A typical case is that the liquid in the fuel tank
sloshes around and changes the internal dynamics. The
forces and torques acting onto the spacecraft will slosh the
fuel around. The fuel will, in turn, interact with the fuel
tank and thus produce additional forces and torques to the
spacecraft, which degrades the performance of attitude con-
trol systems. Although the fuel sloshing has been studied
for years, an accurate liquid sloshing model is extremely
difficult to obtain [3, 4]. Therefore, the aim of this paper
is to develop a model-free nonlinear self-learning attitude
control method in order to improve the performance.

Reinforcement Learning (RL) [5, 6] controllers have
been proposed to solve adaptive, optimal control problems
without using accurate system models. In the control field,

RL is also referred to as Approximate Dynamic Program-
ming (ADP), which applies function approximators to solve
problems with continuous state and action spaces and to
tackle the curse of dimensionality. A widely used model-
free ADP method for linear systems is the Linear Ap-
proximate Dynamic Programming (LADP) method [7, 8].
This method utilizes a quadratic cost-to-go function [9] and
adaptively learns it online. Because of the simple quadratic
function, it is efficient and gives a complete and explicit
solution to optimal control problems. Although the merits of
model-free processes and efficiency of resource usage make
LADP controllers suitable in the field of adaptive control,
LADP methods are difficult to apply to nonlinear systems
or time-varying systems.

Incremental control methods, on the other hand, can deal
with system nonlinearity without identifying the global sys-
tem [10, 11, 12, 13, 14]. The incremental form of a nonlin-
ear dynamic system is a linear time-varying approximation
of the original system assuming a sufficiently high sample
rate for discretization. This technique has been successfully
applied to adaptive nonlinear controllers, such as Incremen-
tal Nonlinear Dynamic Inversion (INDI) [10, 11, 12, 13] and
Incremental Backstepping (IBS) [14] for nonlinear systems.
Although these nonlinear control methods have reduced
model dependence in the control system, optimization or
synthesis of designed closed-loop systems has not been
addressed.



This paper develops an innovative model-free nonlinear
self-learning attitude control method based on incremental
Approximate Dynamic Programming (iADP) to enhance
the performance of the spacecraft attitude control systems.
This method combines the advantages of LADP meth-
ods and the incremental nonlinear control techniques and
generates a model-free, effective controller for unknown,
time-varying dynamical systems. A Recursive Least Square
(RLS) technique is used to identify the incremental model
when assuming a sufficiently high sample rate. This method
belongs to model-free control because it does not need any a
priori information of the system dynamics, online identifica-
tion of the global nonlinear system nor even an assumption
of the time scale separation, but only an identified incre-
mental model.

The remainder of this paper is structured as follows. Sec-
tion 2 starts with the formulation of the iADP algorithm.
Section 3 introduces the nonlinear spacecraft model dis-
turbed with liquid sloshing. Then, section 4 explicates the
implementation of the proposed control method and applies
to the spacecraft attitude tracking and disturbance rejection
problem. Lastly, section 5 shows the advantages and disad-
vantages of using the iADP and addresses the challenges
and possibilities for future research.

2. Incremental Approximate Dynamic Programming

The incremental Approximate Dynamic Programming
(iIADP) method combines the advantages of LADP, which
is model-free and effective, and of incremental approach,
which expands this method to nonlinear systems. It was
first proposed to solve stabilization problems for nonlinear
systems [15, 16]. This method, to some extend, can also
be seen as an Actor-Critic method, or more specifically
as Heuristic Dynamic Programming [17, 18, 19, 20]. The
quadratic value function acts as the critic, the incremental
model provides the model information, and thus, the actor
is an explicit expression to optimal control. Therefore, this
separation and adaptability of the incremental model makes
this method suitable for time-varying systems. It does not
need off-line learning of the global system or extensively
tuning of nonlinear approximators. This section will present
and elaborate the proposed iADP method for tracking prob-
lem.

2.1 Incremental approach

The incremental model at the current moment can be
approximated by using the conditions of the system in the
instant before [12]. This technique has been successfully
applied to deal with the nonlinearities of systems. The
dynamic and kinematic equations of a nonlinear system can
be generally given as follows:

(1) = f1x(2),u())], (M
where x € #” is the system state vector, u € Z" is the
control input vector, and f[x(¢),u(¢)] € #" provides the
physical evaluation of the state vector over time.

When the system is first-order continuous, the system
dynamics around the condition of the system at time #y can

be linearized approximately by using the first-order Taylor
series expansion:

X(0) ~ x(to) + Flx(t0) u(n)|[x(0) =x(0)] )
+G[x(to),u(to)] [u(r) —u(to)],
where F[x(ty),u(ty)] = 20N, o) € 270 s the

system matrix of the linearized model at time f;, and
G[x(t),u(t)] = % € Z"™ is the control
effectiveness matrix.

Assuming that the control inputs, states, and state deriva-
tives of the system are measurable, which means Au, Ax,
and Ax are measurable, the model around time #y, can be
written in the incremental form:

AX(r) = FIx(1o), u(to)|Ax(r) + Glx(10), u(to) | Au(r). ~ (3)

Although most physical systems are continuous, their
measurements are often discrete. With a sufficiently high,
constant data sampling frequency, the before-mentioned
nonlinear systems can also be written in a discrete form:

X1 = f(Xr,up). 4)
The system dynamics around x, can also be linearized by
taking the Taylor expansion:

X1~ +Fo (X —x-1)+Gror - (w—u—q),  (5)
afxu

[x(t0) u(t0)

where F; | = x, 10, € Z"" is the system transi-

tion matrix, and G, 1= 8{5" 2y, u € ™™ is the input
distribution matrix at time step ¢ — 1 for discretized systems.
The incremental form of this discrete nonlinear system can
be written as follows:
Ax; 1 = F 1A% + Gy 1 Awy, (6)
The nonlinear system can be represented as the time-
varying incremental model. This linear model needs to
be available online to provide the model information for
the iADP algorithm instead of using a global nonlinear
system model. With the high-frequency sample data and the
relatively slow-varying system assumption, time-varying
matrices f,,l and G,_; can be identified online using least
squares (LS) techniques.

2.2 IADP for reference tracking

The reference tracking can be seen as a control problem
for time-varying system, where the tracking error can be
seen as the state. Therefore, iADP methods can be used
to solve Multiple-Input Multiple-Output (MIMO) tracking
problems without the assumption of time-scale separation.
To minimize the cost of the system approaching its goal, we
first define the one-step cost function quadratically:

c(t) = (x,— x,gf’,)TQ(x, —Xpefs) + u,TRu,. @)
where O and R are positive definite matrices, and x,. 7, is the
reference signal. The cost-to-go function from any initial
state x, and reference X,.s, under current policy i is the
cumulative sum of future rewards:

Za/

=(x; — x,gf’,) O(X — Xpefs) + u,TRu, + M (e +1),
where y € (0, 1) is the forgetting factor.

Xl — Xyef, l Q(Xl - XV@fJ) —|—ll]TRl.l]]



Considering the incremental form of the system, the
optimal cost-to-go function for the optimal policy u* is
defined as follows:

J*(t) = rilllln[(xt - Xref,t)TQ(Xt - Xref,t)

©)
+ (w1 +Au) T R(u, 4+ Awg) + 3 (£ 4 1)].
Thus, the optimal policy at time ¢ can be given by
U =arg min [(x; —xref,,)TQ(x, —Xrefyr)
Auy (10)

+ (a1 +Au) " R(u; g +Aw) 4+ 3 (2 +1)].

For this nonlinear tracking problem, the cost-to-go is the
sum of quadratic values in the tracking error and inputs
with a forgetting factor. The cost-to-go should always be
positive. In general, ADP uses a surrogate cost function
approximating the true cost-to-go. The goal would be cap-
turing its key attributes or features instead of accurately
approximating the true cost-to-go. In many practical cases,
even time-varying systems, simple quadratic cost function
approximations are chosen so that the expectation step can
be exactly carried out and the optimization problem evalu-
ating the policy is reduced to be tractable [9]. A systematic
cost function approximation that can be applied in our sys-
tem in this paper is chosen to be quadratic in the tracking
error €, = X; — X7, for some symmetric, positive definite
matrix P, as shown below:

JH(e) =e! Pe,. (11)

This quadratic cost function approximation has an ad-
ditional, important benefit for this approximately convex
state-cost system with a fixed minimum value. To be spe-
cific, this system has an optimal state when the state reaches
the desired state and keeps it. The true cost function has
many local minima elsewhere because of the nonlinearity of
the system. On the other hand, this quadratic approximate
cost function has only one local minimum which is the
global one. Therefore, this quadratic form helps to prevent
the policy from going into any other local minimum. The
learned symmetric, positive definite P matrix is the guaran-
tee of the progressive optimization of the policy.

Assuming the reference signal is slow-variant and the
sample frequency is sufficiently high, the incremental form
of the tracking error can be approximate as follows:

€1 = Xer1 — Xpef it 41
R Xt — Xpefi+1 1 F; 1Ax, + G, 1A,
R Xt — Xpefy +Fr 1A% + G; 1Ay,
=¢;+ F,_1Ax; + G;_1 Au,.

(12)

Therefore, the Bellman equation for JM in the incremental
form becomes

ﬁl(et) = e,TQe, + (ut—l —i—Au,)TR(u,_l +Allt) + Ye,THPe,_,_l
=e/ Oe,+ (w1 +Au) R(u,_ | +Au,)

+7(e, +F_1AX; + G, 1Aw,) T P(e, + F;_|Ax; 4+ G;_1Au,).

(13)

By setting the derivative with respect to Au, to zero, the
optimal control can be obtained:

Aw, = —(R+yG[_\PG,_1) '[Ru,_ + yG[_ | P(e; + F;_1Ax,)]

= —(R+vGT PG, 1) '[Ru;_1 +yGT |Pe, + yGT |PF,_1Ax,].

(14)
From Eq. 14, we can conclude that the policy is in the
form of system variables (u,_1,e;,Ax,) feedback, and the
gains are functions of the dynamics of the current linearized
system (F;—1,G;1).

2.3 Online incremental model identification

Assuming that the incremental model is identifiable using
LS techniques with measurements of proper excitation and
response, this paper adopts the Recursive Least Square
(RLS) approach to online identify the system transition
matrix F; | and the input distribution matrix G, | of the
linearized model. The incremental form of the state in Eq.
(6) can be rewritten row by row as follows:

(15)

where Ax,;11 = X,.41 — X, is the increment of rth state
element, and f,. and g, are the elements of rth row vector
of F,_; and G,_;. These parameters can be identified using
the RLS usually row by row. Since they share the same
covariance matrix, they can also be identified together as

”

i
Axii1 =~ [Ax] Au]]- {ng} ,

F/,
%(n+m)xn.
Gl ©

The state prediction equation can be written as follows:
~T o
AX; 4y =X'0, 4, (16)

in the parameter matrix ©,_; = [

A,
where X; = [ Au,

tion of the incremental model. The RLS approach adopted
in this paper is presented as follows [21]:

e "t *1 stands for the input informa-

& :AXtT_,'_l _A/X\t]:&-l’ (17)
Covi1X & 18
Yres + X Covi 1 X, (1%)
Cov, 1 XX Cov, > (19)
Yees + X Covi 1 X, )
where & € Z'*" is the prediction error, also called innova-
tion, Cov, € Z\"+m*(n+m) is the estimation covariance ma-
trix, and Ygrs is the forgetting factor for this RLS approach.
The RLS approach used in this paper possesses a signif-
icant advantage over the piecewise Ordinary Least Square
(OLS) method: RLS has fewer issues with persistent exci-
tation. The OLS method needs to do a matrix inversion at
each update [16, 20]. If there is not enough excitation at
that moment, the matrix might not be invertible, and the
parameters cannot be identified. The RLS method, on the
other hand, does not need to do matrix inversions because
it uses the matrix inversion lemma to update the covariance
matrix, which contains the information of that inverted ma-
trix. Therefore, it can effectively identify parameters of the
time-varying system and also keep the parameters stable
when the excitation is not enough. This paper initializes the
F matrix as an identity matrix and the G matrix as a zero
matrix and chooses the forgetting factor yzzs to be 0.8.

ét = @t—l +

1
Cov; = — (Cov,_l
YRLS



If the nonlinear model is unknown, while the full state is
measurable, iADP algorithm can be applied to improve the
policy as follows:

1ADP algorithm for reference tracking

Evaluation. The cost function kernel matrix P under
policy i can be evaluated and updated recursively with
the Bellman equation for each iteration j = 0,1,... until
convergence:

e/ PUtDe, = el Oe, +ul Ru, + yel, \PUe,, 1. (20)
Policy improvement. The policy improves for the new
kernel matrix PU+1):
Au, = _(R‘i‘YGtT—lP(jH)Gt—l)il [Ru, |
+yGI PUtVe, +yGT | PUTVE | Ax,).
Opposite to model-based control algorithms with on-line
identification of nonlinear systems, the current approach
needs only local linear models. Availability of these local
linear models is sufficient for iADP algorithms. Further-
more, the determination of the linear model structure is

much simpler than the identification of the nonlinear model
structure.

e2y)

3. Spacecraft with liquid sloshing

The liquid sloshing is one of the most undesired, un-
known, and uncertain dynamics involved in the spacecraft
attitude control. This phenomenon is caused, for example,
by the liquid in the fuel tank sloshing around due to the
forces and torques acting on the spacecraft. In turn, the
sloshing fuel will interact with the fuel tank and thus perturb
the spacecraft. This paper applies the iADP method to con-
trol a satellite disturbed by the liquid sloshing. The model
in Fig. 1 is used as a validation of the proposed method.

[

Fig. 1. A satellite model with pendulum dynamics modeling
liquid sloshing.

As seen in Fig. 1, apart from the liquid the satellite can
be seen as a rigid body, whose mass and moment of inertia
are m and I. The liquid sloshing can be represented by a
pendulum [1, 2, 3, 4], whose mass and moment of inertia
are m,, and [, respectively. There are three control inputs:
the force f and the pitch moment M are the satellite attitude
control inputs, and the thrust F' is constant.

Although the proposed method is model-free, the satel-
lite model is included in this paper for the validation and
reproduction. The satellite and analogous liquid sloshing

dynamic and kinematic state equations are directly taken
from [2, 3] and presented as follows:

(m+m,) (Vv +v.0) +mbO +m,a(\ + 0)sin(y)

e (22)
+mpa(y+6) cos(y) =F,
(m+mp)(V; —v,0) +mbO +mpya(\j+ 6)cos(y) 23)
—mpair-+ 6)2sin(w) = /.
mb(v; —vi0) + (I, +mb*)0 — kyy = M+ bf,  (24)
(mpa® +1,) (F+ )
+mpal(vy +v:0)sin(y) + (v, — v0)cos(y)] + ki =0,
(25)

where the parameters used in simulations are m = 600kg,
1 ="720kg/m?, m, = 100kg, I, = 90kg/m*, a=0.3m, b =
0.3m, F = 500N, and k = 0.19kgm? /s.

From Egs. (22) and (23), the translational movement
related variables can be isolated as follows:

(\'/x—i—vzé) =
F —mb8 —mpya( + 0)sin(y) — mya(\yr+ 8)*cos(y)
m+m, ’
(26)
(f/z—vxé) =
f—mb8 —mua(+ 0)cos(y) +mpa(yr + 0)2sin(y)
m+m, '
@27

The rotational variables can be separated from the transla-
tional variables by substituting Egs. (26) and (27) into Egs.
(24) and (295):

mb[f —mb6 —mya(+ 0)cos(y) +mpa(\y+ 0)sin(y)]

+ (m+mp) (I, +mb*)8 — (m+mp)xyr

= (m+m,)(M+bf),
(28)
myaf{sin(y)[F —mbO — mpa(\y + 0)sin(y)
—mpa(r+ 8)cos(y)] + cos(y) f — mbd o0

~myalir -+ 8)cos(y) + mpal(yr -+ 8)sin(y)]}

+(m+my) (mpa® + 1) (§+ 8) + (m+m,) ki = 0.
The rotational motion of the satellite and the pendulum do
not contain any translational variables. Hence, the MIMO
nonlinear model of the satellite attitude control problem has
been generated for simulations.

4. Experiments and Results

The first part in this section explicates the implementa-
tion of the aforementioned algorithms and discusses some
related issues, including the persistent excitation and the
forgetting factor. The second part illustrates the results of
using the iADP method. It first trains the policy off-line on
the model using the before-mentioned parameters, and is
then applied to a different model using online learning.

4.1 Implementation of iADP

In ADP methods, the forgetting factor y represents the
importance of the upcoming states in the future and is
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usually chosen as y € (0,1). Therefore, the infinite sum
has a finite value as long as the cost sequence is bounded,
and the agent is not “myopic” in being concerned only
with maximizing immediate cost [5]. Compared to LADP
methods, iIADP methods prefer a smaller y because the
nonlinear system as well as the reference signal in tracking
task has more uncertainties. In this paper, y = 0.5. Note that
the control performance is not very sensitive to yas y = 0.2
and y = 0.8 have similar performance to the nominated
value, but the magnitude of the value function may increase
with a larger 7.

As with other ADP methods, good evaluation depends
heavily on the exploration of the state space, which is rep-
resented by Persistent Excitation (PE). There are two main
purposes of adding PE. The iADP method is designed based
on the optimality principle, which is represented as the
exploitation. Therefore, the first purpose of PE is to provide
exploration so as to achieve a trade-off and to better evalu-
ate the current policy. Second, although RLS depends less
on PE, PE is still imperative for identifying the incremen-
tal model, especially when the discretized model is time-
varying. This paper introduces an input disturbance, which
is a sum of sinusoidal signals. This disturbance persistently
excites the system for identification of the system and ex-
ploration of the state space. On the other hand, disturbances
are usually undesirable inputs in the real world. Therefore,
the control task is to track the reference signal as well as to
reject the disturbance, which increases the difficulty of the
task.

Although the rotational motion of the satellite model with
liquid sloshing can be analogous to the pendulum dynamics
as Egs. (28) and (29) in previous section. The iADP model-
free nonlinear method does not need any a priori knowledge
about the model, but only assumes a general model, which
can present any structure and parameters:

X(t):f[x(t),u(t)—i—d(t)L (30)

where x = [0,0,y, ] is the state vector, u = [f,M]” is
the control input vector of the system since the thrust F is
constant, and d is the input disturbance vector. The iADP
algorithm for reference tracking in Eqs. (20) and (21) can be
used to train the policy off-line. The kernel matrix P can be
updated after each iteration using OLS method. The model
information G;_; and F;_; are provided by the incremental
model identified online using Egs. (17) to (19).

However, when the trained policy P/ can track the refer-
ence very accurately and the input disturbance are rejected,
the system does not have much exploration and the param-
eters in P/ might not be identified using OLS. Therefore,
when the averaged one-step-cost in an iteration j is smaller
then a threshold 2(¢)/ < ¢/preshord» the kernel matrix P will
be updated using RLS with forgetting factor ;s = 1. The
iADP algorithm in Egs. (20) and (21) will be rewritten using
the RLS as follows:

Recursive iADP algorithm for reference tracking

Evaluation. The cost function kernel matrix P within
iteration j + 1 can be evaluated and updated recursively for
each time step ¢:

€2

T T T T
e, Fe,=e Qe +u, Ru +ve, 1 F_1e4.

Policy improvement. The policy improves for the new
kernel matrix B :
Au, = —(R+YG! |PG,_1) '[Ru,_1 +yGl |Pe,
+ Gl |BF,_1Ax,].
In each iteration j+ 1, the initial kernel matrix Py is the

last updated PU) from previous iteration. This recursive
algorithm will also be used when the off-line trained policy
are applied to the real system online.

(32)

4.2 Results and Discussion

The proposed iADP method is demonstrated by a sim-
ulation experiment on satellite attitude control problems
disturbed by liquid sloshing. The full states (0, y, 6, and
/) and the control input (f, M) are measurable. The control
target is to track a reference signal of 6 while stabilizing v,
which often happens in the initial attitude acquisition.

In the off-line learning stage, the termination of each
iteration can happen 1) when it finish the whole trial and
reaches the time limit 1000 seconds or 2) when any of the
states reaches their limit: 180° for 8 and y and 50° /s for
6 and V. The initial kernel matrix P is a zero matrix.
Therefore, the first iteration is an open loop system with
sinusoidal PE, as shown in Fig. 2. This iteration stops at
around 13s when 0 reaches 180°.

The first reference is a filtered doublet signal. Figure
3 illustrate the control performance of the trained policy,
which can track the reference of 0, stabilize v, and reject
the input disturbance. The averaged one-step-cost after Sth
iteration is below the threshold as shown in Fig. 4. The
adaptation of the policy uses the RLS approach afterward.
The first 3 iterations do not finish the whole trial and stop
because they reach the state limit.

In practice, the really system parameters are often dif-
ferent from the model that is used to train the policy. The
trained policy using the model in previous section will
be applied to a different model with changed parameters:
m = 1200kg, I = 900kg/m2, my, = 50kg, I, = 80kg/m2,
a=0.2m, b=0.5m, F = 600N, and k = O.l9kgm2/s. As
is visible in Fig. 5, the recursive iADP algorithm can be
applied to the different model starting with the trained pol-
icy without loss of accuracy. The main reason is that iADP
method separate the value function with an approximation
and the model information with the online identified incre-
mental model. When the system changes, the value function
does not change a lot, while the incremental model changes
immediately using the RLS approach.

The second reference is a sinusoidal signal. Figure 6
shows that the off-line trained policy can track the dynam-
ical reference of 6, minimize y, and also reject the input
disturbance. The policy applied to the original model con-
verges from the 7t/ iteration. This trained policy is applied
to the before-mentioned different model using recursive
iADP online. Figure 7 depicts the online adaptive control
performance of the proposed method.

5. Conclusion

This paper proposes an adaptive nonlinear control method,
called incremental Approximate Dynamic Programming



(1ADP). This method systematically applies a quadratic
function to approximate the cost-to-go and greatly simpli-
fies the design process of ADP methods. In addition, this
method uses an incremental model to deal with the nonlin-
earity and uncertainty of the system. It combines the advan-
tages of LADP and incremental approaches to generate a
model-free, adaptive controller for nonlinear systems. This
method does not need any a priori knowledge of the system
dynamics, online identification of the global model nor even
an assumption of the time scale separation, but only an
online identified incremental model.

This study expands the iADP method to tracking prob-
lems for MIMO nonlinear systems with two algorithms. The
first one is an off-line learning algorithm, which uses OLS
to update the policy after each iteration. After the averaged
one-step-cost is below the threshold, the second algorithm
will be applied online. This online recursive iADP algo-
rithm can also be used in a real system, which is mismatched
from the original model and is not easy to reset after failure.
These algorithms are applied to an attitude control problem
of a simulated satellite disturbed by liquid sloshing. The
results show that the off-line trained policy rejects the dis-
turbance and tracks reference signals accurately. When the
trained policy is applied to a different system, the control
performance remains at the same level of accuracy, and
online learning using the recursive iADP ensures the adapt-
ability of the proposed method.
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