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Damage assessment of a titanium skin
adhesively bonded to carbon
fiber–reinforced plastic omega
stringers using acoustic emission

Milad Saeedifar1 , Mohamed Nasr Saleh1 , Peter Nijhuis2,
Sofia Teixeira de Freitas1 and Dimitrios Zarouchas1

Abstract
This study is devoted to the use of acoustic emission technique for a comprehensive damage assessment, that is, damage
detection, localization, and classification, of an aeronautical metal-to-composite bonded panel. The structure comprised
a titanium panel adhesively bonded to carbon fiber–reinforced plastic omega stringers. The panel contained a small initial
artificial debonding between the titanium panel and one of the carbon fiber–reinforced plastic stringers. The panel was
subjected to a cyclic increasing in-plane compression load, including loading, unloading, and then reloading to a higher
load level, until the final fracture. The generated acoustic emission signals were captured by the acoustic emission sen-
sors, and digital image correlation was also used to obtain the strain field on the surface of the panel during the test.
The results showed that acoustic emission can accurately detect the damage onset, localize it, and also trace its evolu-
tion. The acoustic emission results not only were consistent with the digital image correlation results, but also managed
to detect the damage initiation earlier than digital image correlation. Finally, the acoustic emission signals were clustered
using particle swarm optimization method to identify the different damage mechanisms. The results of this study demon-
strate the capability of acoustic emission for the comprehensive damage characterization of aeronautical bi-material
adhesively bonded structures.
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Introduction

With the increased awareness toward environmentally
sustainable industries, especially in aviation and auto-
motive industries, the need for fuel-efficient vehicles,
and consequently less carbon dioxide (CO2) emissions,
becomes inevitable. There are various approaches to
achieve this objective; one of which, particularly in
aerospace industry, is improving the structure’s aerody-
namics and reducing the drag. This can be achieved by
creating a laminar boundary layer flow rather than the
conventional turbulent boundary layer flow. Srinivasan
and Bertram1 reported that approximately 50% of the
total aircraft drag during cruise is due to friction drag,
which is almost 10 times lower in the case of laminar
flow as opposed to turbulent flow.

Hybrid laminar flow control (HLFC) is one of the
techniques developed to delay the transition from a

laminar to turbulent boundary layer flow. HLFC can
be obtained by integrating suction areas in the leading
edges of the wing, for instance.2 A promising structural
solution is the combination of a micro-drilled outer
titanium surface adhesively bonded with an inner com-
posite structure.1 However, in the case of shear loading
or axial compression or a combination of both, the stif-
fened titanium-to-composite panels are susceptible to
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buckling failure. Thus, the proper understanding and
investigation of the buckling and post-buckling beha-
vior of such structures are inevitable. In the open litera-
ture, the response of open cross-sectional stiffeners,
such as I-, C-, and T-stringers, was extensively dis-
cussed,3–13 while less attention1,14–16 was drawn to
closed cross-sections such as omega shape stringers,
although they exhibit higher bending and torsional
stiffness16 when connected to the skin.

Regardless of the stringer’s choice and as can be
anticipated, different damage mechanisms may occur in
the stiffened panel, such as the skin failure, the stringer
failure, and the debonding of the stringer–skin interface.
The debonding is usually treated as the most critical
damage type. This damage is usually invisible or barely
visible, but it can considerably affect the integrity and
stability of the structure, and finally leads to a cata-
strophic failure.17 Therefore, in situ monitoring of the
damage is essential to provide a reliable and safe aero-
nautical stiffened structure. Some non-destructive testing
(NDT) techniques, such as guided wave and ultrasonic
scan (UT), have been already used for damage detection
in the stiffened panels.17–22 However, these techniques
are time-consuming and can only be carried out offline.
Structural health monitoring (SHM) proposes continu-
ous monitoring of the integrity of the structure by
employing different techniques that have the capability
of in situ monitoring, such as acoustic emission (AE)
and fiber optic sensor.23–29 Dávila and Bisagni30 per-
formed a multi-instrumented compression fatigue test on
the single-stringer-stiffened carbon fiber–reinforced plas-
tic (CFRP) panels. They used UT, passive thermogra-
phy, high-speed camera, and digital image correlation
(DIC) to detect the propagation of the artificial debond-
ing and to track the sequence of damage mechanisms up
to the final fracture. The post-buckling deformation was
captured by DIC. The passive thermography detected
the onset of the artificial debonding growth and UT pre-
cisely sized it. The high-speed camera highlighted that
the instantaneous final fracture occurred due to the
stringer–skin debonding followed by the stringer crip-
pling. The utilized techniques have some limitations that
restrict employing them for the monitoring of a real
structure. For example, as aforementioned, UT could
not be used as an online monitoring technique, and the
inspection area of thermography and DIC techniques
was not wide enough to monitor the real large struc-
tures. Vanniamparambil et al.31 used AE and ultrasonic
guided wave to detect the debonding onset and also to
track its evolution at the spar–skin interface of the
CFRP-stiffened panel subjected to the fatigue loading.
The results showed that the onset of the debonding was
characterized by low-frequency and high-duration AE
signals. Besides, the damage index, defined based on the
recorded guided waves, was sensitive to the enlargement

of the debonding area. Kolanu et al.32 investigated the
failure of a CFRP-stiffened panel subjected to the com-
pression loading using AE, DIC, infrared thermography,
and strain gauges. DIC captured the strain distributions
during the buckling and post-buckling, while strain
gauges could precisely detect the onset of buckling.
However, because of the sudden final failure, they could
not detect the initiation and propagation of the cata-
strophic damage properly. While the AE effectively
detected and classified different damage mechanisms in
the panel, the thermography images were used to verify
the AE results and also to localize the delamination
region in the panel.

Although AE has been proven, in the open literature,
as a well-established and effective tool in SHM, espe-
cially for composite structures, there is a significant gap
of knowledge when it comes to three main challenges.
These challenges can be summarized as follows: (1) the
use of AE in SHM of bi-material structures, (2) the
comprehensive damage assessment fulfilling the four
levels of SHM, that is, damage initiation detection,
damage classification, damage severity assessment, and
damage localization, and (3) the reliability of the dam-
age classification. Thus, in this study, a comprehensive
AE-based damage assessment was performed that ful-
fills all the four levels of SHM for a bi-material stiffened
panel resembling an aeronautical structure as a bench-
mark. Moreover, a robust evolutionary optimization
technique was employed for the AE damage clustering
that significantly increases the reliability of the SHM
system by overcoming the disabilities of the commonly
used clustering techniques in the literature, that is, K-
means, fuzzy-c-means, and self-organizing map.23,33

Materials and manufacturing

Two panels were fabricated of titanium grade 2 of
0.8 mm thickness stiffened by omega CFRP stringers.
The layup of the CFRP stringers was [0/45/45/0] for
the inner laminate and [90/245/245/90] for the outer
laminate. They were made from a five-harness weave
fabric Hexforce G0926 from Hexcel with a 6K HS car-
bon fiber and an areal weight of 370 gsm and RTM6
resin from Hexcel. An adhesive film was used between
the quasi-isotropic composite laminate and the tita-
nium. The adhesive and RTM6 resin were cured in one
cycle together to bond the titanium to the omega strin-
gers. The foam core was made of Rohacell Hero 71-10.
To create an artificial debonding, an Upilex-25S foil of
0.025 mm thickness was placed in between one of the
stringers and the titanium sheet. No adhesive was used
at the location of the Upilex.

The panels were fabricated by the vacuum-assisted
resin transfer molding (VARTM) technique. The layup
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of the panels was done on a flat oil/water-heated mold
with the titanium sheets toward the mold. Then, the
panels were sealed by the vacuum bag and the resin
was injected at a temperature of 80�C. The VARTM
process was designed to achieve a 57% fiber volume
fraction. After the injection process, the curing cycle
was started. The panel was cured at a temperature of
180�C for 1.5 h. Afterward, two resin-loading blocks
were casted at the ends of the panel. The final length of
the panel was milled to 270 mm after casting of the
ends. The final dimensions of the panels are depicted in
Figure 1. The ultrasonic C-scan image of both panels is
shown in Figure 2.

Experiments and characterization

Compression testing

The compression load was applied to the panels by an
MTS 3500 kN hydraulic universal tensile/compression
machine. The tests were performed under displacement
control mode with a rate of 0.2 mm/min. The first test
was a monotonic test to determine the maximum load
and displacement expected. Then, the second test was a
cyclic ‘‘loading/unloading’’ test designed based on the
data collected from the monotonic test. The load and
displacement values were recorded during the tests by
the machine. Four AE sensors were placed on the panel
surface, at the positions shown in Figure 3, to record
and localize the originated AE signals during the

Figure 1. (a) A schematic of the cross-section of the panel and (b) the top and isometric view of the panel.

Figure 2. The C-scan image of the two panels. (The artificial
debonding is highlighted by a blue rectangle.)

Figure 3. Compression test setup.
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compression test. In addition, DIC system was facing
the titanium surface during the loading process to cap-
ture the displacement and strain fields on the panel sur-
face. The lateral cross-section of the panel was
continuously monitored using a digital camera.

DIC

Three-dimensional (3D) DIC system was calibrated
and used to capture the displacement contour map dur-
ing the test. The DIC system, used for the full-field
strain measurement, consisted of two 8-bit ‘‘Point
Grey’’ cameras with ‘‘XENOPLAN 1.4/23’’ lenses.
Both cameras had a resolution of 5 MP. ViC-Snap 8
software was used to record the speckle pattern images
with an acquisition rate of 0.33 frames per second (fps)
for the monotonic test and 0.25 fps for the cyclic test.
Afterward, the acquired images were processed using
ViC-3D 8 software. For processing, the subset size was
set to 29 pixels with a step size (distance between sub-
sets) of 7 pixels. The observation window of approxi-
mately 240 3 230 mm2 produced an image with
dimensions of 2048 3 1194 pixels.

AE

The AE events of the panel were captured by four AE
sensors placed on the panel surface. As shown in
Figure 3, the sensors were placed close to the four cor-
ners of the panel to get a wider inspection area. The
utilized AE sensors are broad-band piezoelectric,
AE1045S-VS900M, with an external 34 dB preampli-
fier. An eight-channel AE system, AMSY-6 (Vallen
Systeme GmbH), was employed for the AE measure-
ments. The sampling rate and the threshold were set to
2 MHz and 40 dB, respectively. Ultrasonic gel was
applied between the sensor and the panel surface to
ensure a good coupling. The pencil lead break proce-
dure34 was performed before the test to check the per-
formance and reproducibility of the AE system.

Particle swarm optimization

Data clustering can be considered as an optimization
process in which an objective function that simultane-
ously considers similarities of the data points belongs
to the same cluster and the dissimilarities of the data
points belong to different clusters should be optimized.
Some of the frequently used clustering methods for the
AE data, such as K-means, fuzzy-c-means, and self-
organizing map, may get stuck at a local minimum and
do not converge to the best solution, especially for com-
plex datasets.23,33 Evolutionary algorithms are a kind
of population-based random search that is inspired by
social behaviors in which the members interact locally

with each other and with their environment simultane-
ously. The main advantage of evolutionary algorithms
is the fact that they explore the response space in paral-
lel and in different directions. Therefore, they will less
likely be stuck in a local minimum, even for complex
datasets. The particle swarm optimization (PSO) is one
of the most popular evolutionary algorithms that simu-
lates the social behavior of bird flocking. It is an itera-
tive method to optimize an objective function by
moving a population of candidate solutions, particles,
in the solution domain by adjusting the position and
the velocity of the particles. The movement of each par-
ticle is controlled by two factors simultaneously: its
local optimum and also the optimum solution found by
other particles. In this way, all the particles will gradu-
ally move toward the global best solution. Flowchart of
the PSO algorithm is depicted in Figure 4. According
to the flowchart, the best solution is found in the fol-
lowing steps.35

For a particle i with a position x(i):

1. The algorithm creates N random particles,
N = Swarm Size, within the variable limits,
[VarMin VarMax] (see Table 1).

2. It assigns zero to the initial velocity of all the
particles.

3. Finding the best objective function among the
other particles and the position of that particle
(g).

4. Updating the velocity of particle i using equation
(1)

v = w � v + c1 � r1 � p� xð Þ+ c2 � r2 � g � xð Þ ð1Þ

where v is the velocity of particle i. The term (p 2

x) indicates the difference between the current
position and the best position which has been ever
found for particle i. The term (g 2 x) indicates
the difference between the current position of par-
ticle i and the best position which has been ever
found by the other particles. w, c1, and c2 are iner-
tia, personal learning, and global learning weight
factors, respectively, and r1 and r2 are uniformly
(0,1) distributed random vectors.

5. The velocity should be in the predefined velocity
limits (see Table 1). If it is lower than VelMin, it is
set as VelMin, or if it is larger than VelMax, it is
set as VelMax.

6. The position of particle i is updated as
x = x + v.

7. Checking the interference of the new position of
particle i with the solution domain’s boundaries.
If it is outside a bound, it is considered equal to
that bound, and if its velocity is outside the
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bound, the velocity is mirrored toward the
boundaries.

8. The objective function is calculated as (f = fun(x)).
9. If the calculated objective function is less than the

best objective function which has been ever found
by particle i (f\fun(p)), then set p = x. This step
guarantees that p always represents the best posi-
tion particle i has had.

10. In this step, the algorithm calculates the best
objective function over the entire particles in the
swarm, b =min(f jð Þ).

If f \ b, then set b = f and d = x, which means
b and d are always the best objective function and
the best location in the swarm.

11. If the stopping criterion is satisfied, then algo-
rithm is terminated; otherwise it goes to Step (4).
The maximum number of iterations was consid-
ered as the stopping criterion in this study.

The pre-set parameters of the algorithm used in this
study are reported in Table 1. As Clerc and Kennedy36

recommended, if the weight factors of w, c1, and c2, are

Figure 4. Flowchart of the PSO algorithm.
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calculated using equations (5)–(7), the best balance
between exploration and exploitation throughout the
response domain is achieved, which finally leads to the
finding of the best solution. Specifically, the best situa-
tion is [1 = [2 = 2:05, which consequently leads to
w = 0:7298 and c1 = c2 = 1:496236

[1,[2.0 ð2Þ

[ = [1 + [2.4 ð3Þ

x =
2

[� 2 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
[

2 � 4[
p ð4Þ

w = x ð5Þ

c1 = x �[1 ð6Þ

c2 = x �[2 ð7Þ

Results and discussion

Mechanical results

Figure 5 shows the load–displacement curves for the
two tested panels, Panel 1 and Panel 2. To obtain the
maximum load of the panel, the first panel was sub-
jected to a quasi-static monotonic compression load
until the final fracture. As it is depicted in Figure 5, the
maximum load of the panel was ;250 kN. Then, the
second panel was subjected to an increasing cyclic load
with the load step of 50 kN, including loading, unload-
ing, and then reloading to a higher load level, until the
final fracture. The gradient of the load–displacement
curve in each loading–unloading cycle is the same until
the end of the third load cycle, while, from the fourth
load cycle, there is a reduction in the slope of the
unloading part in comparison with the loading part of
the cycle and a hysteresis area can be seen in the curve.
This phenomenon may be attributed to the titanium
plastic deformation or damage propagation in the
panel. The maximum displacement and failure load are
approximately the same for both cases: ;2 mm and
250 kN, respectively.

In situ monitoring results

In the SHM paradigm, the damage is fully character-
ized in four levels: damage initiation detection, damage
severity, damage localization, and damage type identifi-
cation. Figure 6 shows the proposed workflow for the
damage assessment. Based on the presented workflow,
the damage initiation is first detected by means of the
cumulative AE curve. Then, in the second level, the
damage severity is assessed using the Felicity effect.
Afterward, the damage AE signals are localized using
the time difference of arrival technique. Finally, the
damage type is identified by following several steps
which will be fully described in section ‘‘Damage
mechanisms identification.’’

Damage initiation and severity detection. Because of the
good consistency between the load–displacement curve
of the monotonic and cyclic tests, hereafter, the results
are just presented for the cyclic test which easily enables
the investigation of the damage evolution in more

Table 1. The pre-set parameters of the PSO algorithm.

Parameters Value Definition

Swarm Size 50 Population size
MaxIt 200 Maximum number of iterations
W 0.7298 Inertia weight
c1 1.4962 Personal learning weight
c2 1.4962 Global learning weight
VarMax max(X) Upper bound of variables (X denotes the dataset)
VarMin min(X) Lower bound of variables (X denotes the dataset)
VelMax 0.1 3 (VarMax 2 VarMin) Upper velocity limits
VelMin 2VelMax Lower velocity limits

Figure 5. The load–displacement curve of the monotonic and
cyclic tests.
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detail. The cumulative AE events curve during the six
load cycles is presented in Figure 7. As it is visible, the
first AE event occurred at the end of the third load
cycle. In the fourth load cycle, as long as the load is less
than the maximum load of the third load cycle, no AE
event is detected. Once the load exceeds the maximum
load of the third load cycle, a small jump in the

cumulative curve occurs. The same trend is observed in
the fifth load cycle, that is, no AE event occurs till the
load exceeds the maximum load of the previous load
cycle. However, at the end of the fifth load cycle, a very
significant jump happened, which may indicate a severe
damage in the panel as discussed later in this section.
Ultimately, at the end of the sixth load cycle, another

Figure 6. The proposed workflow for damage assessment.
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big jump in the cumulative curve is visible, which corre-
sponds to the final fracture of the panel. The digital
camera placed at the lateral side of the panel did not
show any debonding or CFRP stringer failure at the
edge before the final fracture of the panel which is con-
sistent with the similar results reported in the
literature.30

For precisely detecting the damage initiation, the
Kaiser and Felicity effects37,38 are used. The Kaiser
effect, introduced by Kaiser in the 1950s, is a method
for evaluating the damage state in a structure.
According to Kaiser’s principle, once a structure is
loaded up to a load higher than the damage-inducing
threshold, it generates AE events, while if the structure
is unloaded and reloaded again, it does not generate
AE events anymore until the load crosses the maximum
load of the previous cycle. This phenomenon indicates
that the structure has not been degraded significantly
because of the induced damage. However, in the
reloading cycle, if AE events occur at a load level lower
than the maximum load of the previous cycle, this is
called ‘‘Felicity effect.’’ This indicates that severe/criti-
cal damage occurred in the structure which significantly
degraded its integrity. To calculate the Kaiser and
Felicity effect, in each load cycle, the load correspond-
ing to the initiation of the significant AE activities is
divided by the maximum load of the previous load
cycle. As long as this ratio is equal to or greater than 1,
the Kaiser effect prevails which indicates no critical
damage occurrence. When the ratio drops below 1, the
Felicity effect prevails which corresponds to consider-
able damage in the panel. In other words, the Kaiser
effect can be considered as a special case of the Felicity
effect (when the Felicity effect is 1). It is clear that the
lower the value of the Felicity effect, the more the
severity of the damage in the structure. Figure 8 depicts
the Kaiser and Felicity effects in the cyclic test. Because

there is no AE event in the first two cycles, the ratio
cannot be defined for them. As it is clear, the ratio for

the third, fourth, and fifth load cycles is greater than or

equal to 1 which shows the Kaiser effect; however, it

drops to ;0.9 at the beginning of the sixth load cycle,

which shows the Felicity effect. Therefore, it indicates

that the panel was severely damaged during the fifth

load cycle, and this finally led to the catastrophic fail-

ure in the sixth load cycle.

Damage localization. The next stage of the damage char-
acterization is localizing the damage. Thus, the AE

events captured by the AE sensors were localized by the

time difference of arrival technique.39 To avoid consid-

ering the reflected waves from the boundaries as the

damage hit, two time-related parameters were consid-

ered: (1) first hit discrimination time (FHD) and (2)

maximum time difference (MTD) between the first and

last hits of the same event. Once, the first hit of a new

event is recorded by a sensor, all the hits arriving at the

other sensors less than MTD are considered as the same

event dataset. By expiring MTD, the events dataset is

closed. For a new event, a new dataset is opened and

the first hit is recorded, if the time to the previous hit is

larger than FHD. An event is localized if at least three

out of four sensors record its corresponding hits. In the

tested panel, by considering the farthest possible event

from one of the AE sensors (the diagonal of the sensor

grid in Figure 3 is ;0.3 m) and the measured wave

velocity in the titanium panel (4950 m/s), the MTD of

arrival for the farthest sensor from the event source is

;60 ms (0.3 m over 4950 m/s). Therefore, the MTD

was set as 60 ms to avoid considering the reflected

waves as the damage hit. In addition, to give enough

time to the panel to damp the reflected waves of an

event from the boundaries, FHD was set as 1 ms.
The density plot of the localized events is shown in

Figure 9. The initial location of the artificial debonding

is highlighted by the hatched rectangle. As it is clear, no

AE event is detected in the first two cycles. At the end

of the third load cycle, the first AE event was localized

close to the artificial debonding. Afterward, the density

of the AE events considerably increased at the end of

the fourth load cycle, and they were mostly located in

the vicinity of the artificial debonding. At the end of

the fifth load cycle, a new dense-AE events group was

localized at the right side of the panel, which indicates

the occurrence of a new damage at this region. Finally,

in the density plot of the end of the sixth load cycle,

another increase in the density function around the arti-

ficial debonding was observed, which emphasizes that

the damage mostly propagated around the artificial

debonding during this load cycle.

Figure 7. The cumulative AE events during the cyclic test.
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Figure 8. Kaiser and Felicity effects for the cyclic test.

Figure 9. Damage localization by AE at the end of six load cycles (artificial debonding is represented by a hatched rectangle).

Saeedifar et al. 9



To verify the AE localization results, the DIC was
also employed to trace the damage evolution in the
panel during six load cycles. Figure 10 summarizes the
out-of-plane displacement of the titanium panel
obtained from DIC. Almost a uniform displacement
distribution is observed on the panel’s surface for the
first three cycles. Starting from the end of the fourth
load cycle, an out-of-plane concentration appeared at
the location of the artificial debonding, which is consis-
tent with the AE localization results (see Figure 9).
This concentration gets magnified in the fifth load
cycle. At the sixth load cycle, another out-of-plane con-
centration is visible at the right side of the panel, which
is in agreement with the AE localization results for the
fifth and sixth load cycles. Although the DIC results
are consistent with the AE results, it has a one-cycle
delay in comparison to AE. This is due to the fact that
AE detects the debonding propagation, while the
increase in the out-of-plane displacement, which is
detected by DIC, is a consequence of this debonding
propagation.

Damage mechanisms identification. As depicted in
Figure 6, the damage clustering using AE signals is
done in seven steps: (1) feature extraction, (2) feature
selection, (3) data dimensionality reduction using
Principal Component Analysis (PCA), (4) finding the
optimum number of clusters, (5) AE data clustering
using the PSO algorithm, (6) assigning each AE cluster
to the corresponding damage mechanism, and (7) vali-
dation of the damage clustering results. The details of
each step will be discussed later.

Twelve AE features, which have been mostly used in
the literature, were extracted for the AE signals and
they are presented in Table 2. The upper and lower lim-
its of the features were specified based on the AE data-
set of the cyclic test. In the feature selection step, the
features with the highest discriminating capability
should be selected among all the available AE features
because these features will lead to a larger spread of the
data. As it is clear from Table 2, because the features
are in different units and also their ranges are com-
pletely different, the variation of the raw data is not

Figure 10. The out-of-plane displacement field at the end of six load cycles obtained from DIC (artificial debonding is illustrated by
a hatched rectangle).
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comparable. Therefore, each feature is first being scaled
to a range of [0, 1] by dividing all the feature values by
the maximum value of that feature. Then, a descriptive
statistical analysis is performed using the box plot. In
this way, five main parameters are determined includ-
ing: the median, the first quartile, the third quartile,
and the data min and max. This ensures that all the
data are compared with the same confidence interval of
99.3% as depicted in Figure 11. Accordingly, the top
five features with the highest discriminating capability,
that is A, FFT_CoG, RMS, FFT_FoM, and R/D, are
selected for the rest of the analysis.

The five selected features are then analyzed using
the PCA method to reduce the dimensionality of the
dataset for easier data manipulation and analysis. The
PCA creates new independent variables (principal

components), made as a linear function of the initial
variables, that maximize variance (increasing data dis-
crimination potential). In the PCA, most of the initial
variables information will be put in the first compo-
nents. More details on the PCA method can be found
in Pashmforoush et al.40 In this study, because the ini-
tial data dimensionality was five (five features including
A, FFT_CoG, RMS, FFT_FoM, and R/D), PCA
resulted in five principal components in which most
information is found in the first component, then in the
second, and so forth. Figure 12 shows the first two
principal components of the AE signals of the panel
(PCA 1 and PCA 2) that provide the highest discrimi-
nation for the AE dataset.

In the case of supervised classification, the number
of classes is known from the training dataset before-
hand. On the contrary, in the case of unsupervised clus-
tering, finding the optimum number of clusters is a
challenge. Before clustering the data, the optimum

Table 2. The specifications of the AE features.

Feature Symbol Unit Lower limit Upper limit

Amplitude A dB 40 100
Rise time R ms 0.1 1000
Duration D ms 0.1 1000
Energy E eu 9 2.6e8
Root mean square RMS mV 3.8 14.2
Counts CNTS - 0 2790
Rise time/duration R/D - 0 0.0005
Energy/amplitude E/A eu/dB 0.22 2.64e6
Rise time/(duration2rise time) R/(D2R) - 0.0005 91.2
Amplitude/rise time A/R dB/ms 0.076 417
Centroid frequency FFT_CoG kHz 131.3 420
Peak frequency FFT_FoM kHz 125.5 359.9

RMS: root mean square.

Figure 11. The results of a descriptive statistical analysis for
the AE data of the cyclic test.

Figure 12. The PCA components for the AE data of the cyclic
test.
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number of clusters was obtained using Davies–Bouldin,
silhouette, and Calinski–Harabasz criteria. All these
three methods find the optimum number of clusters by
performing an iterative optimization process. In the
case of the Calinski–Harabasz criterion, the objective
function is defined as a function of the ratio of the
between-cluster variance to the within-cluster variance.
The best response would be found in the case of the
largest between-cluster variance and the smallest
within-cluster variance. In the case of the silhouette cri-
terion, it tries to maximize an objective function that
indicates the similarity of one data point to its own
cluster. It varies from 21 to + 1, in which the higher
the value, the better the response. Finally, the Davies–
Bouldin criterion almost does the opposite of the
Calinski–Harabasz criterion, and its objective function
is defined as the ratio of within-cluster to between-
cluster distances. Therefore, in this criterion, the lower

the value, the better the response. The details of these
criteria can be found in Calinski and Harabasz,41

Davies and Bouldin,42 and Rousseeuw.43 In conclusion,
the highest value of Calinski–Harabasz and silhouette
indices and the lowest value of the Davies–Bouldin
index indicate an optimum number of clusters.
Therefore, as depicted in Figure 13 for the present AE
dataset, the optimum number of clusters for the AE
dataset is 4.

Afterward, the PSO algorithm was used to cluster
the AE data into four clusters by minimizing the follow-
ing objective function (within-cluster distance (WCD))

WCD =
Xk

j = 1

X

x2Cj

d x,mj

� �
=
Xn

i = 1

min
1<j<k

d(xi,mj) ð8Þ

where x indicates a data point, k is the number of clus-
ters, Cj is cluster j, mj represents the centroid of cluster
j, d is the Euclidean distance, and n denotes the total
number of data. The stopping criterion of the algorithm
was the maximum number of iterations, which was set
as 200.

The clustered data and the values of the objective
function in each iteration are summarized in Figure 14.
After ;30 iterations, the PSO algorithm converged to
the best clustering solution.

The cumulative number of events for each cluster
during the cyclic test is illustrated in Figure 15. The first
cluster, which started at the end of the third load cycle,
is cluster 4. Then, clusters 2 and 3 initiated at the end of
the fourth load cycle. Cluster 1 is the last one starting
at the end of the fifth load cycle. The load level corre-
sponding to the initiation of each cluster is reported in
Table 3.

To correlate these AE clusters to the associated dam-
age mechanisms, first, the clusters were localized. Then,

Figure 14. (a) The clustered AE data and (b) the objective function value in different iterations.

Figure 13. Specifying the best number of clusters using
Davies–Bouldin, silhouette, and Calinski–Harabasz indices.
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the location of each cluster was compared with the trace
of the different damages on the fracture surface of the
panel. As shown in Figure 16, cluster 4 was mainly
located close to the artificial debonding, while cluster 1
was mostly located at the right side of the panel, far
from the artificial debonding. Clusters 2 and 3 were
almost distributed in the whole area of the panel. To
find the damage mechanisms associated with these clus-
ters, the damaged panel was cut from the region shown
in Figure 17(a). The images of the damaged CFRP–tita-
nium interface are depicted in Figure 17(b). The domi-
nant damage mechanism at the left side of the panel,
where the artificial debonding exists, is the separation
of the adhesive layer from CFRP or titanium, ‘‘adhesive
failure.’’ The adhesive material which only remained on
one side of the titanium–CFRP interface is an evidence
of the adhesive failure, while, at the right side of the
panel, the dominant damage mechanism is the damage
within the adhesive layer, ‘‘cohesive failure.’’ The trace
of the adhesive material on both surfaces of the CFRP
and the titanium is a signature of the cohesive failure
mode.

Therefore, the AE cluster 4 which was mainly
located at the left side of the panel is correlated to the
adhesive failure and cluster 1 which mostly occurred at

the right side of the panel is allocated to the cohesive
failure. To determine the source of clusters 2 and 3,
which were distributed in a wider area, the longitudinal
strain of the titanium panel during the six load cycles
was calculated by the DIC and it is plotted in Figure
18. According to the titanium datasheet, the yielding
strain of the titanium panel is ;0.25%. From the strain
curve of the panel (see Figure 18), it is clear that up till
the end of the third load cycle, the strain value is less
than the yield strain of the titanium, while in the fourth
load cycle, the strain exceeds the titanium’s yielding
strain. This moment is almost consistent with the initia-
tion of clusters 2 and 3 in the fourth load cycle in
Figure 15. Thus, one or both of clusters 2 and 3 can be
attributed to the titanium yielding. To find out the
similarity of these two clusters and the titanium yield-
ing signals, the standard dog bone test sample was fab-
ricated out of the titanium panel and it was subjected
to the quasi-static tensile test, while its AE activities
were recorded by the AE sensor. The similarity_index
was defined to calculate the similarity of the titanium
yielding signals and clusters 2 and 3

di =
1

ni(ni � 1)=2

Xni�1

i = 1

Xni

j = i + 1

d(xi, xj); xi, xj 2 Ci ð9Þ

do =
1

ninj

Xni

i = 1

Xnj

j = 1

d(xi, xj); xi 2 Ciandxj 2 Cj ð10Þ

Similarity index =
do � di

max(do, di)
ð11Þ

where Ci indicates cluster i, ni is the number of data
points of cluster i, and d(xi, xj) determines the distance
between two data points xi and xj. di indicates the aver-
age of internal distances of data points inside cluster i,
while do shows the average of the external distance of
data points of cluster i from the other clusters’ data
points. Here, Ci denotes the titanium yielding AE data-
set and Cj represents clusters 2 and 3. Each data point,
x, was defined by five features, including A, FFT_CoG,
RMS, FFT-FoM, and R/D. The similarity_index value
of 1 indicates that there is no similarity between the tita-
nium yielding signals and clusters 2 and 3, while an
index value close to 0 or even a negative value indicates
a huge similarity between the titanium yielding signals
and these two clusters. The similarity_index values for
clusters 2 and 3 were 0.1441 and 0.0109, respectively,
which indicates a high similarity between the titanium
yielding signals and both clusters 2 and 3. Therefore, as
both clusters started at the same time and also they had
a very small similarity_index values with the titanium
yielding signals, both clusters 2 and 3 are allocated to
the titanium yielding. The camera placed at the side of
the panel did not show any damage in the CFRP

Table 3. The corresponding load to the initiation of different
AE clusters.

Cluster Load level (kN) Loading cycle

4 134.6 3
2 167.7 4
3 186.1 4
1 211.5 5

Figure 15. The number of cumulative events for different
clusters during the cyclic test.
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stringers up to the moment of the final failure of the
panel which is consistent with the literature.30

Therefore, no AE cluster is dedicated to the CFRP
failure.

In summary, clusters 4 and 1 were allocated to the
adhesive failure and cohesive failure, respectively, by
mapping the localized clusters to the fractography
image of the damaged panel. Regarding clusters 2 and
3, they started simultaneously at the fourth load cycle
while the DIC indicated yielding of the titanium panel.
Moreover, the proposed similarity index for the AE sig-
nals obtained from the tensile test of a titanium sample,

from one side, and both clusters 2 and 3, from the other
side, revealed a high similarity. Therefore, both clusters
2 and 3 were dedicated to the titanium yielding.

Conclusion

This study was devoted to the SHM of an aeronautical
titanium panel stiffened by the omega shape CFRP
stringer using AE and DIC techniques. Two panels with
a small artificial debonding between the titanium sheet
and one of the CFRP stringers were fabricated. The
first panel was subjected to a quasi-static monotonic

Figure 16. Localization of different AE clusters at the end of the sixth load cycle: (a) cluster 1, (b) cluster 2, (c) cluster 3, and (d)
cluster 4 (the artificial debonding is highlighted by a hatched rectangle).
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compression load to find the maximum load, which was
;250 kN, and accordingly, the second one was sub-
jected to an increasing cyclic load with the load step of
50 kN up to final fracture. The AE was used to

comprehensively characterize the damage, that is, dam-
age initiation detection, damage severity, damage locali-
zation, and damage type identification. The concluding
remarks are summarized as follows:

Figure 17. (a) The cutting lines of the panel and (b) 2D and (c) 3D images from the surface of the CFRP stringers and the titanium
panel (adhesive material is visible as green hunks on the fracture surface).

Saeedifar et al. 15



1. The AE analysis enabled the distinction between
the damage initiation and damage severity. Despite
the fact that damage initiation occurred at the end
of the third cycle, it was not severe enough to affect
the integrity of the structure. This was confirmed
by the Felicity analysis highlighting the occurrence
of the severe damage only at the end of the fifth
cycle.

2. The localized AE events on the panel surface were
consistent with the regions with the highest out-of-
plane displacement highlighted by DIC. First, the
damage started around the artificial debonding and
then it propagated to the other side of the panel
which resulted in the catastrophic failure of the
panel at the end.

3. Comparing the AE results with the DIC results
revealed that although both techniques detected
the damage, the DIC detected the damage one
cycle later than AE. This is due to the fact that the
AE detected the damage propagation, while DIC
detected the consequences of this damage, which is
the increase in out-of-plane displacement in this
case.

4. Finally, five features with the highest discrimina-
tion capability were selected to cluster the AE sig-
nals into several clusters using PSO algorithm. The
obtained clusters were then assigned to their associ-
ated damage mechanisms, that is, adhesive failure,
cohesive failure, and titanium yielding.

The obtained results demonstrated the potential of
AE, as an SHM technique, for the monitoring of the
integrity of the aeronautical composite-to-metal adhe-
sively bonded structures.
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