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A fast computational model for near- and far-field noise
prediction due to offshore pile driving
Yaxi Peng,1,a) Apostolos Tsouvalas,1,b),c) Tasos Stampoultzoglou,2 and Andrei Metrikine1,b),d)

1Department of Structural Engineering, Delft University of Technology, Stevinweg 1, 2628CN, Delft, Netherlands
2Department of Engineering and Estimating Offshore/Offshore Wind, Van Oord, Schaardijk 211, 3063NH, Rotterdam, Netherlands

ABSTRACT:
This paper presents a computationally efficient modeling approach for predicting underwater noise radiation from
offshore pile driving. The complete noise prediction model comprises two modules. First, a sound generation
module is adopted to capture the interaction between the pile, the fluid, and the seabed, aiming at modeling the
sound generation and propagation in the vicinity of the pile. Second, a sound propagation module is developed to
propagate the sound field at larger distances from the pile. To couple the input wavefield obtained from the sound
generation module, the boundary integral equations (BIEs) are formulated based on the acousto-elastodynamic reci-
procity theorem. To advance the mathematical formulation of the BIEs, the Green’s tensor for an axisymmetric ring
load is derived using the complex wavenumber integration technique. The model advances the computational effi-
ciency and flexibility of the noise prediction in both near- and far-fields from the pile. Finally, model predictions are
benchmarked against a theoretical scenario and validated using measurement data from a recent offshore pile-
installation campaign. VC 2021 Acoustical Society of America. https://doi.org/10.1121/10.0003752
(Received 15 October 2020; revised 17 February 2021; accepted 21 February 2021; published online 12 March 2021)
[Editor: Nicole Kessissoglou] Pages: 1772–1790

I. INTRODUCTION

Underwater noise generated by offshore pile driving
has raised serious concerns over the ecological impact on
marine life (Bailey et al., 2010). In recent years, a large
number of offshore wind farms have been built, which inten-
sifies the negative effect induced by impact pile driving
(Hastie et al., 2019). Recent studies have shown that the
emission of the high-intensity impulsive noise not only leads
to temporary habitat loss for porpoises and dolphins but also
increases the risk of causing temporary or permanent hear-
ing damage of those marine mammals (Ainslie et al., 2020;
Hastie et al., 2019). To preserve the marine ecosystem and
maintain sustainable development, strict governmental regu-
lations are being imposed targeting the threshold levels of
underwater noise (Rossington et al., 2013). Therefore, an
environmental impact assessment that includes the predic-
tion of noise levels is required prior to the construction of
the installation of piles in most projects (St ober and
Thomsen, 2019). Given the expected noise levels, appropri-
ate noise mitigation systems (NMS), i.e., bubble curtains,
hydro-sound damper, or noise mitigation screen, are usually
required to reduce the noise (Verfuß, 2014).

Over the last few decades, modeling the underwater
noise generated by offshore pile driving has been studied
extensively with various computational methods (Tsouvalas,

2020). In most available models, a two-step modeling
approach is adopted. A sound generation model, based on
either finite elements (FEs) (Reinhall and Dahl, 2011;
Zampolli et al., 2013) or finite differences (MacGillivray,
2014), is employed for sound generation purposes.
Subsequently, a sound propagation model is used to propa-
gate sound at larger distances based on the normal mode
method (Wilkes and Gavrilov, 2017; Wilkes et al., 2016),
the wavenumber integration method (Lippert and von
Estorff, 2014), or the parabolic equation method (Kim et al.,
2012). Reinhall and Dahl (Reinhall and Dahl, 2011) were
the first to examine systematically the noise generated by
the impact pile driving. Using FE simulations, they have
shown that the sound waves in the seawater region originate
from the radial expansion of the pile surface caused by the
compressional waves traveling the pile downward at super-
sonic speed, the latter radiating waves in the water in the
form of Mach cones. A complete physics-based noise pre-
diction model, including modeling the soil as an elastic
medium in the near-field and modeling of an impact ham-
mer, was proposed by Fricke and Rolfes (2015). The mod-
eled results agree well with noise measurement data, which
confirm the validity of the model and reveal that the main
damping mechanism for the pile vibration is the radiation of
shear waves into the soil and not frictional sliding between
the pile and soil. Based on the conceptualization of the radi-
ated sound field as an array of moving point sources, several
simplified models reproduced the sound field from pile driv-
ing by employing the wavenumber integration technique
(Lippert and Lippert, 2012) or the parabolic equation
method (Dahl and Dall’Osto, 2017; Reinhall and Dahl,
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2011). The results were generally found to be in good quali-
tative agreement with those of more detailed FE simula-
tions. Lippert and von Estorff (2014) presented a coupled
FE and wavenumber integration model and investigated the
influence of uncertainties of sediment parameters through
Monte-Carlo simulations. The numerical predictions by the
different models are basically consistent with each other
(Lippert and von Estorff, 2014). With only a few exceptions
(Fricke and Rolfes, 2015), the seabed is customarily approx-
imated by an equivalent acoustic fluid with extra attenua-
tion. However, it is well-known that the pile-driving sources
located in the seafloor are not purely compressional in
nature but emit both compressional and shear waves
(Hazelwood and Macey, 2016; Hazelwood et al., 2018;
Nealy et al., 2016). A detailed description of the soil is
essential to correctly capture the noise source characteristics
(pile vibrations). The influence of the pile inclination and
three-dimensional effects are examined by recent models
(von Pein et al., 2019; Wilkes and Gavrilov, 2017), which
are applicable for raked piles and vertically positioned piles
driven in range and angular-dependent environments.

In contrast to the models above, several semi-analytical
models were also developed to predict underwater noise
from pile driving (Deng et al., 2016a; Deng et al., 2016b;
Hall, 2013, 2015; Tsouvalas and Metrikine, 2013, 2014).
The model developed by Tsouvalas and Metrikine (2013)
describes adequately the most critical components of the
system, i.e., the hydraulic hammer, the pile, and the water,
while the seabed is described by linear springs and dashpots,
which account for soil elasticity and energy absorption,
respectively. This paper aims to capture primarily the pile
dynamics and near-field noise prediction, but not very close
to the seabed surface. Subsequently, a more complete pile-
water-soil interaction model was developed by Tsouvalas
and Metrikine (2014), which additionally included a three-
dimensional description of the water-saturated seabed as a
layered elastic medium. In that work (Tsouvalas and
Metrikine, 2014), the significance of the seabed-water inter-
face waves (Scholte waves) was also investigated for the
first time; the model predictions were later confirmed by col-
lected measurement data (Tsouvalas and Metrikine, 2016).
Although Scholte waves travel at relatively low wave speed
and attenuate quickly, they need to be accounted for in the
sound generation model in order to accurately describe the
pile vibrations and energy distribution in the domain of
interest (Tsouvalas et al., 2015). The primary noise trans-
mission path is in the water column in the form of Mach
cones, while the secondary noise path is attributed primarily
to Scholte waves, which propagate along the seabed-water
interface (Hazelwood and Macey, 2016; Hazelwood et al.,
2018). Examining these two noise transmission paths is key
to the effective blockage of the noise propagation by
exploiting the proper functioning of noise mitigation sys-
tems. Similar to the semi-analytical model (Tsouvalas and
Metrikine, 2013), the model proposed by Deng et al.
(2016a) focused on examining the influence of the non-
axisymmetric impact loading and the interaction of the anvil

and the pile. Next to the semi-analytical models discussed
above, a damped cylindrical spreading (DCS) model was
developed by Lippert et al. (2018), which estimates the
sound exposure level (SEL) due to impact piling using an
analytical approach. Similarly, a linear mixed model addi-
tionally takes into account the influence of the variability in
the sound propagation (Martin and Barclay, 2019) and later
is extended with the regression analysis for acoustic impact
criteria (Ainslie et al., 2020).

Given the discussion above, most available models are
either detailed, i.e., FE models coupled to the propagation
models, or simplified empirical ones. While the former ones
are accurate but computationally slow, the latter are fast but
cannot accurately predict the noise field, especially when
NMS are deployed. In the near-field, detailed FE models
including the elastic description of the seabed can encounter
numerical issues for higher frequencies as the limit of the
perfect matched layer, including angle-dependent absorption
and heavy computation due to the very fine mesh size
required to account for the shear waves. Next to that, the
semi-analytical models discussed are valid for predictions in
the vicinity of the pile but not valid at a larger horizontal
distance from the pile due to the introduction of the artificial
boundary at a large depth to accommodate the mode-
matching solution approach (Tsouvalas and Metrikine,
2014), which will cause artificial reflection of the waves.
The primary purpose of this paper is to present a computa-
tionally efficient method for the prediction of the generation
and propagation of the sound field associated with impact
piling at large (from the pile) distances, overcoming the lim-
itations of earlier models. The complete model consists of
two modules: (i) a sound generation module aiming at the
accurate description of the pile-water-soil interaction
together with the sound emission in the vicinity of the pile
and (ii) a sound propagation module aiming at the propaga-
tion of the wavefield at larger distances with high accuracy.

The main contribution of the present model is that it
advances the accuracy, computational efficiency, and flexi-
bility of the noise prediction in both near- and far-fields.
First, the sound generation module captures the vibroacous-
tic behavior of the coupled pile-water-soil system. It pro-
vides an accurate description of the input wavefield in terms
of both stresses and displacements at the pile proximity.
This field is subsequently fed into the sound propagation
module. The complex wavenumber integration technique
adopted in the latter advances the mathematical treatment of
the Green’s function for an acousto-elastic layered half-
space. The choice of the branch cut ensures both stability
and convergence of the obtained solution. The attenuation in
multilayered soil half-space is included by identifying the
exact poles and branch cuts in the complex wavenumber
plane, which is especially important for noise predictions up
to a few kilometers. The accuracy of the model predictions
is demonstrated against measurement data up to 1500 m
from the pile. Apart from the pressure waves in the water
column and compressional and shear waves in the seabed,
the Scholte and Stoneley waves at the water-soil and soil-
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soil interfaces are captured in both modules. Second, com-
pared to the classical FE models coupled to the propagation
models, the model presented herein is computationally more
efficient and can be used in probabilistic analysis of noise
prediction involving a large number of simulations with less
computational effort. Compared to the equivalent fluid-
based, far-range sound propagation model, the sound propa-
gation module is computationally fast and provides a more
detailed description of the elastic seabed. Third, the eigen-
problems of the shell and the surrounding acousto-elastic
medium can be solved independently, which provides great
flexibility in examining various configurations of the sys-
tem. The response of the pile and the acousto-elastic
medium can then be derived for the coupled problem using
the given modal sets and the mode-matching method, which
greatly reduce the computation time. The present model
allows an in-depth analysis of water- and soil-borne noise
transmission paths independently and can be used for the
prediction of noise reduction level by combining it with var-
ious modeling techniques, i.e., air bubble curtain system,
hydro-sound damper system, and underwater Helmholtz
resonators.

The structure of this paper is as follows. In Sec. II, the
governing equations and model description are presented. In
Secs. III and IV, the solution method is presented as a two-
step approach consisting of the sound generation module
and the sound propagation module. In Sec. V, the numerical
evaluation of the solutions is presented based on the normal
mode solution with complex wavenumber integration
addressing both numerical stability and convergence. The
choice of the branch cuts and the physical interpretation of
contributions from discrete poles are also discussed. In Sec.
VI, the solution is validated against results obtained by FE
simulations. Section VII is dedicated to a numerical analysis

of several benchmark cases, which proves the validity of the
model for the prediction of underwater noise from offshore
pile driving. Finally, the conclusions are given in Sec. VIII.

II. MODEL DESCRIPTION AND GOVERNING
EQUATIONS

In this section, the description of the model and the gov-
erning equations of the fully coupled vibroacoustic system
are introduced. The geometry and material properties of the
system are given first, followed by the equations of motion
of the vibrating shell, the fluid, and the soil together with the
boundary and interface conditions. Finally, a schematic
overview of the computational method is presented.

A. Description of the model

The total system consists of the pile structure, the
hydraulic hammer, and the surrounding fluid and soil media
as shown in Fig. 1 (left). A symmetric cylindrical coordinate
system (r; /; z) is introduced for the fluid and soil domain
with the depth z being positive downward and r being the
radial distance from the z axis. The model is assumed to be
range-independent. The displacement field is described as
un … ‰un; hn; wn� with n … f or j indicating the fluid layer or
soil layer j. Because of axial symmetry, the displacement in
the /-direction hn is trivially zero. Based on the assumption
that the fluid and the soil inside the pile do not significantly
influence the vibration of the pile and the radiated energy in
the surrounding medium (Tsouvalas and Metrikine, 2013),
the water column and the soil inside the pile are not included
in this model. The complete model consists of two modules,
a sound generation module and a sound propagation module.
The sound generation module comprises the pile modeled as
a linear elastic thin shell and the surrounding media

FIG. 1. Schematic of the complete system (left) and the coupled model (right): r0 is the radial distance of the coupled cylindrical surface; z0 is the level of
the sea surface; z1 is the level of the seabed; zj is the bottom level of the j � 1th soil layer (j … 2,3… N); L indicates the level of the bottom of pile tip; H indi-
cates the level of the rigid boundary applied in the sound generation module.
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modeled as a horizontally stratified acousto-elastic wave-
guide (Tsouvalas, 2015; Tsouvalas and Metrikine, 2014). A
rigid cylinder of the same radius as the pile and of height H-
L is placed below the pile tip, which allows one to employ
the semi-analytical solution adopted in this work. By doing
so, the radiation of elastic waves from the tip of the pile into
the deeper soil layers is omitted. However, this assumption
is not expected to influence the noise predictions and the
elastic wave propagation in the shallow soil layers close to
the seafloor. The hydraulic hammer and anvil are not mod-
eled explicitly but substituted by an external force exerted at
the top of the pile (z…0). The forcing function is obtained
from available measurement data or numerical models
(Fricke and Rolfes, 2015; Zampolli et al., 2013). The
dynamic response of the shell structure is described by a lin-
ear high-order shell theory (Kaplunov et al., 1998). The
high-order shell theory is chosen to accommodate all combi-
nations of pile sizes and excitation frequencies, as the high-
order approximations are more accurate at higher frequency
bands and do not involve any extra computational cost in
the solution approach adopted in this paper (Kaplunov et al.,
1998; Tsouvalas, 2015). The pile occupies the domain
0 � z � L, with the material and geometrical constants E, �,
R, q, and t being the complex modulus of elasticity in the
frequency domain, the Poisson ratio, the radius of the mid-
surface of the shell, and the density and thickness of the
shell, respectively. In both modules, the fluid is modeled as
a three-dimensional inviscid compressible medium with
constants cf and qf being the wave speed and the density of
the fluid, which occupies the domain z0 � z � z1 with
R � r � r0 for the sound generation module and r � r0 for
the sound propagation module. The soil is modeled as a
three-dimensional elastic continuum occupying the domain
z � z1. The constants kj, lj, and qj correspond to the Lam�e
coefficients and the density of the solid, with the index
j … 1; 2; …; N specifying the soil layers including the bot-
tom soil half-space. The material dissipation (damping) in
the soil is introduced in the form of complex Lam�e constants
~kj and ~lj as ~kj … kj � ð1 þ i � a1jÞ and ~lj … lj � ð1 þ i � a2jÞ.
The attenuation coefficients a1j and a2j are defined as
ð20p log10eÞapj and ð20p log10eÞasj , respectively, with apj

and asj being the compressional and shear damping coeffi-
cients in units of dB per wavelength.

B. Governing equations

The following partial differential equations govern the
dynamic response of coupled system consisting of the shell
structure and the acousto-elastic media in the time domain:

Lu þ I u … �ðHðz � z1Þ � Hðz � LÞÞts

þ ðHðz � z0Þ � Hðz � z1ÞÞpf þ fe; (1)

r2pf ðr; z; tÞ �
1
c2

f
 pf ðr; z; tÞ … 0; (2)

ðkj þ 2ljÞrðr � ujÞ � ljr � ðr � ujÞ … qj uj: (3)

In Eq. (1), u … ‰uzðz; tÞ urðz; tÞ�T is the displacement vector
of the mid-surface of the shell with 0 < z < L. The opera-
tors L and I are the stiffness and modified inertia matrices
of the shell, respectively (Tsouvalas and Metrikine, 2014).
The term ts represents the boundary stress vector that takes
into account the reaction of the soil surrounding the shell
z1 � z � L. The term pf represents the fluid pressure exerted
at the outer surface of the shell at z0 � z � z1. The functions
Hðz � ziÞ are the Heaviside step functions. The vector
fe … ‰fzðz; tÞ frðz; tÞ�T represents the externally applied force
on the surface of the shell. In Eq. (2), pf ðr; z; tÞ is the pres-
sure field of the fluid. In Eq. (3), uj … ‰wjðr; z; tÞ ujðr; z; tÞ�T

is the vertical and radial displacements of soil layer j.
The Helmholtz decomposition can be applied to the

fluid-soil domain as

uf … r/f ; uj … r/j þ r � 0; �
@wj

@r
; 0

� �
: (4)

Substitution of Eq. (4) into Eqs. (2) and (3) yields (Ewing
et al., 1957)

r2/f ðr; z; tÞ …
1
c2

f

@2/f

@t2
; (5)

r2/jðr; z; tÞ …
1
c2

pj

@2/j

@t2
; (6)

r2wjðr; z; tÞ …
1
c2

sj

@2wj

@t2
: (7)

In the equations above, cpj and csj denote the speeds of the
compressional and shear waves in soil layer j, respectively.

The pressure release boundary condition is applied at
the sea surface. At the fluid-soil interface z … z1, the vertical
stress equilibrium and the vertical displacement continuity
are imposed, while the shear stress vanishes, since no tan-
gential stresses present in a perfect fluid. For the sound gen-
eration module, the interface at z … H is substituted by a
rigid boundary at a great depth, whereas the bottom soil is
extended to infinity to mimic realistic ocean environments
in the sound propagation module. In the following examined
cases, H … zN. The choice of the zN (zN � H) for practical
cases is related to the depth of the soil layer, which is deter-
mined by the soil profiles provided by the offshore geotech-
nical survey. The rigid cylinder below the pile is not
expected to have a significant influence on the energy distri-
butions and the resulting pressure level in the fluid. This
assumption is confirmed in the sequel by direct comparison
with the measured data. To minimize the effect of the artifi-
cial reflection from the rigid boundary, the sound generation
module is coupled to the sound propagation module at a
very close distance to the pile surface, so the influence of
the rigid boundary becomes insignificant.

Given the full-contact at the soil-soil interface, both
stress equilibrium and displacement continuity are applied.
This set of boundary and interface conditions reads

J. Acoust. Soc. Am. 149 (3), March 2021 Peng et al. 1775

https://doi.org/10.1121/10.0003752

https://doi.org/10.1121/10.0003752


pf ðr; z0; tÞ … 0; r � R; (8)

rzz1ðr; z1; tÞ þ pf ðr; z1; tÞ … 0;
uz;f ðr; z1; tÞ … ws1ðr; z1; tÞ; rzr1ðr; z1; tÞ … 0;
r � R; (9)

wjðr; zj; tÞ … wj�1ðr; zj; tÞ;
ujðr; zj; tÞ … uj�1ðr; zj; tÞ; 2 � j � N; r � R; (10)

rzzjðr; zj; tÞ … rzzj�1ðr; zj; tÞ;

rzrjðr; zj; tÞ … rzrj�1ðr; zj; tÞ;

2 � j � N; r � R: (11)

In Eq. (11), rzzj and rzrj designate the normal and tangential
stresses in the soil layer j. For r < r0, a rigid surface is
placed at z … H (in the sound generation module) as depicted
in Fig. 1 (right). At the pile-water interface, the pressure
equilibrium and displacement continuity are imposed.
Under the assumption of no pile slip, a perfect contact con-
dition is applied at the pile-soil interface. The set of kine-
matic conditions at the interface of the shell and the
surrounding media (r … R) are given as

urðz; tÞ … uf ðR; z; tÞ; z0 � z � z1;
urðz; tÞ … ujðR; z; tÞ and uzðz; tÞ … wjðR; z; tÞ;
z1 � z � L; 1 � j � N: (12)

After applying the forward Fourier transform, the governing
equations in frequency domain are obtained. The Fourier
transform pair used in this paper is expressed as

gðtÞ …
1
2p

ðþ1

�1

~GðxÞe�ixtdx

and ~GðxÞ …
ðþ1

�1
gðtÞeixtdt; (13)

in which g(t) and ~GðxÞ denote the physical quantities in the
time and frequency domains, respectively.

C. An overview of the computational method

The diagram of the complete model is shown in Fig. 2,
which presents the computational method of the model and
the process of the simulation. As indicated in the diagram,
variation of a certain input parameter, e.g., the penetration
depth of the pile or the input forcing function, requires
solely part of the simulation to be recomputed, which signif-
icantly improves the computation efficiency of the model
for running a large number of parametric analysis.

III. SOUND GENERATION MODULE

The sound generation module is based on a three-
dimensional cylindrically symmetric vibroacoustic model
developed by Tsouvalas and Metrikine (2014). The module
captures the dynamic interactions between the pile and the
surrounding media. A modal decomposition is applied to

both the shell structure and the acousto-elastic waveguide.
Based on the mode-matching technique, the response of a
coupled pile-water-soil system is obtained in the frequency
domain. The wavenumber spectrum associated with the eva-
nescent waves of the waveguide is significant for the vibro-
acoustic interaction problem as shown in Tsouvalas et al.
(2015). A set of the response functions in terms of pressure,
velocity, displacement, and stress tensors is obtained as
input for the sound propagation model discussed in Sec. IV.
The expressions for the fluid pressure are given in Tsouvalas
and Metrikine (2014) as follows:

~pf ðr; z; xÞ …
X1

p…1
CpHð2Þ

0 ðkprÞ~pf ;pðzÞ; (14)

in which the complex-valued coefficients Cp are determined
by solving the forced response of the complete coupled sys-
tem, and ~pf ;pðzÞ are the eigenfunction of the pressure for the
mode p. The expressions for velocities in the fluid, displace-
ment, and stresses in the soil can be found in Eqs. (40)–(44)
in Tsouvalas and Metrikine (2014).

Because the complete system is linear and the eigen-
value problems of the shell and the acousto-elastic wave-
guide are solved independently, only part of the simulation
is required for a large number of predictions with various

FIG. 2. Diagram of the computational approach of the model and its
components.
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inputs. The sound generation module allows various scenar-
ios (i.e., various forcing functions, soil conditions, penetra-
tion depths, etc.) to be investigated with significantly less
computational effort compared to the FE or finite-difference
models, since only part of the simulation needs to be evalu-
ated when input parameters are varied.

IV. SOUND PROPAGATION MODULE

The input to the sound propagation module is provided by
the sound generation module through a boundary integral for-
mulation (Achenbach, 1973; Beskos, 1987; Jensen et al.,
2011). This section comprises two parts. Section IV A
describes the derivation of the Green’s functions, whereas Sec.
IV B discusses the formulation of the boundary integrals.

A. Green’s functions

A solution of the wave equation in acousto-elastic
ocean environments was first developed by Press and Ewing
(1950). They extended the Pekeris theory of normal mode
model from two liquid layers into the case of a fluid layer
overlying a solid bottom. The solution presented by Press
and Ewing is an approximation that holds for observation
points at large radial positions solely, which renders the
branch line integrals insignificant. Schmidt and Jensen
(1985) dealt with the case of a multilayered viscoelastic
medium and employed the wavenumber integration
approach to tackle the problem similarly to Ewing et al.
(1957). The solution for Green’s function by Nealy et al.
(2016) generalizes the previous approaches by considering a
point source in the elastic seabed or on the acousto-elastic
interface. Bakr (1986) applies the boundary integral equa-
tion (BIE) methods in the analysis of the axisymmetric
acoustic and elastic problem. The Green’s function for a
ring source is presented for infinite acoustic domain or elas-
tic domain. In this paper, the solution of Green’s functions
for ring load in acousto-elastic half-space is derived, and the
boundary integral formulation is extended for the coupled
acousto-elastic case.

To propagate the axisymmetric wavefield generated by
the sound generation module, Green’s tensors for a fluid
layer overlying a multilayered soil half-space are first
derived for an arbitrary source excitation. The Hankel trans-
form and complex contour integration approach are used to
obtain a closed-form response in the frequency domain. The
Hankel transform pair is given as (Abramowitz and Stegun,
1964)

f̂ ðkrÞ …
ð1

0
f ðrÞJ0ðkrrÞrdr

and f ðrÞ …
ð1

0
f̂ ðkrÞJ0ðkrrÞkrdkr; (15)

in which f(r) and f̂ ðkrÞ denote the functions in the frequency
domain and Hankel domain, respectively. J0ðkrrÞ is the
Bessel function of the first kind of order zero, and kr is the
horizontal wavenumber of the medium.

1. Fluid source

To derive the Green’s functions for an acoustic source,
a pressure-type ring source is placed at ‰rs; zs� in the fluid
domain, which generates pressure waves and produces a
unit pressure amplitude at the location of the source. The
equation of motion for the displacement potential reads

r2 þ k2
f

h i
~/

g
f ;f ðr; z; rs; zs; xÞ

…
1

�qx2
dðr � rs; z � zsÞ

2pr
; rs � R; z0 � zs � z1;

(16)

in which the first subscript of the Green’s potential function
denotes the location of the receiver, and the second subscript
denotes the location of the source with f being the fluid
domain. The homogeneous equations of motion for the dis-
placement potentials /s;f and ws;f in the soil are given by
Eqs. (6) and (7). Applying the forward Hankel transform to
Eqs. (6), (7), and (16), the wave equations are reduced to
depth-separated wave equations in the Hankel domain, for
which the similar expressions can be found in Bakr (1986),

d2

dz2 þ k2
z;f

� �
/̂

g
f ;f ðkr; z; rs; zs; xÞ

…
1

�qx2 dðz � zsÞ
J0ðkrrsÞ

2p
; (17)

d2

dz2 þ k2
z;pj

� �
/̂

g
j;f ðkr; z; rs; zs; xÞ … 0; (18)

d2

dz2 þ k2
z;sj

� �
ŵ

g
j;f ðkr; z; rs; zs; xÞ … 0; (19)

in which kz;n …
���������������
k2

n � k2
r

q
is the vertical wavenumber in the

domain n (…f ; pj, or sj). The boundary conditions of the
acousto-elastic medium along the z coordinate have been
specified in Eqs. (8)–(11).

The solutions for the displacement potentials are the
sum of a particular solution and the general solution to the
homogeneous equation:

/̂
g
f ;f ðkr; z; rs; zs; xÞ

…
1

�qx2
e�ikz;f jz�zsj

4pikz;f
þ Ag

1eikz;f z þ Ag
2e�ikz;f z

 !

J0ðkrrsÞ;

(20)

/̂
g
j;f ðkr; z; rs; zs; xÞ … ðAg

4j�1eikz;pj z þ Ag
4je

�ikz;pj zÞJ0ðkrrsÞ;
(21)

ŵ
g
j;f ðkr; z; rs; zs;xÞ … ðAg

4jþ1eikz;sj z þ Ag
4jþ2e�ikz;sj zÞJ0ðkrrsÞ;

(22)

in which the coefficients Ag
i (i … 1; 2; …; 4N þ 2) are unde-

termined complex amplitudes. Two unknown amplitude
coefficients in the potential function /f indicate upward-
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and downward- propagating waves in the fluid, and four
unknown amplitude coefficients in the functions /s and ws
indicate upward- and downward-propagating waves in each
soil layer. When j … N, the amplitudes in front of the first
term in both Eqs. (21) and (22) vanish to ensure the radia-
tion condition at infinity in z-direction. When deriving the
Green’s functions for the soil source, the soil layer contain-
ing the source is divided into two layers, above and below
the soil source, to end with homogeneous equations of
motion and the excitation included in the interface condi-
tions. This introduces an extra four unknown amplitudes of
/s and ws. Therefore, the total number of unknown ampli-
tude coefficients is 4N þ 2 for the fluid sources and 4N þ 6
for the soil sources.

Applying the inverse Hankel transform with the use of
the relationships of the Bessel functions (Abramowitz and
Stegun, 1964), the Green’s tensor of the acousto-elastic
medium in the frequency domain is obtained as

~Ug
N;f ðr;z;rs;zs;xÞ

… �
1
2

ðþ1

�1
ðÛ

g
N;f ðkr;z;rs;zs;xÞÞHð2Þ

0 ðkrrÞkrdkr; (23)

in which Û
g
N;f … ‰/̂

g
f ;f ; /̂

g
j;f ; ŵ

g
j;f �

T denotes the solutions of
displacement potential functions in the Hankel domain, and
~Ug

N;f are the corresponding potential functions in the fre-
quency domain.

The pressure, displacements, and stresses of the
acousto-elastic medium are expressed by the Green’s func-
tions of displacement potentials, which are omitted here for
the sake of brevity (Achenbach, 1973; Ewing et al., 1957).
By substituting the expressions into the boundary and inter-
face conditions shown in Eqs. (9)–(12), the final set of linear
algebraic equations with unknowns Ag

i for i … 1; 2; …; 4N þ2
is obtained and given in the Appendix. Once the amplitude
coefficients are solved for every kr, the Green’s tensor for a
pressure-type ring source placed in the fluid domain is
obtained.

2. Soil source

For a radial or vertical ring load applied in the soil as
shown in Fig. 3, the corresponding jump condition is applied
for the stresses at the plane of the source level z … zs.
Because all soil layers are free of body-force sources in that
case, the solutions for the potential functions can be defined
as

/̂
g
f ;sn

ðkr; z; rs; zs; xÞ … ðAg
1eikz;f z þ Ag

2e�ikz;f zÞJ0ðkrrsÞ; (24)

/̂
g
j;sn

ðkr; z; rs; zs; xÞ … ðAg
4j�1eikz;pj z þ Ag

4je
�ikz;pj zÞJ0ðkrrsÞ;

(25)

ŵ
g
j;sn

ðkr;z;rs;zs;xÞ … ðAg
4jþ1eikz;sj z þ Ag

4jþ2e�ikz;sj zÞJ0ðkrrsÞ;

(26)

in which the coefficients Ag
i (i … 1; 2; …; 4N þ 6) are unde-

termined complex amplitudes, and the subscript n denotes
the layer of the soil source. When j … n, the soil layer j is
separated into two sublayers at z … zs, which are denoted as
/̂sþ

n ;sn
and /̂s�

n ;sn
with “þ” and “–” indicating the layer above

and below the source level. The same notation is used for
the shear potentials as ŵsþ

n ;sn
and ŵs�

n ;sn
. Similar to the case

of the fluid source, when j … N, the amplitudes Ag
4j�1 and

Ag
4jþ1 are set to zero to satisfy the radiation condition in

z-direction.
For the radial load case, the following set of interface

conditions hold at z … zs in the Hankel domain:

r̂g
zrsþn ;sn

ðkr; zs; xÞ � r̂g
zrs�n ;sn

ðkr; zs; xÞ …
J0ðkrrsÞ

2p
; (27)

r̂g
zzsþn ;sn

ðkr; zs; xÞ … r̂g
zzs�n ;sn

ðkr; zs; xÞ; (28)

ûg
asþn ;sn

ðkr; zs; xÞ … ~ug
as�n ;sn

ðkr; zs; xÞ; a … r; z: (29)

Similarly, for the vertical load case, one obtains

r̂g
zzsþn ;sn

ðkr; zs; xÞ � r̂g
zzs�n ;sn

ðkr; zs; xÞ …
J0ðkrrsÞ

2p
; (30)

r̂g
zrsþn ;sn

ðkr; zs; xÞ … r̂g
zrs�n ;sn

ðkr; zs; xÞ; (31)

ûg
asþn ;sn

ðkr; zs; xÞ … ~ug
as�n ;sn

ðkr; zs; xÞ; a … r; z: (32)

Combining Eqs. (27)–(32) with Eqs. (8)–(11), after transfor-
mation of the latter to the Hankel domain, a linear algebraic
system is formed with unknowns Ag

i for i … 1; 2; …; 4N þ 6.
Once the displacement potentials are determined in the
Hankel domain, the expressions for the Green’s tensors of

FIG. 3. Schematic of the ring source at r … rs in the configuration of
acousto-elastic layered half-space.
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displacement and stress in the frequency domain can be
obtained.

3. Closed-form response in the frequency domain

The evaluation of the integrals given by Eq. (23) can be
achieved mainly in two ways: (1) by the direct wavenumber
integration along with the real axis of kr; (2) by using the
contour integration technique, i.e., by the superposition of
residues of the poles enclosed by the complex integration
contour and complex wavenumber integration along two
branch cuts.

The second approach is basically the normal mode
method enriched with the branch line integration as depicted
in Fig. 4. The integral along the real axis can be expressed
as

ðþ1

�1
f ðkrÞdkr … �2pi

XM

m…1
ResðkðmÞ

r Þ þ
ð

aþb
(33)

in which Resðf ðkrÞ; kðmÞ
r Þ is the residue of a general function

f ðkrÞ to a simple pole at kr … kðmÞ
r .

By applying the complex contour integration technique,
the expressions of displacement potential functions in the fre-
quency domain are given as a summation over a finite number
of poles supplemented by the Ewing–Jardetsky–Press (EJP)
branch line integrations, i.e.,

~Ug
N;nðr; z; rs; zs; xÞ

… �pi
XM

m…1
ResðÛ

g
N;nðkðmÞ

r ; z; rs; zsÞÞH
ð2Þ
0 ðkðmÞ

r rÞkðmÞ
r

h i

þ
1
2

ð

aþb
Û

g
N;nðkr; z; rs; zsÞH

ð2Þ
0 ðkrrÞkrdkr: (34)

In this paper, the authors adopt the normal mode solutions
together with EJP (Buckingham and Giddens, 2006; Ewing
et al., 1957) complex wavenumber integration to provide
the exact solution for the wave field. As shown in Fig. 4, the
EJP branch cuts are given in two hyperbolic lines starting
from the branch points, which are the medium wavenumbers

corresponding to compressional and shear waves. The full
solutions consist of three terms: (a) a finite sum of discrete
modes on the principal Riemann surface (can be infinite in
the case of the fluid layer overlying multilayered elastic
half-space), in which all modes are convergent; (b) a hyper-
bolic branch line integration associated with the branch
point of compressional wavenumber kp; (c) a hyperbolic
branch line integration associated with the branch point of
shear wavenumber ks. The above solutions provide the basis
of the sound propagation model.

B. Boundary integral formulation

The direct boundary element method (BEM) is adopted to
couple the sound generation and sound propagation modules.
The solution of the acousto-elastic wavefield employs
Somigliana’s identity in elastodynamics and Green’s third iden-
tity in potential theory (Beskos, 1987; Jensen et al., 2011). The
velocity, displacement, and pressure/stresses on the cylindrical
boundary surface r … rs are obtained from the sound generation
module. The Green’s functions obtained in Sec. IVA are the
fundamental solutions for the BIEs.

The fundamental solutions of Green’s displacement ten-
sors ~UNn

ab ðr; rs; xÞ are derived from the potential functions
(Achenbach, 1973), given the receiver point at r … ðr; zÞ (in
medium N) in a-direction due to a unit impulse at source
rs … ðrs; zsÞ (in medium n) in b-direction:

~Usn
abðr; rs; xÞ … r~/

g
j;nðr; rs; xÞ þ r � W; (35)

~Uf n
abðr; rs; xÞ … r~/

g
f ;nðr; rs; xÞ; (36)

in which W … �@wg
sj;nðr; rs; xÞ=@r. The displacement

potential functions of the acousto-elastic domain have been
derived in Eq. (34) in Sec. IV A. The Green’s stress tensors
~TNn

ab ðr; rs; xÞ related to ~UNn
ab ðr; rs; xÞ can be obtained

through substitution of Eqs. (35) and (36) into the constitu-
tive equations (Achenbach, 1973).

1. Boundary integrals for sources located
in the acoustic layer

Based on a set of acoustic sources in the form of pres-
sure ~pf ðrs; xÞ, radial displacement ~uf ðrs; xÞ, and radial
velocity fields ~vrf ðrs; xÞ obtained from the sound generation
modules on the cylindrical surface in the water column, a
set of pressure, velocity, and displacement expressions reads

~pf ;f ðr; xÞ …
ð

Sf
ð~pg

f ;f ðr; rs; xÞ~uf ðrs; xÞ

� ~ug
f ;f ðr; rs; xÞ~pf ðrs; xÞÞdSðrsÞ; (37)

~vaf ;f ðr; xÞ …
ð

Sf

�
~vg

af ;f
ðr; rs; xÞ

~vrf ðrs; xÞ
ix

þ
1

qx2

@~vg
af ;f

ðr; rs; xÞ
@r

~pf ðrs; xÞ
�

dSðrsÞ;

a … z; r; (38)
FIG. 4. Complex horizontal wavenumber kr plane and three Riemann
sheets.
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~uas;f ðr; xÞ …
ð

Sf

�
~ug

as;f
ðr; rs; xÞ

~vrf ðrs; xÞ
ix

þ
1

qx2

@~ug
as;f

ðr; rs; xÞ
@r

~pf ðrs; xÞ
�

dSðrsÞ;

a … z; r; (39)

in which Sf and indicates the cylindrical integration surface
in the fluid domain at r … rs. Similarly, the stress compo-
nents ~rzzs;f ðr; xÞ; ~rrrs;f ðr; xÞ, and ~rzrs;f ðr; xÞ are obtained
through the stress-displacement relationships (Bakr, 1986),
in terms of the displacement components ~uas;f .

2. Boundary integrals for sources located
in the elastic layered half-space

Based on a set of soil sources in the form of stresses
‰~tn

r ðrs; xÞ; ~tn
z ðrs; xÞ� and displacements ‰~urðrs; xÞ; ~uzðrs; xÞ�

obtained from the sound generation modules on the cylindri-
cal surface in the soil domain, a set of pressure, velocity,
and displacement expressions reads

~pf ;sðr; xÞ …
ð

Ss
ð ~Pfs

r ðr; rs; xÞ � ~tn
r ðrs; xÞ

þ ~Pfs
z ðr; rs; xÞ � ~tn

z ðrs; xÞ

þ ~Lfs
p ðr; rs; xÞ � ~uzðrs; xÞ

þ ~Lfs
p ðr; rs; xÞ � ~urðrs; xÞÞdSsðrsÞ; (40)

~vaf ;sðr; xÞ … ix
ð

Ss
ð ~Ufs

arðr; rs; xÞ � ~tn
r ðrs; xÞ

þ ~Pfs
a ðr; rs; xÞ � ~uaðrs; xÞ

þ ~Ufs
azðr; rs; xÞ � ~tn

z ðrs; xÞÞdSsðrsÞ;
a … z; r; (41)

~uas;sðr; xÞ …
X

b…r;z

ð

Ss
ð ~Uss

abðr; rs; xÞ � ~tn
bðrs; xÞ

� ~Tn;ss
ab ðr; rs; xÞ � ~ubðrs; xÞÞdSsðrsÞ;

a … z; r; (42)

~Lfs
p ðr; rs; xÞ … qf c

2
f

@ ~Pfs
r

@r
þ

~Pfs
r

r
þ

@ ~Pfs
z

@z

 !

: (43)

in which Ss indicates the cylindrical integration surface in
the soil domain at r … rs, ~Lp is defined as the pressure opera-
tor using the strain-displacement relationships and Hooke’s
law, and ~Pfs

a ðr; rs; xÞ is the pressure Green’s function at the
receiver r due to a unit load in a-direction applied in the soil
domain at rs; note that a here is also the direction of the dis-
placement at the receiver point. The derivation of the soil
source in a-direction is given in Sec. IV A 2. As tangential
stress vanishes in the fluid domain, the terms ~Tn;fs

rz ðr; rs; xÞ
and ~Tn;fs

zr ðr; rs; xÞ vanish for the receiver in the fluid.
Similarly, the stress tensors are obtained through the

constitutive relationships (Bakr, 1986) from the displace-
ment functions and their derivatives.

3. Coupled acousto-elastodynamic BIE

By utilizing Betti’s reciprocal theorem in elastodynam-
ics (Beskos, 1987) and Green’s theorem for acoustic prob-
lems (Jensen et al., 2011) as discussed in Secs. IV B 1 and
IV B 2, the complete solution for the acousto-elastic domain
reads

~uN
a ðr; xÞ … ~uN;f

a ðr; xÞ þ ~uN;s
a ðr; xÞ

…
X

b…r;z

ð

Ss
ð ~UNs

abðr; rs; xÞ � ~tn
bðrs; xÞ

� ~Tn;Ns
ab ðr; rs; xÞ � ~ubðrs; xÞÞdSsðrsÞ

þ
ð

Sf
ð ~UNf

ar ðr; rs; xÞ � ~pðrs; xÞ

� ~Tn;Nf
ar ðr; rs; xÞ � ~urðrs; xÞÞdSf ðrsÞ; r 2 V;

(44)

in which n is the outward normal to the cylindrical bound-
ary. The cylindrical surface in both the fluid and the soil
domains needs to be discretized when employing the direct
BEM associated with the acousto-elastic layered half-space
Green’s functions. The rule of thumb for using six elements
per wavelength is adopted in the numerical integration of
the line integral with the trapezoidal rule applied for the
integration (Marburg, 2002). In the fluid domain, the inte-
gration is based on the shortest wavelength of the compres-
sional waves. In the soil domain, the size of the element is
governed by the shortest shear wavelength in accordance
with the maximum frequency of interest.

V. NUMERICAL CONSIDERATIONS

In this section, the numerical computation of the eigen-
values and the branch line integrations are presented, which
determine the stability and convergence of the complete
solution.

A. Root-finding algorithm and poles

There are two challenges associated with the root-
finding algorithm: (i) root-search in the complex wavenum-
ber plane; (ii) presence of the branch cuts due to the soil
half-space. Regarding the first item above, when dissipation
is included in the form of complex Lam�e constants, all
eigenvalues become complex-valued.

This adds certain complexities in the root-searching in
the complex kr plane compared to the search of the eigenval-
ues for the lossless seabed case, which solely takes place on
the real axis for poles related to propagating waves (Jensen
et al., 2011; McCollom and Collis, 2014). Poles related to
evanescent waves migrate from their original position in the
complex wavenumber plane, which leads to the asymmetric
distribution of the roots in the third and fourth quadrant of
the complex wavenumber plane. In contrast, for lossless
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FIG. 5. (Color online) Complex roots for an acousto-elastic layered half-space with the parameters specified in Table IV in Sec. VII B at 50 Hz (top) and
500 Hz (bottom). The enlarged plots (within the box of the dashed line) verify the accuracy of the roots as the roots all locate at the intersections of the con-
tour lines <ðdetÞ … 0 (blue line) and =ðdetÞ … 0 (red line).

FIG. 6. Eigenfunctions of pressure and stress rzz for an acousto-elastic layered half-space at 50 Hz for the wavenumbers as indicated in Fig. 5(a): (1) the trapped
mode associated with the Scholte wave; (2) the trapped mode associated with the Stoneley wave; (3) the trapped mode in the marine sediment layer; (4) and (5) two
trapped modes in the fluid domain; (6) the leaky mode. The solid line indicates the real part of the eigenfunctions, and the dashed line represents the imaginary part.
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seabed, the symmetric feature requires the search of roots in
only one of the quadrants.

Another challenge is associated with introducing the
branch cuts when the bottom soil is modeled as a multilay-
ered half-space. Compared to traditional root-searching for
the acousto-elastic waveguide, this requires the root-finding
to be performed on the correct Riemann surface across the
branch cut to ensure the satisfaction of the radiation condi-
tion at z ! 1. The configuration of the acousto-elastic
half-space speeds up the root-searching, since only a finite
number of poles are required for the convergence of the
solution compared to the case of the waveguide.

In the computation presented in the sequel, the marine sed-
iment layer is modeled by an almost fluidized thin soil layer at
the upper part of the seabed, which is typically encountered in
many offshore environments. This adds another challenge in
the root-searching, which leads to a larger real part of the pole
associated with Scholte waves at the fluid-soil interface, which
are the slowest propagating waves present in the media.

In Fig. 5, the complex-valued roots are obtained for
two excitation frequencies f … 50 and 500 Hz. As shown in
the enlarged plots, by solving the characteristic equation
for the configuration summarized in Table IV, all poles are
located at the intersections of the blue and red lines, indi-
cating <ðdetÞ … =ðdetÞ … 0. The poles can be categorized
into two types. One is related to the trapped modes, i.e., the
first five modes shown in Fig. 6, in which vibrations of the
system are localized within one of the acousto-elastic
layers along with the depth or on one interface while
decaying outside the finite area. The other one is related to
the leaky modes, such as the sixth mode shown in Fig. 6, in
which the energy radiates into the surrounding media
(oscillatory patterns through the depth). As shown in Fig.
6, the trapped modes associated with Scholte and Stoneley
waves are well captured. The gray-shaded area indicates

the 1.5 m-thick marine sediment layer, which plays a cru-
cial role in channeling the energy between the water col-
umn and the seabed.

B. The branch cuts and branch line integrals

Due to the presence of the soil half-space, the branch cuts
are introduced and branch line integrations are required to
obtain the exact solution for the Green’s functions (Ewing et al.,
1957). The convergence of the solutions is influenced by choice
of branch cuts. The criteria for assessing the convergence of the
solution ensure that the ratio between the contribution of the
branch line integration and the cumulative branch line integra-
tion is less than 1E � 5. The most commonly applied ones are
the Pekeris and EJP branch cuts (Bucker, 1979; Buckingham
and Giddens, 2006; Ewing et al., 1957; Stickler, 1975). The
advantage of the EJP solution is that it solely requires the trun-
cation of the branch line integrations. In contrast, the Pekeris
solution needs to truncate both the vertical branch line integra-
tions and normal modes (Bartberger, 1977). The latter one is
valid only when the observation point is located at a sufficiently
shallow depth or a sufficiently large range, which is due to the
numerical instability of the solutions that may easily violate the
radiation condition along the z-direction. In contrast, the repre-
sentation of the EJP solution is convergent for all choices of
range and depth coordinates, which ensures the smooth conver-
gence of Green’s tensors. In Fig. 5, most of the poles corre-
sponding to the propagating waves that are trapped in the water
column and the poles associated with leaky waves that radiate
energy into the surrounding media are located on the principal
Riemann surface. The pole associated with the Scholte wave is
found on the third Riemann surface.

VI. VALIDATION OF THE SOUND PROPAGATION
MODULE

A. Validation of the Green’s functions

To validate the Green’s tensors for a source located
either in the fluid or in the soil, a case study is performed,
and results are compared with the FE model build in the
COMSOL MultiphysicsVR software (COMSOL AB, 2020).

The material properties in both models and the configu-
ration of the acousto-elastic half-space for the sound

TABLE I. Basic input parameters for the validation study of the Green’s
functions.

Parameter Depth (m) q (kg/m3) cL (m/s) cT (m/s) ap (dB/k) as (dB/k)

Fluid 40 1000 1500 — — —
Bottom soil 1 1908 1725 370 0.88 2.77

FIG. 7. Geometry of the model for ring load for the validation of the Green’s tensors: semi-analytical model (sound propagation module) (left); finite-
element model in COMSOL (right).
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propagation model are given in Table I in accordance with
Fig. 7. In the sound propagation module, the domain is mod-
eled as an acoustic layer overlying an elastic half-space with
pressure release boundary at the sea surface and the inter-
face conditions at the seabed as presented in Sec. IV A. The
radiation conditions are satisfied exactly at both r ! 1 and
z ! 1. In the COMSOL model, the acousto-elastic waveguide
is truncated at 200 m below the seabed by a low-reflecting
boundary as indicated in Fig. 7, which is used to reduce the
computational domain to a practical size while ensuring the
satisfaction of the radiation condition within an accurate
range. In practice, the low-reflecting boundary works ideally
for waves propagating in the normal direction to the bound-
ary as it creates a perfect impedance match for compres-
sional and shear waves. The dissipation in the soil is
expressed by the frequency-dependent complex compres-
sional and shear wave speeds in both models. In Fig. 7, zs;f
and zs;s define the depth of the loading level, rs is the radius
of the ring source, z1 is the depth of the water column, and
z2 in the COMSOL model gives the depth of the bottom low-
reflecting boundary.

The predictions of the two models are compared for
three load cases at three excitation frequencies of 30 Hz,
125 Hz, and 1 kHz, namely a circular source in the fluid and
a ring load in r- and z-directions in the soil, named after R-
ring and Z-ring load in Fig. 8. The response on the cylindri-
cal surface at r … 2 m is shown in Fig. 8. The numerical
results from both models are in good agreement for various
loading cases, which validates the sound propagation
module.

B. Validation of boundary integrals

In this section, to validate the boundary integral formu-
lations, a theoretical case study is performed. Based on the
results in Sec. VI A, the Green’s functions have been veri-
fied. As shown in Fig. 9, four scenarios are examined: (i) the
direct method, to generate the wavefield at r … 200 m from
the Green’s function for a source positioned either in the
fluid or in the soil; (ii)–(iv) the BIE method, to generate the
wavefield at r … 200 m through BIE with the input on the
cylindrical boundary at (ii) rs … 5 m, (iii) rs … 20 m, and (iv)
rs … 40 m, which was obtained from the Green’s function
for a point source positioned either in the fluid or in the soil.
The material parameters and geometry of the acousto-elastic
media are given in Table II.

As discussed in Sec. IV B, the sound propagation mod-
ule is based on a BIE, in which the input is obtained from
the source generation module. In this case, the sound gener-
ation module delivers the Green’s function for a point
source. The input is obtained on a cylindrical surface, as
indicated by the dark gray surface shown in Fig. 9. The
results are presented for three excitation frequencies 30 Hz,
125 Hz, and 1 kHz for both scenarios as shown in Fig. 10. In
the presence of either fluid or soil source in the domain, the
solutions show a good agreement between two approaches,
which validates the BIE formulation for the sound

propagation model. Figure 10 also shows that the BIE solu-
tions agree well at different coupling radius rs, which indi-
cates that the influence of the choice of rs is insignificant
and the solutions are stable.

FIG. 8. Comparison of Green’s tensors from a sound propagation model and
FE model for a point source at three excitation frequencies 30 Hz, 125 Hz, and
1 kHz as indicated in Fig. 7: the pressure and normal stress for a fluid circular
source; the radial displacement for a fluid circular source; the radial displace-
ment for a R-ring load in the soil; the radial displacement for a Z-ring load in
the soil at (a) f … 30 Hz, (b) f … 125 Hz, and (c) f … 1000 Hz. The thin black
line indicates the results from the sound propagation model, and the thick gray
line represents the numerical results from the COMSOL model.
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VII. NUMERICAL RESULTS

In this section, the solution of the complete model is
examined for several benchmark cases: (a) a theoretical
bench scenario from the COMPILE workshop with numeri-
cal data from several different numerical models (Lippert
et al., 2016); (b) a validation case with measurement data from
a recent offshore wind farm in the German North Sea. The
material and geometrical parameters are obtained from the liter-
ature (Lippert et al., 2016) for case (a) and available geotechni-
cal reports at the pile-installation site for case (b). The results
were obtained on a quad-core 3.6GHz processor running the
64-bit Windows operating system. The total computation time
for the solution is the sum of Ttotal … tCPU

f � Nf … tCPU
f ;g � Nf � Ng,

in which Nf is the number of frequencies considered, Ng is the
number of grid points considered in which output is required,
tCPU
f represents the average computation time per frequency,

and tCPU
f ;g represents the average computation time per output

grid per frequency.

A. Theoretical benchmark case COMPILE I

In this section, the case examined is based on a generic
theoretical benchmark case for underwater noise prediction
for offshore pile driving. At the COMPILE workshop in
2014, seven different modeling approaches were presented
(Lippert et al., 2016). As given in Table III, the model con-
sists of a pile with a Young’s modulus of 210 GPa, a
Poisson ratio of 0.3, and a fluid layer overlying a soil half-
space. The forcing function is reported in Lippert et al.
(2016), and the computation involves 3000 equally spaced
frequencies ranging from �0.8333 to 2500 Hz. The average
computation time for the solution per output grid per fre-
quency is tCPU

f ;g … 0:02 s. In the models at the COMPILE
workshop, the material damping in the pile is introduced in

the embedded section of the pile through compressional and
shear wave speed, which is different from the approach of
introducing a frequency independent structural loss factor
for the shell structure used in this model.

The zero-to-peak pressure level (Lp;pk) in dB re 1 lPa
and the SEL in units of dB re 1 lPa2s are defined as (Lippert
et al., 2016)

Lp;pk … 20 log
maxjpðtÞj

p0

� �
; SEL … 10 log

ðT2

T1

p2ðtÞ
p2

0
dt

 !

;

(45)

in which T1 and T2 are the starting and ending of the pre-
dicted time signature with the sound event in between and
pulse duration T0 … T2 � T1 being 1 s, and p0 … 10�6 Pa is
the reference underwater sound pressure.

The evolution of the pressure in time is shown in
Fig. 11 for a point positioned 1 m above the seabed at 750
and 1500 m radial distances from the pile. The Lp;pk and
SEL of receiver points at radial distances up to 750 m are
shown in Fig. 11. As can be seen, the predicted SEL and
Lp;pk at 750 m from the pile are 164.9 and 189.6 dB, respec-
tively, while the arithmetic mean values from COMPILE
are 166.7 dB for the SEL and 191.2 dB for the Lp;pk. At
1500 m, the predicted SEL and Lp;pk are 160.2 and 181 dB,
respectively, while the arithmetic mean values from
COMPILE are 161.3 dB for the SEL and 184 dB for the
Lp;pk. Thus, the accuracy of the computation is less than
6 2 dB for SEL and around 6 3 dB for Lp;pk when compared
to the arithmetic mean values determined by the various
models at the COMPILE workshop. As expected, the varia-
tion of SEL along the radial direction is smoother, while the
prediction of the Lp;pk is more oscillatory mainly because
the latter reflects a single peak of the pressure, which can be
influenced by many factors and is more sensitive to the loca-
tion of the observation point.

The comparison of the evolution of the pressure in time
at a receiver position of r … 11 m and z … 5 m in the vicinity
of the pile is shown in Fig. 12 for the comparison of differ-
ent modeling techniques. The results show that all models
can predict the arrivals of the primary Mach cones. The

FIG. 9. Geometry of the model for the validation of the boundary integral formulations for a point source positioned as follows: in the seabed as an R-load
soil source (left); in the fluid domain as a pressure source (right).

TABLE II. Basic input parameters for the validation study.

Parameter Depth (m) q (kg/m3) cL (m/s) cT (m/s) ap (dB/k) as (dB/k)

Fluid 40 1000 1500 — — —
Upper soil 30 1888 1775 198 0.2 0.8
Bottom soil 1 1950 1976 370 1.0 2.5
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difference between this model and the models at the COMPILE
workshop is mainly due to the different modeling approaches
of the seabed; the latter modeled the seabed as equivalent fluid,
while this model describes the soil as an elastic medium. The
modeled pressure field in the time domain is found to be in rela-
tively good agreement with the numerical results from the
JASCO model compared to the other numerical models because
the JASCO model uses a time-domain finite-difference model
for pile vibrations with the pile modeled as a cylindrical thin
shell in a similar approach as in this model.

Figure 13 shows the pressure levels (dB re 1 lPa2=Hz)
in one-third octave bands at various radial distances from
the pile. Assuming that the energy in all the defined band-
widths (one-third octave) results from an effective source,
the bandwidth energies add directly to give the total energy
in one frequency band. The derivation of the sound pressure
level (SPL) in the unit of dB re 1 lPa2s�1 reads

SPL1=3octave … 10 log10

Xn

i…m

j~piðxÞj2

p2
0

 !

: (46)

As can be seen in Fig. 13, the spectrum shows that most of
the energy is concentrated at the critical frequency range
(being 0:5fr � 0:8fr) associated with the ring frequency of
the pile (fr … 857 Hz), which is consistent with the

TABLE III. Basic input parameters for the COMPILE benchmark case
(Lippert et al., 2016).

Parameter Pile Parameter Fluid Soil

Length (m) 25 Depth (m) 10 1
Density (kg/m3) 7850 Density (kg/m3) 1025 2000
Outer diameter (m) 2 cp (m/s) 1500 1800
Wall thickness (mm) 50 cs (m/s) — 170
Final penetration depth (m) 15 ap (dB=k) — 0.469
Structural damping (—) 0.001 as (dB=k) — 1.69

FIG. 11. COMPILE: Comparison of SEL and Lp;pk at several radial distances
from the pile and 1m above the seabed (top); computed time histories of the pres-
sure in the water at various radial distances at 1m above the seabed (bottom).

FIG. 10. (Color online) Comparison for the results based on direct method (Green’s function) and boundary element method for a ring load at three excita-
tion frequencies 30 Hz, 125 Hz, and 1 kHz as indicated in Fig. 9: the radial displacement for a fluid circular source at (a) f … 30 Hz, (b) f … 125 Hz, and (c) f
… 1000 Hz; the radial displacement for an R-ring load in the soil at (d) f … 30 Hz, (e) f … 125 Hz, and (f) f … 1000 Hz. The thin black line indicates results
from BIE at rs … 5 m, the red dashed line indicates results from BIE at rs … 20 m, the blue dashed line indicates results from BIE at rs … 40 m, and the thick
gray line represents the results from the Green’s function (direct method).
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characteristics of the pile dimension and the noise spectrum
discussed in Tsouvalas (2020).

B. Offshore wind farm in German North Sea

In this section, noise predictions using the developed
model are compared with measured noise data collected dur-
ing installation of a foundation pile in the German North
Sea in 2018. The measurement of the hydro-sound emis-
sions was conducted at horizontal distances of 750 and
1500 m from the pile and at a water depth of about 2 m
above the seabed. The material properties and the geometry
of the model are given in Table IV. The material of the pile
is chosen to be standard steel with a Young’s modulus of
210 GPa and a Poisson ratio of 0.3. The seabed consists of a
thin marine sediment layer overlying a stiffer soil half-
space. The upper thin layer corresponds to a water-saturated
marine sediment, whereas the bottom layer corresponds to a
very fine sand layer. The actual penetration depth of the pile
was around 32.7 m. The forcing function (in MN) is defined
as the smoothed exponential impulse,

FðtÞ …
FA sin ðFBðt � t0ÞÞe�FCðt�t0Þ; t0 < t < t1;

0; t < t0 or t > t1;

(

(47)

in which t0 being 0.001 s represents the start time and t1
being 0.05 s represents the end time of the pulse. The other
parameters in the forcing function are given as follows: FA
… 503, FB … 149, FC … 150. This force correspondent gen-
erates approximately 1750 KJ blow energy into the system,

which is in line with the measured value. The computation
involves 2000 frequencies at 0.625-Hz steps ranging from
�0.625 to 1250 Hz. The computation time for the solution
per frequency per output grid in average is tCPU

f ;g … 0:022 s.
In Fig. 14 (bottom), the evolution of the pressure in

time is shown for a point positioned 2 m above the seabed at
750 and 1500 m radial distances from the pile. As can be
seen, the arrival of the pressure cones is at around 0.5 and
1 s, respectively, after the impact of the pile, which is in line
with the expectations regarding the arrival time of the direct
sound waves traveling with the speed of sound in the water
at those distances. The Lp;pk and the SEL of receiver points
at radial distances up to 1500 m are shown in Fig. 14 (top).
As can be seen, the differences between the predicted SEL
and the averaged measured values are 1 and 0.5 dB at
750 and 1500 m radial distances from the pile, respectively.
The SEL indicates the averaged amount of energy radiated
into the surrounding media, and Lp;pk evaluates the impul-
siveness of the pressure waves from the pile. In practice, the
hydrophones were not deployed exactly at 750 and 1500 m
from the pile but with a deviation of up to 2 m; therefore,
both the upper and lower bound of the SEL and Lp;pk from at
750 and 1500 m horizontal distance from the pile and 2 m
above the seabed are used as the comparison with a mea-
surement error of 6 2 dB. The results verify the validity of
the complete model, which can provide predictions that lie
within the accuracy of the measurement equipment (6 1 or
2 dB). As can be seen in Fig. 15, the spectrum shows that
most of the energy is concentrated at low frequencies and up
to around 400 Hz.

FIG. 12. (Color online) COMPILE scenario: Comparison of the evolution
of the pressure field at a receiver position of r … 11 m and z … 5 m.

FIG. 13. COMPILE scenario: One-third octave band spectrum for a point
positioned 1 m above the seabed in the fluid and at r … 750 and 1500 m
from the pile.

TABLE IV. Basic input parameters for the simulations at the offshore wind farm in the German North Sea.

Parameter Pile Parameter Fluid Upper soil Bottom sediment

Length (m) 76.9 Depth (m) 39.9 1.5 1
Density (kg/m3) 7850 q (kg/m3) 1000 1670 1950
Outer diameter (m) 8 cp (m/s) 1500 1560 1979
Wall thickness (mm) 90 cs (m/s) — 94 349
Final penetration depth (m) 32.7 ap (dB=k) — 0.55 0.27
Maximum blow energy (kJ) 1750 as (dB=k) — 1.36 1.09
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At around 10- and 20-m pile penetration depth, the
blow energy recorded was 550 and 1350 kJ, respectively.
Based on the measurement data, SEL and Lp;pk are obtained
for these two cases at 750 and 1500 m from the pile. As can
be seen in Fig. 16, the predicted SEL and Lp;pk are consistent
with the recorded sound levels. For the pile with 10-m pene-
tration depth, the deviation to the central measured data
point is both 2 dB for SEL and Lp;pk at 750 m and is 1 dB for
SEL and 3 dB for Lp;pk at 1500 m. For the pile with 20-m
penetration depth, the deviation to the central measured data

point is 2 dB for SEL and 1 dB for Lp;pk at 750 m and 1 dB
for SEL and 3 dB for Lp;pk at 1500 m.

As discussed earlier in Fig. 2, the variation of the penetra-
tion depth of the pile does not influence the eigenvalues of the
shell and acousto-elastic media. Therefore, the eigenvalue prob-
lems do not need to be recomputed for each frequency. Instead,
the modal analysis and the final response of the coupled system
solely need to be solved, which largely reduces the computation
time as presented in Fig. 17. This reduction in the computation
time as depicted by the two bars in Fig. 17 shows the advantage
of the model when used in parametric studies.

VIII. CONCLUSIONS

The paper establishes a computationally efficient method
for noise predictions over large horizontal distances in off-
shore pile driving. The complete model comprises a sound
generation module and a sound propagation module. The for-
mer aims at describing accurately the pile-soil-water interac-
tion and the wavefield generated at the surrounding acousto-
elastic domain in the vicinity of the pile. The latter aims to
propagate this wavefield at larger distances from the pile (up
to a few kilometers), provided that bathymetry changes are
insignificant. The mathematical statement of the complete
problem is presented, and the adopted method of solution is
described in great detail. The direct BIE formulation is used to
couple the two modules and propagate the wavefield from the
vicinity of the pile to larger distances. Numerical accuracy

FIG. 14. Offshore wind farm scenario: Pressure field at a point located at 2 m
above the seabed at various radial distances from the pile: comparison of SEL
and Lp;pk, in which the black error bar indicates the lower bound of sound lev-
els from measurement and the hollow error bar represents the upper bound
(top); computed time histories of the pressure in the water (bottom).

FIG. 15. Offshore wind farm scenario: One-third octave band spectrum for a point
positioned 2m above the seabed in the fluid and at r … 1500m from the pile.

FIG. 16. Offshore wind farm scenario: Comparison of SEL and Lp;pk for the
pressure field at a point located at 2 m above the seabed at various radial
distances from the pile: 20-m pile penetration depth (top); 10-m pile pene-
tration depth, in which the black error bar indicates the lower bound of
sound levels from measurement and the hollow error bar represents the
upper bound (bottom).
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and solution stability are discussed in great detail together
with the different physical interpretations of the various
eigenmodes. One theoretical case study is examined to bench-
mark the model by comparison with seven different modeling
techniques. Noise predictions are then performed for a pile-
installation campaign in 2018, and the results are compared to
the measurement data for the pile driven at various penetration
depths. The results show that the model is able to capture the
SEL within an accuracy of 2 dB and the Lp;pk within an accu-
racy of around 3 dB for distances up to 1500 m from the pile at
various penetration depths. The computational time is pre-
sented for each case study, which indicates the efficiency of
the model. To examine the influence of different input param-
eters for the noise prediction, e.g., different penetration depth,
various forcing functions, various sizes of the pile, etc., it
requires solely parts of the model to be recomputed, which
largely reduces the computational effort and later can be used
in probabilistic analysis of noise prediction.
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APPENDIX

By substituting the expressions into the boundary and
interface conditions shown in Eqs. (9)–(12), the final set
of linear algebraic equations with unknowns Ag

i for
i … 1; 2; …; 4N þ 2 reads

1
�qx2

e�ikz;f ðzs�z0Þ

4pikz;f
þ Ag

1eikz;f z þ Ag
2e�ikz;f z0 … 0 ; (A1)

e�ikz;f ðz1�zsÞ

4qx2p
� Ag

1ikz;f e�ikz;f z1 þ Ag
2ikz;f ekz;f D1i

… �Ag
3ikz;p1e

�ikz;p1 z1 þ Ag
4ikz;p1 � ekz;p1 z1i

� Ag
5k2

z;s1
e�ikz;s1 z1 � Ag

6k2
z;s1

ekz;s1 z1i

þ k2
s1

ðAg
5e�ikz;s1 z1 þ Ag

6ekz;s1 z1iÞ; (A2)

e�ikz;f ðz1�zsÞi
4qx2pkz;f

þ Ag
1e�ikz;f z1 þ Ag

2ekz;f z1i

… �
1

qx2

�
� k1k2

p1
Ag

3e�ikz;p1 z1þAg
4ekz;p1 z1i� 	

þ 2l1 �Ag
3k2

z;p1
e�ikz;p1 z1 � Ag

4k2
z;p1

ekz;p1 z1i
h

þ Ag
5k3

z;s1
e�ikz;s1 z1 i�Ag

6k3
z;s1

ekz;s1 z1ii

þk2
s1

ð�Ag
5kz;s1e

�ikz;s1 z1 i þ Ag
6kz;s1e

kz;s1 z1iiÞ
i


; (A3)

�2iAg
3kz;p1e

�ikz;p1 z1 þ 2iAg
4kz;p1e

ikz;p1 z1

� 2Ag
5k2

z;s1
e�ikz;s1 z1 � 2Ag

6k2
z;s1

eikz;s1 z1

þk2
s1

ðAg
5e�ikz;s1 z1 þ Ag

6eikz;s1 z1Þ … 0; (A4)

�Ag
4jþ3ikz;pjþ1e

�ikz;pjþ1 zjþ1 þ Ag
4jþ4ikz;pjþ1e

ikz;pjþ1 zjþ1
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4jþ5k2

z;sjþ1
e�ikz;sjþ1 zjþ1 � Ag

4jþ5k2
z;sjþ1
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þ k2
sjþ1

ðAg
4jþ5e�ikz;sjþ1 zjþ1 þ Ag

4jþ6eikz;sjþ1 zjþ1Þ

… �Ag
4j�1ikz;pje

�ikz;pj zjþ1 þ Ag
4jikz;pje

ikz;pj zjþ1

� Ag
4jþ1k2

z;sj
e�ikz;sj zjþ1 � Ag

4jþ1k2
z;sj

eikz;sj zjþ1

þ k2
sj
ðAg

4jþ1e�ikz;sj zjþ1 þ Ag
4jþ2eikz;sj zjþ1Þ; j … 1; :::; N;

(A5)

FIG. 17. (Color online) Offshore wind farm scenario: Activity plot for the computational time of individual blocks in the model including central processing
unit (CPU) time per frequency and total execution time T, in which the first bar indicates the complete simulation and the second bar represents the computa-
tion time for 10- or 20-m pile penetration depth.
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