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a b s t r a c t 

A singular rail or wheel surface irregularity, such as a squat, insulation joint or wheel flat, can cause large wheel- 

rail impact force. Both the magnitude and frequency content of the impact force need to be correctly modelled 

because they are closely related to the formation, deterioration and detection of such irregularities. In this paper, 

we compare two types of commonly used wheel-track interaction models for wheel-rail impact problems, i.e., a 

beam and a continuum finite element model. We first reveal the differences between the impact forces predicted 

by the two models due to a typical rail squat using a time-frequency analysis. Subsequently, we identify the 

causes for the differences by evaluating the effects of different model assumptions, as well as different model 

parameters. Results show that the impact force consists of a forced vibration peak M1 followed by free vibration 

related oscillations with three dominant frequencies: f 1 (340 Hz), f 2 (890 Hz) and f 3 (1120 Hz). Compared with 

the continuum model, the beam model with a Hertzian contact spring overestimates the M1 peak force. The 

discrepancy can be reduced by using a Winkler bedding contact model. For the track model, the beam model is 

comparable to the continuum model up to about 800 Hz, beyond which the track damping starts to deviate. As a 

result, above 500 Hz, the contact forces dominate at f 2 for the beam while at f 3 for the continuum model. Finally, 

we show that the continuum model is more accurate than the beam model by comparing to field observations. 

The effects of stress wave propagation on the differences are also discussed. 
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. Introduction 

Wheel-rail vertical impact usually occurs at short wavelength defects

e.g., squats, poor welds, wheel flats, short-pitch corrugations) or struc-

ure discontinuities (e.g., insulated joints, crossings). The appropriate

odelling of structural flexibility of the wheel-track system is of major

oncern for wheel-rail impact problems due to their high frequency na-

ure [ 1 , 2 ]. Based on the assumptions adopted, two types of wheel-track

nteraction models are commonly used for wheel-rail impact problems.

he first type is referred to as the beam model in this paper, in which

ails are modelled using the Euler-Bernoulli or Timoshenko beams [3–

] . The rail can be continuously supported on the elastic or Winkler

oundations [6–8] , a layer of sleeper beam [ 9 , 10 ], discretely supported

n sleepers [11–13] or on substructures, such as bridges [14] or sub-

rades [15] . The second type drops the assumptions made in the beam

heories and treats the components of the wheel-track system (i.e. the

leeper, rail, wheel or even railpads) as continua. This type of models

s referred to as the continuum model in this paper. Continuum mod-
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ls are usually solved using the three-dimensional finite element (FE)

ethod [16–19] or the 2.5 dimensional FE (also called waveguide FE)

ethod [20–23] . The focus of those models has been on the transient

ynamic characteristics (such as wheel-rail impact), rolling contact so-

utions, rolling noise and wave propagations. 

Different modelling assumptions will lead to variability in simulation

esults. To quantify and understand the causes of such variability, sim-

lation results with different model assumptions have to be compared.

he first step towards such comparisons is to define certain metrics that

an characterize the dynamic responses of the problem in hands. For

nstance, the frequency response function is commonly used to assess

he dynamic behaviour of the track. For wheel-rail impact problems,

he dynamic characteristics depend on the type of the defect that causes

he impact and therefore different metrics may apply. For example, the

heel-rail impact at dipped joints or wheelflats are usually character-

zed with the P1/P2 forces [24] (also including the P1 1 2 force). 

This paper deals with the wheel-rail impact at a type of short wave-

ength singular defect in the rail surface, i.e., squats. The typical wave-
 March 2021 
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m  
ength of squats is about 20-40 mm, e.g., in the Dutch railway network

25] . With such a geometry, the contact force is characterized by the

ontinuous short wavelength peaks in the time domain [26] . In the fre-

uency domain, two major frequencies at around 300 Hz and 1000 Hz

ave been identified in the simulations and verified by the axle-box ac-

eleration (ABA) measurements [27] . Both the magnitude and frequency

ontent of the impact force need to be correctly modelled because they

elp better understand the formation [ 25 , 28 ], development [29] and

etection [30] of squats. 

Different wheel-track interaction models have been compared

hrough benchmark tests [31–33] . For example, six different beam mod-

ls were benchmarked against each other in [32] . The P1 forces at a

heelflat were found to be ranging from 2 to 7 times the static load.

he track vibrations reproduced by the six models were not consistent

etween each other or compared to the field measurement [33] . Al-

hough the discrepancies can be pinpointed by the benchmark tests, it

s nonetheless difficult to deduce exactly which assumption contributes

o an identified discrepancy, because there are usually more than one

ifferent assumptions between two benchmark participants. 

Alternatively, comparative studies have been carried out by chang-

ng one assumption at a time per each track component to identify

heir effects on the dynamic characteristics. For rail models, the Euler-

ernoulli beam is considered adequate below about 500Hz due to the

eglecting of the shear deformation [ 1 , 34 ], whereas the Timoshenko

eam is accurate up to about 1500 Hz [35] , beyond which the assump-

ion of rigid cross section in the beam theories becomes invalid and a

ontinuum model should be adopted. Moreover, the Euler beam theory

ends to overestimate the P1 force compared to the Timoshenko beam

heory as well as the measurement [36] . Different railpad/fastening

odels have been compared in terms of the effect of the support length

nd size for beam models [ 37 , 38 ] and for continuum models [ 39 , 40 ].

he introduction of sleepers as discrete supports has two major effects.

n one hand, the pin-pin resonance can be correctly modelled using

he discretely supported track [9] . On the other hand, the sleeper layer

ould effectively reduce the P1 force compared to the beam on elas-

ic foundation model [41] . In the case of soft railpads, sleepers can be

odelled as rigid masses [ 23 , 42 ]. As railpad stiffness increases, the cou-

ling between the rail and sleeper becomes stronger. As a result, flexible

leeper models should be adopted to model extra track resonances due

o sleeper bending [ 23 , 42 , 43 ]. 

Except for the track models, different wheelset and contact models

ave also been compared. For beam models, the wheelset can be mod-

lled as a rigid mass or a flexible body through modal superposition

 44 , 45 ]. Flexible wheelset models can slightly reduce the impact force

t wheelflats compared to rigid models [44] . In addition, differences can

e observed in the frequency domain of the contact force, limited to nar-

ow frequency bands corresponding to the eigenfrequencies of the flex-

ble wheelset [45] . Different contact models are compared in [46–49] .

owever, all these contact models are quasi-static, which do not con-

ider local inertia effects within or in the vicinity of the contact patch.

n contrast, the continuum model takes in to account local structural

ibrations in the vicinity of the contact patch and stress wave propaga-

ions in the wheel and rail [26] . For example, in [50] , wheel-rail contact

nduced Rayleigh waves have been reproduced by a continuum model. 

In the literatures, despite the extensive comparisons between differ-

nt beam models, comparisons between beam and continuum models

an only be found in a few cases, such as in the unloaded condition

 23 , 42 ] or under parametric excitations [51] , but not for wheel-rail im-

act problems. Even for beam models, the comparisons are almost all

ased on wheel-rail impacts at wheelflats or joints, which are generally

arger geometrical irregularities than squats. As a result, the focus was

o compare the magnitudes of the contact force, e.g., the P1/P2 forces,

hereas the frequency or time-frequency characteristics of the impact

orce have not been fully explored. Furthermore, the effects of the local

nertia in the contact patch and the stress wave propagation in solids on

he wheel-rail impact force have not been studied. 
2 
This paper aims to compare a beam and a continuum model for simu-

ating the impact forces induced by squats. To this end, two FE models,

eshed with beam and solid elements, respectively, have been devel-

ped (Section 2). We first identify the major characteristics and discrep-

ncies of the wheel-rail impact force simulated by the two models at a

ypical squat, in the time, frequency and time-frequency domain (Sec-

ion 3.1). Subsequently, we examine the effects of the model assump-

ions made in the wheel, contact and track models separately (Sections

.2), as well as the effects of different model parameters (Section 3.3).

n Section 4, a frequency domain model is adopted to investigate the

oupled effects of the three components. Finally, we compare the simu-

ated results with field observations and discuss in detail the influence

f wave propagation (Section 5). 

. Method 

.1. Beam model 

The track is represented by a two-layer discretely supported model,

ee Fig. 1 (a). The rails and sleepers are meshed with the Timoshenko

eam element. At each node, only the vertical and in-plane rotational

egrees of freedom are considered. By a convergence analysis, the opti-

al mesh sizes for the rail and sleeper are determined, with 24 elements

er sleeper span for the rail and 20 elements per sleeper. Ballast and rail-

ads are modelled as discrete spring-damper pairs. 

Two track model options are made: the full track model and the half

rack model. The latter is the former halved along the track central line,

here the symmetrical boundary conditions are applied. The wheelset

s simplified as a rigid body in the full track model and as a rigid mass

n the half track model. The bogie and car body are simplified as static

oads applied vertically on the wheel. 

Only the vertical wheel-rail contact is considered with two options.

he first one is a non-linear Hertzian spring model, for which the half-

pace assumption applies. The contact force is calculated as 

 ( 𝑥 ) = 

{ 

𝐶 𝐻 

(
𝑍 𝑤 ( 𝑥 ) − 𝑍 𝑟 ( 𝑥 ) − 𝑍 𝑖𝑟𝑟 ( 𝑥 ) 

)3∕2 
0 

𝑖𝑓 𝑍 𝑤 ( 𝑥 ) − 𝑍 𝑟 ( 𝑥 ) − 𝑍 𝑖𝑟𝑟 ( 𝑥 ) < 0 
𝑖𝑓 𝑍 𝑤 ( 𝑥 ) − 𝑍 𝑟 ( 𝑥 ) − 𝑍 𝑖𝑟𝑟 ( 𝑥 ) ≥ 0 

(1) 

here Z w ( x ), Z r ( x ), Z irr ( x ) are the vertical coordinates of wheel, rail and

efect geometry, respectively, and C H is the Hertzian coefficient and can

e approximated as 

 𝐻 

= 

2 𝐸 𝑅 

1∕2 

3(1 − 𝜐2 ) 
(2) 

here E and 𝜐 are the Young’s modulus and Poisson’s ratio of the wheel

nd rail (assumed equal for both materials), and R is the radius of the

ail head in the lateral direction. The defect geometry is analytically

efined as a cosine function: 

 irr ( 𝑥 ) = 

𝐷 

2 

{ 

cos 
[2 𝜋
𝐿 

(
𝑥 − 𝑥 0 

)]
− 1 

} 

, for 𝑥 0 ≤ 𝑥 ≤ 𝐿 (3)

here D, L and x 0 are the depth, the length and the starting location

f the defect. The second contact model is a Winkler bedding model

60] which uses multiple springs in the longitudinal direction, see

ig. 1(b) . 

The wheel-track interaction model is solved in the time domain us-

ng the Newmark integration with a fixed time step length of 4e-5 s.

o ensure the convergence for the contact force, the Newton-Raphson

teration is adopted within each time step. The solution process is im-

lemented in Matlab. 

.2. Continuum model 

The second model is a detailed three-dimensional (3D) FE model

eshed with continuum elements, as shown in Fig. 2 . To reduce the
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Fig. 1. The beam model. (a) Track model. (b) Wheel-track interaction model. 

c  

m  

s  

d  

d  

r  

T  

A  

t  

b  

l  

w  

i  

t  

i  

c  

fi  

t

 

i  

o  

v  

r

3

3

 

r  

T  

d  

t  

s  

s  

f  

t  

N  

a  

E  

o  

2  

t  

i  

p  

3  

[

omputational cost, only halves of the track and wheelset with the sym-

etrical boundary condition are considered. The bogie and car body are

implified as sprung masses. The railpads and ballast are modelled as

iscrete spring-damper pairs. For each railpad, a grid of 3 by 4 spring-

amper pairs is adopted between the rail and sleeper, see Fig. 2 . The

olling of the wheelset is enabled by applying a torque on the axle.

his model is developed and solved with the commercial FE program

NSYS/LS-Dyna. An 8-node hexahedra element with reduced integra-

ion points is adopted due to its computational efficiency. The length of

oth track models is 12 m (i.e. 20 spans), which has been shown to be

ong enough to get rid of the boundary effect for this problem [26] . The

heel-rail contact is solved using a surface-to-surface contact algorithm

ncorporated in LS-Dyna. This algorithm with the mesh size of 1 mm in

he contact patch has been shown to yield satisfactory results in compar-

son to the Hertz or CONTACT [52] model in the quasi-static wheel-rail

ontact case [53] . The longitudinal geometry of the irregularity is de-

ned as in Equation (3) , while its lateral geometry remains the same as

he lateral profile of the rail head, see Fig. 2 . 

The dynamic wheel-track interaction is solved using an explicit time

ntegration scheme (a central difference method) with a time step length

f 3e-8 s, which is small enough to ensure both the stability and con-

ergence. For the details of the modelling and solution procedure, the

eaders are referred to [54] . 
3 
. Comparisons between beam and continuum model 

.1. Characterization of wheel-rail impact force 

We first consider the wheel-rail impact at a typical squat in the Dutch

ailway network as a reference case. The model parameters are listed in

able 1 . These parameters are taken from [ 27 , 55 ], which have been vali-

ated by field hammer tests [55] and ABA measurement [27] . We model

he fastening system as spring-damper pairs: railpads sustain compres-

ion and clamps and bolts sustain tension. This is a widely accepted

implification in railway track models. As in the loaded condition the

astening system is in compression, we take the railpad stiffness value as

he spring stiffness. The sleeper is a prestressed concrete sleeper of type

S90. We assume a uniform cross section for the sleeper with equiv-

lent cross sectional properties. The squat geometry is defined using

quation (3) with D = 0.2 mm, L = 30 mm and x 0 = 6.5 m. This ge-

metry is chosen because a typical squat in the Netherlands is between

0 mm ~ 40 mm long [25] and less than 0.4 mm deep [56] . Besides,

he squat is located near a sleeper support at 6.6 m, which is also typ-

cal in the Dutch railway network [25] . For the convenience of com-

aring to measurements (Section 5), the velocity of the wheel is set to

0 m/s, which is the same velocity at which the ABA was measured in

27] . 
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Fig. 2. The continuum model. The wheel, rail and sleepers are meshed with 8-node 3D FE elements. 

Table 1 

Model parameters for the reference case. 

Component Parameter Value 

Track 

UIC54 

rail 

Mass per meter 54.77 kg/m 

Young’s modulus 210 GPa 

Poisson’s ratio 0.3 

Moment of inertia 2.337 ×10 − 5 m 

4 

Density 7800 kg 

Area of cross section 6.977 ×10 − 3 m 

2 

Timoshenko shear coefficient 0.4 

Rail 

pad 

Stiffness 1300 MN/m 

Damping 67500 Ns/m 

Sleeper Young’s modulus 74.6 GPa 

Poisson’s ratio 0.17 

Moment of inertia (averaged) 1.375 ×10 − 4 m 

4 

Density 2500 kg/m 

Area of cross section (averaged) 0.043 

Timoshenko shear coefficient 0.833 

Length 2.58 m 

Spacing 0.6 m 

Ballast Stiffness 90 MN/m 

Damping 6400 Ns/m 

Vehicle 

Sprung mass Mass 8000 kg 

Primary 

suspension 

Stiffness 1.15 MN/m 

Damping 2500 Ns/m 

Wheelset Wheel radius 0.46 m 

Mass (half) 900 kg 

Roll inertia 950 kg m 

2 

Speed 30 m/s 

Wheel/rail contact 

Hertzian 

spring 

Constant C H 9.0 ×10 10 N/m 

3/2 

Linearised Coefficient K H 4 ×10 8 ~ 1.2 ×10 9 N/m 

Squat 

Geometry Length L 30 mm 

Depth D 0.2 mm 
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6.6 m. 
Fig. 3 compares the contact forces calculated by the two models. For

he beam model, we adopt the half-track representation with the sym-

etrical boundary condition (the same as the continuum model) and the
4 
on-linear Hertzian spring contact model. The time domain responses

 Fig. 3 (a)) consist of two stages. From 6.5 m to 6.53 m (indicated by

he vertical dashed line), the wheel-track system is in a forced vibration

tage, excited by the defect geometry. The contact forces show a local

ip (D1) followed by a local maxima (M1). The M1 magnitudes are 2.1

nd 1.4 times the static load for the beam and continuum model, re-

pectively. From 6.53 m on, the system is in a free vibration stage. The

ontact forces oscillate in two major wavelengths, i.e. a shorter wave

2M2D3 and a longer wave D3D4. In the frequency domain, there are

hree major characteristic frequencies (see f 1 , f 2 and f 3 in Fig. 3 (b)). The

agnitudes calculated by the continuum model are lower at f 1 and f 2 
han the beam model. In addition, the dominant frequency above 500

z is at f 2 = 890 Hz and f 3 = 1130 Hz for the beam and continuum

odel, respectively. 

The wheel-track system is not a constant but a time-variant system

s the wheel position changes. Consequently, the characteristic frequen-

ies should also be changing with the wheel position. To illustrate this,

e apply the synchrosqueezed wavelet transform [57] to the contact

orce and plot the synchrosqueezed wavelet power spectrum (SWPS) in

ig. 3 (c)~(f). Three frequency bands are clearly visible in the plots.

here are a number of differences between the SWPS calculated by the

wo models. The major difference lies between about 6.53 m and 6.6

, where the largest power concentrates at f 2 and f 3 for the beam and

ontinuum model, respectively. The two dominant frequencies corre-

pond to the two wavelengths of D2M2D3 in Fig. 3 (a), i.e., approxi-

ately 38 mm and 27 mm for the beam and continuum model, respec-

ively. Besides, the frequency change of f 3 is less abrupt for the contin-

um model than the beam model, as indicated with the white boxes in

ig. 3 (e) and (f). This is mainly because of the modelling of railpad

s a grid of 3 by 4 spring-damper pairs in the continuum model as op-

osed to a single spring-damper pair in the beam model (see Fig. 2 and

ig. 3 (g)). This unphysical abrupt change of stiffness due to the single-

oint supported railpad model has also been observed in Timoshenko

eam models [ 58 , 59 ] under parametric excitations. After 6.6 m, the two

odels show similar results with only f 1 and f 3 presented. The differ-

nce is that the contact force decays more quickly for the continuum

odel than the beam model, resulting a lower power in the SWPS after
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Fig. 3. Comparisons between the contact forces calculated by the continuum (left column) and beam (right column) model. (a) Time domain; (b) frequency domain; 

(c)~(f) time-frequency representations; (g) the rail-fastening-sleeper model in the continuum model and beam model. The defect starts at 6.5 m with a length of 0.03 

m and depth of 0.2 mm. The dotted vertical lines indicate the end of the defect (6.53m). 

5 
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Table 2 

Different assumptions adopted in the models to be compared. 

Model No. Track model Wheelset model Contact model 

A1 Beam Rigid Hertzian spring 

A2 Beam Rigid Winkler bedding 

A3 Beam Flexible (modal superposition) Hertzian spring 

B Continuum Flexible (solid 3D) 3D Contact 

Fig. 4. Effects of wheelset flexibility on the contact 

force in (a) time domain and (b) frequency domain. 

Fig. 5. Influence of contact models on the contact force. (a) Time domain; (b) zoom-in of (a); (c) frequency domain. 

Fig. 6. Influence of contact models on the contact solution. First row: contact pressure distribution normalized to its maximum value. The title of each subplots 

indicates the wheel center position. Second row: contact patch and pressure distribution obtained by the continuum model. 
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The simulation results by the two models shown in Fig. 3 may

e influenced by two factors: one is the model assumptions and

he other is the model parameters . To make a more compre-

ensive comparison of the two models, we investigate the ef-

ects of model assumptions and parameters in Section 3.2 and 3.3,

espectively. 
6 
.2. Effects of model assumptions 

Compared to the continuum model, more assumptions are made in

he beam model in terms of the wheel, contact and track model. In this

ection, some key assumptions are varied, see Table 2 , to investigate

heir effects on the simulation results. While varying model assumptions,
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Fig. 7. The two locations for calculating track receptance. 

w  

i

 

u  

w  

t  

t  

3  

e

 

H  

t  

i  

t  

d  

a  

m  

f  

t

Fig. 9. Comparisons between the damping ratios of the continuum and beam 

model. The damping ratios are estimated using the least square rational frac- 

tion (LSRF) method. The LSRF method is applied to the receptances shown in 

Figure 8 (a) between 10 Hz an 3000 Hz. The LSRF model order is 38. Only the 

damping ratios for the stable modes are shown in this figure. 
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in Section 3.2.3. 

F

m

e use the same set of model parameters (see Table 1 ) for the analysis

n this section. 

For the wheelset model, a rigid mass is assumed for the beam model

sed in Section 3.1 (Model A1 in Table 2 ). Compared to a flexible

heelset model, this assumption might result in an overestimation of

he impact force for wheel flats [44] , as well as different frequency con-

ents of the contact force at corrugations [45] . Therefore, in Section

.2.1, the effects of wheelset flexibility on the impact force at squats are

xamined. 

For the contact model, the half space assumption is made in the

ertzian spring model. However, the typical length of a wheel-rail con-

act patch in the longitudinal direction is approximately 15 mm, which

s comparable to the typical length of squats (20 ~ 40 mm). This means

he half space assumption may no longer be valid in the longitudinal

irection. To account for local geometric variations within the contact

rea in the longitudinal direction, a two-dimensional contact model with

ultiple independent springs is considered (Model A3 in Table 2 ), re-

erred to as the Winkler bedding model [60] . This model is compared to

he Hertzian spring model and the 3D contact model in Section 3.2.2. 
ig. 8. Comparisons between the track receptances of the continuum and beam mod

. 

7 
For the track model, the main differences between the beam and

ontinuum model are in the assumptions made for the rail and sleeper.

t is conventionally believed that the Timoshenko beam is accurate up to

bout 1500 Hz, due to the assumption of a rigid cross section. Inherent

rom the different rail and sleeper models are the different fastening

odels. The rail is assumed to be supported at a single point in the beam

odel, whereas in reality the support is over an area, which is more

ealistically modelled in the continuum model, as shown in Fig. 2 . The

ffects of these assumptions made in the track models are investigated
el. (a) and (c) are calculated at x = 6.5 m; (b) and (d) are calculated at x = 6.6 
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Fig. 10. Effects of wheel speed on the wheel-rail impact force at a squat (length: 30 mm; depth: 0.2 mm). (a)~(d) Space domain; (e)~(h) frequency domain. 
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.2.1. Wheelset flexibility 

The natural frequencies and mode shapes up to 2000 Hz of the 3D FE

heelset ( Fig. 2 ) are obtained by eigen-analysis. The modal superposi-

ion method is then used to represent the flexible wheelset, of which the

otal DOF of the wheelset is reduced to 27 modal coordinates. In such

 way, the flexible wheelset model is incorporated in the beam model

nd the wheel-track interaction is solved in the time domain in the same

ay as the rigid wheelset model. 

The contact forces calculated by the flexible and rigid wheelset

odel are compared in Fig. 4. The contact force magnitudes of the first

wo peaks obtained by the flexible wheelset model are slightly smaller

han those by the rigid wheelset model ( Fig. 4 (a)). The PSD of the con-

act force calculated by the flexible wheelset model has three troughs at

hree wheel resonances compared to the rigid wheel model ( Fig. 4 (b), in-

icated by the dotted-line boxes). The findings agree with previous stud-

es, see for example [44] for the contact force magnitudes and [45] for

he frequency content. In general, the influence of wheelset flexibility on

he contact force can be neglected. We therefore assume a rigid wheelset

or the rest of the paper. 

.2.2. Contact models 

In this section, we compare two contact models adopted in the beam

odel, i.e. the Hertzian contact spring (Model 1A in Table 2 ) and Win-

ler bedding model (Model 1C), as well as the 3D FE contact model

Model B). Results are shown in Fig. 5 . By changing from the Hertzian

pring to the Winkler bedding, the M1 magnitudes, as well as the FFT

agnitudes at f 1 , f 2 and f 3 , are reduced. Such decreases are mainly be-

ause that the contact filter effect [60] in the longitudinal direction can

e taken into account with the Winkler bedding model as opposed to the

ertzian spring model, while it is automatically considered in the 3D FE

ontact model. Fig. 6 compares the contact solution of the three models

n more detail. When the wheel center is on the descending or ascending

dge of the defect, the contact patch centers of the 3D FE model and the

inkler bedding model do not coincide with the wheel center. In par-

icular, when the wheel center is at the lowest point of the defect, i.e.

t 6.515 m, the wheel is in contact with the rail on both the descending

nd ascending edge of the defect, resulting in two contact patches. In

ontrast, it is always single point contact and the contact point is right

nderneath the wheel center for the Hertzian spring model. The contact

lter effect does not change the frequency content; the f 1 , f 2 and f 3 are

he same for the Hertzian spring and the Winkler bedding. Additionally,
8 
ith the Winkler bedding model, the dominant frequency above 500 Hz

s still at f 2 , instead of at f 3 as with the 3D FE model. 

.2.3. Track models 

To exclude the influence of the wheelset and contact models, we cal-

ulate the point receptances of the track at two locations, at 6.5 m and

.6 m along the longitudinal direction, as shown in Fig. 7 . Fig. 8 com-

ares the receptances of the two track models at the two locations. Three

ajor track resonances (TRs) are observed for both models in Fig. 8 (a).

R1 and TR2 are the full track resonance and the rail resonance, respec-

ively [55] . The peaks at around 1000 Hz are the pin-pin resonances.

he receptances are comparable up to the anti-resonance (at about 800

z) before the pin-pin resonance. Compared with the beam model, the

eceptance magnitude of the continuum model at this anti-resonance is

arger (i.e. less deeper). In addition, the phase change predicted by the

ontinuum model is smaller at this anti-resonance than that by the beam

odel; see the positive phase change at around 800 Hz in Fig. 8 (c). An-

ther difference is that the receptance of the beam model at x = 6.5 m

hows a more distinct peak at the pin-pin resonance. These observations

ndicate that the damping of the continuum model is larger than that of

he beam model before and around the pin-pin resonance. After the pin-

in resonance, however, the beam model predicts smaller changes of

oth the receptance magnitude and phase at the anti-resonance around

300 Hz. This means after the pin-pin resonance, there is larger damp-

ng in the beam model than in the continuum model. In the track recep-

ances at 6.6 m ( Fig. 8 (b)), the pin-pin resonance completely vanishes

or the beam model, whereas for the continuum model, there is still a

mall peak at around 1000 Hz. 

To compare the damping properties of the two models, the modal

roperties of the two models are identified using the least square ra-

ional fraction (LSRF) method [61] based on the receptances shown in

ig. 8 (a). Fig. 9 shows the change of damping ratios with frequencies.

round the pin-pin resonance (between about 800 Hz and 1100 Hz), the

amping ratio of the continuum model is higher than the beam model.

his is caused by the different fastening models. The rail in the beam

odel is supported with a single spring-damper pair, whereas in the

ontinuum model the rail is supported by a grid of spring-damper pairs

ver an area; see Fig. 2 and Fig. 7 . After the pin-pin resonance, there is

n abrupt increase of damping for the beam model, resulting in a larger

amping ratio between about 1100 Hz and 1800 Hz. This is likely to be

aused by the stress wave propagations in the rail, as will be discussed
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Fig. 11. Effects of defect geometry on the wheel-rail impact force at a squat with wheel speed of 30m/s. (a) Space domain; (b) frequency domain. Different defect 

geometries are defined according to Equation (3) . The lengths and depths of the defects are indicated in the figure with the unit of mm. 
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his in detail in Section 5.2. The calculated damping change is in line

ith the observations in Fig. 8 . 

.3. Effects of model parameters 

For the analysis in Sections 3.2, the same set of model parameters

ere used. In this section, two model parameters, i.e., the wheel speed

nd defect geometry, are varied to evaluate their effects on the compar-

son of different models. These two parameters are chosen because they

ave been shown to have significant influence on the wheel-rail impact

t wheel flats [47] and squats [ 26 , 56 ]. Besides, as has been shown in
9 
ection 3.2.2, the impact force is also sensitive to contact models. We

herefore combine the change of model parameters with different con-

act models, i.e., Model A1, A2 and B in Table 2 , in the subsequent anal-

sis. Other model parameters, such as the vehicle and track parameters,

re kept the same as in the reference case. 

.3.1. Wheel speed 

Fig. 10 shows the impact forces calculated with different wheel

peeds ranging from 10 m/s to 40 m/s. In the space domain, the

rst peak force (M1) calculated by the Winkler bedding model are al-

ost identical to those by the continuum model for all the speeds.
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Fig. 12. Geometries of two typical rail surface defects in the space and frequency domain (a) Z irr ( x ) (b) Magnitude of the Fourier coefficient X ( 𝜔 ). Blue line: length 

30mm, depth 0.2 mm; red line: length 50mm, depth 0.2mm. Both defects start at 6.5m which is near the center of a sleeper support at 6.6 m. 

Fig. 13. Frequency domain model of the wheel-track system ‘ frozen ’ at x = 6.5 m. Top row: receptances of contact spring 𝛼c ( 𝜔 ), track 𝛼t ( 𝜔 ) and wheel 𝛼w ( 𝜔 ); the 

contact receptances 𝛼c are calculated with the contact stiffness between 4 × 10 8 N/m and 12 × 10 8 N/m. Bottom row: comparisons between the Fourier spectrums 

calculated by the frequency domain and time domain models. (a) (c) and (b) (d) show the results for the continuum model and the beam model, respectively. 
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he Hertzian spring model, however, always yields larger M1 force.

n the frequency domain, as the wheel speed increases, high fre-

uency components become more evident for all the three models.

t high speeds, e.g., 30 m/s and 40 m/s, the FFT magnitudes be-

ome dominant at f 2 for the beam model and at f 3 for the contin-

um model. In general, the discrepancies between the Winkler bedding

odel and the continuum model become smaller as the wheel speed
ecreases. c  

10 
.3.2. Defect geometry 

Fig. 11 compares the impact forces calculated by different models

or different squat geometries. It can be seen that the impact force is

ore sensitive to the length than the depth of squats. In the space do-

ain, the two peak forces M1 and M2 merge into one peak as the length

ncreases. In the frequency domain, the FFT magnitudes at high fre-

uencies (e.g., at f 2 and f 3 ) gradually diminish as the defect length in-

reases. The FFT magnitudes calculated by the beam models are always
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Fig. 14. An illustration of coupled wheel-track dy- 

namics based on the frequency domain model. 

Fig. 15. Comparisons between the characteristic frequencies predicted by the time domain and frequency domain models. (a) Continuum model; (b) beam model. 

The SWPSs are obtained by the time domain models. The red circles indicate a sequence of the frozen configuration responses at each wheel position obtained by the 

frequency domain models. 
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arger at f 2 than those at f 3 , whereas for the continuum model, the f 2 
agnitude only becomes dominant for longer defects, e.g., longer than

0 mm. 

In both the space and frequency domain, the discrepancies be-

ween different models become smaller as the defect length increases

r as the defect depth decreases. In general, beam models, espe-

ially with the Hertzian spring, are only comparable to the con-

inuum model for longer defects, e.g., in the current case at least

onger than 50 mm. It should be noted that the maximum defect

epth considered here is 0.3 mm, which is typical for squats while

ight be small for wheel flats. Further investigations are needed

s to whether the conclusions made here are still valid for larger

efects. 

In both Fig. 10 and Fig. 11 , despite the change of the FFT magnitudes,

he characteristic frequencies of f 1 , f 2 and f 3 remain the same for each

odel. This suggests that f 1 , f 2 and f 3 represent certain resonances of

he coupled wheel-track system. The origin of these resonances will be

urther investigated in Section 4. 

. Coupled dynamics of the wheel-track system 

We have analysed the influences of the wheelset, contact and track

odels separately in Section 3. The three characteristic frequencies of

he impact force, i.e., f 1 , f 2 and f 3, are not sensitive to the change of

heelset and contact models. For different track models, we only com-

ared their effects on the track receptance (see Fig. 8 ); how the track

eceptance is correlated with the impact force still remains unclear. In

his section, we use a frequency domain model to combine the effects

f the three components. In such a way, the origin of the characteristic

requencies, as well as the contribution of each model component to the

haracteristic frequencies are clarified. 
11 
.1. Frequency domain model 

The defect geometry Z irr ( x ) defined in Equation (3) can be trans-

erred into the time domain by dividing Z irr ( x ) by the velocity of the

heel that passes over the defect. Then the time domain defect geom-

try can be further transferred into the frequency domain using the

ast Fourier Transform (FFT). The Fourier coefficient at different fre-

uencies f is denoted as X ( 𝜔 ), where 𝜔 = 2 𝜋f is the circular frequency.

ig. 12 shows the geometries of two short-wave rail surface defects with

ifferent lengths. In the frequency domain, the Fourier coefficients are

at up until a certain cut-off frequency and the larger defect has a lower

ut-off frequency. 

The contact force Y F ( 𝜔 ) can then be solved in the frequency domain

ssuming a linear time-invariant system as 

 𝐹 ( 𝜔 ) = 𝐻 𝐹 ( 𝜔 ) 𝑋( 𝜔 ) (4)

here H F ( 𝜔 ) is the transfer function that represents the characteristics

f the wheel-track system and can be formulated as [ 9 , 62 ], 

 𝐹 ( 𝜔 ) = 

1 
𝛼𝑤 ( 𝜔 ) + 𝛼𝑡 ( 𝜔 ) + 𝛼𝑐 ( 𝜔 ) 

(5) 

here 𝛼w , 𝛼t , 𝛼c are the point receptance of the wheel, track and con-

act spring at the contact point, respectively. It should be noted that

quation (5) is derived under the condition that only half of the track

s considered. 

To employ this frequency domain model for the analysis, we need

o make some assumptions. First, a linearized contact spring stiffness

 H is assumed. To account for the nonlinear behaviour of the Hertzian

ontact spring, i.e., the change of contact stiffness with contact force,we

dopt a range of K H between 4 × 10 8 N/m and 1.2 × 10 9 N/m, accord-

ng to the range of the contact force, see, e.g., Fig. 3 (a). The receptance

f the contact stiffness can be calculated as 𝛼c ( 𝜔 ) = 1/ K H [ 9 , 62 ]. Sec-

nd, as the effect of wheelset flexibility is negligible (see Section 3.2.1),
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Fig. 16. Examples of wear patterns after different squats. (a) Class A; (b) class 

B; (c) class C; (d) an artificial defect cut on rail surface. (a), (b) and (c) are taken 

from [25] and (d) is taken from [27] . 
he wheel is considered as a rigid mass of M w = 900 kg (approximately

alf of a motorized wheelset). Thus the wheel receptance can be calcu-

ated as 𝛼w ( 𝜔 ) = 1/ 𝜔 

2 M w [ 9 , 62 ]. Third, to represent the non-stationary

eature of the wheel-track system as shown in Fig. 3 (c)~(f), we adopt

he concept of ‘ frozen configuration ’ [63] of the wheel-track system for

ach wheel position x . More specifically, we assume that at each wheel

osition x , the system is ‘ frozen ’ (made stationary) with the track recep-

ance denoted as 𝛼t ( 𝜔 , x ). Examples of 𝛼t ( 𝜔 , x ) at x = 6.5 m and 6.6 m

re shown in Fig. 8 . Thus, the ‘ frozen ’ transfer function H F ( 𝜔 , x ) and the

orce spectrum Y F ( 𝜔 , x ) can be calculated according to Equation (5) and

4) , respectively. In such a way, the non-stationary wheel-track system

hanging with the wheel position can be represented by a sequence of

 frozen ’ stationary systems. 

.2. Correlating track receptance to impact force 

We first calculate the frozen configuration response at x = 6.5 m.

ig. 13 shows the receptances 𝛼( 𝜔 ) (top row) and force spectrums Y F ( 𝜔 )

bottom row) calculated at x = 6.5 m for the continuum model (first

olumn) and the beam model (second column). From the frequency do-

ain model, we can see that f 1 , f 2 and f 3 are due to the coupling between

he different components of the wheel-track system. At these frequen-

ies, the wheel receptance is much smaller than the track and contact

eceptance. Therefore, the characteristic frequencies of the contact force

an be approximated by the intersection points of the track receptance

urves with the contact stiffness line, neglecting the effect of wheel mass.

ore specifically, the contact stiffness line intersects with the receptance

urve to the right side (the mass dominated part) of the three track res-

nances, i.e., the TR1, TR2 and pin-pin resonance, resulting in f 1 , f 2 and

 3 , respectively. Hence, f i ( i = 1, 2, 3) can be seen as the resonance fre-

uency of a single-degree-of-freedom system, as shown in Fig. 14 , with

he equivalent mass 𝑚 

𝑖 
𝑒𝑞 

and the contact stiffness K H 

 𝑖 = 2 𝜋𝑓 𝑖 = 

√ 

𝐾 𝐻 

∕ 𝑚 

𝑖 
𝑒𝑞 
( 𝑖 = 1 , 2 , 3) (6)

For comparison, the Fourier spectrums from the corresponding time

omain models are also presented in Fig. 13 . The f 1 , f 2 and f 3 obtained

y the time domain models agree relatively well with their counterparts

btained by the frequency domain models with K H = 1.2 × 10 9 N/m. In

erms of the FFT magnitudes, the time-domain continuum model pre-

icts lower magnitudes at f 2 and f 3 compared to its frequency domain

odel with K H = 1.2 × 10 9 N/m ( Fig. 13 (c)). This is because in the

requency domain model, the contact filter effect is not considered. For

he beam model, in which the contact filter effect is also not considered,

he FFT magnitudes agrees well between the time and frequency domain

odels. It is also noticed that above 500 Hz the frequency-domain model

ith K H = 1.2 × 10 9 N/m predicts a higher magnitude at f 3 for the con-

inuum model whereas at f 2 for the beam model ( Fig. 13 (c) and (d)).

his is in line with the time-domain predictions. This means the differ-

nce in the dominant frequencies between the two models is due to the

ifference in the track models. More specifically, it is due to the differ-

nt damping properties of the two track models. As shown in Fig. 9 , the

amping ratio above the pin-pin resonance is much larger in the beam

odel, which leads to the attenuation of the f 3 magnitude in Fig. 13 (d).

ikewise, as the damping ratio is larger in the continuum model before

he pin-pin resonance, the f 2 magnitude in Fig. 13 (c) is smaller than the

 3 magnitude. 

Now we examine the time-variant feature of the wheel-track system

sing the frequency domain model. We compare the predictions of f 1 , f 2 
nd f 3 by the frequency domain model with those by the time domain

odels, as shown in Fig. 15 . Comparing the frequency domain solutions

see the red circles in Fig. 15 ), the beam model predicts a larger variation

f f 3 with the change of wheel positions than the continuum model. This

s due the different support lengths in the longitudinal direction of the

astening models in the two models (see Fig. 3 (g)). 

The time domain response is equal to its ‘ frozen ’ part plus a term

epresenting the dynamic effects [63] . Therefore, by using the frequency
12 
omain model as a baseline, we can compare the dynamic effects of the

wo time domain models. In Fig. 15 , the SWPSs are obtained by the

ime domain models. Unlike the frequency domain solutions, the time

omain solutions of f 2 and f 3 are asymmetrical about the sleeper support

t 6.6 m. For both the continuum and beam model, the largest deviations

f the time domain solutions from the frequency domain solutions occur

etween 6.55 m and 6.6 m, predominately at f 3 . The deviations are

arger for the beam model than the continuum model. This means the

ynamic effects, such as due to wave propagations (to be discussed in

ection 5.2), in the beam model are more pronounced than those in the

ontinuum model, when the wheel is approaching the support. 

. Discussions 

.1. Accuracy of the modelling results compared to field observations 

Continuum models with similar approaches have been validated us-

ng both the axle-box acceleration measurement [27] and the wear pat-

erns observed in the field [64] . We discuss how the simulation results

n this paper fit with these measurements and observations. 
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Fig. 17. Simulated wave propagations in the rail due to wheel-rail impact using the continuum model. (a) Wave generation and initial propagation; (b) wave reflected 

by the sleeper. In each subplot, we show six states of the velocity field, with the begin and end time stamps and wheel positions indicated in the figure. The time 

interval between each state is 8 𝜇s. Note the first state in (a) corresponds to the first dip D1 of the contact force, see Figure 5 (b). 
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.1.1. Axle box acceleration 

In [27] , the ABA signals were obtained with accelerometers mounted

n the four axle boxes of a bogie. The sampling frequency was 25000

z, which is also the sampling rate we used in this paper to sample

he simulation outputs. The measured ABA signals were low pass fil-

ered with a cut-off frequency of 2000 Hz. In this paper, the simulation

esults were not filtered as they are less noisy than the measurement.

owever, as the frequency of interest is up to about 1200 Hz in this pa-

er, the filtered ABA measurements are still valid for comparison with

imulations. In addition, a uniform lateral profile of the squat is con-

idered in this paper, see Fig. 2 . In comparison, the ABA signals were

btained at squats with non-uniform lateral profiles. Nevertheless, it was

hown in [65] that the wavelengths or characteristic frequencies of the

mpact force are not influenced by the lateral profile of squats. 

The ABA measured at various squats show two distinct frequency

ands, with the lower frequencies between 300 ~ 500 Hz and the higher

requencies between 1000 ~ 1200 Hz [27] . In this paper, the two mod-

ls yield nearly identical f 1 frequency at around 340 Hz. However, the

igher frequency calculated by the beam model is at f 2 = 890 Hz and

hat by the continuum model is at f 3 = 1120 Hz. This means the con-

inuum model fits better with the ABA measurements in terms of the

igher frequency (between 1000 ~ 1200 Hz). 

.1.2. Wear pattern following squat 

Corrugation-like wear patterns can be observed after squats in the

rain traffic direction [ 25 , 64 ]. Examples of such patterns are shown in

ig. 16 . The direct dynamic effect of a squat is the first wave pattern after

t, which is usually shorter than 30 mm. This wave is caused by the first

eak of the contact force after the defect, i.e. the D2M2D3 in Fig. 3 .

n this paper, the continuum model gives a more accurate prediction

f this wavelength (26 mm), while the beam model overestimates the

avelength (38 mm). 

.2. Stress wave propagation in track 

One major dynamic effect that is more realistically modelled in the

ontinuum model than in the beam model is the stress waves propagat-
13 
ng in solids. In general, there are three types of waves due to dynamic

oadings, i.e. Rayleigh waves, shear waves (S-waves) and dilatational

aves (P-waves). Rayleigh waves propagate near surface while S-waves

nd P-waves can travel within solids, hence also called body waves.

ayleigh waves generated by the wheel-rail impact have been repro-

uced and discussed in detail in [50] . Here we show the simulated body

aves generated by the wheel-rail impact and their reflections by the

leeper in Fig. 17 . It can be seen that away from the contact point, the

elocity is approximately constant across the rail section (see e.g. the

ection indicated by the dashed red box), meaning the assumption of

igid cross section of the beam model may reasonably apply. However,

ear the contact point, the beam model is unable to capture the waves

ropagating from the rail top to bottom, as well as the reflected waves

y the sleeper. 

.2.1. Effects on M1 magnitude 

Whether the wave propagation should be considered depends on the

roblem in concern. For example, Rayleigh waves influences the con-

act solutions as they are generated by the wheel-rail creepage within

he contact patch and subsequently propagate through the contact patch

50] . More relevant to this paper are the body waves. For the continuum

odel, the effective inertia of the rail that participates in the vibration

f wheel-track system (e.g. the m eq shown in Fig. 14 ) comes first from

he point of contact and then “gradually ” expand as the waves spread

ut, see Fig. 17 . While for the beam model, any vibration always in-

olves the whole cross section, which has a larger inertia. A smaller m eq 

eads to a smaller M1 peak predicted by the continuum model. It should

e noted that although the Winkler bedding model yields nearly iden-

ical M1 magnitude to the continuum model, it tends to underestimate

he peak force compared to the Kalker’s variational method [ 47 , 52 ].

his means there should be other factors that cause the discrepancies of

he M1 magnitude between the two models, such as the effect of wave

ropagation discussed above. In general, taking into account stress wave

ropagations will lead to a smaller M1 peak. However, the quantitative

ffect of the wave propagation on the M1 magnitude depends on many

actors and thus needs further investigations. 
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Fig. 18. Comparisons between the track velocities at the rail seat at 6.6 m. Upper: rail velocity; bottom: sleeper velocity. 
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.2.2. Effects on f 3 resonance 

The wave propagation is asymmetrical to the two sides of the contact

oint; see the asymmetrical velocity field in Fig. 17 . The stress waves

ravel more freely in the direction away from the support while are more

ecayed in the direction towards the support. This asymmetry mainly

oncerns the frequency region around the pin-pin resonance [66] . This

ay explain why the change of f 3 is asymmetrical about the sleeper

upport in Fig. 15 . 

For the continuum model, the body waves propagate more freely

ear the rail surface while are more easily reflected and attenuated by

he fastenings at the rail bottom (see Fig. 17 ). In contrast, the wave prop-

gation in the beam model does not distinguish between the rail top and

ottom. As a result, the beam model might experience more reflected

aves at the wheel-rail contact, which further leads to larger frequency

uctuations at f 3 , especially when the contact is near the sleeper support

see Fig. 15 ). 

.2.3. Effects on damping 

The damping of the track at higher frequencies (above 1000 Hz) is

ainly controlled by the railpad damping. In both the continuum and

eam model presented in this paper, the railpads are viscously damped.

his means the amount of damping depends on the velocities of the rail

nd sleeper at rail seats. Fig. 18 compares the rail and sleeper velocities

t the rail seat at 6.6 m. It can be seen that the rail velocity magnitude

alculated by the beam model is closer to that by the continuum model

t the rail top, while is larger than that at the rail bottom. For the sleeper

elocity, the beam model also predicts a larger magnitude than the con-

inuum model. The major frequency of the velocities for both models

s at around 1100 Hz, which is higher than the pin-pin resonance. Con-

equently, the continuum model show a lower damping than the beam

odel at f 3 . 
14 
. Conclusions 

We compare the simulation results of a continuum and a beam FE

odel for the wheel-rail impact force at a typical rail squat defect. We

lso compare the simulations with field measurement and observations,

hich suggests the continuum model is more accurate than the beam

odel. 

The impact force consists of a forced vibration peak M1 followed

y free vibration related oscillations with three dominant frequencies f 1 
340 Hz), f 2 (890 Hz) and f 3 (1120 Hz). The three frequencies are in-

ependent of wheel speed and defect geometry. They correspond to the

igenfrequencies of the wheel-track system according to the proposed

requency domain model. 

The beam model with a Hertzian contact spring overestimates the

1 peak of the impact force. The discrepancy can be reduced but not

ntirely eliminated by using the Winkler bedding model, because it can

etter model the wheel-rail contact solution in the longitudinal direc-

ion. 

Different from the conventional belief that the Timoshenko beam

s accurate up to about 1500 Hz for the rail model, we show that the

eam model is only accurate up to about 800 Hz in terms of the track

eceptance. As to the impact force, the valid frequency range of the

eam model is further reduced. The beam models produce larger FFT

agnitudes at the first characteristic frequency at about 340 Hz. The

eam models are only comparable to the continuum model for long and

hallow squats, e.g., longer than 50mm while not deeper than 0.3 mm

n the case considered in this paper. 

The two track models show different damping behaviour around the

in-pin resonance, i.e., between about 800 Hz and 1800 Hz. The damp-

ng of the continuum model is larger below and at the pin-pin frequency,

hereas the damping of the beam model is larger above the pin-pin fre-

uency. The differences of the damping are caused by the different mod-

lling of the stress wave propagation in the rail. As a result, the contact
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orce dominates at f 3 (1120 Hz) for the continuum model while at f 2 
890 Hz) for the beam model. 

The propagation of the body waves in the rail caused by the wheel-

ail impact is reproduced by the continuum model. We show that the

tress wave propagation contributes to the smaller M1 peak and smaller

rack damping after the pin-pin resonance in the continuum model. 

The findings contribute to a better understanding of the dynamic

haracteristics of the wheel-rail impact force, as well as the root causes

or the different simulation results between the two models. In engi-

eering practice, this study can assist engineers in choosing the appro-

riate assumptions for the wheel, contact and track models when solving

heel-rail impact problems. 
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