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SUMMARY

One of the pillars of the scientific method is the fact that... Oh wait, it’s a different one.
One of the pillars of the technological development is the fact that if the existing design
does not achieve the goal or cannot be applied in new conditions, one could propose
a totally different design that may achieve the goal. The only constraints in this way
being the laws of physics. This is the main message of the lecture by Richard Feynman
on tiny machines. The role of different designs can also be noted on a purely theoretical
level. There, changing the well-known model can have far reaching consequences on its
properties and possible applications.

One of the main goals in the focus of modern quantum technology is realization of
a quantum computer. The appeal of this device is in the difference from the classical
analogous computer, being reasonable proposals for error correction. Another aspect
is that one may use topological quantum states that are robust by themselves against
certain noises. There is a lot of effort in trying different approaches and designs to ex-
perimentally realize and detect these states. Two main approaches are to either realize
topological compounds or combine topologically trivial compounds to effectively real-
ize non-trivial topological properties. There have been advances in both topological and
non-topological quantum computation. One of the most famous examples being the
achieved quantum supremacy (or, after censorship, quantum advantage). Despite that,
the technology is still far away from being used at home. Also, during the process of de-
velopment of technology other things may come about on the way. Anyhow, regardless
of the outcome, the way itself is always more important than the resulting point. In this
thesis we discuss certain theoretical findings discovered on the way.

For example, in Chapter 2 we discuss in detail the topological properties of multi-
terminal superconducting nanostructures. Initially they were proposed to realize non-
trivial topology in higher dimensions with the help of topologically trivial materials. This
idea belongs to the framework discussed above. We find that these nanostructures may
indeed possess non-trivial topological properties but the observation may be compli-
cated by the presence of the continuous spectrum above the superconducting gap. On
the other hand, there is always a possibility thay any complication may be turned into
advantage later.

Next, in Chapter 3 we address a general question about topological properties of
many-band systems without anti-unitary symmetries. We investigate the generalities
of topological phase diagrams and find that the generic features of those differ from the
usual phase diagrams. Namely, the common critical points in topological phase dia-
grams are quadruple as opposed to the case of triple points in the usual phase diagrams.
We exemplify the general considerations taking an example of bilayer Haldane model.

Then, in Chapter 4 we investigate the ways to operate on the Majorana states in a
simple model. We propose a scheme that allows to braid Majorana states by application

ix
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of resonant voltage pulses and not using the geometry of the device. As discussed above,
control and operation on topological states is crucial for possible applications.

Finally, in Chapter 5 we investigate a modification of the well-known superconductor-
semiconductor nanowire design that was initially proposed to realize Majorana states
with topologically trivial materials. Taking experimental advances as a motivation, we
complicate the model by increasing the number of terminals that cover the nanowire and
investigate different from Majorana topological properties, namely Weyl points. First,
we find that it is possible to find Weyl points in the spectrum of the system. Second, we
find that again the presence of the continuum does have the effect on the topological
properties of the model.



SAMENVATTING

Eén van de bouwstenen van de wetenschappelijke methode is het feit dat... Oh wacht,
het is een andere. Een van de pijlers van de technologische ontwikkeling is het feit dat
als het bestaande ontwerp het doel niet bereikt of niet kan worden toegepast in nieuwe
omstandigheden, men een totaal ander ontwerp kan voorstellen dat het doel kan be-
reiken. De enige beperkingen op deze manier zijn de wetten van de fysica. Dit is de
belangrijkste boodschap van de lezing door Richard Feynman over kleine machines. De
rol van verschillende ontwerpen kan ook op puur theoretisch niveau worden opgemerkt.
Daar kan het veranderen van het bekende model verstrekkende gevolgen hebben voor
de eigenschappen en mogelijke toepassingen.

Een van de belangrijkste doelen in de focus van moderne kwantumtechnologie is de
realisatie van een kwantumcomputer. De aantrekkingskracht van dit apparaat zit hem
in het verschil met de klassieke analoge computer, omdat het redelijke voorstellen voor
foutcorrectie zijn. Een ander aspect is dat men topologische kwantumtoestanden kan
gebruiken die op zichzelf robuust zijn tegen bepaalde geluiden. Er is veel moeite gedaan
om verschillende benaderingen en ontwerpen uit te proberen om deze toestanden expe-
rimenteel te realiseren en te detecteren. Twee belangrijke benaderingen zijn om ofwel
topologische verbindingen te realiseren of topologisch triviale verbindingen te combi-
neren om effectief niet-triviale topologische eigenschappen te realiseren. Er zijn vorde-
ringen gemaakt in zowel topologische als niet-topologische kwantumberekeningen. Een
van de bekendste voorbeelden is de bereikte kwantumovermacht (of, na censuur, kwan-
tumvoordeel). Desondanks is de technologie nog ver verwijderd van thuisgebruik. Ook
kunnen er tijdens het proces van technologische ontwikkeling onderweg andere dingen
gebeuren. Hoe dan ook, ongeacht de uitkomst, de weg zelf is altijd belangrijker dan het
resulterende punt. In dit proefschrift bespreken we bepaalde theoretische bevindingen
die onderweg zijn ontdekt.

In Hoofdstuk 2 bespreken we bijvoorbeeld in detail de topologische eigenschappen
van multi-terminale supergeleidende nanostructuren. Aanvankelijk werd voorgesteld
om niet-triviale topologie in hogere dimensies te realiseren met behulp van topologisch
triviale materialen. Dit idee behoort tot het hierboven besproken raamwerk. We vinden
dat deze nanostructuren inderdaad niet-triviale topologische eigenschappen bezitten,
maar de waarneming kan gecompliceerd zijn door de aanwezigheid van het continue
spectrum boven de supergeleidende spleet. Aan de andere kant is er altijd een mogelijk-
heid dat elke complicatie later in voordeel kan worden omgezet.

Vervolgens behandelen we in Hoofdstuk 3 een algemene vraag over topologische ei-
genschappen van veelbandsystemen zonder anti-unitaire symmetrieën. We onderzoe-
ken de algemeenheden van topologische fasediagrammen en vinden dat de generieke
kenmerken hiervan verschillen van de gebruikelijke fasediagrammen. De gemeenschap-
pelijke kritische punten in topologische fasediagrammen zijn namelijk viervoudig in te-
genstelling tot het geval van tripelpunten in de gebruikelijke fasediagrammen. We il-
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lustreren de algemene overwegingen door een voorbeeld te nemen van een dubbellaag
Haldane-model.

Vervolgens onderzoeken we in hoofdstuk 4 de manieren om in een eenvoudig model
te opereren op de Majorana-staten. We stellen een schema voor waarmee Majorana-
toestanden kunnen worden gevlochten door toepassing van resonante spanningspulsen
en niet door de geometrie van het apparaat te gebruiken. Zoals hierboven besproken, is
controle en werking op topologische toestanden cruciaal voor mogelijke toepassingen.

Ten slotte onderzoeken we in Hoofdstuk 5 een modificatie van het bekende supergeleider-
halfgeleider nanodraadontwerp dat aanvankelijk werd voorgesteld om Majorana-toestanden
te realiseren met topologisch triviale materialen. Door experimentele vooruitgang als
motivatie te nemen, maken we het model gecompliceerder door het aantal terminals
te vergroten dat de nanodraad bedekt en andere topologische eigenschappen dan Ma-
jorana te onderzoeken, namelijk Weyl-punten. Ten eerste vinden we dat het mogelijk
is om Weyl-punten in het spectrum van het systeem te vinden. Ten tweede vinden we
dat opnieuw de aanwezigheid van het continuüm effect heeft op de topologische eigen-
schappen van het model.



PREFACE

You have to enjoy it!

Quote without author� 3

The word "task" is not a synonym to "problem".

Quote without author� 15

The word "complicated" means it was complicated by someone.

Quote without author� 51

There are many ways of being stupid.

Quote without author� 100

This is why a pole at the end of the cut is impossible
*folding a piece of paper into a cone and showing*

Quote without author� 1

Pull the other leg!

Quote without author� 11

-We use different definitions here...
-Why don’t you take mine?!

Quote without author� 12

Arguing with a manipulator is like shearing a pig:
lots of squeal and little gain.

Quote without author� 7

Jupyter notebooks will lead to the death of science.

Nostradamus
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Without initiation rite or orthogonality catastrophe no adulthood or qualitatively new
property is possible.

Quote without author� (-1)

Do this, do that
People who can’t do anything are lame?

Excessive expectations invite failure
Feel free to gracefully avert your eyes

After all, this is basically
a tactical retreat!

«Declaration of complete resignation» by Nanawo Akari

Bob Wilson: "Any other expectations we might have are a matter of luck.
When we hire a professor, we’re taking all the risks."

...and it released me from the feeling of guilt.
So I got this new attitude.

I’m going to play with physics, whenever I want to, without
worrying about any importance whatsoever.

from «Surely You’re Joking, Mr. Feynman!»

The weak can overcome the strong;
The supple can overcome the stiff.

The truth often seems paradoxical.

Tao Te Ching - Lao Tzu - chapter 78

Quality of the time spent on projects
is much more important than the results.

Quote without author� 0
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INTRODUCTION

...error correction is applied by repeating three steps:
1. Errors are accumulated over a short piece of the computation.

from PhD thesis by Tom O’Brien (2019)
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2 1. INTRODUCTION

1.1. PREFACE
The recent decades have seen the advent of topological concepts[1, 2] in condensed mat-
ter physics. This includes the theoretical developments[3, 4] including the description
of topological properties[5, 6] or possible applications[7] of those as well as experimen-
tal results[8–12]. Generally, topological systems are interesting due to various unusual
properties, among which there are anomalous response functions[13], edge states pro-
tected against localization[14], non-Abelian statistics of excitations[15]. The latter is
a promising platform to realize topological quantum computation[7]. An alternative,
but closely related, direction of research is non-topological quantum computations[16].
This involves making qubits without topological protection, for example superconduct-
ing qubits[17], qubits on quantum dots[18], etc. One of the most famous successful
examples of non-topological quantum computation is the reported achieved quantum
supremacy[19, 20].

Realization of topological structures and finding ways to use the topological prop-
erties is a problem of physics. One way is to search for or manufacture topological
compounds experimentally[12, 21, 22]. In this way topological properties emerge due
to a nontrivial bandstructure of the material itself. The other way is to investigate the
topological properties of heterostructures[23, 24], where the topological properties may
come about due to the interplay of different materials. In this Thesis we focus on this
approach and investigate the topological properties of various heterostructures made of
non-topological materials. In any case, the active use of topological concepts shows that
the detailed knowledge of topology as a mathematical discipline is required if not vital.
Due to this we make a brief review of topology in this Introduction.

A general problem providing additional motivation to this introduction is the prob-
lem of language, or rather interplay of different languages. The so-called continental
philosophy[25, 26] had arrived at the conclusion of equivalence of different discourses.
Discourse roughly means a descriptive system, e.g. a discourse of condensed matter
physics, a discourse of biophysics, a discourse of high energy physics, etc. So, the state-
ment about equivalence is relevant when different discourses address the same problem.
The lack of understanding of this may bring significant problems to scientific research
both on the level of personal interaction as well as on the level of interplay of different
branches of science. The first part of the Introduction is an attempt to make a bridge
between two discourses: the discourse of mathematics and the discourse of modern
condensed matter physics.

So, in the first part of the Introduction we discuss the topological notions and con-
cepts relevant for the present thesis. Then, in the second part we discuss models and
approaches to description of condensed matter systems relevant for this Thesis in which
topological concepts play a key role. The main purpose of the following Chapters is to
discuss the novel topological properties of several heterostructures.

1.2. TOPOLOGY OVERVIEW
In this section we briefly review the relevant topological constructions and present a dic-
tionary (see Table1.1) to make correspondence between mathematical notions with the
usual thesaurus of condensed matter physics. In general, topology is the study of spaces
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3

vector bundle quantum system
section wavefunction

base space parameter space, Brillouin zone
fiber Hilbert space

bundles isomorphism classes topological phases
curvature 2-form for 1-dimensional complex bundle Berry curvature

Table 1.1: Dictionary between mathematical notions and possible condensed matter analogues.

by means of formalization of how to describe properties that do not change upon con-
tinuous (or smooth) mappings/transformations. We do not mention several important
branches of topology at all, like knot and links theory (for a review see, e.g.[27]). Those
have already found important applications in high energy mathematical physics[28].
One can expect that those may also find useful applications in condensed matter when
one would need to describe the topology of extended structures. First, we will review the
general notions and constructions relevant for the thesis and then restrict to the specific
case of smooth manifolds when the convenient differential geometry analysis may be
applied. In the last part we discuss general classification approaches that can be applied
to spaces without differential structure. Anywhere where there is an abstract topologi-
cal notion appearing we will try to provide the natural analoges from condensed matter
language. The exact conditions of applicability of statements are not always stated but
can be easily found in the literature[29, 30]. A common requirement being the compact-
ness of spaces under consideration, this would guarantee convergence of integrals over
them. Some statements have a wider range of applicability, e.g. not compact but locally
compact spaces like Rd . See Ref.[31] for more detail.

1.2.1. HOMOTOPY AND COHOMOLOGY GROUPS

In this subsection we review the basic notions and concepts used in the subsequent sub-
sections. Topological spaces are the ones for which the notion of openness and thus
continuousness of maps is defined.

We now discuss the notion of topological equivalence for different objects. First,
topological equivalence of two maps can be formalized as a homotopy between maps. In
a way it is as formalization for a path between maps. More precisely, two maps of spaces
f , g : X → Y are homotopic f ∼ g if there exists a continuous map F : [0;1]×X → Y such
that F (0) = f and F (1) = g and [0;1] is a unit interval with endpoints included. For spaces
the definition of equivalence is not so simple since a path in the space of spaces is hardly
well-defined (all spaces form a cathegory, not a set). There are two general formaliza-
tions of topological equivalence of spaces. First one is homeomorphism: there exists
a continuous one-to-one map between spaces and inverse is also continuous. It does
correspond to the intuitive picture of topological equivalence being a possibility to con-
tinuously deform one space into the other. The second one is homotopy equivalence of
spaces: a pair of continuous maps f , g exist sich that f g ∼ i dX and g f ∼ i dY , where e.g.
i dX is an identical map of X to itself. The homotopy equivalence is the one most widely
used (theorems mostly state something about this particular equivalence relation) but
it does not completely correspond to the intuitive picture of equivalent spaces. For ex-
ample, a d−dimensional real space Rd or any other contractible (over itself) space that
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consists of more than one point is homotopy equivalent to a point pt, but they are not
homeomorphic.

Directly checking topological equivalence of spaces may be a formidable task. There-
fore, one may think about what kind of topological invariants may help distinguish topo-
logical spaces. The first candidate is homotopy groups. For a given space X they are
defined as homotopy classes of maps of spheres Sn into X called spheroids. Homotopy
classes of spheroids are denoted as [Sn , X ]. One also requires that there is one fixed
pre-chosen point x0 for all maps. Fixation of this basepoint allows one to introduce a
group operation on these homotopy classes making it into a group denoted as πn(X , x0).
Rougly speaking, a product of spheroids of the same dimension is a composite spheroid
made of two intial ones. The map for the product is as follows: one takes a sphere, its
whole equator is mapped into x0 and the upper and lower halves of the sphere become
two spheroids that we want to multiply. For n > 1 the groups turn out to be commu-
tative, for n = 1 not necessarily. The reason is actually the same as why fermions with
repulsion are special in 1 dimension: one cannot push them through each other to ex-
change positions. For a path-connected X (there exists a path between any two points)
the dependence on the basepoint is not essential (all groups corresponding to different
basepoints are isomorphic), so one usually does not specify it. If X consists of identical
components, like e.g. O(n) being two copies of SO(n), then πn(X ) will be defined as a
group computed for one component. For example, in accordance with the intuition for
n > 0πn(Sn) = Z , this integer is called degree of mapping. Alsoπr (Sn) = 0 for r < n. How-
ever, in the general case even the homotopy groups of spheres turn out to be very difficult
to obtain. For example, an unexpected result isπ3(S2) = Z so homotopy groups are com-
plicated invariants in general despite expectation. Also, by definition, a 0-dimensional
sphere S0 = point

⊔
point is a disjoint unit of two points, which is a boundary of a 1-

dimensional disk B 1 - line segment with endpoints included. With this π0(X ) is a num-
ber of connected components of X and π0(S0) = Z2. In the subsequent section about
K-theory 0-th homotopy groups give the simplest way to understand the groups arising
in the well-known topological periodic table[32, 33]. Despite being a complicated in-
variant, homotopy groups generally do not completely specify the homotopy type of the
space. But spaces with different groups are certainly not equivalent. Homotopy groups
can be readily applied to classifications of stable defects[34], e.g. by considering classes
of mappings of Sn to the space of order parameters. This sphere is then thought of as
consisting of all points at infinity, i.e. "boundary" of the Rn+1 parameter space of the
system .

A somewhat simpler invariant (easier to compute and having properties correspond-
ing to intuition) is homology and cohomology. Due to relative simplicity, these invari-
ants are even weaker than homotopy but still allow to distinguish non-equivalent spaces.
Also, widely used characteristic classes belong to cohomology groups. The basic idea of
homology is also to consider mappings of spheres or other surfaces into X but present
them as composed of elementary simplices. Then we will investigate if this surface will
be a boundary of some region within X . If not - then the surface probes non-trivial
topology. For the investigation of boundaries we will need orientation of each simplex:
the order of its faces which are simplices of a dimension smaller by 1. So we will map

d−dimensional simplices σd f→ X and introduce an operation of the sum of images of
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those simplices as units of geometric objects Cd =Σi ni f (σd
i ) where now all ni = 1. Next,

we consider arbitrary integer coefficients ni ∈ Z , negative ones will make sense when
we define the boundary of a simplex. Then this sum is called a d−dimensional chain.
The boundary of the chain is a chain with dimensionality smaller by 1 ∂Cd =Σi ni f (∂σd

i )
consisting of linear combinations of boundaries of original simplices. The boundary of
each simplex σ is a chain equal to the sum of all faces σ′ of this simplex with alternating
signs ∂σ = Σ j (−1) jσ′

j . Alternation of the signs in this definition is crucial. This oper-

ation is also called differential for the reasons discussed below. If the chain is itself a
boundary of some other chain then we call it trivial. This suggests the notion of topo-
logical equivalence here called homology of chains: they are equivalent if they differ by
a boundary. If the boundary of the chain is empty than we call it a cycle. Boundary of
a boundary is empty: ∂2 = 0, so we can factor d-dimensional cycles by d-dimensional
boundaries, d ≥ 0, the result being an abelian homology group Hd (X ). Roughly speak-
ing, these groups probe the same topology as homotopy groups but these are different
homotopy invariants.

Next, in the case when X is a smooth manifold (manifold means topological space
every point of which has an open neighbourhood homeomorphic to Rd and smooth
means that the notion of tangent vector and differentiation with respect to it ∂/∂xm is
also defined), one may consider integrals of real functions over these simplices which
obviously result in numbers Cd → R1. Actually, the integration of functions is an oper-
ation not accurately defined (one has to keep track of the Jacobian), so instead one can
introduce differential forms where the functions φ(x) will be coefficients in the basis of
antisymmetric products of differentials of local coordinates ω = φ(x)d x1 ∧d x2...∧d xk .
The product symbol defined on coordinate differentials d x ∧d y = −d y ∧d x is just an
antisymmetric product. Antisymmetric product will ensure the correct Jacobian upon
coordinate transformation. The integral of a differential form over simplex is defined as
the usual integral of the coefficient function φ(x) after one just sets the order of differ-
entials in correspondence with the orientation of the simplex. The integral defined like
this is invariant under coordinate transformations.

From the definition we see that differential forms are antisymmetric tensor fields de-
fined on a manifold. For differential forms the usual differential operation d(φ(x)d x1 ∧
...∧ d xk ) = ∑

m
∂φ(x)
∂xm

d xm ∧ d x1 ∧ ...∧ d xk has the property that is analogous to differ-

entiation of simplices d 2 = 0. This is because the second derivative of smooth func-
tions is symmetric w.r.t. the order of differentiation. Proceeding completely analogous
to homology, let us define topological equivalence of differential forms: two forms are
equivalent if they differ by a complete differential. Therefore, in complete analogy to
homology one can introduce a factor group of forms that have trivial differential dω= 0
over forms that are themselves differentials of some other form ω= dη. These classes of
d−dimensional differential forms are called elements of de Rham cohomology groups
with real coefficients H d (X ,R1). In the case of a general space when the notion of differ-
entiation is not defined one can also define cohomology as a space of linear functions
over homology. This is analogous to the duality of vectors and covectors in standard lin-
ear algebra. Thus, the linear space of differential forms can be seen as a dual space of
linear functionals to homology. Finally, there is a deep relation between geometric dif-
ferentiation of simplices ∂ and usual differentiation operation d . Stokes theorem is an
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Figure 1.1: An illustration for vector bundle definition over space B : total space E is mapped to B by a bundle
projection p, the fiber, a linear space in this case, denoted as F , is mapped to each point in B . Fibers living in E
can be glued non-trivially making a non-trivial bundle. Trivial bundle corresponds to just a product of spaces
E = F ×B , so fibers in E are glued in a trivial way.

exact statement about how they are related.

1.2.2. FIBER BUNDLES
The natural way to think about most of the topological properties discussed in con-
densed matter so far is in terms of the topology of locally trivial vector fiber bundles.
A locally trivial fiber bundle by definition is a structure involving 3 topological spaces: E ,
B , and F and a surjective continuous map p : E → B such that each point x ∈ B has an
open neighborhood U such that p−1(U ) is homeomorphic to U ×F . The way to under-
stand this abstract definition is to note that over each point in B there is a fiber space that
lives in E and is projected into the point upon bundle projection p (see Fig.1.1). In order
to avoid exotic examples we also require that the homeomorphism p: U ×F → p−1(U ) is
compatible with p, i.e., pr1(U ×F ) = p(p(U ×F )); here pr1 is a projection onto the first
factor. The map p is called the bundle projection, B is the base of the bundle, F is the
fiber, and E is the total space of the bundle.

Next, one may consider a base space as a space made of a set of overlapping open
patches {U } (so-called open covering) over each of which the bundle is just a direct prod-
uct, i.e. trivial. The main issue is where any two patches overlap one has to match or glue
the fibers defined over separate overlapping patches and this can be done in a topolog-
ically non-trivial way thus producing a globally non-trivial bundle. Topological proper-
ties of the base itself play a huge role, for example any bundle over Rd is trivial. Another
useful notion is the section of the bundle: a continuous map s from base space B to total
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Figure 1.2: An illustration for a simplest non-trivial real vector bundle, fiber being R1. Total space is the Mobius
band. Base space is a circumference S1. As discussed in the text, the base space is covered by two open patches:
red U1, blue U2. In the region where regions overlap we need to glue 1-dimensional fibers R1. There are
two options, as shown in the figure, orientation preserving or changing. A non-trivial bundle corresponds to
choosing orientation preserving on one overlap and orientation flipping on the other overlap, as shown. Then,
it can be viewed as fibers living in E being glued non-trivially making a Mobius band (without a boundary).

space E such that ps = i dB . This map defines an element in fiber space dependent on B .

A linear bundle is a bundle where fibers F are linear spaces of fixed dimension. It
can be vector or tensor space. In this case the gluing between fibers over overlapping
patches is just a linear map. In the case of vector bundles sections are vector fields over
a base. The simplest example of a non-trivial real vector bundle is provided by the Mo-
bius band: the Mobius band itself is a total space E , the base is a circumference B = S1

and the fiber is 1-dimensional real space R1. The bundle projection p can be seen as
projection of the Mobius band onto the circumference embedded in the middle of the
band. The base S1 can be separated into two overlapping open intervals, over each one
the bundle is trivial. Gluing of fibers over two regions of overlap is done by a linear map
R1 → R1. This map can be orientation preserving or not. If on one overlap region the
orientation is preserved and on the other not, we get a Mobius bundle (see Fig.1.2). A
2-dimensional cylinder without boundary is a trivial 1-dimensional bundle because it is
globally a Cartesian product S1 ×R1. These two examples are the only possibilities of a
1-dimensional real bundle over S1 as can be proven by an application of Stiefel-Whitney
classes discussed below.

A usual condensed matter analogue of a base space is a Brillouin zone or a parameter
space. A fiber space is Hilbert space (complete linear metric space, i.e. there are no
"holes" in it: any sequence of vectors convergent by the metric does converge to a vector
from the same space) of states. A wavefunction is then a section of the bundle, i.e. a map
from Brillouin zone to the fibers consistent with the global bundle structure. Total space
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and bundle projection are needed to complete the structure of the bundle. A specific
vector bundle corresponds to a description of all states a physical system and topological
classes of bundles correspond to topological phases. Equivalence of linear bundles over
the same base B is a homeomorphism of total spaces E1 → E2 such that its restriction to
any fiber is an isomorphism of linear spaces.

A theorem says that if there is a globally defined basis of sections (wavefunctions)
then the bundle is trivial. Let us consider the textbook example of the complex bundle
over S2 with an obstruction to defining the globally well-defined section. We parametrize
the sphere by two angles θ ∈ [0;π] and φ ∈ [0,2π]. Let us also introduce two topologically
trivial patches as discussed above. Denote U1 is θ ∈ [0;π/2 + ε] and φ ∈ [0,2π]; U2 is
θ ∈ [π/2−ε;π] and φ ∈ [0,2π]. Then consider the wavefunction

ψ2 =
(

sin θ
2

cos θ
2 e iφ

)
(1.1)

is not well defined at θ = 0 but is well-defined on U2 We can move the singularity to θ =π
by applying a gauge transformation to obtain ψ1 = e−iφψ2 but cannot get rid of it, the
argument for it is provided by characteristic classes discussed below. And ψ1 is a sec-
tion well-defined on U1. As discussed above, we glue the 1-dimensional fibers along the
overlap of patches - vicinity of θ =π/2. It will be done precisely with the gauge transfor-
mation e iφ ∈U (1). This realizes a nontrivial map from the equator homotopy equivalent
to S1 to the group of admissible linear transformations. We see now how 1-dimensional
complex bundles with no additional symmetries over S2 are classified by π1(U (1)) = Z .
Analogous statement applies in higher dimensions.

Finally, we mention that in the case of smooth manifolds a tangent bundle can be
defined. The name is self-explanatory: the fibers can be associated with tangent spaces
at each point of the manifold. For example, a tangent bundle to S2 is non-trivial de-
spite having no non-trivial characteristic classes discussed below. Tangent vectors play
a special role since they are useful for treating differentiation.

How does the Hamiltonian fit into this picture? Let us consider a Hamiltonian de-
fined on a compact space of parameters (or a Brillouin zone). Diagonalizing a Hamilto-
nian provides an alternative way to define a bundle. If there are no degeneracies then
the distinct eigenbasis wavefunctions can be chosen up to a global phase. Different val-
ues of energies are the reason not to make superpositions of wavefunctions, namely to
consider wavefunctions separately as sections of 1-dimensional bundles over parameter
space. Let us consider another case, an isolated degeneracy point of two energy levels
in 3-dimensional parameter space being present. We will call it a Weyl point. Differ-
ent energies wavefunctions are well-defined on a small sphere surrounding this point
so, once again, they can be seen as sections of 1-dimensional bundles over this sphere.
Each bundle can have any integer first Chern number n (the sum of all of them will
vanish due to completeness of the basis), the definitions and way to compute Chern
numbers are discussed below. In the case of two wavefunctions the absolute value of
this arbitrary integer is usually called a topological charge. The nonzero value of the
topological charge imples the topological protection of the level crossing: it is directly
related to non-triviality of the corresponding 1-dimensional bundle and its topological
non-equivalence to the trivial bundle with n = 0. If the spectrum is such that degener-
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acy happens along an extended subspace of parameter space, then the superpositions of
wavefunctions with coinciding energies are natural and these wavefunctions can form a
many-dimensional basis of sections. In this many-dimensional bundle case the topo-
logical classification is different from the previous 1-dimensional case. A well-known
example is Yang monopole[5, 35] with two pairs of degenerate wavefunctions defined
on a sphere S4.

Now we need to consider different symmetry classes of systems, i.e. what the addi-
tions of usual anti-unitary symmetries change in this picture. These symmetries impose
restrictions on bundles and may change the topological properties. More precisely, sym-
metries change the way the fibers can be glued over overlapping patches. Also, in the
many-level case when K-theory discussed below can be applied, the indices of K-groups
that are classifying the topological phases change upon addition of symmetries.

1.2.3. CHARACTERISTIC CLASSES
The next thing to consider is how to establish topological equivalence or difference of
bundles thus classifying topological phases over a given parameter space. The strategy
is same as for spaces: introduce possible invariants that do not change upon topologi-
cally equivalent mappings and assume different values for different bundles. A conve-
nient candidate for bundles is characteristic classes: certain elements of the cohomology
group of the base associated with the bundle.

Since all the spaces in physics are assumed to be smooth (at least if there is no special
reason for exception), we will focus on the case of smooth manifolds and differential-
geometric approach in the rest of this subsection. Then the notion of a tangent vector,
differentiation with respect to it and integration is defined. Then the elements of co-
homology groups are classes of differential forms. The characteristic class becomes a
certain differential form, an integral of this differential form over a compact space is an
integer invariant, e.g. a Chern number for complex bundles. In order to obtain the ex-
plicit expressions for characteristic classes we need to review some standard notions of
differential geometry.

Let us recall the differential operator acting on a tensor that results in a tensor is
a covariant derivative. In the language of linear vector or tensor bundles it is called a
connection: a map from sections to sections. We introduce a local basis of sections {eα}.
Using this basis we write the derivative of a section vector field ψ=ψαeα with respect to
a tangent vector X i as

∇Xψ= X i

(
∂ψβ

∂xi
d xβ+ωβi ,αψ

α

)
eβ (1.2)

The coefficients ω are given by the derivatives of the basis vectors {eγ} of the sections

∇eα =ωβαeβ, so ωβα =ωβi ,αd xi is a differential 1-form, it is called connection form. Every-

where summation over repeated indices is implied. In general the objectωβi ,α has 2 types
of indices: Greek ones take values in the dimension of the fibers and the Latin one takes
values in the dimensionality of the base, i.e. dimensionality of tangent vectors space.
For example, if the bundle is 1-dimensional, then the Greek indices are trivial and we
just end up with a usual connection (pseudo)vector Ai . It shows that in general gauge
fields can be seen as connections in corresponding bundles. Another example is pro-
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vided by general relativity where one considers a tangent bundle or tensor products of
tangent bundles. Therefore, in that case all the indices take values in the dimensionality
of the base and the connection is called Christoffel symbols Γk

i j . In this case connection

coefficients play the role of gravity field strength. The next thing to notice is thatω is not
a globally well-defined tensor since upon the change of the basis e → eT

ω→ T −1ωT +T −1dT (1.3)

which physically means the gauge dependence of gauge potentials Ai or possibility to
change or even eliminate gravity Γk

i j in the infinitesimal volume by choosing a corre-

sponding frame. An operator
F =∇2 = dω+ω∧ω (1.4)

is however a well-defined globally differential 2-form F → T −1F T . It corresponds to
physical gauge independence of fields or coordinate frame covariance of components

of the curvature tensor in the examples. In general, F = Fβ

i j ,α has 2 indices in the fibers

and 2 indices in the tangent vectors. It is proven in the literature that both ω and F
are either antisymmetric or antihermitian (with respect to indices in fibers) for real and
complex bundles correspondingly. For example, in the case of 1-dimensional bundle it
implies that the connection Ai is purely imaginary. Using this it can be proven that F is
a closed 2-form dF = F ∧ω−ω∧F = 0, so it well defines de Rham cohomology classes.
So, introduction of curvature form allows us to finally obtain characteristic classes in a
standard way. Namely, for a complex bundle we consider the expansion in powers of the
matrix elements of F of the following determinant

det(1+ i F

2π
) = 1+ c1(F )+ ...+ cn(F ) = 1+ tr

i F

2π
+ ...+det

i F

2π
(1.5)

where n is dimensionality of the fibers. It is called total Chern class and the motivation
here is to consider a determinant invariant under basis transformations in fibers that
will yield a polynomial in F . The expansion coefficients ci (F ) are precisely the Chern
classes. Another theorem states that that these classes actually belong to cohomology
group with integer coefficients instead of real numbers ci (F ) ∈ H 2i (B , Z ). It comes from
the specifics of the topology of Grassmann manifolds (we will not go into details here). It
is a main result of this construction: we have obtained cohomology classes that will take
only integer values, Chern numbers. The way to obtain Chern numbers is to consider
products of Chern classes (as differential forms) that the resulting rank will match the
dimensionality of the base and than integrate over a base. Therefore, a complex vector
bundle over an m-dimensional base space can have at most k = (number of partitions of
m) independent Chern numbers. If we restrict to compact bases then the convergence
of integrals will be guaranteed.

For real bundles we consider the expansion of a slightly different determinant

det(1+ F

2π
) = 1+p1(F )+ ...+pn(F ) = 1+ tr(

F

2π
)2 + ...+det(

F

2π
)2 (1.6)

which is called total Pontryagin class. The expansion coefficients pi (F ) ∈ H 4i (B , Z ) are
called the Pontryagin classes. These are 4-forms pi (F ) ∈ H 4i (B , Z ) in integer coefficient
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cohomology. Pontryagin numbers can be obtained in the same way as Chern numers by
integrating the products of Pontryagin classes.

The last invariant that can be obtained with F in real case is Euler class

e(F ) = Pf
F

2π
(1.7)

which is a n-form e(F ) ∈ H n(B , Z ). It is well defined when its sign cannot be changed
by orthogonal transformations, that is in even dimensionality of the fibers n = 2k. For a
tangent bundle integral of it over the whole base space yields Euler characteristic χ(B).

As a result, we obtain a set of topological invariants - characteristic classes of coho-
mology associated with a bundle. These invariants are in fact not complete: if the classes
of the bundle are not all zero, then the bundle is non-trivial, but conversely non-trivial
bundles with all zero classes do exist. The important practical conclusion here is that
since the resulting coefficients of the cohomology groups are integer, any integral over a
compact base (or compact subspace for a restriction of the bundle) will yield an integer.

The last standard type of characteristic classes are Stiefel-Whitney classes defined
for real bundles wi ∈ H i (B , Z2). They are axiomatically defined by a set of axioms that
are real analogues of those for Chern classes but one cannot obtain explicit differential
geometric expressions for Stiefel-Whitney classes. One of the axioms for all character-
istic classes is that they are stable, i.e. do not change upon taking a direct sum with a
trivial bundle (except Euler class that explicitly depends on fiber dimensionality n). This
property closely relates characteristic classes with K-theory discussed below.

As for anti-unitary symmetries, they may surely affect characteristic classes, for ex-
ample by changing the space to which F will belong. An example discussed in literature[36]
concerns the bundle initially without symmetries over 2-dimensional base after impo-
sition of an additional time-reversal symmetry. This is then a model for a time reversal-
invariant topological insulator. As a result, it changes the invariant from the integer
Chern number to the Chern number defined modulo 2. In general, there are relations
between different types of characteristic classes when they are mapped onto each other
upon complexification of the bundle or conversely forgetting the complex structure, or
cohomology coefficients mapping[30]. For example, forgetting the complex structure of
the bundle ξC → ξ gives

(−1)i c2i (ξC ) = pi (ξ) (1.8)

we will not discuss those theorems in detail here.

1.2.4. CLASSIFYING BUNDLES AND K-THEORY
Now we discuss some approaches that were developed to classify bundles, i.e. topolog-
ical phases, completely, which is in general a formidable task. Characteristic classes are
useful for this purpose in lowest dimensions: for a good base space the complex bundles
are precisely classified by the first Chern class and real bundles are classified by a first
Stiefel-Whitney class

Vect1
C (B)

c1' H 2(B , Z ), Vect1
R (B)

w1' H 1(B , Z2) (1.9)

For example, there are Z 1-dimensional complex bundles over S2 and over torus T 2;
and Z2 real 1-dimensional bundles over S1 discussed above. In general, the way to clas-
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r \n 1 2 3 4 5 6
1 Z Z Z Z Z Z
2 0 0 0 0 0 0
3 0 Z Z Z Z Z
4 0 Z2 0 0 0 0
5 0 Z2 Z Z Z Z
6 0 Z12 Z6 0 0 0
7 0 Z2 0 Z Z Z
8 0 Z2 Z12 Z24 0 0
9 0 Z3 Z3 Z2 Z Z

10 0 Z15 Z30 Z120
⊕

Z2 Z120 0

Table 1.2: Table of the first homotopy groups πr (U (n)), taken from Ref.[37]

sify bundles is to consider how the fibers are glued along all the overlaps of patches,
which in principle can be achieved by considering the corresponding homotopy classes
of mappings of the subspaces along which the gluing takes place into the gluing group
allowed by the symmetry that glues fibers. For example, the n−dimensional complex
bundles without additional restricting symmetries over a sphere Sr+1 will be classified
by πr (U (n)) as discussed above. Some results are presented in Table1.2. In this Table we
see a regular pattern above the diagonal r = 2n. This regular pattern corresponds to the
usual topological periodic table[33] in the complex case. This is a domain of applicability
of K-theory that assigns a set of abelian groups K q (B) to a space B that have this regular
pattern. Below this diagonal the classification is complicated which indicates interesting
topological properties.

An alternative equivalent approach is based on a theorem that states that the real
or complex bundles without additional symmetries can be classified by the homotopy
classes of maps of the base space into a certain classifying space called real or com-
plex Grassmannian Vectn(B) = [B ,G∞

n ]. A complex Grassmannian G∞
n (C ) is a space of all

n−dimensional linear subspaces in infinite-dimensional complex space C∞. This defi-
nition somehow clarifies the statement of the theorem: the image of any point in B is a
linear subspace associated with fiber space and infinite dimensionality allows to orient
these subspaces totally freely for gluing.

In general, computation and analysis of these homotopy classes is very complex. It
turns out that if we do not restrict the dimensionality of the fibers then the computation
is much simpler. It corresponds to the many-band case (compared to the dimensional-
ity of the base e.g. see the condition r > 2n in Table1.2, exact conditions are discussed
below). It results in the usual topological periodic table classification[33]. This is the sub-
ject of the topological K-theory[32]. We note that the same classification was developed
with the analysis of the topology of the Q-field of the non-linear sigma model for disor-
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dered systems[33]. Releasing the fiber dimensionality we define a zeroth reduced com-
plex K-group K̃ 0(B) = [B ,G∞∞(C )]. In the real case one has to take a real Grassmannian

and the corresponding groups are denoted as K̃O
0

(B). These are groups of classes of
vector bundles with a group operation being a direct sum. Dimensionality unrestricted
classes are defined by the following equivalence relation: two bundles are called stably
equivalent ξ ∼ η iff the augmentation of one ξ

⊕
0m is isomorphic in a standard way to

the augmentation of the other η
⊕

0n , where 0m ,0n are trivial m− and n−dimensional
bundles, possibly m 6= n. For example, if B = S2 the 1-dimensional stably equivalent

classes of real bundles over a circumference S1 are classified by K̃O
0

(S1) = Z2 and these
elements are the Mobius bundle and a trivial bundle discussed above.

Another useful notion[30] is unreduced K-group. It deals with a different equivalence
relation of bundles: in the stable equivalence described above we now require m = n,
this is called stable isomorphism. The resulting classes with an operation of direct sum
form a semigroup: inverse elements are not defined. In order to make it into a group
one formally introduces virtual bundles as classes of formal differences [ξ−η] ∼ [a−b] iff
ξ
⊕

b
⊕

0m is isomorphic to a
⊕
η

⊕
0m for some m. The resulting group does not literally

consist of classes of bundles but still can be used in classification. Example: for a base
space being one point a bundle is just a projection of a vector space into a point. In the
stably equivalent case K̃ 0(pt) = 0 because augmentation of any dimensional linear space
leads to equivalent element of the group. In the case of virtual stably isomorphic classes
K 0(pt) = Z because two elements are equivalent only if they are augmented by the same
dimensional vector space, and the elements k ∈ Z are precisely the dimensionalities of
the virtual bundles, that can be negative. For compact B the unreduced complex zeroth
K-groups are also given by the homotopy classes but the classifying space is different
K 0(B) = [B , Z ×G∞∞(C )] and analogous for real case. There is a general relation K 0(B) =
[B , Z ]

⊕
K̃ 0(B) and same relation holds for real case.

Then the case when additional anti-unitary symmetries are present one can use K-
groups with a general index q . For a compact B one can define K p−q (B) = [B ,Gr ad p−q

C ]

and KOp−q (B) = [B ,Gr ad p−q
R ] where Gr ad p−q

R,C are classifying spaces[38] strongly re-
lated to Clifford algebras, which in turn are strongly related to anti-unitary symmetries
in condensed matter. More precisely, index p − q is directly related to the number and
type of symmetries[32]. Classification of Hamiltonians up to augmentation by an arbi-
trary number of trivial bands was reduced by Kitaev to the problem of computation of
unreduced K-groups (it was shown that spaces of Hamiltonians are homotopy equiva-
lent to classifying spaces). For example, in consistency with definitions above Gr ad 0

C =
G∞∞(C )×Z , Gr ad 0

R =G∞∞(C )×Z and Gr ad−4
R =G∞∞(H)×Z , H being quaternion algebra.

Considering a base space being just a point, we can easily obtain K 0(pt) = K −4(pt) = Z
as just numbers of connected components of corresponding classifying spaces. Same in
the complex case K 0(pt) = Z . These are precisely the Z entries in the topological peri-
odic table. Two other nontrivial entries in the table are provided by the real case classi-
fying spaces Gr ad−1

R = lims→+∞O(s) and Gr ad−2
R = lims→+∞O(2s)/U (s). Since these

spaces consist of two connected components, [pt,Gr ad−2
R ] = π0(O(2s)/U (s))|s→+∞ =

Z2 = π0(O(2s))|s→+∞ = [pt,Gr ad−1
R ] these yield Z2 entries in the periodic table. The

other classifying spaces only have one connected component, so they yield trivial en-
tries in the periodic table.
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Figure 1.3: An illustration for a suspension construction over a space B+. Starting with space B one has to
make a disjoint unit with a point B+ = B

⊔
pt. Then one constructs two cones over B+. Formally one has to

take a product with a closed interval B+ × [0;1] and factor the spaces at the ends of the interval 0 and 1 into
points.

On the other hand, the classification of stably equivalent bundles is given by the re-

duced K-groups K̃ 0, K̃O
0

. In the case of arbitrary negative index q < 0 they can be de-
fined topologically as K̃ −q (B) = K̃ (Σq B) and similarly for real case, where Σ is an op-
eration of suspension resulting in a new topological space. Suspension is defined as
construction of two cones over a space, see Fig.1.3. For example, ΣSn = Sn+1.

The main result of K-theory is Bott periodicity: all the classifying spaces and all the
resulting groups are periodic in index with period 8 and 2 in real and complex cases.
This also allows to extend the definitions of K-groups above to arbitrary integer q . We
note that this periodicity can in a certain sense be understood as geometric periodicity
in dimensionality of the base (see definition of K-groups with suspension construction
discussed above). For spheres exactly the same sequence of groups as in the periodic
table is obtained since K −q (pt) = K̃ −q (pt+) = K̃ (Σq S0) = K̃ (Sq ). For example, in the com-
plex case the application of Bott periodicity yields K̃ (Sn) = 0 for odd n, and K̃ (Sn) = Z for
even n. For an arbitrary base B the relation between the two K-theoretic groups is not so
transparent: K −n(B) = K̃ (ΣnB+), where B+ = B

⊔
pt a disjoint union of B and a point.

So as we see, with the K-theoretic approach one classifies bundles only up to aug-
mentation by an arbitrary number of trivial bands. This means that formally this classi-
fication applies to many-band case only (2n > r −1 for complex case and n > r for real
case where r is the dimensionality of the base space), whereas the toy models like Kitaev
model discussed below illustrating topological properties are usually low-dimensional.
For real case the Z invariants present in the periodic table can be captured by Pontrya-
gin classes, but Z2 invariants are generally not captured by Stiefel-Whitney classes except
lowest dimensions[30] despite naive expectation.

We stress that even in the dimensionality unrestricted case for arbitrary base B there
can be different K-groups and therefore different classification than in the periodic ta-
ble (an example being weak topological insulator[39] in the case of a torus[32] B = T 3).
Another way outside of topological periodic table is to restrict the fiber dimensionality.
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1.3. TOPOLOGY IN CONDENSED MATTER
In this section we discuss some condensed matter models in which the topological con-
cepts discussed above play a key role.

1.3.1. WEYL SEMIMETAL
Weyl semimetals were introduced in a seminal paper[40]. Weyl semimetal is a system
defined by special properties of the spectrum[41]. Namely, it is a system where topolog-
ically protected point-like band crossings are present in the 3d momenta space. Such
systems have been reported to be realized in several compounds[42] e.g. in tantalum ar-
senide (TaAs)[43]. We do not consider so-called Type-II semimetals[44] with nodal lines
in the spectrum. Knot theory not outlined in the introduction can be useful to describe
their topological properties[6].

A generic crossing of two bands (if an effective Hamiltonian linear in deviations from
the crossig point contains 3 independent parameters) will have the wavefunctions of
these bands defined on the small sphere S2 surrounding the crossing corresponding to
the topological charge q = ±1 discussed above (as first Chern numbers of these two 1-
dimensional complex bundles), higher singularities |q | > 1 are also possible. One may
also consider arbitrary 2d smooth and periodic subspace of the 3d Brillouin zone out-
side of band crossings and restrict the gapped spectrum to this 2d subspace. Thus, one
will obtain locally well-defined wavefunctions that, as sections of 1-dimensional bundles
over this 2d subspace, may have nontrivial Chern numbers. Therefore, one will obtain a
2-dimensional Chern insulator[45]. Some details of the topology of 2d Chern insulators
in the many-band case are discussed in Chapter 3.

1.3.2. TOPOLOGICAL SUPERCONDUCTOR
We consider symmetry class D in dimensionality d = 1 from the periodic table. The
Hamiltonian has particle-hole symmetry but no time-reversal and therefore no chiral.
Particle-hole symmetry affects topology as discussed above and so it is classified by Z2

invariant. In accordance with the general statement above we claim that despite being
stable this invariant cannot be captured by characteristic classes. A simple 2×2 model
that has the same topological classification and the same symmetry is Kitaev model[46].
Let us consider spacially homogeneous case with periodic boundary conditions first.
Then the Hamiltonian in q−space reads

H = (−2t cos q −µ)τz +2∆sin qτy (1.10)

where the quasimomentum q ∈ [−π,π], τ matrices act in Nambu space, superconduct-
ing gap ∆ is chosen real, µ is a chemical potential and t being the nearest sites real hop-
ping amplitude. The aforementioned Z2 invariant distinguishing between two classes of
bundles is the sign of the product of pfaffians

P = sgnPf(i HA(q = 0))Pf(i HA(q =π)) (1.11)

where HA is an antisymmetrised form of the Hamiltonian. Using Eq.1.10, we obtain that
one of the pfaffians changes sign at µ = 2|t | and the other one at µ = −2|t |, these are
the conditions for the topological phase transitions. The same conditions yield the gap
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closing either at q = 0 or q = π. Diagonalization of Eq.1.10 results in two bands defined
on a S1 q−space. Let us fix t > 0. Then for µ À |t | the positive energy wavefunction

ψ+ '
(
0
1

)
, and exactly equal for q = 0 and q = π. It is topologically equivalent to a trivial

constant wavefunction. In the topological regime it cannot be tuned to a trivial wave-

function since at q = π it is pinned as ψ+ ∝
(
1
0

)
and for q = 0 the asymptotic does not

change. This change happens after closing the gap at q = π upon decreasing µ< 2t but
keeping µ > −2t . In general, there are no nontrivial complex bundles over S1 because
H 2(S1, Z ) = 0 but class D with additional symmetry is described by real K-theory. If we

associate the wavefunction

(
0
1

)
with a positive Jacobian in the Mobius bundle described

above and the wavefunction

(
1
0

)
with a negative one, all possible choices of these wave-

functions at q = 0 and q = π result in the same classification options as the real bundles
over S1: Mobius and trivial cylinder.

1.4. SUPERCONDUCTING NANOSTRUCTURES

In this section we consider topology of other model examples, namely heterostructures.
The initial idea of this approach is to realize topological materials without actually fab-
ricating them. One of the first proposals was to realize a 2-dimensional topological
superconductor placing films of the trivial superconductors on top of the topological
insulator[47]. Other proposals focus on realizing Kitaev model[46] or a topologically
equivalent model being an example of 1-dimensional p−wave pairing superconductor.
The reason being boundary Majorana modes, potentially useful for topological quan-
tum computation[48, 49] due to topological protection[7, 50], forming at the ends of the
wire in the topological regime. Majorana bound states form one fermionic state that can
be either filled or empty leading to degenerate ground state - another peculiarity of the
model. In the finite system in the topological regime Majoranas are not exactly at zero
energy but the splitting ∼ e−L/ξ is exponentially small in the system size L, where ξ is
Majorana localization length. Realization of Weyl fermion physics with multi-terminal
superconducting nanostructures is also thinkable (see recent proposal[23]). In the lat-
ter proposal the dimensionality of parameter space (superconducting phases) is not re-
stricted by d ≤ 3, so one could expect to have topological properties related to higher
dimensionalities.

1.4.1. SPACIALLY INHOMOGENEOUS SUPERCONDUCTIVITY

Since we discuss heterotructures in this section, we need to address the spacially inho-
mogeneous systems in general and spacially inhomogeneous superconductivity in par-
ticular. The standard way to describe an inhomogeneous system with superconducting
regions is to solve the eigen-basis problem for the BdG Hamiltonian. Let us sketch the
standard derivation. We start with a BCS[51] Hamiltonian in the spacially dependent
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case. For example, for point-like interaction corresponding to s−pairing[52]

H =
∫

d 3r

(∑
σ
ψ†
σH0ψσ+V0ψ

†
↑ψ

†
↓ψ↓ψ↑

)
(1.12)

where the first term being being a normal state Hamiltonian

H0 = ε(−iħ∇−eA)+U (r)−EF +gµB(σ,h)+ iVSO(r)σ×∇ (1.13)

where ε(p) is electrons dispersion relation, A being external vector-potential, e is elec-
tron charge, U (r) is external potential that may contain disorder, EF is Fermi energy,
gµB (σ,h) is Zeeman splitting due to external magnetic field, VSO(r) is spin-orbit cou-
pling. And the second term in Eq.1.12 being an attractive s−pairing electron interac-
tion with V0 < 0 interaction strength. In the weak interaction limit the 4-fermion in-
teraction can be decoupled by the introduction of superconducting order parameter
∆(r )ψ†

↑ψ
†
↓+h.c.

∆(r ) =V0〈ψ↑(r )ψ↓(r )〉 (1.14)

In the normal regions we set V0 = 0, so ∆(r ) = 0. Introducing an additional structure -
Nambu space one can conveniently reformulate the problem to solving the eigenbasis
problem for a spacially dependent BdG Hamiltonian[53]

HBdG =
(

H0 ∆(r )
∆?(r ) −H T

0

)
(1.15)

This approach allows one to describe a large variety of physical systems: nanostructures,
nanowires, heterostructures with topological materials etc.

One can consider a general case[52] of position-dependent electron interaction in
Eq.1.12. Then one can also obtain different types of pairing corresponding to scattering
with higher orbital numbers l > 0. As an example of p−pairing corresponding to l = 1
one can consider a spacially inhomogeneous Kitaev chain[46]

H =−∑
n
µnc†

ncn −∑
n

(tnc†
n+1cn +h.c.)+∑

n
(∆nc†

n+1c†
n +h.c.) (1.16)

where cn is a usual fermion annihilation operator on the n−th site and the parameters
are the same as in Eq.1.10 but can be non-constant from site to site, e.g. µ= µn . Taking
spacially-dependent parameters one may realize several regions of topological or non-
topological regimes within the wire and, therefore, more Majorana bound states.

Another example[54] is the model that was proposed as a way to realize the topolog-
ical superconductor in class D with topologically trivial materials. It consist of a semi-
conductor nanowire with strong spin-orbit coupling in proximity to ordinary s-wave su-
perconductor and external magnetic field. The continuous limit BdG Hamiltonian reads

HBdG =
(

p2

2m
−ασz p −µ

)
τz +Bσx +Re∆τx − Im∆τy (1.17)

where σ matrices act in spin space, τ matrices act in particle-hole space, p is electron
momentum in a wire, m is effective mass,α is spin-orbit strength, B is external magnetic
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Figure 1.4: An example of the spectrum of the model Eq.1.17 in the topological regime. The parameters are
m =α= 1, B = 3, ∆= 1.5, µ=−1.34.

field and ∆ is induced superconducting order parameter in the wire due to proximity
effect. This model is nontrivial topologically at |B | >

√
|∆|2 +µ2 and α 6= 0.

In Chapters 3 and 4 we consider modifications of this model introducing position
dependent parameters, e.g. µ(x). In order to investigate the topological properties of the
model we proceed in two different ways in Chapters 3 and 4. In Chapter 4 we analyze
the spectrum by explicit direct diagonalization of the discretized version of the model.
In Chapter 3 we use the trick to reformulate the problem of finding the band crossings of
the Hamiltonian into minimization of a certain determinant alongside with its derivative
- see Chapter 4 for details.

1.4.2. SCATTERING FORMALISM

As a yet another example a suggestion was proposed[23] to realize topological materi-
als with multi-terminal superconducting nanostructures. In the case of nanostructures
the general problem Eq.1.15 can be simplified to the scattering problem. In this case
the model of the nanostructure consists of a short structure off which the electrons scat-
ter. This scatterer is connected to several (superconducting) terminals (see Figure and
more details on multi-terminal nanostructures in Chapter 2). For the applicability of the
scattering approach one needs a sufficiently short nanostructure and negligible inelas-
tic processes. Within the scattering formalism[55] the scatterer is described by a single
(probably energy-dependent) scattering S-matrix denoted as S. In the case of supercon-
ducting structure, the phases of superconducting terminals form a many-dimensional
parameter space in which one can study topological properties of the states of the sys-
tem. Therefore, one is not restricted by small dimensionality d ≤ 3 of parameter (base)
space as in the case of topological compounds.

Superconducting nanostructures may host Andreev bound states that exist due to
Andreev scattering processes[56, 57] at the energies smaller than the superconducting
gap in the terminals. Successive Andreev scatterings of a quasiparticle living inside of the
nanostructure with the energy lower than the gap lead to a finite motion and, therefore,
discrete energy levels. The condution of matching the wavefunction[55] of the quasi-
particle returning to its original state after the process of two Andreev reflections off the
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boundaries of the scatterer yields a condition[58]

det(1−e−2iχ(E)Se i φ̂S∗e−i φ̂) = 0 (1.18)

where χ(E) = arccos(E/|∆|) and φ̂ is a vector composed of all phases of superconducting
terminals. Eq.1.18 allows to find the energies of the bound states. One can investigate
the topology of the band structure of Andreev bound states in the parameter space of
superconducting phases of the terminals.

We rederive Eq.1.18 in Chapter 1 within action formalism. It was shown previously
that indeed one can find nontrivial topological configurations in this system[23], how-
ever the presence of the continuous spectrum above the superconducting gap in the
terminals may complicate the observation, which is the main subject of Chapter 2.

1.4.3. ACTION FORMALISM
Another simplification to the general problem of Eq.1.12 can be done provided that cer-
tain subset of the degrees of freedom of the system can be averaged out. Within this ap-
proach one describes the system with an effective action[59] Seff instead of a full Hamil-
tonian 1.15. The effective action is a functional of physically relevant degrees of freedom
(e.g. superconducting phases) describing their effective dynamics, it is obtained upon
integrating out the irrelevant degrees of freedom (e.g. electron dynamics in reservoirs).
The response functions of the system and quantum correlators of the relevant degrees of
freedom can be derived from this action. The equation for minimization of the action is
usually a semiclassical equation of motion for a Green’s function. For example, a saddle
point equation for a sigma-model action in replica formalism[60]

Seff[Q] = πν

8

∫
drTr[D(∇Q)2 −4ĜQ] (1.19)

where ν is electron density of states, D is diffusion coefficient and Ĝ =
(
εn ∆

∆∗ −εn

)
N

is a

matrix in Nambu space and Matsubara frequency εn space. This action defines a non-
linear field theory for a matrix field Q2 = 1 describing diffusive superconductors. On the
saddle point level the matrix Q is a semiclassical Green’s function and minimization of
the action yields Usadel equation[61]

D∇(Q∇Q)+ [Ĝ ,Q] = 0 (1.20)

In this example what is integrated out are ballistic scales much larger than inverse mean
free time ε& τ−1 leaving effective diffusive degrees of freedom.

Another example is an action for a Josephson contact, in this case the effective de-
grees of freedom is a terminals superconducting phase difference φ and the fast elec-
trons degrees of freedom responsible for dissipation are integrated out[62, 63]. In imag-
inary time τ ∈ [0,β]

Seff[φ] =
∫ β

0
dτ

C

2

(
1

2e

∂φ

∂τ

)2

−
∫ β

0
dτ

∫ β

0
dτ′(α(τ−τ′)cos

φ(τ)−φ(τ′)
2

−

−β(τ−τ′)cos
φ(τ)+φ(τ′)

2
) (1.21)
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where C is geometric capacitance and kernels α(τ), β(τ) are obtained with electrons
Green’s functions in the leads and junction tunneling amplitude.

This consideration was generalized to the action for a multi-terminal contact in real-
time Keldysh formalism[64]:

Seff[φ] = Trlog

(
1− ĝ

2
+ 1+ ĝ

2
S

1+ ĝ

2

)
(1.22)

where phases φ̂ can be ascribed to the normalized analytic continuation of Ĝ Green’s
functions of the terminals ĝ 2 = 1 or to the S-matrix describing the scatterer. We rederive
the action 1.22 in imaginary time formalism in Chapter 1.

1.5. STRUCTURE OF THE THESIS

1.5.1. CHAPTER 2
In this Chapter, we investigate how the continuous spectrum that is intrinsically present
in all physical systems, affects topological properties. For this we consider a model of
the nanostructure within scattering formalism. We derive the imaginary time action and
the current response function. This allow to introduce a re-definition of Berry curvature
for a system with a continuous spectrum present.

As a result, we have found that the re-defined Berry curvature for a nanostructure
may have a non-topological phase-independent contribution that may add a non-quantized
part to the transconductances. This additional contribution vanishes in the case of a
time-reversible scattering matrix. Also, we have found convenient expressions for the re-
defined Berry curvature in the cases of weak energy dependence of the scattering matrix.
In the cases of spin-orbit coupling absent and present, we have investigated the vicinity
of Weyl singularities in the spectrum.

1.5.2. CHAPTER 3
In this Chapter, we address the general definition and values of topological numbers of
superpositions of the topologically distinct bands. This problem is simple in essence, but
one can formulate it as a paradox: quantum superposition naively implies non-integer
Chern numbers which should be prohibited by general topology.

First, we investigate superpositions created dynamically and ones created by a sta-
tionary mixing. We find that the results are different in these two cases. In the case
of dynamical superpositions, we have found that there is an observable that does not
exhibit topological properties in general but is topological for eigenstates of the Hamil-
tonian. In the case of static superpositions, as expected from the general topology, the
resulting bands retain integer Chern numbers. We illustrate the restoration of the quan-
tization of Chern number upon avoided crossing of topologically different bands. The
unavoided band crossings may result in the exchange of Chern numbers between the
bands upon changing the parameters of the Hamiltonian. This is a topological phase
transition. We investigate complicated phase diagrams arising in this context. We show
that the triple critical points are generally absent and that quadruple critical points are
common features. This distinguishes the topological phase diagrams from the common
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phase diagrams. We investigate an example of a bilayer Haldane model to illustrate these
features.

1.5.3. CHAPTER 4
In this Chapter we propose a novel scheme to perform all unitary operations on May-
orana modes in 1D. The scheme is based on using the geometry of the device, but rather
a resonant manipulation involving the first excited state at the superconducting gap that
overlaps well with all the localized states. The detection of the filling of the excited state
also allows to achieve initialization and read-out. We illustrate the scheme in detail with
a concrete device.

1.5.4. CHAPTER 5
In this Chapter we investigate topological properties of multi-terminal superconductor-
semiconductor wires. We focus on the possibility to realize an additional to Majorana
fermions topological feature, namely Weyl singularities in the spectrum. As a result, we
find an abundance of Weyl points for devices with intermediate size of the electrodes
(size being comparable with a typical Andreev bound states localization length). We in-
vestigate the properties of these and the ways the Weyl points emerge and disappear
upon change of the parameters of the model.
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2
TOPOLOGICAL PROPERTIES OF

MULTITERMINAL

SUPERCONDUCTING

NANOSTRUCTURES: EFFECT OF A

CONTINUOUS SPECTRUM

Recently, it has been shown that multi-terminal superconducting nanostructures may
possess topological properties that involve Berry curvatures in the parametric space of the
superconducting phases of the terminals, and associated Chern numbers that are mani-
fested in quantized transconductances of the nanostructure. In this Article, we investigate
how the continuous spectrum that is intrinsically present in superconductors, affects these
properties. We model the nanostructure within scattering formalism deriving the action
and the response function that permits a re-definition of Berry curvature for continuous
spectrum.

We have found that the re-defined Berry curvature may have a non-topological phase-
independent contribution that adds a non-quantized part to the transconductances. This
contribution vanishes for a time-reversible scattering matrix. We have found compact
expressions for the redefined Berry curvature for the cases of weak energy dependence of
the scattering matrix and investigated the vicinity of Weyl singularities in the spectrum.
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2.1. INTRODUCTION
The study of topological materials has been on the front edge of the modern research in
condensed matter physics for the past decade [1–5]. These materials are appealing from
fundamental point of view and for possible applications (TI-based Photodetector[6, 7],
spintronics[8], field-effect transistor[9], catalyst[10] and quantum computing[11, 12]).
The basis for applications is the topological protection of quantum states, which makes
the states robust against small perturbations and leads to many unusual phenomena,
e.g. topologically protected edge states[13–15]. The topological superconductors[16–19]
and Chern insulators[20–23] are the classes of topological materials that are relevant for
the present Chapter. In the case of the Chern insulator the topological characteristic is
an integer Chern number[24, 25] computed with the Green’s function of electrons occu-
pying the bands in a Brillouin zone of a material - WZW form[26–29]. The first Chern
number reduces to the sum of first Chern numbers of the filled bands. For each band,
the first Chern number is defined as an integral of the Berry curvature over the Brillouin
zone[30, 31]. The Berry curvature is commonly defined[32] as Bαβ = 2Im〈∂αk|∂βk〉 with
|k〉 being the wavefunction in this band and α,β being the parameters: in this case two
components of a wavevector. If the Chern number of a crystal is not zero, the edge states
necessarily appear at the interface between the crystal and the vacuum (since the Chern
number of the vacuum is zero). The dimensionality of topological materials in real space
is restricted by three from above, which significantly limits possible topological phases.

However, there is a way to circumvent this fundamental limitation. Recently, the
multi-terminal superconducting nanostructures with conventional superconductors were
proposed to realize the topological solids in higher dimensions[33]. Such nanostruc-
tures host discrete spectrum of so called Andreev bound states[34–36]. The energies
and wavefunctions of these states depend periodically on the phases of superconduct-
ing terminals. This sets an analogy with a bandstructure that depends periodically on
the wavevectors. The dimensionality of this bandstructure is the number of terminals
minus one. Also, as it was noted[33], the multi-terminal superconducting nanostruc-
tures cannot be classified as the high-dimensional topological superconductors from the
standard periodic table of topological phases[37]. The authors of [33] have considered
in detail 4-terminal superconducting nanostructures and proved the existence of Weyl
singularities[38, 39] in the spectrum. The Weyl singularity is manifested as level cross-
ing of Andreev bound states at a certain point in 3-dimensional phase space. Each Weyl
singularity can be regarded as a point-like source of Berry curvature. Owing to this, a
nonzero two-dimensional Chern number can be realized and is manifested as a quan-
tized transconductance of the nanostructure. This transconductance is the response of
the current in one of the terminals on the voltage applied to the other terminal in the
limit of small voltage, this signifies an adiabatic regime.

The peculiarity of the system under consideration is the presence of a continuous
spectrum next to the discrete one. These states are the extended states in the terminals
with energies above the superconducting gap. Were a spectrum discrete, the adiabaticity
condition would imply the level spacing being much larger than the driving frequency.
The level-spacing is zero for a continuous spectrum, so this complicates the adiabatic-
ity conditions. This has been pointed out already in Ref.[33] but was not investigated
in detail. We note the generality of the situation: a generic gapped system might have
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a continuous spectrum above the certain threshold, and the adiabaticity condition re-
quired for the manifestations of topology needs to be revisited in this situation.

The aim of the present article is to investigate this question in detail for a generic
model of a superconducting nanostructure. We have studied the linear response of cur-
rents on the changes of superconducting phases in the terminals. We model a multi-
terminal superconducting nanostructure within the scattering approach[40]. In this ap-
proach the terminals of the nanostructure are described with semiclassical Green’s func-
tions and the scatterer coupled to the terminals is described by a unitary (in real time)
S-matrix. Although it is not crucial, we made use of Matsubara formalism which conve-
niently allows us to concentrate on the ground state of the system and the limit of zero
temperature is formally achieved by considering continuous Matsubara frequencies. So
we do the calculations in imaginary time formalism[41]. At the first step, we obtain the
general effective action describing the nanostructure in terms of the S-matrix and time-
dependent semiclassical Green’s functions of the terminals. At the second step, we ex-
pand the action to the second power in time-dependent phases of the terminals. At the
third step, we concentrate on the limit of small voltage and driving frequency, to obtain
the response function relevant for topological properties.

We can use the properly anti-symmetrized response function as a generalized defi-
nition of the Berry curvature that is suitable for the systems with and without a continu-
ous spectrum. The main result of the present Chapter is that so-defined Berry curvature
is contributed to by a continuous spectrum as well as discrete one even in the case of
energy-independent S-matrix. We derive an explicit formula for it. This solves the para-
dox mentioned in [33]: the Berry curvature associated with discrete Andreev bands is dis-
continuous when the highest Andreev bound state merges with the continuum, which
indicates that the integral of the Berry curvature defined only for discrete spectrum will
not reduce to an integer. The redefined Berry curvature that we find is continuous. It
gives rise to integer Chern numbers if the S-matrix is time-reversible. If it does not we
reveal a specific additional non-topological contribution that does not depend on the
superconducting phases. We note the the importance of the energy scales much larger
than superconducting gap |∆| in this context. This is why we also discuss in detail the
case of an energy-dependent S-matrix the energy scale of variation of which may be in
any relation with superconducting gap. We find that the non-topological contribution
depends on the regularization of the S-matirx at large energies. In particular, it vanishes
if the S-matrix is regularized as S±∞ = 1, this corresponds to no conduction between the
terminals.

The Chapter is organized as follows. In Sec. 2.2 we introduce the details of a model
of a multi-terminal superconducting nanostructure and review the main aspects of a
scattering matrix approach formalism in this case. The derivation and discussion of the
response function are given in Sec. 2.4. In Sec. 2.6 we discuss the specific behaviour
near the Weyl singularities, in the absence and presence of a weak spin-orbit coupling.
In Sec. 2.5 we apply the general formulae to the case of a scattering matrix that varies
only slightly on the scale of the superconducting gap |∆|. In Sec. 2.7 we address the
energy-dependent S-matrices at arbitrary energy scale for a specific model of an energy
dependence. We conclude the Chapter with the discussion of our results (Sec. 2.8). The
technical details of the derivations are presented in Appendices.
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2.2. MULTI-TERMINAL SUPERCONDUCTING NANOSTRUCTURE

Generally a multi-terminal superconducting nanostructure (Fig. 2.1) is a small conduct-
ing structure that connects n superconducting leads. The leads are macroscopic and are
characterized by the phases of the superconducting order parameter. Each lead labeled
by α ∈ {0,1, · · · ,n −1} has its own superconducting phase φα and one of the leads’ phase
can be set to zero valueφ0 = 0, according to the overall gauge invariance. The nanostruc-
ture design and these phases determine the superconducting currents Iα in each lead,
that are the most relevant quantities to observe experimentally.

We aim to describe a general situation without specifying the nanostructure design.
To this end, we opt to describe the system within the scattering approach pioneered by
Beenakker [42]. The superconducting leads are treated as terminals: they are regarded
as reservoirs which contain macroscopic amount of electrons and are in thermal equi-
librium. A common assumption that we also make in this Chapter is that all terminals
are made from the same material and thus have the same modulus of the superconduct-
ing order parameter |∆|. At sufficiently low temperatures and applied voltages one can
disregard possible inelastic processes in the nanostructure and concentrate on elastic
scattering only. Following the basics of the scattering approach[40], we assume Nα spin-
degenerate transport channels in terminal α. The conducting structure connecting the
terminals is a scattering region and is completely characterized by a scattering matrix
S which generally depends on energy ε and is a unitary matrix at any ε. In Matsubara
formalism we use imaginary energy ε and the matrix S satisfies the condition SεS†

−ε = 1.
All the details of the nanostructure design are incorporated into the scattering matrix.

The electrons and holes in the superconducting transport channels involved in the
scattering process may be described as plane waves that scatter in the region of the
nanostructure and then return to the corresponding terminals. Amplitudes of incoming
and outgoing waves are linearly related by the S-matrix. The numbers of transport chan-
nels in the terminal α denoted as Nα determines the dimension of the scattering matrix:
dimS = M ×M , where M = 2S

∑
α Nα and 2s counts for the spin. The electrons and holes

experience Andreev reflection in the superconducting terminals: the electrons are con-
verted into holes and turn back, the same happens to holes. The Andreev reflection is
complete at the energies smaller than the superconducting gap ∆. Therefore, electron-
hole waves may be confined in the nanostructure giving rise to discrete energy levels
called Andreev bound states (ABS). The amplitudes and phases of these confined states
are determined by the scattering matrix and Andreev reflection phases that involve the
superconducting phases of the corresponding terminals. One can find the energies of
the ABS ε through Beenakker’s determinant equation[36]:

det(e2iχ−Sεe iφσy (ST
−ε)−1σy e−iφ) = 0, χ= arccos(

ε

∆
) (2.1)

where Sε is the S-matrix at the real energy ε, σy =
(
0 −i
i 0

)
is a Pauli matrix acting in

the spin space and e iφ is the diagonal matrix in channel space ascribing the stationary
superconducting phases of the terminals to the corresponding channels, e iφ → δabe iφα

where a,b label the channels and α is the terminal corresponding to the channel a. The
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Figure 2.1: A multi-terminal superconducting nanostructure. Superconducting terminals are characterized
by the corresponding superconducting phases. Electrons and holes coming from a terminal are scattered at
the scattering region and can go to any other terminals. At least 4 terminals with 3 independent phases are
required for a nanostructure to simulate a 3-dimensional bandstructure with topological properties.

ABS energies and the corresponding eigenvectors in the space of the channels depend
parametrically on n − 1 independent phases φα ∈ [0,2π] and thus can be viewed as a
bandstructure defined in a "Brilluoin zone" of phases. It was noted[33] that (without
spin-orbit interaction) three independent parameters are needed to tune the n − 1 di-
mensional band structure of energy levels of ABS to reach the Weyl singularity at zero
energy. It was also noted[33] that only one parameter is required to satisfy the condition
for the highest ABS to touch the continuum above the gap (ε= |∆|). The ABS merges the
continuum in this case and this implies that one cannot change this level adiabatically
even for arbitrarily slow change of the parameters. When the incommensurate small
voltages are applied to two terminals to sweep the phases[33], the system passes the
points where the highest level merges with the continuum. This makes it questionable
to apply the adiabaticity reasoning in this case. This makes it necessary to consider the
contribution of the continuous spectrum to the response function of the currents in the
limit of slow change of the parameters.

2.3. ACTION
The most general way to describe the nanostructure under consideration is to use an
action method. This method has been pioneered in the context of a simple Josephson
junction in [41]. In this method one deals with an action of the nanostructure that de-
pends on the time-dependent superconducting phases φα(τ). The transport properties
of the nanostructure as well as quantum fluctuations of the phases in case the nanos-
tructure is embedded in the external circuit [41], can be derived from this action.

One of the advances of this Chapter is the derivation of such action for multi-terminal
nanostructure and arbitrary S-matrix in Matsubara formalism. The details of the deriva-
tion are given in 2.9. Here we give the answer:

2L =−Trlog[Π++Π−Ŝε], Π± = 1± g

2
(2.2)

here Π± and Ŝε are matrices in a space that is a direct product of the space of channels,
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the imaginary-time space, spin and Nambu space. The matrix Ŝε is diagonal in the corre-
sponding energy representation, therefore it depends on the difference of the imaginary
time indices only. Its Nambu structure is given by

Ŝε =
(
Sε 0
0 ST−ε

)
(2.3)

where Sε is the electron energy-dependent S-matrix (see App. 2.9). The matrix g is com-
posed of the matrices diagonal in energy and diagonal in time in the following way:

g =U †τzU , U † =
(

e
iφ(τ)

2 0

0 e
−iφ(τ)

2

)(
A−ε Aε

Aε A−ε

)
(2.4)

where

Aε =
√

E +ε
2E

, E =
√
ε2 +|∆|2, (2.5)

where τz is the 3rd Pauli matrix acting in Nambu space and the Nambu structure has
been made explicit in U †. This form assumes that |∆| is the same in all the terminals.
If it is not so, the matrix Aε also acquires the dependence on the channel index. It is
worth noting that g 2 = 1 so that Π± are projectors. The matrix g can be associated with
the semiclassical Green’s function in a terminal[40, 43]: e iφ(τ) is the diagonal matrix in
channel space ascribing the time-dependent superconducting phases of the terminals
to the corresponding channels, e iφ(τ) → δabe iφα(τ) where a,b label the channels and α is
the terminal corresponding to the channel a. We note the gauge invariance of the action:
due to the invariance of the trace under unitary transformations, the superconducting
phases can be ascribed to the terminal Green’s functions g as well as to the scattering
matrix. Let us assume that the matrix Sε does not depend on spin. Then the trace over
spin is trivial. It is convenient to apply the unitary transformation U † as in (2.4) to all the
matrices in (2.2). This transforms the matrix g to τz . Then the projectors take a simple
form Π± → 1±σz

2 and the matrix in (2.2) reduces to the lower block-triangular form in
Nambu space. The determinant is then equal to the determinant of the lower right block
of the transformed matrix S̄ε. Then the action takes the form

−2L = 2S Trlog[Aεe
−iφ(τ)

2 Sεe
iφ(τ)

2 Aε+

+ A−εe
iφ(τ)

2 ST
−εe

−iφ(τ)
2 A−ε] (2.6)

the S-matrix in Matsubara formalism is subject to the unitarity constraint,

(2.7)

In what follows we concentrate on the zero-temperature limit kB T ¿|∆|, so the summa-
tions over discrete frequencies are replaced with integrations

∫ dε
2π .
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2.3.1. STATIONARY PHASES
In the stationary case φ(τ) = φ+δφ(τ) with constant φ and δφ(τ) ≡ 0 the value of the
action gives the stationary phase-dependent ground state energy of the nanostructure
Eg = limkB T→0 T L0.

Eg =−2S

2

∫
dε

2π
TrlogQε (2.8)

Qε = A2
εSε+ A2

−εST
−ε (2.9)

where Trace is now over the channel space and the Trace over spin space is taken explic-
itly as a factor of 2S unless specifically addressed. The operator Qε introduced here has
the properties of the inverse of the Green’s function although it is not related to an oper-
ator average: its determinant as function of complex ε vanishes, detQε = 0, at imaginary
values ε = ±iεk corresponding to the ABS energies (compare with (2.1)). In addition to
these singularities the operator Qε has two cuts in the plane of complex ε corresponding
to the presence of a continuous spectrum in the terminals above the gap |∆|. We choose
the cuts as shown in Fig. 2.2. The expression (2.8) can be simplified in the case when the
S-matrix does not depend on energy

Eg =− 2S
2

∫ dε
2πTrlog

( E+ε
2E + E−ε

2E SS∗)+ (2.10)

+ 2S
2

∫ dε
2π logdet(ST ) (2.11)

the second (divergent) contribution here does not depend on the superconducting phases
so we omit it. To compute the integral it is convenient to choose the basis in which the
unitary matrix Λ = SS∗ is diagonal. This is a unitary matrix, so the eigenvalues are uni-
modular complex numbers. The phases of the eigenvalues are related to the energies of
ABS:Λk = e2iχk , χk = arccos[εk /|∆|], χ ∈ [−π/2;π/2]. The eigenvalueΛk = 1 is doubly
degenerate and corresponds to the values εk = ±|∆|. The eigenvalues come in complex
conjugated pairs Λ∗

k = Λ−k , where (−k) corresponds to the Nambu-counterpart of the
k−th eigenvector. So only the eigenvalues ImΛk > 0 correspond to the quasiparticle
states with positive energies. We will label them with positive indices k. In what fol-
lows we define a "bar" operation that links these pairs |k̄〉 = S|k?〉 = |−k〉 where |k〉 is
some eigenvector of Λ. We note, however, that this operation is not a convolution, since

| ¯̄k〉 =Λk |k〉.
In this basis we can rewrite the integral as

Eg =−2S

2

∑
k>0

∫
dε

2π
log[

(E +ε)2 + (E −ε)2 +2cos2χk

4(ε2 +|∆|2)
] (2.12)

Evaluation of the integral brings to the known result

Eg =−2S

2

∑
εk>0

εk (2.13)

where εk are the stationary phase-dependent ABS energies, as discussed above. The
derivative of the ground state energy with respect to a stationary phase in terminal α
gives the stationary current in the corresponding terminal,

Iα = 2e
∂Eg

∂φ(0)
α

. (2.14)
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Figure 2.2: Singularities of the matrix Qε in the complex plane of energy ε. The symmetric cuts [±i |∆|,±∞]
manifest the states of continuous spectrum. The isolated zeroes of the determinant of the matrix are situated
at the imaginary axis within the interval [−i |∆|,+i |∆|] (red crosses in the Figure). Their positions correspond
to the ABS energies.

We expect this relation to hold in the adiabatic limit. In the following Section, we will
access the time-dependent currents concentrating on the next order correction in the
limit of small frequencies.

2.4. RESPONSE FUNCTION OF THE CURRENTS

To compute the response function of the currents we assume small nonstationary phase
addition to the stationary phases φ, φ(τ) =φ+δφ(τ), δφ(τ) ¿ 2π and expand the action
to the second order in δφ(τ) (first order vanishes automatically since δφ(τ) is nonsta-

tionary
∫ β

0 dτδφ(τ) = 0). We give the details in Append. 2.10. The total contribution to
the action reads

δL = ∑
α,β

∫
dω

2π

δφαωδφ
β
−ω

2
Rαβ
ω , (2.15)
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δφω being the Fourier transform of δφ(τ). The frequency-dependent response function

of the current Rαβ
ω is given by

Rαβ
ω =

−2S

∫
dε

2π
Tr

{
Q−1
ε A2

ε [
Iα
2

(Sε−ω−Sε)
Iβ
2
+

+ Iβ
2

(Sε+ω−Sε)
Iα
2

]+ (2.16)

+ 1

2
Q−1
ε

∂2Qε

∂α∂β
− (2.17)

− 1

2
Q−1
ε+ω(A−(ε+ω)(

i Iα
2

ST
−ε−ST

−(ε+ω)
i Iα

2
)A−ε−

− Aε+ω(
i Iα

2
Sε−Sε+ω

i Iα
2

)Aω)×

×Q−1
ε (A−ε(

i Iβ
2

ST
−(ε+ω) −ST

−ε
i Iβ
2

)A−(ε+ω)−

− Aε(
i Iβ
2

Sε+ω−Sε
i Iβ
2

)Aε+ω)
}

(2.18)

here the stationary phases are ascribed to the S-matrix. We use a shorthand notation
∂/∂α = ∂/∂φα and define a set of matrices that project channel space onto the space of
the channels in the terminal α, (Iα)ab = δab if a is a channel in terminal α and (Iα)ab =
0 otherwise. The first term in (2.18) vanishes at zero frequency and in the case of the
energy-independent S-matrix. The second term does not depend on frequencyω. In the
limit of zero frequency the second and the third terms reproduce the stationary response
function of the currents

lim
ω→0

Rαβ
ω =−2S

2

∂2

∂α∂β

∫
dε

2π
TrlogQε =

∂2Eg

∂α∂β
(2.19)

Let us consider the limit of smallω¿|∆| and concentrate on the first order correction to
the adiabatic limit

Rαβ
ω = ∂2Eg

∂α∂β
+ωBαβ+O(ω2) (2.20)

We note that the response function is analytic in the vicinity of ω= 0. This is guaranteed
by the gap in the density of states, which is given by the energy of the lowest ABS. Away
from the zero-energy Weyl singularity it can be estimated as |∆|/N with N being the
total number of ABS in the nanostructure. The vicinity of a Weyl singularity has to be
treated more carefully as we discuss in Sec. 2.6. Let us note that for any system with a
discrete spectrum the quantity Bαβ can be related to the Berry curvature[30–32]. For any
state in the discrete spectrum the Berry curvature corresponding to this state is given
by B (i )

αβ
= 2Im〈∂αi |∂βi 〉 with i labeling discrete states and |i 〉 being the wavefunction of

the corresponding state. In our case we are interested in the total Berry curvature of
the superconducting ground state defined as Bαβ = − 1

2

∑
i B (i )

αβ
where i labels the (spin-

degenerate) wavefunctions of the BdG equation with positive eigenvalues[33]. However,
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the adiabaticity condition which justifies the expansion in (2.20) for the case of discrete
spectrum requires the frequency to be much smaller than the smallest energy spacing
between the levels.

In our system, the continuous spectrum above the superconducting gap is present.
In principle, any continuous spectrum can be approximated with a discrete spectrum
with a vanishing level spacing δ→ 0. By doing this we can utilize the previous expres-
sion for the response function Bαβ since it is valid for the discrete spectrum. However,
the adiabaticity condition which is necessary for this expression to be valid would reduce
to ω¿ δ→ 0. This condition contains an artificially introduced δ and is by construction
very restrictive in ω. On the other hand, the expansion in Eq. (2.20) is valid under a
physically meaningful and less restrictive condition ω¿ |∆|/N . Taken all that into ac-
count, we conclude that the response function Bαβ defined in Eq (2.20) does not have to
reduce to the expression for a total Berry curvature of a superconducting ground state
of a system discussed above. The topological properties of this quantity also have to be
investigated separately.

One may conjecture that the resulting response function in Eq. (2.20) reduces to the
sum of the Berry curvatures of the discrete ABS spectrum, so that it is not contributed
to by the continuous spectrum. This conjecture relies on the analogy between the ex-
pressions for the total Berry curvature and the superconducting ground state energy. In
the case when the S-matrix is energy-independent, only the discrete states contribute to
the ground state energy. Thus motivated, in the following we investigate the response
function Bαβ defined by means of Eq (2.20) in detail. We find that there is a contribution
from the continuous spectrum to this quantity as well as from the discrete one. We also
find that in general the integral of Bαβ over the phases φα,φβ that would normally de-
fine an integer Chern number, is not integer. Therefore, Bαβ contains a non-topological
contribution. This non-topological part is contributed by the continuous as well as the
discrete part of the spectrum.

The tensor Bαβ defined in Eq. (2.20) is antisymmetric (since Rαβ
ω = Rβα

−ω). The con-
crete expression for Bαβ reads:

Bαβ =−2S

2

∫
dε

2π

(
1

2
Tr

[
Q−1
ε

∂Qε

∂ε
Q−1
ε

∂Qε

∂α
Q−1
ε

∂Qε

∂β

]
+

+ ∂

∂β
Tr

[
Q−1
ε A2(ε){

∂Sε
∂ε

,
i Iα

2
}

])
− (α↔β) (2.21)

The first term here resembles the usual WZW form[29] for a Chern number. Usually, the
form contains the matrix Green’s functions[29], in our case the form utilizes the matrix
Qε defined by Eq. (2.9). We note however that in distinction from common applications
of WZW forms here one cannot regard Qε as a smooth function of parameters φα,φβ,ε
defined on a compact manifold without a boundary. This is because in general this ma-
trix has different limits at positive and negative infinite energies S−∞ for ε→ −∞ and
ST−∞ for ε→+∞ that also depend on the phases. Due to this reason the integral of the
first term over a compact surface without a boundary in a space of phases does not have
to reduce to an integer ·(2π)−1. The second term in Eq. (2.21) has a form of a total deriva-
tive with respect to a phase of a periodic and smooth function, so the integral of this one
over a compact surface will give zero.



2.4. RESPONSE FUNCTION OF THE CURRENTS

2

37

In order to obtain the value of this integral let us consider first the variation of this
value upon the small smooth variation of the matrix Qε→Qε+δQε that comes from the
small variation of the S-matrix δSε, so δQε = A2

εδSε+A2−εδST−ε. The value of the integral of
the second contribution in Eq. (2.21) does not contribute to the integral over a compact
submanifold in phase space, so we needn’t consider its variation. It is known [44] that
the variation of the first contribution to Bαβ reduces to the total derivatives

δ{
∫

dε

2π
Tr

[
Q−1
ε

∂Qε

∂ε
Q−1
ε

∂Qε

∂α
Q−1
ε

∂Qε

∂β
eαβ

]
} =

=
∫

dε

2π
∂εTr

[
Q−1
ε δQεQ

−1
ε

∂Qε

∂α
Q−1
ε

∂Qε

∂β

]
eαβ+ (2.22)

+
∫

dε

2π
∂αTr

[
Q−1
ε δQεQ

−1
ε (

∂Qε

∂β
Q−1
ε

∂Qε

∂ε
−

∂Qε

∂ε
Q−1
ε

∂Qε

∂β
)

]
eαβ (2.23)

The value of the integral of second term in (2.23) over a compact submanifold in phase
space vanishes if the submanifold does not pass Weyl singularities corresponding to
detQ−1

ε → ∞, because it has a form of a total derivative of a smooth function. Evalua-
tion of the integral in (2.22) yields the following contribution to the variation of Bαβ

1

2π
δ{Tr[S−∞

Iα
2

S†
+∞

Iβ
2

]}eαβ (2.24)

We note that this contribution is generally nonzero and does not depend on phases.
Let us turn to the evaluation of the topological charge that is proven to be very useful

in the field [28]. The value of the topological charge is defined in a usual way with the
divergence of the topological field ~E

2πq = div~E , Eγ ≡ 1

2
eγαβBαβ (2.25)

To compute the topological charge we need to consider a special variation of the S-

matrix that just corresponds to the stationary phase derivative δSε = [Sε,
i Iγ
2 ]δφγ. Since

the expression under the trace in (2.24) does not depend on phases, the topological
charge vanishes at any point where the field ~E is well-defined, or alternatively detQ−1

ε is
finite. The Weyl singularities give rise to the point-like integer charges being the sources
of the field ~E . We consider this in detail in Sec. 2.6. This situation is in complete analogy
with that of the standard Berry curvature of a discrete spectrum where Weyl singularities
correspond to band crossings. However, we have computed the topological charge for

the particular phase-dependence of the S-matrix on phases (e−
iφ
2 Se−

iφ
2 ). We have not

considered the topological charge in the space of 2 phases φα,φβ and some other pa-
rameter characterizing the scattering matrix, this charge could be nonzero and have a
continuous distribution. The investigation of the general parametric dependence of the
S-matrix is beyond the scope of the present Chapter.
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We separate the field ~E into three parts: a part produced by the point-like charges,

divergenceless field that is zero in average, and a constant part ~̄E . The value of the inte-
gral

2πC 12 =
∫ 2π

0

∫ 2π

0
dφ1dφ2

Bαβeαβ

2
=

∫
(d~s,~E) (2.26)

is given by the flux of the topological field through the corresponding surface. This flux
reduces to the integer for the first contribution to ~E , vanishes for the second divergence-
less contribution and may result in some value for the constant part of the field. We stress
that the last contribution being present is the main distinction from the common case.
The value of this constant field is then given by the integration of the variation (2.24):

Ēγ = 1

2π
{Tr[S−∞

Iα
2

S†
+∞

Iβ
2

]}eγαβ (2.27)

This constant field can contribute to the flux through any plane in the phase space.

C = n +2π(~̄E ,~n) (2.28)

where ~n is the normal vector to this plane. As it has been shown in Ref. [33] the value
of C 12 is directly related to the observable transconductance between the leads α and
β. Therefore, in contrast to the conclusions of Ref. [33] the value of transconductance
does not always quantize although the change of transconductance with a phase can be
quantized.

So, in principle a nonzero non-topological contribution to (2.28) can be present. This
contribution is nonzero if the S-matrix is not regularized at infinite energy such that
[S−∞, Iα] = 0. If the S-matrix is regularized in this way, then the Qε matrix is defined on a
compact space of parameters (ε,α,β), so the first contribution to Eq. (2.21) would reduce
to an integer n (with proper normalization). If it is not regularized this way, then this
boundary term leads to the presence of a non-topological contribution to the response
function, that comes due to the presence of a continuous spectrum and, formally, from
the fact that the matrix Qε is not defined on a compact space, as discussed above. In the
limit of energy-independent S-matrix, this contribution reduces to the antisymmetric
part of the Landauer conductance[40, 45]. In this case, if the bare S-matrix (without the
stationary phases of terminals ascribed) is non-symmetric (which means the breaking
the time-reversibility condition) we obtain a nonzero value of (2.27). If the S-matrix is
time-reversible, the non-topological contribution is zero and the integer quantization of
transconductance is restored.

2.5. WEAK ENERGY DEPENDENCE OF THE S−MATRIX
In the description of the realistic nanostructure a reasonable approximation is to con-
sider the S-matrix to be constant on the scale of |∆|. It corresponds to the case of a
short nanostructure (smaller than the superconducting coherence length). So a logi-
cal approximation would be to describe the nanostructure with a constant S-matrix at
all energies. The response function Bαβ is given by an integral over energy in Eq. (2.21).
Would this integral accumulate in the region ε ∼ |∆|, then the approximation of a con-
stant S-matrix at all energies would be accurate. However, there can be a significant



2.5. WEAK ENERGY DEPENDENCE OF THE S−MATRIX

2

39

Figure 2.3: The choice of the branch cut of the logarithm in Eq. (2.29) in the plane of complexΛ.

contribution from the energy scales εÀ |∆| to the integral yielding Bαβ. In this case the
energy dependence of the S-matrix at the large energies becomes important. To investi-
gate this we consider the contributions from the small scales ε& |∆| and from the large
scales εÀ|∆| in the Subsections 2.5.1 and 2.5.2 respectively.

2.5.1. ENERGY-INDEPENDENT S−MATRIX:
In this Subsection we analyze the small-scale (ε∼ |∆|) contribution to (2.21). For this we
approximate the S-matrix to be constant at all energies and extend the integration limits
to infinity. The second term in (2.21) vanishes since ∂Sε

∂ε = 0. The integral in the first term
in (2.21) converges on the scale ε& |∆|. This statement only necessarily holds if the S-
matrix is energy-independent. Otherwise, the contribution from the larger scales can be
present and we investigate it in 2.5.2. Similarly to (2.12), the result of integration under
consideration can be expressed in terms of the eigenvalues and eigenvectors of the uni-
tary matrix Λ= SS∗. We use the same notations |k〉 and

∣∣k̄〉
for the eigenvectors related

to the complex conjugated eigenvalues pairΛk andΛ∗
k correspondingly as described af-

ter Eq.(2.11). We remind that the phase of the eigenvalue Λk = e2iχk with k > 0 is related
to the energy of ABS as χk = arccos[εk /|∆|]. We also remind thatΛk = 1 is degenerate and
corresponds to the energy of one of the ABS εk = |∆|. Upon crossing this point in phase
space, this ABS state exchanges the wave function with its Nambu counterpart with the
eigenvalue εk ′ =−|∆|. Due to this we call such points gap touching singularities.

Evaluating the integral yields

4πBαβ =−2
∑
k

(
logΛk − log(1+ i 0sg n(k))

)〈∂αk|∂βk〉−

−∑
k, j

(1− Λk

Λ j
)〈 j |∂αk〉〈 j |∂βk〉− (α↔β) (2.29)

where k, j label the eigenvalues of Λ, and the summation goes over indices with both
signs. If the number of channels is odd, there is an eigenvector of Λ corresponding pre-
cisely to the eigenvalue Λk = 1. Then the index k = 0 corresponds to this state. If the
number of channels is even, the indices in Eq.(2.29) do not take the zero value. In the fol-
lowing we consider the number of channels to be even. The logarithm here has a branch
cut along the real axis as [0,+∞] (see Fig. 2.3) to avoid the gap touching singularity am-
biguity Λk = 1. Let us consider the behaviour of Bαβ in the vicinity of the gap touching
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Figure 2.4: Example plots of B12. To produce the plots, we chose one channel per terminal and took a random
non-symmetric 4×4 scattering matrix describing the structure. We fix φ2 = 1.20π,φ3 = 0.48π and change φ1.
(Upper panel) (a) the value of B12 as given (2.29). It is clearly a continuous function ofφ1. (b) The contribution
of the discrete ABS to B12. The contribution experiences a jump at a point where the highest ABS merges with
the continuum. (a)-(b) is thus the contribution from the continuous spectrum (Lower panel) The ABS energies
versus φ1. The point where the highest level touches the gap egde by coincides with the point of discontinuity
of the discrete spectrum contribution

singularity. Since the wave function corresponding toΛk → 1+i 0 is discontinuous upon
crossing this singularity, it is not obvious that Bαβ is continuous. However, one can ob-
serve that the first term is a sum of Berry curvatures of individual levels multiplied by
the eigenvalue-dependent prefactors logΛk . This prefactors vanish for the discontinu-
ous wavefunctions at the gap touching degeneracy and guarantee the continuity of the
first term. Also, one can show that the second term in Eq.(2.29) is continuous. Conse-
quently, Bαβ is continuous at this point (see Fig. 2.4). The only possibility for Bαβ to
be ill-defined at some points in phase space is the zero-energy Weyl singularity where
detQ−1

ε diverges (see Sec.2.6).

The response function Bαβ is expressed in terms of eigenvalues and eigenvectors of
the matrix Λ. So is the ABS contribution to the ground state Berry curvature, which was
conjectured as a result for Bαβ (see Sec. 2.4). It was shown[33] that this ABS contribution

is given by B ABS
αβ

= − 2S
2

∑
k>0 B (k)

αβ
, B (k)

αβ
= 2Im〈∂αk|∂βk〉. Since one of the wavefunctions

contributing to this sum is discontinuous at the gap touching singularity, we conclude
that B ABS

αβ
is discontinuous contrary to Bαβ. One can understand the difference between

Bαβ and B ABS
αβ

by considering the computation of the integral in the first term in Eq. (2.21)

by means of complex analysis (in the plane of complex ε). By shifting the integration
contour to the upper half-plane, one can see that the integral is contributed to by the
poles, corresponding to ABS and the cut above the gap (see Fig. 2.2). The contribution
from the poles results in BABS, but the contribution from the cut, B cut

αβ
= Bαβ−B ABS

αβ
6= 0,

is equally important (see Fig. 2.4).
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Figure 2.5: An example plot of the "Chern number" C12 defined as the integral of B12 over φ1,2 (see (2.28)).
To produce the plot, we have chosen a randon 4×4 scattering matrix that is not invariant with respect to time
reversal. We have found two Weyl singularities of opposite charge at φ3 = ±0.07π. We plot C12 versus φ3 to
demonstrate the integer jumps at the positions of Weyl singularities along with a non-integer, non-universal
offset.

For the integrated Bαβ we obtain in accordance with Eq. (2.28)∫ 2π

0

∫ 2π

0
dφ1dφ2

eαβBαβ

2
= 2π(n + 1

4
Tr(S†IβSIα)eαβ) (2.30)

so the value of transconductance is not necessarily quantized in the approximation of
the energy-independent S-matrix.

2.5.2. CONTRIBUTION FROM THE LARGE SCALES:
In the previous Section we have shown that the non-topological contribution to the
transconductance comes from the boundary terms at ε=±∞ (see Eq.(2.22)). This means
that, contrary to intuition, there is an essential contribution to Bαβ coming from the en-
ergy scales much larger than the energy gap. In order to investigate the large energy
contribution we assume the regularization of the S-matrix at large energies. So, in this
Subsection we consider Bαβ for a particular energy-dependence of the S-matrix. It is
chosen such that the S-matrix is regularized at infinity such that it varies slowly on the
scale of a superconducting gap |∆| and S±∞ = 1. This S-matrix corresponds to a complete
isolation of the terminals at the largest energies. With this regularization, the matrix Qε is
defined on a compact parameter space (α,β,ε) and the first contribution in (2.21) must
reduce to an integer. Due to the scale separation, there are two contributions to Bαβ.
One comes from the scales ε ∼ |∆| and is given by the same result (2.29). Another one
comes from the scales εÀ|∆|.

For negative energies, the large scale contribution with asymptotic accuracy equals

− 1

2
eαβ

∫ 0

−∞
dε

2π
Tr[

∂S†
−ε
∂ε

Sε
∂S†

−ε
∂α

∂Sε
∂β

] =

=− 1

2
eαβ

∫ 0

−∞
dε

2π
∂εTr[S†

−ε
i Iα

2
Sε

i Iβ
2

] =

=− 1

4π
eαβTr[S† i Iα

2
S

i Iβ
2

]+ 1

4π
eαβTr[S†

+∞
i Iα

2
S−∞

i Iβ
2

] (2.31)

with the notation S = Sε=0.
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Figure 2.6: Example plots versus φ1,φ2. A random non-symmetric scattering matrix has been chosen to pro-
duce the plots, that varies slowly at the scale of |∆|, while S∞ = 1. Upper panel: A density plot of the continuous
spectrum contribution to B12 ((2.21))versusφ1,φ2 atφ3 = 0.48π. There is a discontinuity at the lines of the gap
edge touching. Lower panel: the lines of the gap touching.
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For positive ones:

− 1

2
eαβ

∫ +∞

0

dε

2π
Tr[

∂S?ε
∂ε

ST
−ε
∂S?ε
∂α

∂ST−ε
∂β

] =

=− 1

2
eαβ

∫ +∞

0

dε

2π
∂εTr[S?ε

i Iα
2

ST
−ε

i Iβ
2

] =

=− 1

4π
eαβTr[S† i Iα

2
S

i Iβ
2

]+ 1

4π
eαβTr[S†

+∞
i Iα

2
S−∞

i Iβ
2

]. (2.32)

So, the both contributions give the following addition to the response function

1

2π
eαβTr[S† Iα

2
S

Iβ
2

]− 1

2π
eαβTr[S†

+∞
Iα
2

S−∞
Iβ
2

] (2.33)

Both terms here do not depend on phases. The first one is exactly equal to the constant
part of the topological field defined previously with an opposite sign (computed for an
energy-independent S-matrix case). So after integration over two phases, it cancels the
non-topological contribution from small scales in (2.30). Since we assume a regulariza-

tion S±∞ = 1, the second term is zero (Tr[S†
+∞

Iα
2 S−∞

Iβ
2 ] = 0), so the total mean value of

the transconductance is quantized in correspondence with the theory of characteristic
classes.

The second contribution to Bαβ in Eq. (2.21) contains the energy-derivative of the
S-matrix under the integral. Due to this the energy scale of its dependence drops out
from the integral. So, one may expect that it contributes to the large scale contribution
to Bαβ. However, with asymptotic accuracy it vanishes in the limit when the S-matrix
varies slowly on the scale |∆|. Indeed, in the limit |ε|À |∆|

Q−1
ε ' S?ε , A2

ε ' 0, ε> 0 (2.34)

Q−1
ε ' S†

−ε, A2
ε ' 1, ε< 0 (2.35)

In this limit for ε< 0, the integrand equals

∂

∂β
Tr[Q−1

ε A2(ε){
∂Sε
∂ε

,
i Iα

2
}] '

' ∂βTr[
i Iα

2
(
∂Sε
∂ε

S†
−ε−

∂S†
−ε
∂ε

Sε)] = 0 (2.36)

with asymptotic accuracy, since the expression under the trace does not depend on
phases. For ε> 0 the integrand vanishes since A2

ε → 0 for εÀ|∆|.

2.6. THE VICINITY OF A WEYL POINT
In this Section, we investigate the Berry curvature in the vicinity of a Weyl singularity, that
occurs at some point ~φ0 in the 3-dimensional phase space. Such Weyl points have been
analyzed in [33] assuming spin symmetry, in [46] the analysis has been extended to cover
weak spin-orbit interaction. Without spin-orbit coupling, the Weyl points are situated at
zero energy and detQ−1

ε=0 diverges near the point. A conical spectrum of ABS is found in
the vicinity of the point [33]. A weak spin-orbit coupling splits the energy cones in spin
and shifts the Weyl point to a finite energy [46]. Further, we discuss separately the cases
of vanishing and weak spin-orbit coupling.
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2.6.1. VANISHING SPIN-ORBIT COUPLING
When the spin-orbit (SO) coupling is absent, the Weyl singularities are located at some
points in the phase space ~φ0 and occur at zero energy ε± = 0. To consider the vicinity of
the singularity, we assume a small phase deviation δφ̂ = φ̂− φ̂0 ¿ 1 from the singular-

ity point and assign it to each channel via the diagonal matrix eδφ̂. In the vicinity, Bαβ

defined by Eq. (2.21) only has non-zero contributions from the first term of quasi-WZW
term. The second term vanishes asymptotically when the energy approaches zero, as
shown in Eq. 2.34. Conform to these approximations, we extend the domain of the inte-
gration over the phases to infinity since Bαβ is concentrated near the singularity point.

To compute Bαβ, we approximate the Q matrix near the Weyl point with the expres-
sion that keeps the first orders in ε and of the variation: Q = (ε+ 1

2δΛ)ST = MST , S being
the scattering matrix in the singularity point at ε = 0. Conveniently, we can replace Q
with M in Eq.(2.21). We find the variation δΛ by expanding the S-matrix in δ~φ:

S → S +δφS = e−iδφ̂/2Se iδφ̂/2 = S − [
iδφ̂

2
,S] (2.37)

Λ= SS∗ →Λ+δφΛ=Λ+ i Sδφ̂S†Λ− iδφ̂Λ (2.38)

We can contract the dimension of M projecting it to two eigenvectors ofΛ that achieve
singular values at the Weyl point. Following [33], we separate the singular part of M and
write in the basis of ABS eigenvectors |+〉 and |−〉 satisfying S |±〉 =±|∓〉∗,Λ|±〉 =−|±〉:

M = ε+ 1

2
δΛ≡ ε+ i

2
~h ·~τ (2.39)

where ~τ are the Pauli matrices in the space of these two eigenvectors, and the com-
ponents of ~h are proportional to the components of ~φ: hx + i hy = 2〈−|δφ̂ |+〉, hz =
〈+|δφ̂ |+〉−〈−|δφ̂ |−〉.

The form of M is similar to the generic form of Green’s function of a two-level system.
We expect that the two poles of M−1 should be positioned symmetrically on the imagi-

nary axis ε due to BdG particle-hole symmetry. Indeed, we find these poles at ε± =±i |~h|
2 .

Using the trace relations of Pauli matrices, we reduce in the leading order Bαβ to the
Berry curvature of the corresponding levels :

Bαβ =−1

4

∫
dε

2π
Tr

(
M−1
ε

∂Mε

∂ε
M−1
ε

∂Mε

∂α
M−1
ε

∂Mε

∂β

)
= 1

8

∫
dε

2π

∑
a,b,c=x,y,z

1

(det M)2

(
ha∂αhb∂βhcεabc−

− (α↔β)
)
=

~h

4|~h|3
·∂α~h ×∂β~h − (α↔β) (2.40)

We note that in this section all the matrices have the spin index. For an N dimen-
sional space of superconducting phases, the singularities are concentrated in the N −3
dimensions and the relevant space is reduced to a 3-dimensional subspace {δφ1,δφ2,δφ3}.
For certainty, we set the indices α,β = 1,2, and consider the curvature defined in the
φ1 −φ2 plane at a fixed phase φ3.
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The φ3 dependence of the integral of the curvature with respect to superconduct-
ing phases φ1, φ2 witnesses the change of first Chern number C 12 when the integration
plane passes the singularity point. Since we only concentrate on the vicinity of the Weyl
singularity, the integral under the approximations made can only indicate the change
of the Chern number, rather than its total value that can be determined by integration
over the regions far from the singularity point. To compute the integrated Bαβ, we notice
from Eq.(2.39) that the energy spectrum is linear in δφ, and introduce a linear relation
hi =∑

αδφαTαi with Tαi = ∂αhi being a real invertible matrix. The integrated B12 is then
obtained as:

C 12 = 1

2π

∫
B12dφ1dφ2 = 1

2
sgn(δφ3 detT ) (2.41)

sgn(δφ3) determining the orientation of the δφ3 deviation.
This implies that whenever the integration plane passes the Weyl point, the first

Chern number is changed by ∆C 12 = 1
2 sgn(δφ3 detT ) − 1

2 sgn(−δφ3 detT ) = ±1. This
manifest the the integer values of the topological charge. The integrated Bαβ in Eq.(2.41)
specifies the flux of the Berry field penetrating the plane which is either above or below
the singularity point. This flux, owing to symmetry, is a half of the total flux, this explains
the half-integer values. Therefore, the main contribution to Eq.(2.29) in the vicinity the
Weyl point is given by the Berry curvatures of the two levels that are close to zero energy,
and can be presented as

2πBαβ = 2πi [〈∂α+| ∂β+
〉−〈∂α−| ∂β−

〉
] (2.42)

2.6.2. WEAK SPIN-ORBIT COUPLING
Let us turn on a weak spin-orbit interaction and take it into account perturbatively giving
a small spin-dependent change to the scattering matrix that preserves its unitarity, as is
done in [46]. The first order variation thus reads

S →e−iδφ/2Se i~σ·~K e iδφ/2

=S +δφS + i S(~σ · ~K ) (2.43)

Λ=Sσy S∗σy →Λ+δφΛ+δKΛ

=Λ+δφΛ+ i S(~σ · ~K )S†Λ+ iΛ(~σ · ~K ∗) (2.44)

where the last equality sign implies the commutation relation σyσ
∗
i σy = −σi . Here, ~σ

are the Pauli matrices in spin space and ~K being the corresponding Hermitian matrix in
the channel space characterizing the spin-orbit effects. Owing to the time reversibility,
~K (~φ) =−~K (−~φ), yet in the vicinity of the singularity we may disregard its dependence on
superconducting phases.

As in the previous Subsection, we project the matrix Q onto singular subspace that
has now dimension of 4 to account for spin, and replace it with the matrix M . Writing
the latter in the basis of eigenvectors |±〉|↑ (↓)〉:

M = ε+ 1

2
δΛ= ε+ i

2
(~h ·~τ−~σ · ~K ′) (2.45)
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Figure 2.7: Spin-orbit splitting of Weyl singularity [a]: ABS energies versus φ1 through the singularity for a
choice φ2,3 corresponding to the singularity. The cone shifted upward(downward) specifies spin up (down).
[b]: ABS energy with the same φ2,3 along the line φ1 that misses the singularity. [c]: The ABS cross zero energy
at the surface of the ellipsoid depicted. The ellipsoid encloses the singularity (central point). The ground state
within the ellipsoid is of odd parity and the Berry curvature is zero. The central dot is the the Weyl singularity
φ0 enclosed in the ellipsoid. The ABS energies in [a,b] are plotted along the solid [a] and dashed [b]lines
in the Figure. [d]: The "Chern number"C12 versus φ3. The topological quantization is absent owing to the
discontinuity of the ground state at the surface of the ellipsoid.

~K ′ = 〈+|~K ∗ |+〉+ 〈−|~K ∗ |−〉. We can conveniently choose the spin quantization axis in

the direction of ~K ′ replacing the operator ~σ · ~K ′ with its eigenvalues ±|K0| = ±
√

|~σ · ~K ′|
for spin up and down, respectively.

The spin-orbit coupling lifts the spin degeneracy of the ABS in the vicinity of a Weyl

point. The poles at imaginary energies become ε↑ = i (± |~h|
2 + |K0|

2 ) for spin up and ε↓ =
i (± |~h|

2 − |K0|
2 ) for spin down. Contrary to the spin-degenerate case, the singularities at

|~h| = 0 are no longer at zero energy. Instead, they are shifted to ±i |K0|, see Fig. 2.7. The
conical singularity of the spectrum remains and the topology is still protected, as we will
explain below in detail.

The ABS energies cross zero energy when

|K0| = |~h| =
√∑

δφαXαβδφβ (2.46)

is satisfied. (Here, we introduce a positively defined matrix Xαβ = ∑
i Tαi Tiβ. Eq.(2.46)

defines an ellipsoidal surface in the 3D superconducting phase space that encloses the
singularity at φ̂0 where |~h| = 0. Outside the ellipsoid, two positive imaginary poles at
ε+↑(↓) = i

2 (|~h| ± |K0|) hold a half of the residue of the spin degenerate pole ε+ each. Two

negative imaginary poles ε−↑(↓) at ε−↑(↓) = i
2 (−|~h| ± |K0|) have the opposite residues. In-

side the ellipsoid, poles of ε+↑ and ε−↓ exchange their values as well as wave functions,
thus canceling the contributions from the other two poles. Thus, Bαβ is zero inside the
ellipsoid and is the same as in the spin-degenerate case outside the ellipsoid,

Bαβ =
{ ~h

4|~h|3 ·∂α~h ×∂β~h − [α↔β], |K0| < |~h|
0, |K0| > |~h|

(2.47)
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The result of integration of B 12 over two superconducting phasesφ1,φ2 at a fixed δφ3

thus reads

C 12 = 1

2π

∫
dφ1dφ2B 12θ(|~h| ≥ |K0|2) (2.48)

One can understand this result geometrically by presenting Eq. (2.48) as an integral over
the corresponding plane in~h space,

C 12 = 1

2π

∫
|~h2|>|K0|2

( ~h

2|~h|3
· n̂h

12

)
d2h12

= sgn(δφ3 detT )

4π

∫
|~h2|>|K0|2

d2h12

h2

= sgn(δφ3 detT )

2

Ω12

2π
(2.49)

where n̂h
12 is the vector normal of the corresponding plane andΩ12 is eventually the solid

angle at which a part of the φ1 −φ2 plane outside the ellipsoid is seen from the Weyl
singularity (see Fig.2.7). Generally, this angle is expressed through elliptic integrals.

The integral can be simplified if we choose the coordinate system in 3D space of
the phases in such a way that T13 = T31 = T23 = T32 = 0. With this, the integral can be
evaluated as

C 12 = sgn(detT )δφ3

2

∞∫
1

(|K0|2 −T 2
33δφ

2
3)r dr

[(|K0|2 −T 2
33δφ

2
3)r 2 +T33δφ

2
3]

3
2

= 1

2
sgn(detT )

δφ3

|K0|
(2.50)

We see that in the vicinity of a Weyl point the C 12 is not a topologically protected
quantity confined to the integer values: rather, it changes linearly in an interval of δφ3

defined by the strength of the spin-orbit coupling (Fig. 2.7 )
To explain this, and eventually restore the topological protection of C12, let us con-

sider many-body states in the vicinity of the Weyl point. Their energies are given by the
eigenvalues of the many-body Hamiltonian HMB

HMB = E↑(n̂↑−
1

2
)+E↓(n̂↓−

1

2
) (2.51)

where E↑(↓) = |~h|± |K0| are the energies of quasiparticle excitations with spin up(down),
n̂↑(↓) are the number operators of the quasiparticles with the corresponding spin. The
energy spectrum EMB for each of the four possible states is given in Fig. 2.8. As we see
from the Figure, the ground state of the superconducting nanostructure corresponds to
n↑ = n↓ = 0 at |~h| > |K0| and to n↓ = 1,n↑ = 0 within the ellipsoid |~h| < |K0|. These states
differ in fermion parity, that is the conserving quantity for the superconducting Hamil-
tonian. This is why the parity transition that takes place at |~h| = |K0| is accompanied by
the discontinuity of the wave functions, which violates the topological quantization of
C 12. It is evident from Fig. 2.8 that the states of the odd fermion parity do not depend on
phases in the vicinity of the Weyl point therefore corresponding to zero B 12.
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Figure 2.8: Many-body energy spectrum EMB given by (2.51) corresponding to FIG. 2.7. The ground singlet
state, single quasiparticle states of different spin and the excited singlet are labeled as |0〉, |↓ (↑)〉 and |↑↓〉, re-
spectively. The solid (dashed) lines correspond to the ABS plots FIG. 2.7 a (FIG. 2.7b). As the phase is varied,
the ground state parity transition between |0〉 state and |↓〉 state takes place at the point defined by (2.46).

The topological protection is restored if one considers the ground state at fixed par-
ity. Then for the even ground state C 12 is the same as for the spin-degenerate case and
experiences an integer jump when the integration plane passes the singularity point. No
change of topological charge occurs for the odd ground state and it remains topologi-
cally trivial.

2.7. ENERGY-DEPENDENT S−MATRIX:
In this Section we consider the effect of the energy dependence of the S-matrix on B12

given by (2.21) for arbitrary relation between the energy scales of the scattering matrix
and the gap |∆|.

We make use of the following model scattering matrix:

Sε = iε−µ−E (Ĥ + i Γ̂/2)

iε−µ−E (Ĥ − i Γ̂/2)
, [Ĥ , Γ̂] = 0 (2.52)

where Γ̂, Ĥ are Hermitian dimensionless matrices with eigenvalues of the order of one.
This expression can be regarded as a rather general polar decomposition of an energy-
dependend scattering matrix. Since the matrices Γ̂, Ĥ can be diagonalized simultane-
ously, the expession has poles at the complex energies E = µ+E (Hn − iΓn/2) defined
by the corresponding eigenvalues. The poles can be seen as the scattering resonances.
The eigenvalues Hn set the energies of those resonances and the corresponding eigen-
values Γn give the inverse lifetimes of these resonances, Γn must be positive to assure
the correct causal properties of the scatterimg. Real energy scale E then sets the typical
spread of the poles in energy around their average position µ. We note that Sε → 1 as
ε→ ∞, so the conditions of regularization described in a previous Section are fulfilled
and the integral of B12 over a compact subspace in phase space that does not cross the
Weyl singularities, reduces to an integer. We remind that the limit Sε → 1 corresponds
to isolated terminals. In distinction from the weak energy dependence case, the ABS en-
ergies defined by Eq. (2.1) can not be readily obtained and the resulting spectrum may
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Figure 2.9: An example plot of B12 (Eq. 2.21 for a randomly chosen energy-dependent S versus the energy
scale E for several choices of the energy scale µ at φ1 = 0.22π,φ2 =−0.67π,φ3 =−π. The dashed line gives the
limiting value of B12 at E À|∆| where the energy dependence of the scattering matrix is weak.

be complicated with more ABS per transport channel. It is no more plausible to separate
the contributions to Bαβ coming from discrete and continuous spectrum. This, however,
does not change the qualitative features of these contributions discussed above.

Let us consider and illustrate the dependence of B12 on these two energy scales. We
choose random matrices Ĥ , Γ̂ that satisfy the conditions stated, and compute B12 from
Eq. 2.21 at rather arbitrary settings of 3 phases. The integration over the imaginary en-
ergy in Eq. 2.21 permits the evaluation with no regard for the details of a complicated
ABS spectrum. We plot the result versus the energy scale E at several settings of µ. (Fig.
2.9)

Let us consider µ 6= 0 first. In this case, at E → 0 the transmission between the ter-
minals is limited to a small circle of the radius ' E near µ. This suppresses the Andreev
scattering that requires good transmission at opposite energies, and all quantities that
depend on the phase differences including Bαβ. In Fig. 2.9, this is manifested as almost
zero B12 at E < µ. The further increase of E restores the Andreev scattering bringing
B12 to its typical values of ∼ (2π)−2. We note a non-monotonous dependence on E and
explain it by the fact that different poles of the scattering matrix contribute to B12 with
typically different signs, and the magnitude of the contribution depends on the position
of the pole with respect to the energy scale '∆. At E À∆ the energy dependence of the
scattering matrix is weak at ε'∆ and B12 saturates at a value that does not depend on µ
and is given by Eqs. (2.29) and (2.33) (dashed line in the Figure 2.9).

The case of µ = 0 is special at small E since the concentration of transmission in a
small circle of energies does not suppress the Andreev scattering. The ABS in this case
are concentrated in this small energy circle (see [47]) and depend on all phases. This is
why B12 does not drop to 0 but rather approaches a finite limit at E → 0. At E À ∆ B12

still saturates at the value corresponding to the weak energy dependence case.

2.8. SUMMARY AND CONCLUSIONS
In this Chapter, we address the topological properties of multi-terminal superconduct-
ing nanostructures. This involves Berry curvatures in the parametric space of the super-
conducting phases of the terminals and associated Chern numbers that manifest them-
selves in quantized transconductances [33].
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The specifics of the superconducting nanostuctures is the presence of continuous
spectrum along with the discrete one. The Berry curvature is readily defined for a dis-
crete spectrum. Its generalization for a (partly) continuous spectrum is not straightfor-
ward, and is a problem of general interest. It has not been solved in Ref. [33].

We perform the calculation in imaginary time, and model the nanostructure with an
energy-dependend scattering matrix. We have derived a general action of superconduct-
ing nanostructure with time-dependent phases, this is a separate advance. We expand
the action near a point in the space of phases to compute the response function at finite
frequency. We define the tensor quantity Bαβ (Eq. 2.21) as a first term in the expan-
sion of the response function at small frequency. This quantity would have been Berry
curvature if the spectrum were entirely discrete.

We analyze the topological properties of the computed quantity. Like for Berry cur-
vature, the topological charge associated with divergence of Bαβ is concentrated in the
singular points of 3d phase space where ABS cross zero energy — Weyl points. Unlike
Berry curvature, the quantity Bαβ has a non-topological contribution that is constant
over the space of phases (Eq. 2.27). This in general adds a non-quantized part to "Chern"
numbers defined as integrals of Bαβ over two superconducting phases, and to the corre-
sponding transconductances. This contribution is determined by the scattering matrix
at ε→∞. It vanishes if the scattering matrix without superconducting phases is time-
reversible and if the scattering matrix approaches isolation limit Sε = 1 at large ener-
gies. For an energy-independent scattering matrix, the non-topological term is associ-
ated with the anti-symmetrized part of the conductance matrix of the structure in the
normal state.

We consider in detail the case of weak energy dependence of the scattering ma-
trix. We separate the contributions of the discrete and continuous spectrum, find them
equally important and derive a compact relation for Bαβ (Eq. 2.29).

We analyze in detail the Berry curvature in the vicinity of Weyl points. We have found
a violation of topological protection of "Chern" number in case of weak spin-orbit cou-
pling. This, however, is rather trivially related to the transition between the ground states
of different parity near the Weyl point and associated discontinuity of the wave func-
tions. The topological protection is restored if one considers a ground state of a fixed
parity.

We also investigate the properties of Bαβ for the scattering matrices that essentially
depend on energy at the energy scale '∆.

2.9. APPENDIX A: DERIVATION OF THE ACTION
In this Appendix, we derive the effective action for a multi-terminal superconducting
junction within the scattering approach. We follow the lines of Ref.[48]. In contrast to
Ref.[48] we proceed in Matsubara formalism. Let us start with the formulation of a con-
crete microscopic model. Since the scattering formalism is universal, there is a great
degree of arbitrariness in the choice of the model: all models that are characterized by
the same scattering matrix will result in the same action. Properties of the scatterer are to
be completely described by an S-matrix, the details of the model that describes the sys-
tem are not important. So we choose the model in a way we find it convenient (see Fig.
2.10). We consider a system of independent 1-dimensional channels with pairwise op-
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Figure 2.10: The concrete model for the derivation of the action. The electons are moving in 2N spin-
degenerate channels connected to the corresponding superconducting terminals by tunneling (wavy dashed
lines). In the picture, all the terminals in Eq.2.1 are combined into a single superterminal for convenience.
Right of the vertical line, the tunnelling between the channels provides the scattering described by N ×N ma-
trix.

posite velocities and a linear spectrum. They are defined in the interval −∞< x < 0. The
total number of channels is 2N , number N includes the spin doubling. Two channels in
a pair with opposite velocities are coupled to the same superconducting reservoir: this
is required to assure the time-reversibility of the model at this level. The coupling is a
tunnel one, and the coupling strength is characterized by the dwell time scale τ: at this
time scale, an electron in a channel would tunnel to a reservoir. The tunneling results in
an addition of self-energy to Green’s functions in the channels, which is proportional to
the tunneling rate 1/τ and to a matrix Green’s function g characterizing a reservoir (see
its concrete definition below). The channels defined in such a way model the electron
states coming from and going to the reservoirs that are scattered at the nanoscructure. In
the scattering region with a coordinate y ∈ [0, l ], there are N spin-degenerate channels of
the same velocity direction. At the boundary y = 0 the electron amplitudes in the chan-
nels match those in the channels of positive velocity at x = 0 (incoming states), while
at y = l the amplitudes match those in the channels with the negative velocity(outgoing
states). As we will show, the S-matrix relates the amplitudes at y = l and y = 0.

To find the action for the nanostructure, we will compute its variation with respect
to the variation of g . To this end, we require the values of the Green’s functions in the
channels x, x ′ < 0 in close points x ≈ x ′. We find the variation in three steps. At the
first step, we express the Green’s functions at any x in terms of the Green’s functions at
x ≈ 0. At the second step, we consider the scattering region that provides a boundary
condition. With this, we relate these Green’s functions, and solve for them. This permits
to find the variation and the action at the third step.

In the channels, we choose the basis in the following form
u+
v−
u−
v+

 (2.53)

where u±, v± are N vectors in the space of the channels associated with the electron and
hole amplitudes of the Bogolyubov wave function, and ± refers to the sign of the velocity
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in corresponding channels. In this basis, the equation for Green’s function reads(
iετ3 + i vη3τ3∂x + i

2τ
g

)
GCh(x, x ′) = δ(x −x ′) (2.54)

where v is the velocity that we can set the same for all the channels, ε is the Matsubara
frequency, τi are Pauli matrices in Nambu space, and η3 =± distinguishes channels with
positive and negative velocities. The matrix g is block-diagonal in the channel space. For
a given reservoir, it is given by

g = 1√
ε2 +|∆|2

(ετ3 + iσ2[τ1(
∆−∆∗

2
)+ iτ2(

∆+∆?
2

)]), (2.55)

g 2 = 1, ∆ being the superconducting order parameter in the corresponding reservoir.
We define a block structure

GCh =
(
G1 G3

G4 G2

)
(2.56)

We are only interested in the diagonal blocks G1;2 since the off-diagonal blocks will not
contribute to the variation of the action. We integrate the equation assuming ετ¿ 1 for
G(x, x ′) at x < x ′ we obtain

G1(x, x ′) = [(
1− g

2
e

(x−x′)
2vτ + 1+ g

2
e−

(x−x′)
2vτ )]G−

1 (x ′) (2.57)

G2(x, x ′) = [(
1+ g

2
e

(x−x′)
2vτ + 1− g

2
e−

(x−x′)
2vτ )]G−

2 (x ′) (2.58)

where we use special notations for the Green’s functions in the close points

G−
1 (x ′) =G1(x ′−0, x ′), G−

2 (x ′) =G2(x ′−0, x ′) (2.59)

Since the solution for the Green’s function should not grow x →−∞, these Green’s func-
tions should satisfy the following conditions

Π+G−
1 = 0, Π+ = 1+ g

2
, G−

1 = lim
x′→−0

G−
1 (x ′) (2.60)

Π−G−
2 = 0, Π− = 1− g

2
, G−

2 = lim
x′→−0

G−
2 (x ′) (2.61)

These matrices G−
1;2 can be fixed if we consider the boundary conditions, that can be

obtained by solving the equations for the Green’s functions in the the scattering region
y ∈ [0; l ]. To derive these condition, let us introduce the amplitude vectorsΨ(y) =G(y, x),

X (y) =G(x, y) that have Nambu structure

(
u(y)
v(y)

)
and satisfy the equations

(
iετ3 + i vτ3∂y −

(
U (y) 0

0 U T (y)

))
Ψ(y) = 0 (2.62)

(
iετ3 − i vτ3∂y ′

)
X (y ′)−X (y ′)

(
U (y ′) 0

0 U T (y ′)

)
= 0 (2.63)
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where U (y,ε) is the N ×N matrix potential acting on electrons inside the scattering re-
gion and mixing different channels. The solution of the Eq.(2.63) gives a linear relation
on the amplitudes

X (y = l ) = X (y = 0)Ŝ†
−ε (2.64)

where we define the S-matrix for electrons and holes arranged in Nabmu structure

Ŝε =
(
Se (ε) 0

0 (Sh(ε))−1

)
(2.65)

(Sh(ε))−1 ≡ ST
−ε. (2.66)

The electron scattering matrix is given by

Se (ε) = Sε = e−
εl
v ×Ty e−

i
v

∫ l
0 d yU (y,ε) (2.67)

where Ty implies the ordering of the U (y) operators in the exponent according to the
values of y in the increasing order. We do not need to specify the energy dependence fo
the S-matrix except for the general condition SεS†

−ε = 1.
The relation on the amplitude (2.64) gives the relation between the diagonal and off-

diagonal blocks of the Green’s function (2.56) outside the scattering region but close to it
|xε/v |¿ 1, |x ′ε/v |¿ 1

G3(x, x) =G1(x, x ′)Ŝ†
−ε =G−

1 Ŝ†
−ε, (x < x ′) (2.68)

The solution of Eq. (2.62)
Ψ(y = l ) = ŜεΨ(y = 0) (2.69)

yields another relation between the blocks

G2(x ′, x) =G+
2 = ŜεG3(x, x), (x < x ′) (2.70)

Combining Eq. (2.70) and (2.68) we obtain the required boundary condition that relates
the diagonal sub-blocks

ŜεG
−
1 Ŝ†

−ε =G+
2 (2.71)

Combining the equations (2.71), (2.60) and (2.61), and the condition

G+
Ch −G−

Ch =− i

v
τ3η3 (2.72)

that follows directly from (2.54) we solve the complete linear system of the equations to
obtain the follwing for the diagonal blocks of the general Green’s function (2.56)

G−
1 = i

v

1

Π++Π−Ŝε
Π−Ŝε, G+

1 = −i

v

1

Π++Π−Ŝε
Π+ (2.73)

G−
2 = −i

v

1

Π−+Π+Ŝ†
−ε
Π+Ŝ†

−ε, G+
2 = i

v

1

Π−+Π+Ŝ†
−ε
Π− (2.74)
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Next, we employ the formula that expresses the action variation in terms of Green’s
functions. We vary the reservoir Green’s function g keeping normalization g 2 = 1, so that
{g ,δg } = 0, then the variation of the action L is

δL =
∫

d xTr[δΣ(x)GCh(x, x)] (2.75)

where δΣ= −i
2τδg is the variation of self-energy of electrons in channels and GCh(x, x) is

their Green’s function at coinciding points. We note here that indeed only the diagonal
blocks G1;2 in Eq.(2.56) contribute since Σ is diagonal in this basis. The contribution
from the channels corresponding to G1 gives

2δLi n =+
∫ 0

−∞
d xTr[δΣGCh(x, x)] =

= −i

2τ

∫ 0

−∞
d xTr[δgGCh(x, x)] = −1

2
Tr[δg

1

Π++Π−Ŝε
Π+] (2.76)

The futher calculations is convenient to do in the basis that diagonalizes g . In this basis,

δg =
(

0 V
W 0

)
, g =

(
1 0
0 −1

)
, Ŝ =

(
S1 S2

S3 S4

)

Y −1(g +δg )Y = g , Y (Ŝ +δŜ)Y −1 = Ŝ (2.77)

we find

Y =
(

1 −V
2

W
2 1

)
, δS4 =−S3

V

2
− W

2
S2

2δLi n = 1

2
TrV S−1

4 S3 (2.78)

where all the realtions are valid up to the first order in variations. The contribution from
the outgoing channels reads

2δLout = 1

2
Tr[δg

1

Π−+Π+Ŝ†
−ε
Π−] =

= 1

2
Tr[δg Sε

1

Π−Sε+Π+
Π−] = 1

2
TrW S2S−1

4 (2.79)

Summing both contributions, we obtain

2δL =−Tr[δS4S−1
4 ] (2.80)

Hence
2L =−TrlogS4 =−Trlog[Π++Π−Ŝε] (2.81)

This so-called block-determinant result for the action is similar to the one obtained pre-
viously [48] within the Keldysh formalism.
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2.10. APPENDIX B: DERIVATION OF THE RESPONSE FUNCTION
In this Appendix, we present the details of the derivation of the Eq.(2.18) and Eq.(2.21).
We start with the action as given by Eq. (2.6). In order to derive the response function, we
assume that the time-dependent deviation (δφ(τ)) from the stationary phase denoted as
φ is small (δφ(τ) ¿ 2π) so we can expand the action in Taylor series in δφ(τ). We also
note that in time representation the total phase operator is diagonal (φττ′ = δττ′φ(τ)),
which implies that the energy representation of φ reads

φnm =φ(ω), ω= εn −εm (2.82)

We consider here the general case of the energy-dependent scattering matrix. The action
from Eq.(2.6) reads

−2L = Trlog[B +B T ], B = Aεe
−iφ

2 Sεe
iφ
2 Aε (2.83)

T implies the complete operator transposition that includes the reversing of the sign of
energy. We remind the definition

Aε =
√

E +ε
2E

, E =
√
ε2 +|∆|2, (2.84)

We ascribe the stationary part of the phases to an S-matrix Sε → Sε(φ) and expand in
small nonstationary deviation δφ(τ).

B ' B0 +B1 +B2 = B0 + ∂B

∂φαω
δφαω+

1

2

∂2B

∂φαω∂φ
β
−ω

δφαωδφ
β
−ω (2.85)

We introduce
Qε = B0 +B T

0 = A2
εSε+ A2

−εST
−ε (2.86)

With this,

δTrlog[B +B T ] ' TrQ−1(B1 +B T
1 +B2 +B T

2 )−
1

2
TrQ−1(B1 +B T

1 )Q−1(B1 +B T
1 ). (2.87)

We remind the definition of the matrix, that projects on the channels connected to a
given terminal α:

(Iα)ab = δab

{
1, a =α
0, a 6=α (2.88)

where a,b indices are in channels. With the help of this matrix the phase variation can
be conveniently expressed as

(δφα)ab = (Iα)abδφα(τ) (2.89)

For simplicity of the notations, we denote the stationary phase derivatives ∂φα = ∂α. With
all this we consider the expansion of the S-matrix

e
−iδφ(τ)

2 Sεe
iδφ(τ)

2 ' Sε+ [Sε,
iδφ(τ)

2
]+ δφ(τ)

2
Sε
δφ(τ)

2
−

− 1

2
{(
δφ(τ)

2
)2,Sε} (2.90)
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Let us we also note the identities for the derivatives with respect to the stationary phases:

∂S

∂α
= [S,

i Iα
2

] (2.91)

∂2S

∂α∂β
= Iα

2
S

Iβ
2

+ Iβ
2

S
Iα
2

−δαβ{
Iα
4

,S} (2.92)

the first term in the expansion (2.87) vanishes since δφω=0 = 0. The second term is

TrQ−1(B2 +B T
2 ) = 2TrQ−1B2 =

δφαωδφ
β
−ω

∫
dε

2π
TrQ−1

ε A2
ε [−δαβ{

Iα
4

,Sε}+

+ Iα
2

Sε−ω
Iβ
2

+ Iβ
2

Sε+ω
Iα
2

] =

= δφαωδφ
α−ω

2

∫
dε

2π
TrQ−1

ε [
∂2Qε

∂α∂β
]+

δφαωδφ
α
−ω

∫
dε

2π
TrQ−1

ε A2
ε [

Iα
2

(Sε−ω−Sε)
Iβ
2
+

Iβ
2

(Sε+ω−Sε)
Iα
2

] (2.93)

The first term here does not depend on frequency and does not vanish in the limitω→ 0.
The second term up to linear order in ω can be rewritten as

2ωδφαωδφ
α
−ω

∫
dε

2π
Tr[Q−1

ε A2
ε

Iβ
2

∂Sε
∂ε

Iα
2

] =

ωδφαωδφ
α
−ω

∫
dε

2π
TrQ−1

ε A2
ε∂β{

∂Sε
∂ε

,
i Iα

2
} (2.94)

The second term in the expansion (2.87) reads

− 1

2
TrQ−1(B1 +B T

1 )Q−1(B1 +B T
1 ) =

−δφαωδφβ−ω
2

∫
dε

2π
TrQ−1

1 (A−1(
i Iα

2
ST
−2 −ST

−1
i Iα

2
)A−2−

A1(
i Iα

2
S2 −S1

i Iα
2

)A2)Q−1
2 (A−2(

i Iβ
2

ST
−1−

ST
−2

i Iβ
2

)A−1 − A2(
i Iβ
2

S1 −S2
i Iβ
2

)A1) (2.95)

where subscripts mean taking the function at the frequency ε1,2 : ε1 = ε2 +ω and we
denoted ε2 = ε. Summing it with (2.93) we get the general response function as in Eq.
(2.18).

To perform the adiabatic expansion in the small parameter ω/|∆| here we keep ω as
an independent parameter. We will use the identities

i Iα
2

S2 −S1
i Iα

2
=−∂Scl

∂α
− {Sq ,

i Iα
2

} (2.96)
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where we introduced "classical" and "quantum" S-matrices as

Scl =
S1 +S2

2
, Sq = S1 −S2

2
(2.97)

With this, we rewrite the term

−δφαωδφβ−ω
2

∫
dε

2π
TrQ−1

1 [A1 A2(
∂Scl

∂α
+ {Sq ,

i Iα
2

})+

A−1 A−2(
∂ST

cl

∂α
− {Sq ,

i Iα
2

})]Q−1
2 [A1 A2(

∂Scl

∂α
− {Sq ,

i Iα
2

})

+ A−1 A−2(
∂ST

cl

∂α
+ {Sq ,

i Iα
2

})] (2.98)

Next, we expand the terms that are taken at ε1 = ε2 +ω. Thery come from three factors

here. The expansion of the first factor Q−1
1 'Q−1

2 +ω ∂Q−1
ε
∂ε gives rise to

ω

2
δφαωδφ

β
−ω

∫
dε

2π
TrQ−1

ε

∂Qε

∂ε
Q−1
ε

∂Qε

∂α
Q−1
ε

∂Qε

∂β
(2.99)

The expansion of the product of the classical parts is symmetric with respect to α,β, so
it vanishes. The product of quantum parts vanishes in linear order inω. So we only need
to consider quantum times classical and expand the quantum one

Sq ' ω

2

∂Sε
∂ε

(2.100)

it yields

− 2

2
δφαωδφ

β
−ω

∫
dε

2π
TrQ−1ω

2
(A2

ε {
i Iα

2
,
∂Sε
∂ε

}−

− A2
−ε{

i Iα
2

,
∂ST−ε
∂ε

})
∂Q

∂β
Q−1 =

=ωδφαωδφβ−ω
∫

dε

2π
Tr
∂Q−1

∂β
A2
ε {
∂Sε
∂ε

,
i Iα

2
} (2.101)

where the first doubling is due to the same contribution with α↔ β. Summing it with
(2.94) we obtain the total response function as given by (2.21)

− 2S

2
ωδφαωδφ

β
−ω

∫
dε

2π
(

1

2
TrQ−1

ε

∂Qε

∂ε
Q−1
ε

∂Qε

∂α
Q−1
ε

∂Qε

∂β
+

∂

∂β
Tr[Q−1

ε A2(ε){
∂Sε
∂ε

,
i Iα

2
}]) (2.102)
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3
TOPOLOGICAL NUMBERS OF

QUANTUM SUPERPOSITIONS OF

TOPOLOGICALLY NON-TRIVIAL

BANDS

Topological properties of the wavefunction manifolds - bands are in focus of modern con-
densed matter research. In this Article, we address the definition and values of topological
numbers of quantum superpositions of the topologically distinct bands. The problem, al-
though simple in essence, can be formulated as a paradox: it may seem that quantum
superposition implies non-integer topological numbers.

We show that the results are different for superpositions that are created dynamically and
for those obtained by stationary mixing of the bands. For dynamical superpositions, we
have found that an observable commonly witnessing a topological number is non-integer
indeed. For static superpositions, the resulting bands retain integer topological numbers.
We illustrate how the quantization of topological number is restored upon avoided cross-
ing of topologically distinct subbands. The band crossings may result in the exchange
of topological numbers between the bands upon changing the parameters describing the
bandstructure. This is a phase transition between the phases defined as sequences of topo-
logical numbers of the bands. We consider complex phase diagrams arising in this context
and show the absence of triple critical points and abundance of quadruple critical points
that are rare in common phase diagrams. We illustrate these features with a bilayer Hal-
dane model.
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3. TOPOLOGICAL NUMBERS OF QUANTUM SUPERPOSITIONS OF TOPOLOGICALLY

NON-TRIVIAL BANDS

3.1. INTRODUCTION
The notion of the topology of the wavefunction manifolds has been being discussed
for many years (see e.g. Refs.[1, 2]). In addition to the topological applications in the
fields such as cosmology[3], quantum field theory[4], classical integrable Hamiltonian
dynamics[5], etc. it has also been understood that the topology may play an impor-
tant role in condensed matter[6], in particular in the quantum description of crystal
solids[7, 8]. The Chern insulator[9] is an example of such an application. Let us describe
the simplest case of a 2-dimensional Chern insulator. The Hamiltonian of this periodic
solid is a matrix defined in the compact space of two quasimomenta qα, α = 1,2 and is
continuous. The eigenbasis of the Hamiltonian is also parameter-dependent and the re-
sulting manifolds of parameter-dependent wavefunctions that belong to a certain eigen-
value are usually called bands. It is important to note that continuity of the Hamiltonian
does not immediately imply the continuity of these wavefunctions. Since the eigenfunc-
tions are defined upon the phase factor e iχ(~q), they have to be continuous only upon a
phase factor. Let us call this property a quasi-continuity.

Mathematically a band can be regarded as a section of a 1-dimensional linear bundle
that can be characterized by an integer Chern number in a standard way[2, 10]. It is
common to define the Berry curvature of the band k is commonly defined as[2] B (k)

αβ
=

−2Im〈∂qαψk (~q)|∂qβψk (~q)〉. The first Chern number is an integral of the Berry curvature
over the compact space of ~q and has to reduce to an integer times (2π). One can also
define the Hamiltonian in the space of ~q with more dimensions. Then the first Chern
number is defined as the integral over any 2-dimensional compact subspace of ~q .

In physical terms first Chern number can be directly related to the transconduc-
tance of the system. To establish this, one may utilize the description in terms of the
semi-classical equations of motion. As known[11], a nonzero value of the Berry curva-
ture brings about a nonzero drift velocity transverse to the external force Fβ. Average
of this drift velocity over the ~q-space is expressed in terms of the first Chern number.
This explains the transverse conductance quantization in the QHE setups[1, 12]. We
note that the above consideration implies that the initial wavefunction is the eigenstate
of the Hamiltonian. It is not evident if the conclusion is valid for more complex initial
wavefunctions.

The linearity is one of the basic postulates of quantum mechanics: a linear superpo-
sition of two wavefunctions is also a valid wavefunction of the system. What are the topo-
logical properties of the superposition of topologically distinct bands? To comprehend
why the question is not trivial let us consider a short example. Let us take two bands
of quasi-continuous wavefunctions |ψ0(~q)〉, |ψ1(~q)〉 with different first Chern numbers
C0 = 0 and C1 = 1. Let us consider a superposition of those bands with parameter-
independent coefficients a,b 6= 0

|ψ(~q)〉 = a|ψ0(~q)〉+b|ψ1(~q)〉 (3.1)

What is the Chern number of this superposition? It is a weighted sum of two Chern num-
bers, |b|2 which is generally not integer. The topology dictates that the Chern number
must be integer[10]. So, this presents an apparent paradox.

The solution is simple: the superposition of two quasi-continuous wavefunctions is
not quasi-continuous and is not subject to topological classification. The superposition
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can be made quasi-continuous by choosing the proper parameter dependence of a and
b. This restores the quantization of Chern number.

This sets the goal of this Chapter: to investigate the topological properties of super-
positions. We address the superpositions of two kinds. A dynamic superposition is cre-
ated at a given value of ~q and then evolves in accordance with the Hamiltonian dynam-
ics. A static superposition is obtained by modification of the stationary Hamiltonian that
mixes the bands. Let us shortly describe the results. Firstly, we consider dynamic super-
positions. We investigate the time evolution of a particle in the Chern insulator that
is prepared initially in a superposition state. In such insulators the transverse current
response - the transconductance is supposed to witness the Chern number. The quan-
tization of transconductance is related to the quantization of transmobility that gives a
transverse velocity. We find for a superposition that the resulting transmobility is indeed
proportional to the weighted sum of Chern numbers, so it is not a subject of topological
quantization. This can be deduced that the wavefunction is not periodic in time and its
time-dependence is complex. Although dynamics are equivalent to the slow change of
parameters ~q in the Hamiltonian the wavefunction does not remain quasi-continuous
on a closed trajectory in a parameter space. This is different from the dynamics of the
eigenfunctions. Thus the resulting wavefunction is not a subject of topological classifi-
cation.

Next, we investigate the static superpositions, made by adding the mixing matrix el-
ements between the bands into the Hamiltonian. We investigate the topological prop-
erties of the resulting eigen-bands. These eigen-bands are quasi-continuous and we es-
tablish the topological restriction on the parametric dependence of the mixing matrix
element: it must be zero at least in one point in ~q-space. The Chern number of a static
superposition is thus integer and may change abruptly upon changing of the parame-
ters of the bandstructure. Such an abrupt change is a topological phase transition, so
this naturally brings us to the consideration of possible phase diagrams. The phases
we consider are defined by a set of first Chern numbers attributed to each band with
Chern numbers being ordered with increasing energy of the bands. We investigate the
critical points in these phase diagrams and find no triple points. The critical points are
quadruple connecting 4 regions in 2d parameter space. There are two kinds of quadruple
points with either 4 or 3 different phases in the adjacent regions. This is different from
the case of phase diagrams for usual phase transitions where generically triple points
are present[13]. We extensively illustrate these features of phase diagrams with a specific
example of a bilayer Haldane model.

The Chapter is organized as follows. In Sec. 3.2 we derive the value of the transcon-
ductance of a particle prepared initially in the superposition state. The discussion of the
restrictions imposed by general topological considerations on the mixing matrix element
between two topological bands is given in Sec. 3.3. In Sec. 3.4 we address the proper-
ties of the topological numbers exchange for between two static superpositions. In Sec.
3.5 we investigate the case of multiple bands introducing and discussing the general fea-
tures of the phase diagrams. In Sec. 3.6 we illustrate these general features inspecting
the phase diagrams of the topological phase transitions in the bilayer Haldane model.
We conclude in Sec. 3.7. The present a note on a specific degenerate case of the bilayer
Haldane model in App.3.8.
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NON-TRIVIAL BANDS

3.2. ADIABATIC EVOLUTION OF THE SUPERPOSITION
In this Section we consider the adiabatic evolution of a particle initially prepared in a su-
perposition of two states that belong to different bands. We will compute the transmo-
bility µ of a particle defined as the proportionality coefficient between the drift velocity
in the direction perpendicular to the external force and the external force, vα = µeαβFβ.
As we will show below, for a particle in a certain band

µ=−2πC

ħΩ (3.2)

where C is an integer Chern number of the band and is the volume of the Brillouin zone
Ω = ∫

d q1d q2. The transverse current density of a many-body system at zero tempera-
ture is a sum over filled bands labeled by j

jα = e
∑

j
v j
αn j = e2

∑
j
µ j n j εαβEβ (3.3)

where µ j is the transmobility in the band j and the particle density n j = Ω
(2π)2 in a filled

band does not depend on a band . With this, the transconductance[14], the proportion-
ality coefficient between the transverse current and the voltage Ix =Gx y Vy is quantized
in the units of e2/(2πħ),

Gx y =− e2

2πħ
∑

j
C j (3.4)

This is a well-established result[1].
Thus, the problem of the computation of the current can be reduced to the problem

of the computation of the transmobility. It can be computed by solving the Schrodinger
evolution equation for the wavefunction and computing the expectation value of the
velocity operator that is defined as

ˆ̇xα = 1

ħ
∂Ĥ

∂qα
(3.5)

where qα is a quasi-momentum parameter of the system. In the case of the milti-terminal
superconducting junction it would be the global phase of one of the leads[15].

The computation of transmobility of a particle in a single band is standard. A weak
force doesn’t cause interband transitions but changes the wavevector in time ħq̇α = Fα.
For constant Fα

ħ~q(t ) = ~F t +const (3.6)

for a resulting trajectory in ~q-space sweeps over the whole Brillouin zone at long time
scale t ∼ħpΩ/|~F | at least for incommensurate direction of force.

In the case when the initial state is the eigenstate of the Hamiltonian, the mean cur-
rent reduces to the Berry curvature of the initial state. It follows from the semi-classical
equations of motion[11] that the Berry curvature brings an addition to the velocity:

~̇x = 1

ħ
∂E(q, x)

∂~q
−Bαβq̇β =

1

ħ
∂E(q, x)

∂~q
−Bαβ

Fβ
ħ (3.7)
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We consider this equation at the long time scales such that the whole Brillouin zone is
swept over. Upon the sweeping desribed by Eq.(3.6) the first term in (3.7) describes Bloch
oscillations and averages to zero since it is a derivative over ~q . The second term reduces
to the average of the Berry curvature

1

Ω

∫
d~qBαβ = 2πCeαβ

Ω
(3.8)

which is an integer Chern number C , and gives the drift in the direction perpendicular
to the applied force

〈ẋα〉 =−2πC

ħΩ ×εαβFβ, µ=−2πC

ħΩ (3.9)

in agreement with Eq.(3.2).
Let us compute the transmobility for a superposition. One can make such a superpo-

sition by an oscillating modification[16] of bandstructure parameters. A pulse of these
oscillations brings a number of particles to the superposition state in a narrow region in
~q-space where the frequency of the oscillations matches the energy difference between
the bands |ψ0,1〉with different Chern numbersħω= ε1(~q0)−ε0(~q0). After the pulse, wave-
function of one particle with the quasi-momentum ~q0 is

|ψ(t = 0)〉 = a|ψ0(~q0)〉+b|ψ1(~q0)〉 (3.10)

a,b being the superposition coefficients. We need to solve

iħ∂ψ(t )

∂t
= H(~q(t ))ψ(t ), ~q(t ) =~q0 +~F t (3.11)

where we treat the quasi-momentum of the particle as an adiabatically changing param-
eter of the Hamiltonian. We seek for the wavefunction in the instantaneous eigenbasis
of Ĥ(t ), |ψ(t )〉 =∑

k ck (t )|ψk (t )〉, k labeling all the bands. The coefficients ck in the zero
order of adiabatic perturbation theory in the parameters q̇α,β are

c(0)
0 (t ) = e iθ0(t )a, c(0)

1 (t ) = e iθ1(t )b, c(0)
l>1(t ) = 0 (3.12)

where

θk (t ) =−
∫ t

dτEk (t )+
∫ t

~A(k) ·d~q(t ) (3.13)

incorporates both the dynamical and geometric phases[2], and ~q(t ) being the path in
parameter space as in Eq.(3.11). Here A(k)

α is the Berry connection, A(k)
α = i 〈k|∂qαk〉. To

compute the expectation value of the drift velocity, 〈ψ(t )| ˆ̇xα|ψ(t )〉, we need to evaluate
ck up to the first order

c(1)
0 (t ) = i be iθ1(t )〈ψ0|ψ̇1〉

E0 −E1
, c(1)

1 (t ) = i ae iθ0(t )〈ψ1|ψ̇0〉
E1 −E0

(3.14)

c(1)
l>1(t ) = i be iθ1(t )〈ψl |ψ̇1〉

El −E1
+ i ae iθ0(t )〈ψl |ψ̇0〉

El −E0
(3.15)
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We average this expectation value over the short time scale ts |E0 −E1| À ħ thereby ne-
glecting the fast oscillating terms ∼ e i (θ0(t )−θ1(t )). We obtain

〈 ˆ̇xα〉 = 1

ħ (|a|2 ∂E0

∂qα
+|b|2 ∂E1

∂qα
−Fβ[|a|2B (0)

αβ
+|b|2B (1)

αβ
]) (3.16)

where the first two terms are of zero order in q̇α,β and coming from Eq.(3.12) and the last
two are the first order adiabatic correction coming from Eqs.(3.14), (3.15). Thus, Eq.(3.16)
generalizes Eq.(3.7) for the case of a superposition. As above, we consider the drift ve-
locity at the long time scale such that the whole Brillouin zone is swept over. Upon the
sweeping described by Eq.(3.6) the first two terms in (3.16) average to zero since they are
derivatives over ~q with time-independent coefficients. The last two terms reduce to the
weighted sum of the averages of two Berry curvatures. Finally, we obtain

〈ẋα〉 =−2πC ′

ħΩ ×εαβFβ, C ′ = |a|2C0 +|b|2C1 (3.17)

Thus, the transmobility of a particle in a superposition state is not quantized. The ab-
sence of the topological quantization can be explained from the fact that the dynamical
superposition is not periodic in ~q even if upon sweeping the wavefunction comes to the
same or close point in Brillouin zone. It won’t be the same due to the fast oscillating fac-
tors e iθ0,1(t ). In other words, the dynamical superpositions do not form a manifold where
topological constraints can be imposed.

The experimental observation of this effect is rather straightforward. If we apply se-
quence of pulses to a sample a number of particles will be brought to a superposition
state. This number will be proportional to the intensity of radiation. One would just see
deviations from the quantized value of the current proportional to the radiation inten-
sity.

3.3. TOPOLOGICAL CONSTRAINT ON THE MIXING MATRIX ELE-
MENT

In the previous Section, we have seen that a dynamical superposition shows a non-
topological response. Since it is not an eigenfunction of a Hamiltonian. In this Section
we consider the static superpositions that are the eigenfunction of a stationary Hamilto-
nian. We consider a smooth N×N Hamiltonian H0+H ′ with N ≥ 2. The Hamiltonian H0

is assumed to be diagonalized giving rise to a bandstructure that includes topologically
non-trivial bands. The addition H ′ is a perturbation that is generally non-diagonal in
this basis. With this, the eigen-bands of the total Hamiltonian will be quantum superpo-
sitions of the eigenbands of the unperturbed Hamiltonian with well-defined energies. As
above, all the bands and the Hamiltonian are defined on 2-dimensional compact space
of parameters q1,2. Let us concentrate on two bands |ψ0,1(~q)〉 with different Chern num-
bers C0,1 = 0,1 introduced above.

We can choose different gauges for wavefunctions in these bands by multiplying it
with a phase factor χ(~q). By a proper choice of the gauge the topologically trivial band
|ψ0(~q)〉 can be made not only quasi-continuous but truly continuous. In distinction from
this the topologically non-trivial band |ψ1(~q)〉 cannot be made continuous everywhere.
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However, by a proper gauge choice it is possible to make it continuous within the Bril-
louin zone placing possible discontinuities on its boundary. We will stick to this conve-
nient gauge choice. The effective Hamiltonian in the subspace of those two bands H is
obtained by projecting H0 +H ′ on that subspace

H =
(
ε0(~q) t (~q)
t∗(~q) ε1(~q)

)
(3.18)

where the mixing matrix element

t (~q) = 〈ψ0|H ′(~q)|ψ1〉 (3.19)

is a continuous function inside the Brillouin zone by virtue of the gauge choice made.
We will prove now a general and important topological constraint imposed on t (~q):

if the Chern numbers of two bands are different, then for any H ′ there must exist a point
in ~q-space where the mixing matrix element vanishes

∃(q∗
1 , q∗

2 ) : t (q∗
1 , q∗

2 ) = 0 (3.20)

For simplicity, let us consider the case when the parameter space is a torus correspond-
ing to a Brillouin zone of a 2-dimensional crystal, generalization to other types of sur-
faces is straightforward. According to the general theory of characteristic classes, the
wavefunction with a nontrivial Chern number has to have a singularity at some point in
parameter space ~q ′. By choosing the gauge described above we have moved the singu-
larity of |ψ1(~q)〉 to the boundary of the 2-disc from which the torus is then obtained by
gluing the sides. The wavefunction is continuous inside the Brillouin zone then but not
periodic and the boundary conditions are given by

ψ(0, q2) = e iθ(q2)ψ(2π, q2), ψ(q1,0) = e iθ(q1)ψ(q1,2π) (3.21)

the winding of the phase θ(q1, q2) along the boundary yields precisely the first Chern
number. Then, according to (3.19) the mixing matrix element t (q1, q2) also acquires the
same phase winding along the boundary. Due to the discrete nature of this winding it
does not change upon smooth variations of the parameters, so one can smoothly deform
the contour on which the winding is defined. One will not be able to shrink this contour
to a point if t (q1, q2) 6= 0 everywhere since due to the conservation of the winding. In this
case one would obtain a discontinuity of t (q1, q2) at some point unless t (q1, q2) = 0 in
this point. So, this proves the topological constraint discussed.

3.4. TOPOLOGICAL TRANSITION AND BERRY CURVATURE DIS-
TRIBUTION

In this Section we consider the avoided crossing of two bands of different topology. We
assume that the values of the mixing matrix elements in (3.18) t (~q) are small in compar-
ison with typical width of the bands ε0,1(~q). More precisely,

|t (q1, q2)|¿ max
~q

ε0,1(~q)−min
~q
ε0,1(~q) (3.22)
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We would like to move the energies of the bands with respect to each other. Let us
assume that both energies depend on an additional parameter η

ε0,1(~q) = ε0
0,1(~q)±η (3.23)

As an example of a concrete physical situation where it can be realized one can consider
a bilayer material with weak tunnel coupling between the layers. The bands ε0 and ε1

are situated in different layers, weak tunneling is responsible for matrix mixing elements
and to 2η corresponds to the difference of electrostatic potentials between the layers that
can be induced by a perpendicular electric field.

We see that at sufficiently large |η| the unperturbed band energies never cross: η→
−∞ ε0(q1, q2) < ε1(q1, q2) for all (q1, q2), for η→+∞ ε0(q1, q2) > ε1(q1, q2) for all (q1, q2).
By changing η from large negative to large positive values we move the energies of the
bands with respect to each other and make them cross in a certain interval of η.

Let us consider how the Chern numbers of the eigenbands of (3.18) change upon
changing η. When the energies of the unperturbed bands do not cross at any point
(|η| → +∞) the mixing can be neglected and the Chern numbers of the eigenbands the
same as without mixing. However, we see that the topological configurations of the
bands are different for η→ ±∞. At η→ −∞ the topological charge is concentrated in
the lower band while it is transfered to the upper band when η→+∞. We conclude that
the topological transition must occur upon the band crossing.

The crossing of the bands is generally avoided at a given value of η. The unperturbed
bands cross at the lines where ε0(q1, q2) = ε1(q1, q2), and the area of the space of (q1, q2)
is separated into parts by these lines. Except for the close vicinity of these lines, the
wavefunctions are expected to be close to with the unperturbed ones since the mixing is
small. At the lines the crossings are generally avoided and the bands do not actually cross
(see Fig.3.1) being separated by an energy difference at least 2|t (~q)|. The bandmixing is
strong in a narrow strip that includes the lines. The typical width of the strip can be esti-

mated as |δ~qM | ' | t (~q)
∂(ε1(~q)−ε0(~q))/∂qα

|. The Chern numbers can be ascribed to the resulting

lower and upper energy bands and do not change while the crossing is avoided.
There is however a critical value of η = ηc at which the crossing lines intersect the

special point ~q∗ mentioned in the previous Section. At this point |t (~q∗)| = 0 and the
crossing is not avoided. Two bands are connected at the point ~q∗ and become a single
band with the topological charge 1. This is the point of topological phase transition.

In the rest of the Section we consider the distribution of the Berry curvature in the
~q-space for the situation of the band crossing. The Chern number is proportional to the
integral of the Berry curvature over the space. A naive consideration would neglect the
small mixing, so the Chern number of the eigenband reduces to the sum of integrals of
Berry curvatures of the unperturbed bands over the corresponding regions. However,
this sum is by no means integer.

So motivated, let us consider the situation in detail. Let us assume that the condition
for the crossing of the unperturbed levels ε0 = ε1 is satisfied along a single closed line in
the (q1, q2) space (see Fig.3.1). Then, under the assumptions described above away from
this line the wavefunctions should approach the non-mixed functions up to a phase fac-
tor |ψ±(q1, q2)〉→ e iχ0,1(q1,q2)|ψ0,1(q1, q2)〉. We denote these areas as D1,2. We denote the
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Figure 3.1: Right: separation of the (q1, q2) parameter space into 3 regions before the topological transition:
D1 where ε1 < ε0, D2 where ε1 > ε0 and a narrow strip R around the line ε1 = ε0. The width of the strip is
determined by the value of mixing t in (3.18). Oriented boundaries of D1,2 are denoted as L1,2. Left: after the
transition

values of the Berry curvature integrals over these areas as

I j
i = 1

2π

∫
Di

B ( j )
12 d q1d q2 (3.24)

j = 0,1 labeling the unperturbed bands. If we neglect a narrow area that encloses the
energy crossing line (denoted as R in Fig.3.1). the "Chern numbers" of the upper (C̃+)
and lower (C̃−) bands do not reduce to integers

C̃+ = I (0)
1 + I (1)

2 6=C1 = 1 = I (1)
1 + I (1)

2 (3.25)

C̃− = I (1)
1 + I (0)

2 6=C0 = 0 = I (0)
1 + I (0)

2 (3.26)

in general, which seems to contradict the general topology statement.
This paradox is resolved by considering the Berry curvature in region R. There, the

bands are strongly mixed and thus this narrow region brings a finite contribution to the
Chern number so that the typical Berry curvature in this region is∼ |δ~qM |−1, that is much
bigger that the typical Berry curvature in the regions D1,2. We denote the contributions
from the region R as

I R
± = 1

2π

∫
R

B±
12d q1d q2 (3.27)

The true topological charges C± of the eigenbands |ψ±〉 are

C+ = I (0)
1 + I (1)

2 + I R
+ (3.28)

C− = I (1)
1 + I (0)

2 + I R
− (3.29)

and must be integer.
To see that we shall evaluate I R

± . In order to do this, we consider the Berry connec-
tions of the superpositions. It is defined as A±

α = i 〈ψ±|∂qαψ±〉. For two superpositions
under consideration, |ψ±〉 = a±|ψ0〉+b±|ψ1〉 where superposition coefficients a±,b± are
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obtained by diagonalizing (3.18). We express the connections in terms of superposition
coefficients

A±
α = i a∗

±∂qαa±+ i b∗
±∂qαb±+|a±|2 A(0)

α +|b±|2 A(1)
α +

+ (i a∗
±b±〈ψ0|∂qαψ1〉+ c.c) (3.30)

We see that in addition to the weighted sum of connections there are extra contributions
to A±

α. We will see that they are responsible for the resulting Chern numbers being in-
teger. At distances from the crossing line that À |δ~qM | but still much smaller than the
typical size of the Brillouin zone, the coefficients a− and b+ vanish in D1 and the coeffi-
cients a+ and b− vanish in D2 (see Fig.3.1). With this we obtain the following asymptotics
for ~q ∈ D1 {

A+
α = i∂qα (log a+)+ A(0)

α

A−
α = i∂qα (logb−)+ A(1)

α

(3.31)

and for ~q ∈ D2 {
A+
α = i∂qα (logb+)+ A(1)

α

A−
α = i∂qα (log a−)+ A(0)

α

(3.32)

We denote the contour integrals of the Berry connections over two oriented boundaries
Li =−∂Di of the regions Di

J j
i =− 1

2π

∫
Li

~A j ·d~q (3.33)

It is crucial to note that in the absence of singularities of all the functions away from
the boundary of the (q1, q2)-space one may use the Stokes theorem to reduce the sur-

face integrals of the Berry curvature I j
i to the contour integrals of the Berry connection.

Applying this we express the contributions of Di in terms of the contour integrals (3.33){
I j

1 = J j
1

I j
2 = J j

2 +C j

As for the contributions from region R, they are expressed in terms of I j
i and the con-

tour integrals of the gradients of the phases of superposition coefficients (the latter holds
since |a−|, |b+|→ 1 in D2 and |a+|, |b−|→ 1 in D1)

I R
+ = 1

2π

∫
L1

~A+ ·d~q + 1

2π

∫
L2

~A+ ·d~q =

=−I (1)
2 +C1 − I (0)

1 + i

2π

∫
L2

d~l ·~∇ logb++

+ i

2π

∫
L1

d~l ·~∇ log a+ (3.34)

I R
− = 1

2π

∫
L1

~A− ·d~q + 1

2π

∫
L2

~A− ·d~q =

=−I (0)
2 +C0 − I (1)

1 + i

2π

∫
L2

d~l ·~∇ log a−+ (3.35)
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+ i

2π

∫
L1

d~l ·~∇ logb− (3.36)

The last two terms in Eqs. (3.36) and (3.34) are integer multiples of 2π since they are
equal to the sum of the windings of the phases of superposition coefficients along the
closed contours L1,2. In order to compute these phases, we diagonalize the effective
Hamiltonian in the vicinity of the crossing line

H (eff) =
(
ε t
t∗ −ε

)
(3.37)

where the small energy difference is ε = (ε0 − ε1)/2, the limits ε/|t | → ±∞ bring us to
the region D1, D2 correspondingly. We approximate the mixing matrix element by its
value exactly at line disregarding its dependence on ε. We diagonalize (3.37) to find two
eigenfunctions |ψ±〉 = a±(ε)|ψ0〉+b±(ε)|ψ1〉. To remove the ambiguity of the phases we
will choose the phase of |ψ+〉 to coincide with the phase of |ψ1〉 and the phase of |ψ−〉 to
coincide with the phase of |ψ0〉 in the region D2 so that

a−(−∞) = 1, b+(−∞) = 1 (3.38)

Diagonalizing (3.37) with the phase fixing conditions (3.38), we obtain the superposition
coefficients in the region R{

b−(ε) =
a−(ε) =

1√
|t |2 + (ε+

√
|t |2 +ε2)2

−t∗(ε+
p
ε2+|t |2)

|t |
|t |

{
b+(ε) =
a+(ε) =

1√
|t |2 + (−ε+

√
|t |2 +ε2)2

√
|t |2 +ε2 −ε

t

With this we can find their asymptotics at ε→+∞ that correspond to the values of su-
perposition coefficients on L1

b− →−t∗/|t |, a+ → t/|t | (3.39)

with this one can compute the last contributions in (3.36) and (3.34)∫
L2

d~l ·~∇ log a− = 0 =
∫

L2

d~l ·~∇ logb+ (3.40)

i

2π

∫
L1

d~l ·~∇ log a+ =− i

2π

∫
L1

d~l ·~∇ logb− =

=
∫

L1

d~l ·~∇ log t = w (3.41)

where we denoted the winding of the phase of the mixing matrix element along L1 as w .
Before the transition when the point ~q∗ is outside L1 we have w = 0. After the transition
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by definition of the mixing matrix element (3.19) the value of w coincides with the value
of C1 with the opposite sign. Then from Eqs. (3.36), (3.34), (3.40), (3.41) we obtain

C+ = 1+ w

2π
, C− =− w

2π
(3.42)

So, in the case before the transition we have

C+ = 1, C− = 0 (3.43)

and after the transition
C+ = 0, C− = 1 (3.44)

as shown in Fig.3.1. The above reasonings can be straightforwardly generalized to the
crossing of two bands with arbitrary Chern numbers m,n. We note that in this case the
mixing matrix element has |n −m| zeroes, so we expect |n −m| phase transitions upon
the crossing.

3.5. MANY BANDS: GENERAL PROPERTIES OF THE PHASE DIA-
GRAMS

In this Section, we consider the topological phases and the transitions between the phases
for an arbitrary number of bands N . Let us assume that the bandstructure depends on
M additional parameters. At arbitrary point in the space of M parameters the bands do
not cross and can be sorted in the order of increasing energy. The first Chern numbers
of each band are well-defined. With this, we define a topological phase as an enumer-
ation of the first Chern numbers of the bands in the order of ascending energy. It is
convenient to describe it with a Greek letter milti-index that consists of enumeration of
the first Chern numbers of the bands in the order of ascending energy (e.g. β ≡ {ni },
i = 1, .., N ).

To achieve a 2-band generic crossing one has to tune 3 independent parameters[17],
two of them might be quasi-momenta. Therefore, the band crossings occur in a (M −1)-
subspace of the space of additional parameters and this is a subspace of the topological
transition points.

For many bands there can be the singularities of higher order, e.g. 3- and 4-bands
crossing. They occur in the subspaces of dimension M −6 and M −13. We restrict our
consideration to smaller dimensions where all transitions correspond to pairwise cross-
ings of the bands.

We start with M = 1. Two quasi-momenta and single additional parameter form a 3-
dimensional parameter space. The 2-band crossings correspond to isolated Weyl points
in this 3-dimensional space. These points are topologically stable bearing a topological
charge related to the point-like divergence of the 3-dimensional Berry curvature. Two
bands exchange Chern number 1 upon the change of the additional parameter. Let us
note that the crossings of different pairs of the bands bear distinct topological charges.
We will call them colors: there are N −1 distinct colors. Generically the positions of Weyl
points do not coincide. The accidental coincidence of the positions of two Weyl points
corresponding to two pairs with one mutual band would lead to a 3-band crossing at
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Figure 3.2: Triple points are generically absent in the phase diagrams under consideration. The critical points
are quadruple with 4 phases meeting at the point. There are two types of the quadruple points. a) Type-I:
crossing of the lines of the same color. always connects three different phases. The crossing point is stable
upon small variations of parameters. The exchange of Chern number by 1 guarantees that two of the four
phases are the same and the only possibility for phases is: A = (...,ni ,ni+1, ...), B = (...,ni ±1,nn+1 ∓1, ...) and
C = (...,ni ∓1,ni+1 ±1, ...). b) Type-II: crossing of the lines of different colors. All 4 phases are different. There
may be several options for those phases depending on colors and signs of Weyl points, e.g.: A = (...,ni , ...,n j , ...),
B = (...,ni −1,ni+1+1, ...,n j , ...), C = (...,ni , ...,n j −1,n j+1+1, ...) and D = (...,ni −1,ni+1+1, ...,n j −1,n j+1+1)

this mere point. As discussed, that we do not consider. The phase diagram consists
of intervals separated by the projections of the Weyl poins onto the axis of additional
parameter. This implies the following rule: the phase transition cannot occur between
two arbitrary phases, since the transitions involve the Chern number exchange between
neighboring bands ({...,ni ,ni+1, ...} ↔ {...,ni +1,ni+1 −1, ...})

Let us consider M = 2 and phase diagrams in the space of two additional parame-
ters s1,2. Weyl points develop into singularity lines in the resulting 4-dimensional space.
These lines come in distinct colors. The phase diagram is obtained by the projection of
these lines onto (s1, s2) plane. Therefore, the critical points where more than two phases
coexist, are quadruple (see Fig.3.2). In such a critical point there are two 2-band cross-
ings in the Brillouin zone. Generically these crossings occur at different ~q .

There are two types of critical points. Type-I corresponds to the crossing of two lines
with the same color (Fig. 3.2(a)). Since each line corresponds to the exchange of Chern
numbers by 1 in the neighbouring bands, 2 of the 4 phases meeting at the point must be
the same. For instance, two identical phases A = (...,ni ,ni+1, ...) and two different ones:
B = (...,ni ±1,nn+1∓1, ...) and C = (...,ni ∓1,ni+1±1, ...) (see Fig.3.2). If we consider M > 2
and give small variations to extra parameters (s3, etc), these point will be stable with
respect to these small variations of extra parameters. However, upon the larger variation
of at least two extra parameters one can annihilate two 2-band crossings and thereby
eliminate the critical point. Type-II corresponds to the crossings of the lines of distinct
colors. In this case all 4 phases must be distinct. These points are even more stable
than Type-I points. The Type-II crossing may change upon changing 4 extra parameters.
More are needed to change the crossings of the lines of more distinct colors.

The most common features of the usual phase diagrams (e.g. for not topological
phase transitions[13]) are very distinct from the ones under consideration. In that case
the critical points in 2-dimensional parametric space are triple.

3.6. EXAMPLE: BILAYER HALDANE MODEL
To illustrate the above general considerations, we investigate the phase diagrams of a bi-
layer Haldane model. The Haldane model[18] for a single layer describes electrons in a
periodic hexagonal lattice with two orbitals per site, ai i = 1,2,3 being the nearest neigh-
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bor vector distances and bi being the next to nearest neighbor vector distances in the
lattice. The Hamiltonian is a ~q-dependent 2×2 matrix, the matrix structure describing 2
sublattices in hexagonal lattice, and reads

HH =
{

M +2tnnn

3∑
j=1

sin~q ·~b j

}
τz+

+ tn

{
3∑

i=1
cos~q ·~aiτx − sin~q ·~aiτy

}
(3.45)

M being the parameter corresponding to a mass coefficient, t (η)
n is the real amplitude

of the next-neighbor hopping and a purely imaginary next-nearest neighbors hopping

amplitude t (η)
nnn . The Hamiltonian gives rise to two bands that are topologically triv-

ial provided |tnnn | < |M/(3
p

3)| and the lower and upper bands have Chern numbers
−sgn(tnnn) and +sgn(tnnn) correspondingly for[18] |tnnn | > |M/(3

p
3)|. The band cross-

ings occur at tnnn =±M/(3
p

3) occur at high symmetry at the boundary of the Brillouin
zone where C3 rotational symmetry is preserved.

The phase diagram for the single layer model was investigated previously[18]. The
phase diagram possessed two critical points of Type-I. According to the general analysis
done in Sec3.5 those points are stable upon small variations of parameters of the model.

Stacking two layers together, arranging an energy shift and a tunnel coupling be-
tween the two will give rise to (avoided) band crossings and the associated topological
transitions that we investigate. We put the layers exactly on the top of each other, exactly
matching the site positions in lateral directions. This preserves the original C3 rotational
symmetry. We only take into account the tunneling between layers for the nearest neigh-
bors. The Hamiltonian of the bilayer model in use is thus a 4×4 matrix

Ĥ =
(

H (1)
H T

T† H (2)
H

)
(3.46)

the block structure is in the space of 2 layers. Each diagonal block is a single layer Hal-

dane Hamiltonian with M (η), t (η)
n , t (η)

nnn (η= 1,2) and energy shifts (η−1)× s.
The quasi-momentum-independent tunneling operator is diagonal in the sublattice

space

T =
(
Ta 0
0 Tb

)
(3.47)

We concentrate on the case arg(Ta) 6= arg(Tb). If the phases of these two tunneling am-
plitudes are the same, the model possesses an extra degeneracy and does not suit to
illustrate the generic situation. The degenerate case is addressed in Sec.3.8.

This Hamiltonian describes N = 4 bands. The bandstructure depends on M = 10

additional parameters: pairs of parameters describing the layers t (η)
n , t (η)

nnn and M (η), ab-
solute values of Ta,b and their mutual phase difference and the energy shift s. For phase
diagrams we need to choose two independent parameters. A natural parameter is the
energy shift s and the second natural parameter would be the bandwidth W . With this

t (η)
n /a(η) = t (η)

nnn/b(η) = M (η)/c(η) =W (3.48)
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where we fix the coefficients a(η),b(η),c(η) to some values ∼ 1. For some diagrams we
implement an alternative choice where M (η) are fixed.

One has to find the phase separation lines. To this end, one has to find the positions
of the band crossings in a 4-dimensional parameter space q1,2, s and W . For the Hamil-
tonian (3.46), this looks like a challenging numerical task. In fact, it is not. Owing to C3

symmetry, a band crossing in an arbitrary point of the Brillouin zone would come in a
triple. The associated phase transition would correspond to exchange of Chern num-
bers of 3 topological charges between the bands. This is an interesting possibility we
have searched for yet didn’t find it for the model under consideration. A possible rea-
son for that is a general difficulty to achieve high topological numbers. In fact, in our
examples we didn’t see Chern numbers bigger than 1.

Another possibility is to have the band crossings in the high-symmetry points K or
K ′. The associated topological transitions correspond to the exchange of unity topolog-
ical charge, as in generic case. In these points, the eigenenergies can be readily found
analytically,

ε1,2 = s +S

2
±

√
|Ta |2 +

(
s + A

2

)2

ε3;4 = s −S

2
±

√
|Tb |2 +

(
s − A

2

)2

(3.49)

where we define
S = M (1) +M (2) −3

p
3σ(t (1)

nnn + t (2)
nnn) (3.50)

A = M (2) −M (1) −3
p

3σ(t (2)
nnn − t (1)

nnn) (3.51)

σ = ± corresponding to K and K ′, respectively. In this model the transition lines come
in three colors. We associate the blue color with the crossing of the two lowest in energy
bands, green color with that of the second and third band and the red color with that of
the third and forth. The red lines emerge at

ε1 = ε3 (3.52)

for the blue lines emerge at
ε2 = ε4 (3.53)

and the green ones emerge either emerge at ε1 = ε4 or ε2 = ε3. At a given W the 4 condi-
tions above can be regarded as equations for s. Only 2 of 4 equations can have roots at
either K or K ′. This implies that at a given W one finds 0 or 2 or 4 phase transitions at
different values of s.

The examples of the phase diagrams are presented in Figs. 3.3, 3.4, 3.5. In all these
diagrams we see the features predicted in Sec.3.5. The critical points are all quadruple.
There are Type-I critical points where 3 phases coexist and Type-II critical points where
all 4 phases are different.

In the upper panel of Fig. 3.3 we see two red transition lines separating single do-
main of phase α from the phases β and β correspondingly. Upon tuning a parameter
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Figure 3.3: Examples of the phase diagrams for the bilayer Haldane model. The phase transition lines of three
colors (see the text) correspond to the crossings at K point (dashed) or K ′ (solid). The parameters are: b(1) =
b(2) = 0.5, Ta = 0.5, Tb = 2+0.2i . Different choices of masses are made for the upper and lower panel, upper:
M (1) = M (2) = 0.8 and lower: M (1) = M (2) = 0.55. The phases are given by enumeration of Chern numbers: α=
(0,0,0,0), β = (0,0,−1,1), γ = (0,−1,0,1), δ = (−1,1,−1,1), ζ = (−1,−1,1,1), ω = (−1,0,0,1). Overline indicates
the change of sign of all Chern numbers, e.g δ = (1,−1,1,−1). The extra region of the phase α between two
critical points seen in the lower panel disappears upon variation of the masses.
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Figure 3.4: Examples of the phase diagrams for the bilayer Haldane model. Choice of parameters −3b(1) =
b(2) =−0.3, Ta = 3, Tb = 1.5+0.2i and in the upper panel: 2M (1) = M (2) = 4.2 and in the lower panel: 2M (1) =
M (2) = 3. In addition to the phases in Fig.3.3 we also have: ρ = (−1,1,0,0), π= (−1,1,1,−1), λ= (0,−1,1,0). The
regions of the phases λ,λ,α in the center of the Figure disappears upon the variation of the masses.
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Figure 3.5: Examples of the phase diagrams for the bilayer Haldane model. Choice of the parameters: M (η) =
c(η) ∗W , c(1) = c(2) = 3.6, Ta = 1+ 0.3i , Tb = 0.3+ 1.5i and for upper panel b(1) = −b(2) = 5, for lower panel
b(2) =−10. In the upper panel only the Type-I critical points are seen at s = 0 and W ≈±0.05. Upon variation
of b(2) the blue and red solid lines interchange at positive as well as at negative W . This leads to the emergence
of the Type-II critical points where the lines of different color cross and the non-compact regions of the phases
δ and δ.
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continuously, we can make these 2 lines intersect. Two Type-I critical points are formed
at s =≈±2 and W = 0 in the lower panel of Fig.3.3. We also see three domains of phase α
instead of one as in the upper panel.

With 3.4 we illustrate more complex scenarios of this kind. In the center of the top
panel we see isolated compact domains of the phases λ,λ coexisting with the phase α.
Upon tuning a parameter continuously, we can make these domains disappear. In the
lower panel these domains are absent. We stress that in this case two compact transition
lines disappear together with a pair of Type-I critical points.

We illustrate another scenario with Fig. 3.5. There are two main distinctions between
upper and lower panel. The first one is the presence of non-compact domains of phases
δ,δ in the lower panel contrary to the case of upper panel. This is in contrast to the case
of the Fig.3.4 where the disappearing domains were compact. The second distinction
between panels is the presence of the Type-II critical points in the lower one in addition
to the Type-I critical points in the upper one. Both changes are produced upon con-
tinuous variation of the parameter of the model. We stress that in this case the Type-II
crossings are not produced at finite values of parameters but come from infinitely large
positive and negative W . This is in contrast to the case of Fig.3.3 where the critical points
were produced pairwise at a given point on the phase diagram.

3.7. SUMMARY AND CONCLUSIONS
In this Chapter, we address the topological properties of superpositions of the quantum
bands. This involves definition and values of the topological numbers of the superposi-
tion of bands.

The naive expectation for the Chern number of the superpositions of the states to
also be a weighted sum of Chern numbers should fail due to the general theory of char-
acteristic classes. Therefore, this is a problem of general interest and we investigate the
topological properties of the superpositions created in different ways.

The first way is to create the dynamic superposition by resonant quantum manipulation[16]
and investigate its time evolution. Thus we can compute the transmobility of the particle
initially prepared in the superposition state. In this case we find that the transmobility
reduces to the weighted sum and is non-topological therefore. This can be traced to the
fact that the dynamic evolution of the state is generally not periodic. The second way
to create a superposition is to add a nonzero mixing matrix elements mixing the bands.
We have considered the topological properties of so created static superposition of two
states. In this case we investigate in detail how the integer values of the Chern num-
bers of the superposition states are restored in accordance with the general theory of
characteristic classes. We show a general and important property of the matrix element
between two topologically distinct phases that it must vanish at some point in parameter
space. This allows the topological transitions to happen.

Within the approach of investigation of static superpositions we also analyze the
properties of many-band Hamiltonians. If the number of parameters is not large then it
is not possible generically to tune the system to the more than two bands crossing point
in parameter space. Therefore we conclude that in this case the topological properties of
separate bands in terms of the first Chern numbers are sufficient to describe the system
completely. More precisely, all the relevant information about the topological properties
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can be presented in the phase diagram. Those show the quadruple points which is in
contrast to usual phase transitions where triple points are common[13]. These quadru-
ple points come in two types: the ones that connect 3 or 4 different phases. The Type-II
points can be continuously annihilated pairwise or sent to infinity by tuning an addi-
tional parameter. The points of the Type-I can in addition to those mechanisms be an-
nihilated by tuning two opposite topological charges in 3-dimensional parameter sub-
space to the same point. This requires one additional parameter to tune. Therefore, all
the crossings are stable with respect to small deviations of the parameters.

Finally, we investigate in detail the phase diagrams for the bilayer Haldane model
at some specific choices of parameters. We see the realization of the general features
discussed above. In addition, the disappearance of the whole compact region of the
topological phase can be achieved by tuning the parameters.

3.8. APPENDIX A: EXTENDED SINGULARITIES IN THE BILAYER

HALDANE MODEL
In this Appendix we investigate a particular choice of the parameters in Eq.(3.46) when
arg(Ta) = arg(Tb). This case is somewhat degenerate. In the generic case described in
the main text one only has Weyl point singularities in the 3-dimensional space of q1,2

and one additional parameter. Those are situated in the corners of the Brillouin zone
K ,K ′. Contrary to this, in the degenerate case we find that there is a possibility to have
extended 1-dimensional singularities in the 3-dimensional parameter space. Moreover,
these can be situated away from the points K ,K ′. We note that the case |Ta | = |Tb | is
even more degenerate and opens a possibility to have 2-dimensional singularities in the
3-dimensional parameter space. We do not consider this case here. We also note that
the extended singularities are present in the non-generic case, so they can be removed
by complicating the model. We report this cone-formation mechanism in this Appendix
anyway.

In order to investigate the possibility of the extended singularities away from high-
symmetry points K ,K ′ in ~q-space for a Hamiltonian (3.46) it is convenient to rewrite the
diagonal blocks (3.45) as spin Hamiltonians which is always possible for a 2×2 matrix,
so

H (η)
H = ~B (η)~σ (3.54)

where the "magnetic fields" have components ~B (1) = |B (1)|(sinθcosφ, sinθ sinφ,cosθ)
and ~B (2) = |B (2)|(sinθ′ cosφ′, sinθ′ sinφ′,cosθ′). The lengths of B (1,2) and the angles are
the functions of initial parameters in (3.45). The peculiarity of our model is that φ = φ′
always, which directly follows from (3.45). One can diagonalize these diagonal blocks in
(3.46) applying a block-diagonal unitary transformation to (3.46). Upon doing that the
upper off-diagonal block is transformed

T̃ =
(

cos θ
2 cos θ′

2 Ta + sin θ
2 sin θ′

2 Tb cos θ
2 sin θ′

2 Ta − sin θ
2 cos θ′

2 Tb

sin θ
2 cos θ′

2 Ta −cos θ
2 sin θ′

2 Tb sin θ
2 sin θ′

2 Ta +cos θ
2 cos θ′

2 Tb

)
(3.55)

where we have used thatφ=φ′. We see from (3.55) that if the phases of Ta,b are different,
the matrix elements never vanish, so we always expect avoided crossing away from K ,K ′.
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Figure 3.6: Singular manifolds in the~q-space of the model Eq.(3.46) in the degenerate case. These are obtained
by projection of the Weyl points and extended line singularities from the 3-dimensional space of parameters
q1,2,W (see main text) onto the ((q1, q2))-plane. The extended singularities can be present in the case when

Ta,b ∈ ℜ. Choice of parameters −3b(1) = b(2) =−0.3, Ta = 1, Tb = 0.5, 2M (1) = M (2) = 2.2, µ=−2, W ∈ [−4;4].
The projections of the Weyl points are situated in the corners of the Brillouin zone and shown as black dots
(point K ) and black crosses (point K ′). Extended singularities are shown in red.

If the phases are the same it opens a possibility to set some matrix elements to zero,
so the singularities away from high-symmetry points become possible. In fact, if the
phases coincide one can gauge them out by another unitary transformation of (3.46)
and bring it to a symmetric form. Due to this additional symmetry there is a possibility
to have extended singularities in 3-dimensional parameter space. We indeed see this
cone-generation (see Fig.3.6).
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4
BRAIDING AND ALL QUANTUM

OPERATIONS WITH MAJORANA

MODES IN 1D

We propose a scheme to perform braiding and all other unitary operations with Majorana
modes in 1D. The scheme is based on resonant manipulation involving the first excited
state extended over the modes. The detection of the population of the excited state also
enables initialization and read-out. We provide an elaborated illustration of the scheme
with a concrete device.
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4.1. BRAIDING AND ALL QUANTUM OPERATIONS WITH MAJO-
RANA MODES IN 1D

The paradigm of topological quantum computation [1, 2] provides an elegant solution
to the most important problem in quantum manipulations: decoherence problem. It
implements a topologically protected degenerate ground state as a computational basis.
The degenerate state can be visualized as a set of localized anyons while unitary opera-
tions are performed by adiabatic exchange of the anyons, that is, braiding of their world
lines [2]. The braiding is feasible in 2D and impossible in 1D since anyons should not col-
lide in the course of operation. The intrinsically slow speed of adiabatic manipulation,
as well as the difficulties of read-out and initialization of the protected states, should be
compensated by the intrinsic fault-tolerance of the operations.

Of all numerous physical realizations of topologically protected degenerate ground
state proposed, the Majorana zero-energy states in hybrid semiconductor-superconductor
devices[3, 4] seems to be the most technologically advanced and elaborated. After pio-
neering experiments [5], an enormous outgoing research effort [6–8] resulted in consid-
erable improvement of the technology and new observations, yet the quantum coher-
ence in degenerate subspace still awaits experimental demonstration [9]. An obvious
difficulty is that Majorana modes are realized in 1D nanowires, making direct braiding
impossible. In principle, the 1D wires can be combined into a 2D network. There are
elaborated schemes to realize braiding in various nanowire networks, for instance, in T-
or Y-junctions [10–12]. A enormous technological challenge to make such networks with
necessary controls is being addressed [13], but the progress is slow so far.

In this Chapter, we propose a scheme to realize Majorana braiding in a single 1D
nanowire. Eventually, with this scheme one can realize any unitary transformation in
the degenerate subspace, as well as initialization and read-out in this subspace. The
scheme uses resonant manipulation technique, the resonance being between the degen-
erate subspace and the lowest excited state that extends over all Majorana modes. The
initialization and read-out is possible if the population of the excited state is detected.

Strictly speaking, the scheme compromises the quantum computation paradigm since
the topological protection fails during the operation. The system is subject to relaxation
while being in the excited state. There are standard means to reduce this only source
of decoherence, and make the operation time shorter than the corresponding relax-
ation time. It is important that the protection is preserved between the operations. This
makes the scheme an ideal tool to demonstrate persistence of quantum superpositions
in the degenerate subspace, and quantify the macroscopically long decoherence time
expected. In the final part of the Chapter, we discuss the use of the scheme in wider con-
text. We illustrate the scheme on the example of a minimum concrete setup, at general
level as well as with a concrete microscopic model and numbers.

The setup under consideration (Fig. 4.1) encompasses a finite 1D wire brought in
proximity with a superconductor. It hosts 4 localized Majorana modes, two at the ends
and two in the middle. This is achieved by a gap inversion in the middle section of the
wire by a nearby gate. The wire sections at the sides are thus in topological regime of
parameters while the middle section is topologically trivial. It is important for us that
the first excited state right above the gap extends over the whole wire. This is achieved
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Figure 4.1: The setup for the resonant manipulation of Majorana modes. The proximitized nanowire (orange
rectangle) with the inverted gap in the middle section hosts four Majorana modes (γ1−4) formed on the edges
of the sections of different topology. The four gates in the vicinity of the modes are used to apply a pulse
sequence for the resonant manipulation, the resonance being with the lowest excited state (red line) extented
over the modes. A quantum dot on the left can be used to detect the population of the excited state.

by matching the absolute values of the gap in the middle and side sections by the gap in-
verter gate. To achieve efficient resonant manipulation, we require four more gates near
the positions of Majorana modes. This is all we need for resonant manipulation. To de-
tect a possible quasiparticle in the excited state, we put a quantum dot nearby (it can be
in the same nanowire). The addition energy of the dot is tuned such that a quasiparticle
in the excited state tunnels to the dot changing its charge, which is measured. For ef-
fective detection, the tunnel rate should exceed the relaxation rate. The tunnel coupling
can be switched on only for duration of measurement.

To start with, let us understand the basis involving the Majorana modes and the first
excited state. Let cL = (γ1 + iγ2)/2, cR = (γ3 + iγ4)/2 be the quasiparticle annihilation
operators in Majorana subspace, and cex to be that in the excited state. A basis state is
defined as |nL ,nR〉|nex〉, where nL ,nR ,nex = 0,1 are the respective occupation numbers.
We thus have 8 states. They separate into two groups of four corresponding to two possi-
ble total parities. There can be no coherence between the states of different parities. We
define the bases as follows:

Φe = {|00〉|0〉, |11〉|0〉, |01〉|1〉, |10〉|1〉}, (4.1)

for the even parity, and

Φo = {|01〉|0〉, |10〉|0〉, |00〉|1〉, |11〉|1〉}, (4.2)

for the odd parity. The first two states for each parity form Majorana subspace. We can
thus realize a Majorana qubit for each parity. We would like to perform unitary opera-
tions in Majorana subspace. A particular unitary operation is a braiding of two Majorana
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modes defined as Ui j = 1p
2

(1+γiγ j ). For instance, the braiding of the second and the

third mode in the odd basisΦe is given by

U o
23 =

1p
2

(1+γ2γ3) = 1p
2


1 i 0 0
i 1 0 0
0 0 1 i
0 0 i 1

 . (4.3)

As we see, it is separated into blocks of Majorana and excited subspace, as these opera-
tions are independent. Since we wish to operate in Majorana subspace, the excited block
is irrelevant. The corresponding matrix in the even subspace is obtained from (4.3) by
the following transformation

U e =ΣyσyU o∗σyΣy . (4.4)

σy ,Σy being Pauli matricies acting within and over the blocks, respectively. Eventually,
this relation holds for all braidings as well as for any 4×4 matrix we consider here. So we
wish to perform braidings, as well as any unitary operations in Majorana subspace. This
task by its own is senseless unless we have means to initialize to a state in this subspace
and measure the result. Let us see how we can realize this by resonant manipulation.

A resonant manipulation is performed by applying the oscillating voltages to the
gates 1− 4 with the frequency matching the energy spacing. At constant amplitudes,
the general Hamiltonian in rotating wave approximation reads:

Hrm =
(
α1cL +α2cR +α3c†

L +α4c†
R

)
cex +h.c. (4.5)

The four complex coefficients α1−4, are in linear relation with the four complex voltage
amplitudes at the gates, so 4 gates suffice to control all coefficients. Applying a pulse of
duration t makes a unitary operation U = e−i Hrmt in 8-dimensional basis. The manip-
ulation conserves parity, so the matrix separates in two 4×4 blocks Ue ,Uo in the bases
Φe ,Φo . It is simple and important to show that these matrices satisfy the same relation
(4.4) as the braiding matrices.

Let us stress that our aim is to find a unitary transformation that works in Majorana
subspace only. To this end, we require a special form of the resulting U : that separated
in two 2×2 blocks, like in Eq. 4.3. In other words, the excited state should not be pop-
ulated at the end of the resonant manipulation if we start in Majorana subspace. This is
impossible to achieve with a single pulse. A key observation is that this can be achieved
combining several pulses. Two pulses with 8 complex parameters in total in principle
suffice to realize our aim: an arbitrary 2× 2 unitary transformation in Majorana basis.
We describe the concrete methods of the pulse design and give examples further in the
text.

Let us describe the protocol for initialization and read out starting from an unknown
state of unknown parity in Majorana subspace. We will show that this requires two res-
onant pulse sequences, that is, unitary transformations, and a measurement after each
sequence. We dub these sequences a developer and a fixer. To start with, let us assume
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Figure 4.2: Initialization and read-out in Majorana subspace is achieved by two resonant pulse sequences:
developer and fixer, and subsequent measurements of the excited quasiparticle. Upper(lower)case letters refer
to Majorana superpositions of odd(even)parity, prime indicates orthogonality, 〈a′|a〉 = 0. The measurement
outcomes are in square boxes. The protocol brings the system to the state |c〉 from an unknown state. The
probabilities of the measurement outcomes give the probabilities of the states |a〉, |a′〉, |A〉, |A′〉. See the text
for details.

that we start in a Majorana state of even parity. Let us understand the effect of the fol-
lowing 4×4 unitary transformation:

De = |B〉|1〉〈a|〈0|+ |b〉|0〉〈a′|〈0| (4.6)

+|B ′〉|1〉〈A|〈1|− |b′〉|0〉〈A′|〈1|.

Here, lowercase letters denote the Majorana states in the even subspace (|00〉, |11〉 or
their linear combination) while capital ones denote those in the odd subspace (|01〉,
|10〉 or their linear combination). The prime denotes a corresponding orthogonal state,
|a′〉 ≡ (iσy |a〉)∗, 〈a|a′〉 = 0 (note that iσy iσy |a〉 = −|a〉). If the initial state is |a〉, this de-
veloper brings the system to the excited subspace. The quasiparticle tunnels to the dot,
we measure outcome "1" and the system is in the state of the opposite parity, |B〉|0〉. (Fig.
4.2). If the initial state is orthogonal, no excitation occurs, we measure output "0" and
get to the state |b〉|0〉. We see that the developer can be used to measure the probabil-
ity of |a〉 if the initial parity is known to be even, and the final state is known from the
measurement result. However, the parity is generally unknown.

Let us see how the same developer works in the odd subspace. We apply Eq. (4.4) to
obtain:

Do = −|B ′〉|0〉〈a′|〈1|− |b′〉|1〉〈a|〈1|− (4.7)

− |B〉|0〉〈A′|〈0|+ |b〉|1〉〈A|〈0|.

We see that now the developer tries to distinguish between |A〉 and |A′〉, while the final
states for the same output are opposite: |b〉|0〉 for "1" and |B〉|0〉 for "0". Thus, we do
not know the final state if the parity is unknown, neither we know which state has been
measured.

However, the situation can be fixed if we apply another unitary transformation. While
this transformation does not depend on the result of the first measurement, it depends
on the desired parity of the final state. In any case, the incoming states of a fixer are the
same as the output states of the developer in the Majorana subspace. Let us consider the
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Figure 4.3: The concrete illustrative setup. The probability densities of eigenfunctions and the positions of
modulation gates 1−4 chosen at [0;10], [30;40], [55;65] and [90;100].

even fixer Fe first. Its representation for two parities reads:

F e
e = |c〉|0〉〈b|〈0|+ |C〉|1〉〈b′|〈0|+ (4.8)

+ |C ′〉|1〉〈B |〈1|+ |c ′〉|0〉〈B ′|〈1|,
F o

e = |c ′〉|1〉〈b′|〈1|+ |C ′〉|0〉〈b|〈1|− (4.9)

− |C〉|0〉〈B ′|〈0|− |c〉|1〉〈B |〈0|.

After the fixer, and the second measurement, the final state is always |c〉|0〉, this solves
the initialization task. If the outcomes of the first and second measurements are "11" or
"00", the initial parity was even. Otherwise, it was odd.

The odd fixer Fo has a similar structure,

F e
o = |C〉|1〉〈b|〈0|+ |c〉|0〉〈b′|〈0|+ (4.10)

+ |c ′〉|0〉〈B |〈1|+ |C ′〉|1〉〈B ′|〈1|,
F o

o = −|C ′〉|0〉〈b′|〈1|− |c ′〉|1〉〈b|〈1|+ (4.11)

+ |c〉|1〉〈B ′|〈0|+ |C〉|0〉〈B |〈0|.

In any case, the final state is |C〉|0〉. The measurement outcomes "11" and "00" manifest
even initial parity, "01" and "10" manifest odd initial parity. So both fixers not only solve
the initialization task: they determine the initial parity.

We see that the protocol described at the same time provides a measurement tool.
Suppose we are able to arrange an unknown state of unknown parity, and reproduce it on
demand. To characterize the state, one just repeats the protocol collecting the statistics
of outcomes. The probabilities of outcomes "11","00","10","01" give the probabilities of
the basis states |a〉, |a′〉, |A〉, |A′〉, respectively. The developer and fixer pulse sequences
can be designed and realized for any choice of the superpositions |a〉, |b〉, |c〉, |A〉, |B〉, |C〉.
In Supplemental Material 4.2, we provide the concrete choice example.

To show the feasibility of the setup and the suggested pulse sequence design, we
now specify a microscopic model and provide extensive numerical study for a concrete
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Figure 4.4: Designed two-pulse sequence for the braiding U23. The gate voltage amplitudes V1−4 times pulse
durations t1,2 are given by circle, plus sign, triangle and x-mark, respectively.

set of parameters. We make use of the Hamiltonian [3, 4] to model a semiconducting
nanowire with spin-orbit spectrum splitting, in the presence of applied uniform mag-
netic field B , and proximity-induced superconducting gap ∆. The gap inverter gate is
described by a coordinate-dependent potential µ(x) such that its values in the middle

and outer sections, µm ,µo satisfy the conditions of trivial B <
√
∆2 +µ2

m and non-trivial

B >
√
∆2 +µ2

o topology. The modulation gates are described by a time-dependent addi-
tion µ(x, t ) =∑

i Vi (t )Θ(x−xi )Θ(yi −x), xi , yi giving the start and end position of the gate
i (see Fig. 4.3). The Hamiltonian in use reads

H0 =
∫

d xΨ†(x)

[(
− 1

2m

∂2

∂x2 − iαSOIσz
∂

∂x
−µ(x)

)
τz

+Bσx +∆τx ]Ψ(x), (4.12)

Ψ(x) = {ψ↑(x),ψ↓(x),ψ†
↓(x),−ψ†

↑(x)}, .

ψσ(x) being the electron field operators.
We measure length and energy in units of (mαSOI )−1 and mα2

SOI , respectively. We
compute the spectrum and wavefunctions diagonalizing the discrete-in-space appox-
imation of the Hamiltonian (4.12), with the discretization step 0.2. We choose a rela-
tively long wire with length L = 100 and the material parameters are of the order of 1:
B = 3, |∆| = 2.5, µm =−1.91,µo =−1.34, see 4.2 for details. The transition between these
two values are smoothed at the lenght scale of 3, and the setup has been made slightly
asymmetric. The bulk energy gaps correspondig to these parameters are Ge = 0.146 and
Gm = 0.164, they are not precisely equal because of the finite size of the middle section.
With this, the lowest excited state at E1 = 0.175 is extended over the wire( see Fig. 4.3).
Higher excited states are situated at E2 = 0.180 and E3 = 0.187. For the resonant signal to
address the lowest excited state only, the inverse pulse duration should not exceed the
level spacing E2 −E1, this gives t > 103.

The wave functions are presented in Fig. 4.3. There are 4 Majorana localized modes
with the width ≈ 5. We neglect a marginal overlap between the states setting them at
zero energy. The wave function of the first excited state reminds the first particle-in-the
box state with noticeable dips owing to orthogonality with Majorana peaks, and is ex-
tended over the whole length of the wire. With these wave functions, we compute the
matrix elements of voltages applied to 4 gates whose positions are given in Fig. 4.3. This
gives as a 4×4 matrix M̂ that relates the voltage amplitudes and the resonant manipu-
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lation coefficients αi (Eq. (4.5)). To design a pulse sequence corresponding to a unitary
operation, we compute the resulting matrix depending on the parameters αi and time
duration of each pulse, and iteratively minimize inαi the distance between the resulting
and target matrix. Using the matrix M̂ , we convert to the gate voltage amplitudes. The
design for the braiding of the second and the third Majorana mode is presented in Fig.
4.4, extensive examples are to be found in 4.2.

To conclude, we propose a scheme that allows to realize braiding and all other uni-
tary operations, as well as the measurement and initialization, for a Majorana qubit in a
single 1D wire. It suits ideally to demonstrate macroscopically long coherence in Majo-
rana space. The topological protection fails only during the operation. We illustrate the
scheme with a concrete elaborated example.

Let us shortly present necessary discussions in a wider context. No experimental sys-
tem can be modelled with the accuracy we did. However, to design the pulse sequencies,
one only needs E1 and the matrix M : the latter can be determined from the analysis of
the spectra of the dressed resonant state at varying Vi . The resonance with the lowest
state only is essential since it minimizes dissipation. Moreover, the excitation to many
excited states is exponentially suppressed owing to destructive interference. The scheme
can be readily extended to more Majorana modes within the single wire. While this can
be done with a single state extended over the wire, but a simpler design would involve
separate excited states, each extended over a group of Majorana modes. This can be
achieved by proper profile of µ(x). At the moment, the technological efforts are aimed
to increase transparency of the barrier between the wire and the superconductor. As it is
shown, for instance, in [14] at sufficiently high transparency the wire is not described by
the Hamiltonian [3, 4] and eventually looses the localized excited states. So the moder-
ate transparency is required for experimental realization of our idea. The idea presented
may be also useful in the context of more traditional 2D Majorana braiding: one can set a
localized excited state, switch on a resonant field, and move the modes passing the state
to achieve the resonant manipulation and read out.

4.2. SUPPLEMENTAL MATERIALS
In this Supplemental Material, we present additional details and calculations regarding
the example setup under consideration, as well as concrete designs of unitary transfor-
mations for quantum manipulation, initialization, and measurement.

4.2.1. WAVE FUNCTIONS AND MATRIX ELEMENTS OF GATE VOLTAGES

To find the wave functions, we diagonalize numerically the Hamiltonian (4.12). Ow-
ing to BdG symmetry, they come in pairs with positive and negative energies. We fix
the phases of these wavefunctions in such a way that |ψ∗(E)〉 =σx |ψ(E)〉 and |ψ(−E)〉 =
−iτyσz |ψ(E)〉.

This suffices for the wave functions of the excited state, |ex±〉, ± corresponding to
positive/negative energy. More work is required for wave functions in Majorana sub-
space. Owing to a residual overlap of Majorana modes (see Section S5), the eigenfunc-
tions of the Hamiltonian are rather arbitrary linear combinations of the wave functions
corresponding to the modes. To establish a proper basis in the Majorana subspace, we
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proceed as follows. We take 4 Hamiltonian eigenfunctions with lowest (residual) ener-
gies, form a matrix of elements of the operator x in this 4-dimensional basis, and diag-
onalize it. The 4 eigenvalues correspond to 4 positions of the localized modes, and the
corresponding eigenvectors are those of the modes. Next, we pick up two modes (1 and
2) on the left, and diagonalize 2×2 matrix of the elements of an operator τz (any operator
with BdG symmetry would suffice). As the result, we obtain two eigenfunctions |L±〉 of
the Majorana quasiparticle on the left. Picking up two modes on the right (3 and 4), we
construct |R±〉.

Next, we compute the matrix elements of the perturbation Hrm brought by the gate
voltage modulations,

Hrm =−τz
∑

i
Vi (t )Θ(x −xi )Θ(y − yi ), (4.13)

xi , yi being start and end positions of the gate i . We rewrite Hrm in the second-quantization
form (Eq. 4.5) to the BdG form which allows us to express the coefficients αi in terms of
eigenstates of the BdG Hamiltonian with positive (+) and negative (−) energy eigenvalue,
and find the following relations for the matrix elements,

α1 = 〈L−|Hrm|ex+〉; α2 = 〈R−|Hrm|ex+〉; α3 = 〈L+|Hrm|ex+〉; α4 = 〈R+|Hrm|ex+〉. (4.14)

4.2.2. RELATION BETWEEN PULSE PARAMETERS AND GATE VOLTAGE AMPLI-
TUDES

The Hamiltonian for each resonant pulse is written in terms of resonant parameters
α1−4. In odd subspace, it reads:

H =


0 0 α4 α1

0 0 α3 −α2

α∗
4 α∗

3 0 0
α∗

1 −α∗
2 0 0

 (4.15)

Its form in even subspace is obtained from the relation He =−Σyσy H∗
o σyΣy .

To find the relation between the resonant parameters and the gate voltage ampli-
tudes, we evaluate Eqs. (4.14) for each Vi independently, and invert the corresponding
matrix. We obtain the linear relation Vi = Mi jα j where the 4×4 real matrix M is given by

M =


27.9300 −0.0009 −27.8803 0.0009
−5.8723 −0.0219 −5.8375 0.0219
0.0083 4.6067 0.0082 −4.5970
0.0002 −13.8756 0.0002 −13.8682

 (4.16)

4.2.3. PULSE SEQUENCES REQUIRED FOR BRAIDING
For 4 Majorana modes, there are six possible braiding matrices Ui j . We list here the
explicit form of these matrices in the odd subspace:

U o
13 =

1p
2


1 −1 0 0
1 1 0 0
0 0 1 −1
0 0 1 1

 (4.17)
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U o
12 =

1p
2


1+ i 0 0 0

0 1− i 0 0
0 0 1+ i 0
0 0 0 1− i

 (4.18)

U o
23 =

1p
2


1 i 0 0
i 1 0 0
0 0 1 i
0 0 i 1

 (4.19)

U o
14 =

1p
2


1 −i 0 0
−i 1 0 0
0 0 1 i
0 0 i 1

 (4.20)

U o
24 =

1p
2


1 −1 0 0
1 1 0 0
0 0 1 1
0 0 −1 1

 (4.21)

U o
34 =

1p
2


1− i 0 0 0

0 1+ i 0 0
0 0 1+ i 0
0 0 0 1− i

 (4.22)

As mentioned, their form in the even subspace is obtained by transformation (4.4) given
in the main text.

To design the corresponding pulse sequence for a given target matrix U , we consider
2 pulses of resonant field with the Hamiltonians given by (4.15),

Π2 = e−i H2t2 e−i H1t2 (4.23)

Π2 being the resulting matrix. We concentrate on the odd subspace. The resulting matrix

depends on 8 complex parametersα( j )
i t j , j = 1,2, t j being the pulse durations. We define

a distance in the space of unitary matrices,

D = Tr
(
(U −Π2)(U −Π2)†

)
. (4.24)

We mininize D iteratively in the space of α( j )
i t j starting a random initial point. If the

minimum is achieved at D = 0, we have the solution. If D 6= 0 at the minimum, we repeat
the procedure.

For all braiding matrices (4.17), (4.18), (4.19), (4.20), (4.21), (4.22) we obtain the re-

quired parameters α( j )
i t j with the relative accuracy ∼ 10−3. Using the matrix M given by

Eq. (4.16) we obtain the corresponding voltage amplitudes for each pulse. The results
for all braiding matrices are collected in the Table 4.1.
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U o
13

first pulse 3.5626+1.4379i 104.8326 -3.3360i
6.2875-0.7429i -51.6591 +8.0068i
2.5388-0.6246i -17.5693 +0.4805i

-0.2746+1.5416i -45.5943-41.3344i
second pulse -0.2407+1.3738i -79.6332 +2.4531i

-2.0651+1.3088i 7.5805-14.8275i
0.7874+1.2231i -10.5582 +0.3552i
-2.5298+1.4434i 38.4411-39.0808i

U o
12

first pulse -1.8112+0.9887i -38.0629-103.3642i
3.1254-3.2631i -44.6421 +16.6691i
4.4961+0.4385i 8.8887 -14.0691i
0.1083-2.0622i 23.6168 +14.9035i

second pulse 1.2309-3.2858i 72.2241+133.8673i
0.4281+1.5560i 10.0026 +9.7060i
-2.1617-3.2428i 21.4980 +18.1660i
3.4413+0.6674i -30.6798i +36.3059i

U o
23

first pulse -2.3878+1.1627i 37.7004+76.3880i
1.0442+2.1060i -4.4629 -8.6305i
-0.3063-0.6299i 24.9729-12.4763i
3.0368-1.5506i -9.0232 +5.3913i

second pulse -2.0021+1.4490i 16.9146-44.3686i
-0.3673-2.1380i 7.7136+15.8356i
-0.9749-0.5503i 28.3286-14.1843i
4.1538-1.6281i -29.8720 +2.4944i

U o
14

first pulse 0.6530+2.2008i -127.1431-100.2741i
-2.3252-3.1458i 0.7380 +15.8719i
2.2310+0.4450i -22.5744 +0.7148i
-4.2483+2.3562i 49.8913 -63.2159i

second pulse -3.5774-2.0921i 102.6599-51.9062i
0.6735-0.5148i 13.4862 -4.8453i

-3.0076+1.3460i 24.2822 +2.3053i
1.7053+1.5887i 25.9498+51.0587i

U o
24

first pulse -2.3317+0.5118i -69.7238-53.0538i
0.6100+0.1589i -21.7916-12.9138i
3.1119+2.0622i 9.0500-12.1150i
-0.3689-2.1230i 37.4569+22.3599i

second pulse 4.4745+2.1958i 144.9705+13.2449i
2.2551+0.0303i 3.9829 +2.4324i
-2.9404-0.4445i -12.7219 -3.2558i
1.7047+1.4852i -85.7087-51.0616i

U o
34

first pulse -0.5448-1.7311i -138.1478-32.2069i
-1.6033-4.3352i -10.1538+43.9911i
3.3487-3.1879i 4.3630+16.0604i
0.4002+1.7723i 2.0034 -0.5854i

second pulse -0.4689-0.3569j -41.7639+44.2386i
-1.9545-0.3445j 14.1960+13.3048i
-0.4600-1.9318i -6.8107 -0.8697i
-1.9420-0.5408i 33.4493+12.4548i

Table 4.1: Matrix elements of resonant perturbation for all braiding transformations. Left: from top to bottom
α4,α1,α3,α2. Right: from top to bottom V1,V2,V3,V4
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4.2.4. DEVELOPER AND FIXER FOR INITIALIZATION AND MEASUREMENT
As discussed in the main text, we need two pulse sequences for measurement and ini-
tialization: a developer D and a fixer F . For this illustration, we choose an even fixer Fe .
In odd subspace, the corresponding unitary matrices are given by (4.7) and (4.10). Ap-
plying two pulses brings the Majorana subsystem to |c〉. As mentioned, the eigenstates
involved can be chosen in arbitrary way. The concrete choice we made for this example
is as follows:

|a〉 =
(
1
0

)
, |a′〉 =

(
0
−1

)
, |b〉 = 1p

2

(
1
−i

)
, |β′〉 = 1p

2

(
i
−1

)
, |c〉 = 1

2

(p
3

1

)
, |c ′〉 = 1

2

(
1

−p3

)
(4.25)

|B〉 = 1p
2

(
1
1

)
, |B ′〉 = 1p

2

(
1
−1

)
, |A〉 =

(
i
0

)
, |A′〉 =

(
0
i

)
, |C〉 = 1

3

(
1

2
p

2i

)
, |C ′〉 = 1

3

(−2
p

2i
−1

)
(4.26)

To design the corresponding pulse sequence, we apply the same numerical method
as above. A peculiarity that the convergence for two pulses is rather poor. So for these
transformations we implement three-pulse design:

Π3 = e−i H3t3 e−i H2t2 e−i H1t3 . (4.27)

to achieve the relative accuracy ∼ 10−3. The resulting matrix elements α( j )
i t j and corre-

sponding voltage amplitudes for these three pulses are presented in Table 4.2.

4.2.5. RESIDULAL OVERLAP OF MAJORANA MODES
For the example setup under consideration, we still have a remaining overlap between
the separated Majorana modes, since their width ' 5 is only a factor of 5 smaller than the
minimal distance. Owing to the overlap, the two lowest eigenergies are finite, 4.14e −03,
and 2.33402015e −05. If we express this as a Hamiltonian in the left-right basis in use, it
reads 

0.00049355 0.00205414 −0.00205413 0
0.00205414 0.00019598 0 0.002054132
−0.00205413 0 −0.00019598 −0.002054143

0 0.002054132 −0.002054143 −0.00049355




L−
R−
L+
R+

 (4.28)

This Hamiltonian, in principle, results in unitary evolution at time scale ' 1000. We
did not take this evolution into account neglecting the corresponding Hamiltonian. The
overlap can be easily made exponentially smaller for longer setups.
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Do

-2.0495+2.0042i -61.1507+49.7052i
first pulse -4.0966+4.5633i 35.1354-43.0467i

-1.9107+2.7887i 15.8924 -6.3745i
1.4154+0.6030i 8.7827-36.1612i

second pulse 6.5586-1.2382i 48.9201i-67.7397i
-1.3629-5.4106i 26.3007+49.2372i
-3.1199-2.9906i -17.6294 -1.3374i
2.7259-1.5108i -128.7829+38.1339i

third pulse -1.4867-0.6612i -16.1835-22.9873i
0.5468i-0.1334i -9.7742 -3.3047i
1.1283+0.6907i -4.9286+11.7841i
-2.5564+1.8971i 56.0909-17.1536i

F o
e

first pulse 0.6126-0.8434i -37.9861+72.2040i
-1.8684 +0.2338i 13.9809+12.3891i
-0.5092-2.3555i -7.5534 -2.4738i
-1.0239-1.3748i 5.7111+30.7735i

second pulse -0.3808+2.1101i 39.7697-72.3703i
0.0977 -0.4129i 7.1449-10.2913i
-1.3286+2.1820i 7.7986 -4.5144i
1.3150+1.1225i -12.9653-44.8405i

third pulse 0.3121-1.2087i 16.1518+13.2206i
-0.9123+0.4286i 14.0443 -2.2930i
-1.4933-0.0448i 6.4710 +7.8246i
1.7204+0.4916i -28.2014 +9.9404i

Table 4.2: Matrix elements of resonant perturbation for 2 necessary unitary transformations in parity measure-
ment scheme. Left: from top to bottom α4,α1,α3,α2. Right: from top to bottom V1,V2,V3,V4



4

96 REFERENCES

REFERENCES
[1] A. Kitaev, Annals of Physics 303, 2 (2003).

[2] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, Rev. Mod. Phys.
80, 1083 (2008).

[3] R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev. Lett. 105, 077001 (2010).

[4] Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett. 105, 177002 (2010).

[5] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M.
Bakkers, and L. P. Kouwenhoven, Science 336, 1003 (2012),
https://science.sciencemag.org/content/336/6084/1003.full.pdf .

[6] M. T. Deng, C. L. Yu, G. Y. Huang, M. Larsson, P. Caroff, and H. Q. Xu, Nano Letters,
Nano Letters 12, 6414 (2012).

[7] A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and H. Shtrikman, Nature Physics
8, 887 (2012).

[8] A. D. K. Finck, D. J. Van Harlingen, P. K. Mohseni, K. Jung, and X. Li, Phys. Rev. Lett.
110, 126406 (2013).

[9] H. Zhang, D. E. Liu, M. Wimmer, and L. P. Kouwenhoven, NATURE COMMUNICA-
TIONS 10 (2019), 10.1038/s41467-019-13133-1.

[10] J. Alicea, Y. Oreg, G. Refael, F. von Oppen, and M. P. A. Fisher, Nature Physics 7, 412
(2011).

[11] F. Harper, A. Pushp, and R. Roy, Phys. Rev. Research 1, 033207 (2019).

[12] Z.-C. Yang, T. Iadecola, C. Chamon, and C. Mudry, Phys. Rev. B 99, 155138 (2019).

[13] S. Gazibegovic, D. Car, H. Zhang, S. C. Balk, J. A. Logan, M. W. A. de Moor, M. C.
Cassidy, R. Schmits, D. Xu, G. Wang, P. Krogstrup, R. L. M. Op het Veld, K. Zuo,
Y. Vos, J. Shen, D. Bouman, B. Shojaei, D. Pennachio, J. S. Lee, P. J. van Veldhoven,
S. Koelling, M. A. Verheijen, L. P. Kouwenhoven, C. J. Palmstrøm, and E. P. A. M.
Bakkers, Nature 548, 434 (2017).

[14] T. D. Stanescu, R. M. Lutchyn, and S. Das Sarma, Phys. Rev. B 84, 144522 (2011).

http://dx.doi.org/https://doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/ 10.1103/RevModPhys.80.1083
http://dx.doi.org/ 10.1103/RevModPhys.80.1083
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/10.1103/PhysRevLett.105.177002
http://dx.doi.org/10.1126/science.1222360
http://arxiv.org/abs/https://science.sciencemag.org/content/336/6084/1003.full.pdf
http://dx.doi.org/10.1021/nl303758w
http://dx.doi.org/10.1038/nphys2479
http://dx.doi.org/10.1038/nphys2479
http://dx.doi.org/10.1103/PhysRevLett.110.126406
http://dx.doi.org/10.1103/PhysRevLett.110.126406
http://dx.doi.org/{10.1038/s41467-019-13133-1}
http://dx.doi.org/{10.1038/s41467-019-13133-1}
http://dx.doi.org/ 10.1038/nphys1915
http://dx.doi.org/ 10.1038/nphys1915
http://dx.doi.org/10.1103/PhysRevResearch.1.033207
http://dx.doi.org/ 10.1103/PhysRevB.99.155138
http://dx.doi.org/10.1038/nature23468
http://dx.doi.org/10.1103/PhysRevB.84.144522


5
WEYL POINTS IN THE

MULTI-TERMINAL HYBRID

SUPERCONDUCTOR-
SEMICONDUCTOR NANOWIRE

DEVICES

The technology of superconductor-semiconductor nanowire devices has matured in the
last years in the quest for topological quantum computing. This makes it feasible to make
more complex and sophisticated devices. We investigate multi-terminal superconductor-
semiconductor wires to access feasibility of another topological phenomenon: Weyl singu-
larities in their spectrum. We have found an abundance of Weyl singularities for devices
with intermediate size of the electrodes. We describe their properties and the ways the
singularities emerge and disappear upon variation of the setup parameters.
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ZEC

W.P.

merging

Figure 5.1: Top: The family of the hybrid superconductor-semiconductor setups under consideration. A long
semiconducting nanowire is covered by 4 superconducting leads kept at three independent superconducting
phases φ1,2,3. A setup is characterized by overall length L and the lengths of electrodes and gaps, s1,2, g1,2,3.
Bottom: A typical spectrum of Andreev bound states along the line passing a Weyl point where the bands cross.
Other features worth attention are zero-energy crossing that occur at a 2D surface in 3D space of the phases,
and merging of the second energy band with the gap edge (top egde of the plot).

5.1. MULTI-TERMINAL HYBRID SUPERCONDUCTOR- SEMICON-
DUCTOR NANOWIRE DEVICES

Topological properties of solids have been a subject of intense research for last years[1,
2]. The prominent examples of topological materials include topological superconductors[3]
that may host Majorana modes[4], and Weyl semimetals[5] with Weyl points[6] in the
electron spectrum. Despite a big interest, the fabrication, purification and experimental
analysis of topological materials is difficult and challenging[7]. This motivates a large ef-
fort to realize topologically non-trivial quantum states with topologically trivial materials.[4,
7]

The most known and successful effort of this kind is the realization of zero-energy
Majorana states, that can be useful in topological quantum computing [8], in semicon-
ductor nanowires covered by superconducting electrodes, so-called hybrid superconductor-
semiconductor nanowire devices. The first experimental observation [9] came only in
two years after the first theoretical proposal [10], yet a considerable enhancement of
technology was needed for further progress. With the achievement of ballistic supercon-
ductivity [11] and experimental verification of topological signatures in Josephson effect
[12], the very active sub-field and the technologies in use are mature for next level of ex-
perimental sophistication [13, 14]. One of the interesting directions is the fabrication of
the multi-terminal nanowire-based devices.[13] Recently proposed Andreev molecules
[15] that exhibit non-trivial features in the spectrum of the Andreev states [16, 17] require
three superconducting terminals, and the fabrication efforts are underway. In the same
manner, one can realize the devices with more terminals.
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It has been suggested that the topologically protected spectral singularities - Weyl
points - may be realized in multi-terminal superconducting nanostructures[18], poten-
tially, in any nanostructures. The tuning of 3 parameters is required to achieve the singu-
larity, so the minimum number of terminals is four corresponding to three independent
superconducting phases. The singularity is pinned to zero energy (counted from Fermi
level) in the absence of spin-orbit interaction, and is at finite energy distance if spin-orbit
interaction is significant [19]. The topological charge is manifested by transconductance
quantization [18, 20] and can be detected by a spectroscopic measurement [21], with
some complications brought by the continuous spectrum above the superconducting
gap [22]. Four-terminal devices have been fabricated in graphene [23] and 2D semicon-
ducting structures [24]. However, the experimental confirmation of Weyl points is not
yet available. The presence or absence of Weyl points in any concrete nanostructure de-
pends on the details of scattering that may be difficult to identify and control, and only
6 % of random scattering matrices provide those. To facilitate the experimental obser-
vation and possible applications, it would be good to propose a system where the Weyl
points are relatively abundant.

In this Chapter, we investigate the presence of Weyl points in a spectrum of a single-
nanowire four-terminal hybrid semiconducting device of a straightforward design and
indeed find many of those. This setup is distinct from that of several nanowires with
coupled zero-energy Majorana modes [25–27]. In fact, we look for Weyl points at finite
energy, where they are present irrespective of the Majorana modes, and find them both
in topologically trivial and non-trivial wires.

A typical spectrum with a Weyl point is presented in Fig. 5.1. We set φ1,2 in such a
way that the line passes the Weyl point. Other feature of the spectrum is zero-energy
crossing (ZEC) [19, 28] that occurs at a 2D surface in the 3D space of phases. If the wire is
in non-topological regime, there is an even number of ZEC separating the regions with
different parity of the ground state. If, as in Fig. 5.1, the wire is in topological regime, the
number of crossings may be odd [10] manifesting so-called 4π periodicity. The parity
determination requires consideration of the zero-energy state at far ends of the wire [29].

We concentrate on a family of setups where a (formally infinite)semiconducting nanowire
is covered by 4 separate superconducting films (see Fig.5.1). The flims are the super-
conducting leads kept at the corresponding superconducting phases φ0 = 0,φ1,2,3. The
widths of 2 intermediate leads s1,2 and the gaps between the leads g1,2,3 sum up to L. A
setup of the family is thus characterized by L and five numbers s ≡ [g1/L, s1/L, g2/L, s2/L, g3/L]
summing to 1. We investigate the possibility to realize Weyl points in the 3-dimensional
phase space of 3 superconducting phases varying L.

The wave function of a Andreev bound state is localized at a typical scale ξ. At L ¿ ξ

we expect no Weyl points since in this case the localized state hardly feels the middle
leads and its energy depends on a single parameter only, E(φ3). Neither we expect the
Weyl points in the opposite limit L À ξ: in this case, the states are localized in the corre-
sponding gaps gi with the energies depending on the local phase differences φi −φi−1,
again depending on a single parameter each. Therefore, we expect Weyl points to appear
for each setup at L ∼ ξ. Indeed, for most choices of s we find one or more intervals of L
where the Weyl points are present, both in topological and non-topological regime.
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We employ the Lutchin-Sau-Das-Sarma Hamiltonian[10];

H =
(

p2

2
−pσz −µ

)
τz +Re∆(x)τx + Im∆(x)τy +Bσx (5.1)

that we made dimensionless measuring lengths and energies in units of spin-orbit length
and spin-orbit energy, τi ,σi being Pauli matrices in Nambu and spin space, respectively.
Here, ∆(x) is the superconducting order parameter induced in the wire. We assume a
piecewise-constant spacial dependence where ∆(x) = |∆|e iφi under the leads, φi be-
ing the phase of the corresponding lead and ∆(x) = 0 within the gaps(see Fig.5.1). The
wire is in the topological regime[10] provided |B | >

√
|∆|2 +µ2, otherwise it is in non-

topological one.
The Hamiltonian (5.1) possesses the usual BdG symmetry H∗ = −σyτy Hτyσy that

guaranties the symmetry of the spectrum and Weyl points with respect to E →−E . We
concentrate at positive energies. Although the Hamiltonian 5.1 is not invariant with re-
spect to time reversal, there is a look-alike extra symmetry

H∗(φ) =σx H(−φ)σx (5.2)

relating the Hamiltonians at opposite points φ and −φ in phase space. Therefore, the
Weyl points come in pairs of the same charge at opposite points, as for a time-reversible
scattering matrix [18]. It has been suggested in [18] that Weyl points emerge in groups of
four conform to conservation topological charge. Here we find notable exceptions from
this rule: the Weyl points emerging from the continuous spectrum at the gap edge.

The relevant examples of our numerical results are presented in Figs.5.2,5.3,5.4. In
Fig.5.2 we plot the number and the energies of the Weyl points versus the overall setup
length L. For each parameter set µ, |∆|,B we normalize L on the localization length ξ

that is defined as the slowest decaying exponent under the leads 0,3. For all parameters
and setups investigated, we find Weyl points in one or several intervals around L ' ξ. We
observe strong dependence of number and energy dependences on the setup details.
This is explained by the fact that the Weyl points emerge from complex interference in
the setup, the interference pattern being affected by all details.

In non-topological regime (Figs. 5.2a, 5.2c) the points come in groups of four. Their
energy dependence is seen as a closed curve, a trajectory in L −E space, that does not
touch the gap edge. The curves may intersect or self-intersect, the intersection corre-
sponding to the points at the same energy but separated in phase space. The number
of Weyl points at given L is 2 times number of intersections of the line L = const with
all the curves, as we see in the plots. Let us discuss the emergence of Weyl points upon
changing L taking Fig. 5.2a as example. There are no points at L < 0.71. At L = 0.71, a pair
of close points of opposite topological charges emerges at some phase settings φ, with
close energies. At the same L, another pair emerges near −φ, so 4 points appear in total.
Upon changing L up to 0.9, the points got separated in phase settings and energy. As
explained in [18, 19], any 2D plane that separates the points in the phase space, acquires
a non-trivial Chern number that is manifested as a quantized transconductance at even
parity of the setup. Upon further change of L, the points of opposite charges get close
together and eventually annihilate at L = 1.04. All this is seen as a closed trajectory in
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Figure 5.2: Number and energy dependence of Weyl points for several setups. Non-topological regime: a)
µ,B , |∆| = (1,1,2), ξ ≈ 1.07, s = (0,0.7,0,0.3,0.0); c) µ,B , |∆| = (1,1,0.9), ξ ≈ 2.30, s = (0.04,0.61,0.09,0.26,0)
Topological regime: c) µ,B , |∆| = (0.464,1.144,0.693), ξ ≈ 3.26, s = (0,0.7,0,0.3,0.0); d) µ,B , |∆| =
(0.951,2.407,1.665), ξ ≈ 2.1, s = (0.05,0.66,0.01,0.28,0.0). For b) and c), the gap edge is at the top edge of a
plot. For a), the gap edge is at 1.24.
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L −E space. More complex picture involving multiple trajectories of the same kind (let
us call those type A trajectories) is seen in Fig. 5.2b.

In topological regime, zero-energy states are formed at the far ends of the wire (this is
not detected in our approach that concentrates at the states localized at all electrodes).
An example is provided in Fig. 5.2b. There are no points for L < 0.745. At L = 0.745, a Weyl
point emerges from the continuous spectrum at some phase setting φ. The symmetry
implies that another point of the same topological charge emerges at −φ, so two points
appear in total. Upon changing L the point changes its phase coordinate. It gets lower
in energy first, but eventually returns back to the gap edge and disappears at L = 0.781.
Such trajectories begin and end at the gap edge: let us call those type B trajectories.

We stress that such merging is not compatible with the presence of a continuous
band of localized states throughout the Brillouin zone. This is seen from the following
topological argument. Let us consider a 2D plane far from the point where the merging
occurs. If there is a continuous band throughout the plane, the Chern number is well-
defined. However, it must change upon merging. Since the plane is far from the merging
point, this is impossible and proves the absence of such band, which also implies the
absence of quantized transconductance. Indeed, a detailed view of the spectrum near
the Weyl point merging (Fig. 5.3) shows that the localized states merge with continuous
spectrum, and there are regions in the Brillouin zone where no localized state is present.

In total, we have investigated 12 setups, equal number in topological and non-topological
regime. Ten of them have Weyl points in the intervals of L ' ξ. In several cases, we were
not able to trace the whole curve and identify its type. The observation is that the type B
trajectory we have seen in the topological regime only. However, no fundamental topo-
logical restriction can forbid the type B trajectories in non-topological regime or the type
A trajectories in topological regime. One can see that if one considers a long but finite
wire where the overall spectrum is discrete. Such regularization only affects the states
at very small energies. For discrete spectrum, all trajectories are of type A. Presently, we
assume that the observation is valid for the specific family of setups under considera-
tion and is explained by the fact that the boundary conditions near the gap edge in the
topological regime are more favourable for merging the localized states with continuum.
More detailed research is underway.

We illustrate the wave functions of the localized states at a Weyl point in Fig. 5.4. The
specifics of the situation is that there are two degenerate wave functions at the point,
so eventually one could plot any linear combination of the two. The choice made is as
follows: we consider matrix elements of the coordinate operator x in 2-dimensional de-
generate subspace, determine and plot the corresponding eigenfunctions. The resulting
eigenfunctions are therefore maximally separated in coordinate. We observe the local-
ization of the wave functions at several ξ at the setup, and complex multiple-peak struc-
ture that witnesses complex wave interference required for Weyl points. The setup cho-
sen has a mirror symmetry that is however violated by non-symmetric phase settings.
Still, the wavefunctions look approximately mirror-symmetric.

To conclude, we have investigated the occurence of Weyl points in the spectrum
of Andreev bound states in a family of realistic device setups where a semiconducting
nanowire is covered by four superconducting electrodes. It is feasible to realize such se-
tups experimentally and observe the corresponding topological singularities. For most
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Figure 5.3: Merging of a Weyl point with the gap edge. Choice of the parameters and setup is the same as in
Fig. 2c. We plot the spectrum versus φ3 at a line hitting the Weyl point for three values of L. Left: L/ξ= 0.781,
φ1 = 2.639, φ2 = 2.629 and , the Weyl point is E = 0.256 and φ3 = 0.002 . Middle: L/ξ = 0.824, φ1 = 2.260,
φ2 = 2.256, the Weyl point is precisely at the gap edge Eg = 0.31. Right: L/ξ= 0.829, there is no Weyl point, no
bound state is found in an interval of φ3.

0 1 2 3

L

Figure 5.4: The densities
∑

i |ψ(x)|2i of two degenerate wave functions (solid and dashed curves) at a Weyl point.
The wave functions in the degenerate subspace are chosen to be eigenvectors of the coordinate operator x. The
calculations are made for a finite wire of total length l = 30, the overlaps with the leads 0−3 are shown below the
plot. The parameters are B ,µ, |∆| = (1,1,0.9), corresponding to ξ = 4.0, s = (1/9,1/3,1/9,1/3,1/9). For L = 4.5,
the point is found at φ1,φ2,φ3 = (3.059,−0.448,1.631).
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setups, we find Weyl points for L ' ξ, that is for setup length of the order of the localiza-
tion length of the bound states. In experiment, an in situ control of the device length is
not feasible. However, it is custom for such devices to utilize a set of gate electrodes to
control µ(x). We believe that this permits tuning of the device to the region where Weyl
points are present.

We observe two types of the Weyl point trajectories. The type A trajectories do not
touch the gap edge, and the Weyl points appear in the groups of 4. For type B trajec-
tories, the Weyl points emerge from the gap edge in pairs. We have found the type B
trajectory in topological regime only, this should be specific for the family of setups un-
der consideration.

5.2. SUPPLEMENTARY MATERIAL

5.2.1. FINDING THE SPECTRUM
Here, we outline the method we use to find the spectrum of Andreev bound states in the
setup. To start with, we write the Schrodinger equation for the 4-component eigenfunc-
tionsψ(x) of the Hamiltonian (Eq. (5.1)). This equation is of second-order in x-derivative

Eψ(x) = [−τz

2

∂2

∂x2 + iσzτz
∂

∂x
+C (x)]ψ(x). (5.3)

Here, we define a 4×4 matrix C (x) = Bσx −µτz +Re∆(x)τx + Im∆(x). We rewrite it in a
form of a first-order differential equation for a new 8-component vectorΨ(x),

∂Ψ

∂x
=Λ(x)Ψ, Ψ=

(
ψ

∂ψ/∂x

)
(5.4)

The matrixΛ(x) is defined as

Λ(x) =
(

0 1
2τz (C (x)−E) 2iσz

)
(5.5)

The matrixΛ satisfies two symmetries:

Λ∗(x) = e i φ(x)τz
2 σxΛ(x)σx e−i φ(x)

2 τz (5.6)

and
Ληzσx +ηzσxΛ= 0 (5.7)

where ηz is a Pauli matrix in the space

(
ψ

∂ψ/∂x

)
. Owing to these symmetries, the eigen-

values of Λ come in both complex-conjugated and opposite sign pairs: if λ is an eigen-
value, −λ,λ∗,−λ∗ are eigenvalues as well. There is also an extra symmetry Λ∗(−E) =
ηzτyσyΛ(E)σyτyηz that guarantees λ(E) = λ(−E). For an infinite lead with a constant
C (x), a pair of purely imaginary eigenvalues at a given energy E indicates a delocalized
state at this energy. Since we are interested in the bound states, we restrict our consider-
ation to the energy interval 0 < E < Eg , where the spectral gap Eg is the minimum value
of E at which the purely imaginary eigenvalue ofΛ appears for infinite leads 0,3.
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In an interval whereΛ is constant, the solution of Eq.(5.4) reads

Ψ(x) = e(x−x′)ΛΨ(x ′) (5.8)

For the part of the wire covered by the lead 0, where Λ ≡Λ0, we need to require the
absence of divergent exponents at x → −∞. For this, let as introduce a projector on
the 4-dimensional subspace spanned by the eigenvectors of Λ. One can compute this
projector with using the eigen decomposition ofΛ0,

Λ0 = v0λd v−1
0 ; (5.9)

where the diagonal λd is sorted in order of increasing Reλ. With this,

P−
0 = v0P−

d v−1
0 , (5.10)

where P−
d = diag{1,1,1,1,0,0,0,0}.

This provides a condition for the wave function Ψ0 at the right end of the interval
covered by the lead 0,

P−
0 Ψ0 = 0 (5.11)

Similarly, with the projector P+
3 that projects on positive eigenvalues ofΛ3, we determine

the condition on the wave function Ψ3 at the left end of the interval covered by the lead
3,

P+
3 Ψ3 = 0 (5.12)

From the other hand, we can implement the relation (5.8) throughout the setup to obtain
thatΨ3 =UΨ0,

U = exp(g3Λ̄3)exp(s2Λ2)exp(g2Λ̄2)exp(s1Λ1)exp(g1Λ̄1); (5.13)

Λ̄ being the Λ matrices in the corresponding gaps. This gives the second condition on
the same vectorΨ0:

P+
3 UΨ0 = 0 (5.14)

Next step is to find a proper matrix for which Ψ0 is an eigenvector with zero eigen-
value, MΨ0 = 0. It may seem that any linear combination of Eq. 5.11 and Eq. 5.14 with
non-degenerate matrix coefficients would provide such a matrix. However, these linear
combinations would also have additional zero eigenvalue eigenvectors that are distinct
from Ψ0. To make sure that these additional eigenvectors do not appear, the matrix co-
efficients in the linear superposition of two conditions should be chosen such that two
terms project onto mutually orthogonal subspaces.

The simplest way to achieve this is to multiply Eq. 5.11 with v−1
0 , Eq. 5.14 with v−1

3 ,
and add them up. With this,

M = P−
d v−1

0 +P+
d v−1

3 U (5.15)

and the energy of the bound state is determined from the condition of zero determinant
of this matrix. For technical reasons, we prefer to work with an equvalent matrix, M̄ ≡
M v0, and solve for

det(M̄) = 0 (5.16)

to find the energies of the bound states. The root finding was implemented as a mini-
mization of the function F ≡ |det(M̄)|2 over the interval of energies (0,Eg ), with subse-
quent check if zero minimum is achieved. The special properties of the matrix Λ guar-
antees that the zeroes of this complex determinant are achieved at real E .
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5.2.2. SEARCH FOR WEYL POINTS
In principle, the presence of a Weyl point can be detected by a thorough scanning of the
obtained eigenvalues throughout the whole Brillouin zone of (φ1,φ2,φ3). This, however,
is a very time-consuming procedure.

We automate the search for the Weyl points as follows. It is crucial to note that at
a Weyl point the determinat has a double zero, that is, in addition to det(M̄) = 0 the
condition ∂E det(M̄) = 0 is also satisfied. So for the search of Weyl points, we fix the setup
s, the parameters µ,B , |∆| and minimize the function

F = |det(M̄)|2 +|∂E det(M̄)|2 (5.17)

in the 5-dimensional parameter space (E ,L,φ1,φ2,φ3) starting from a random point and
checking if zero minimum is achieved. The output is a set of points in this space that lie
at a 1-dimensional manifold. This is how the data plotted in Fig. 2 have been obtained.
Once the coordinates of a Weyl point are found, one can compute the spectrum along a
line in phase space that passes the point: this is how the plot in Fig. 1 has been obtained.
The procedure described also permits finding the wave functions of the localized states.
However, for the plots in Fig. 4 we made use of direct diagonalization of a discrete version
of the Hamiltonian 5.1.
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