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Hardware in the loop experiments with ship propulsion systems in the 
towing tank: Scale effects, corrections and demonstration 
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Delft University of Technology, Faculty of Mechanical, Maritime and Materials Engineering, Mekelweg 2, 2628CD, Delft, the Netherlands   
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A B S T R A C T   

Standards for environmental impact, safety and operational performance of ships are becoming increasingly 
strict. In order to meet these standards, the performance of new ship designs must be predicted with an 
increasing level of detail and confidence. As present prediction methods lack realistic, dynamic behaviour of the 
ship’s propulsion plant, there is a need for more advanced methods. In this paper, an open water test with 
Hardware in the Loop (HIL) functionality is proposed. HIL open water tests combine software and hardware 
components to emulate realistic behaviour of the ship’s propulsion plant in the towing tank. It is known, 
however, that experiments in the towing tank are subject to viscous scale effects. In addition to this, shaft dy
namics are distorted by a number of scale effects occurring inside the scale model propulsion system. In this 
paper, it is demonstrated with measurements that if corrections for these scale effects are applied, the dynamic 
interaction between the propeller and simulated engine system can be accurately emulated in the ship model 
basin.   

1. Introduction 

During the development of new industrial equipment, the designer 
usually tests a prototype to ensure that it meets a range of requirements. 
First and foremost, the requirements on functionality by the end-user are 
generally agreed upon by contract. Additionally, there are regulatory 
demands on safety, while environmental impact during operation, too, is 
more and more under scrutiny. For large industrial installations, how
ever, producing a full-scale prototype solely for testing is, in general, 
prohibitively expensive. Ships are evident examples of such large in
stallations. Taking a merchant ship as an example, building a full-scale 
prototype is not an option, yet there are numerous requirements that 
need to be satisfied. The future owner of a merchant ship, for instance, 
will often require that limits of acceptable performance (such as ship 
speed, bollard pull and fuel consumption) are included in the sales 
contract. At the same time, classification societies impose safety re
quirements by setting standards to structure and machinery, while 
regulatory bodies, such as the International Maritime Organisation 
(IMO), put limits on the ship’s emissions. The consequences of not 
meeting these requirements can be dire, so designer and yard generally 
undertake considerable efforts to predict the performance of a new 
design. Moreover, as requirements are becoming increasingly strict and 

hence, more difficult to meet, there is a need for more holistic prediction 
methods for operational ship performance than the methods currently 
available. This is quite a challenge: interaction between a ship and its 
environment is a highly complex subject, while the systems found on 
board are becoming increasingly complex, too. 

Hardware in the loop (HIL) experiments potentially offer the possi
bility to reproduce complex dynamic behaviour of a full scale ship 
propulsion system without requiring a full scale prototype. Also referred 
to as hybrid tests, HIL combines physical models or prototypes and nu
merical simulations into a single test setup. In other industries, HIL is a 
widespread method to test industrial machinery. In the field of power 
engineering, Li et al. (2006) used HIL to evaluate a new control algo
rithm for wind turbines. As another example, Roinila et al. (2019) 
demonstrated how a HIL setup can emulate electrical grids on board 
aircraft, concentrating on the frequency response of power distribution 
systems. 

HIL has already been applied in the maritime field, too. Skjetne and 
Egeland (2006) conducted HIL tests for certification of marine control 
systems, while Johansen et al. (2005) used the same technique to 
conduct factory acceptance tests of such a system. In a similar fashion, 
Altosole et al. (2007) tested the propulsion control system of aircraft 
carrier “Cavour”, while Martelli and Figari (2017) described a similar 
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approach. Concentrating on electrodynamics, Nounou et al. (2018) 
conducted HIL tests on a scale model of the propulsion system of a naval 
ship. They emulated load and drive using two electric motors, controlled 
by simulation models of the ship, propeller and propulsion machinery. 

More recently, different applications of HIL in the context of ship 
design have been reported, including physical models of the ship’s hull 
and environment. Ueland et al. (2018) described a hybrid test in which 
simulated external forces were applied on a scale model barge in a basin, 
with the aim of studying the forces from mooring lines and associated 
machinery. Other than mooring equipment, one could also emulate 
propulsion machinery. As was demonstrated by Campora and Figari 
(2003) and Geertsma et al. (2017), ship propulsion system dynamics can 
be adequately simulated by a numerical model, so emulating realistic 
propulsion plant behaviour seems feasible. Noting this, Vrijdag (2016) 
gave an overview of the possibilities of a HIL experiment combining a 
physical hull and environment and a simulated engine room. Based on 
the aforementioned publications, Huijgens et al. (2018) proposed a HIL 
experiment emulating the dynamic behaviour of the ship’s propulsion 
system, using a scale model propeller operating in a model basin. This 
setup was introduced as a dynamic open water experiment and is further 
investigated here. 

Dynamic open water experiments are a further development of 
traditional open water experiments. In traditional open water experi
ments, a propeller is moved through undisturbed, open water, at a 
constant propeller shaft speed; the procedure for such experiments is 
explained in ITTC (Recommended procedu, 2014a). In the proposed 
dynamic open water experiment, the electric propulsion motor of the 
open water setup is controlled by a simulation model of a ship propul
sion system. This allows to emulate the dynamic response of the ship 
propulsion system on disturbances at model scale. 

Schematic drawings of the full scale propulsion system considered in 
this paper and the corresponding experimental setup (from here on 
referred to as the HIL setup) are given in Figs. 1 and 2. In the full scale 
ship, drive torque is developed by a diesel engine and passed to the 
propeller through a gearbox. Fuel injection is governed by a PI shaft 
speed controller. If fluctuations in propeller load torque cause the shaft 
speed to change, the speed controller adjusts the fuel rack setting, 
bringing the shaft speed back to its set value. 

In the HIL setup, on the other hand, drive torque is simulated by a 
numerical model of the diesel engine and gearbox, running on a simu
lation computer – note that this could be any other kind of driving 
machine. The simulated drive torque is communicated to a motor drive, 
which commutates the electric propulsion motor. The electric motor in 
turn drives the scale model propeller. The balance of propeller load 
torque, friction torque and motor drive torque results in dynamic 
response of shaft speed. Shaft speed is measured and subsequently fed 
back to the simulation computer. Using the measured shaft speed and 
prime mover torque of the previous iteration, the combined numerical 
models of the diesel engine, gearbox and shaft speed governor simulate a 

new torque, after which the loop is reiterated. To reduce the complexity 
of the experimental setup, ship motions are not considered in this paper, 
although these motions can be reproduced using the setup shown in 
Fig. 2. 

Similar ideas to include propulsion system dynamics in ship model 
scale experiments have been reported in literature. Experiments using a 
HIL scale model with a controllable pitch propeller (CPP) in waves were, 
for instance, demonstrated by [Tanizawa et al., 2013a, 2013b]. They 
reported oscillating motor torque and speed due to interaction between 
the simulated engine and physical waves in a model basin, with a shifted 
mean operating point due to scale effects on viscous skin friction. Thus, 
as a next step, Kitagawa et al. (2014) included a thrust fan for dynamic 
correction for viscous skin friction. Kitagawa et al. (2015) subsequently 
introduced a correction on measured propeller torque to account for 
scale effects on wake fraction, corresponding to the ITTC performance 
prediction method (Recommended procedu, 2014b). They then pro
ceeded to predict average engine torque and speed in a range of wave 
fields. Later, Kitagawa et al. (2018) predicted dynamic behaviour of the 
diesel engine by showing time traces of torque, speed and power. They 
also expanded the diesel engine model by introducing a torque limiter in 
the governor. An advanced correction, taking into account scale effects 
also on rudder effectiveness, was demonstrated by Ueno and Tsukada 
(2015). They introduced realtime corrections on propeller speed and 
auxiliary thrust, resulting in an improved correspondence between 
model scale and full scale ship motions. Considering these publications, 
one can conclude that methods to correct for viscous scale effects on 
static propeller and rudder performance have been extensively 

Fig. 1. Schematic drawing of the full scale diesel-mechanical propulsion system considered in this paper.  

Fig. 2. Schematic drawing of the HIL open water setup, used to emulate the 
dynamic behaviour of the diesel-mechanical propulsion system shown in Fig. 1. 
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investigated in past literature. 
Apart from static distortions by viscous scale effects, one can also 

expect dynamics distortions of propeller torque and thrust. Interactions 
between the propeller and appendages, such as struts and rudders, may 
trigger vortex shedding around the propeller. In turn, this causes fluc
tuations of propeller torque and thrust, with a possible effect on shaft 
dynamics. However, different viscosity and vapour pressures between 
full scale and model scale situations may result in different vortex 
behaviour. Noting this, Krasilnikov et al. (2015) compared CFD simu
lations and scale model experiments with podded propellers, paying 
attention to scale effects on propeller-pod interaction and resulting 
vortex behaviour. They concluded that scale effects on factors which are 
a result of propeller-pod interaction, such as relative rotative efficiency 
ηr and wake fraction w, are very limited. Although Krasilnikov et al. 
indicate that these factors do not completely characterise the complex 
interaction between propeller and pod, their limited variation with scale 
does indicate that such dynamic distortions are of a limited magnitude. 
In addition, Bertram (1999) stated that scale effects on vortex shedding 
and flow separation are sufficiently small to allow accurate manoeu
vrability experiments with scale model ships. Thus, one can conclude 
that scale effects on dynamic propeller performance are very limited, at 
least in the frequency range relevant for ships with displacement hulls. 

Considering this, hydrodynamic scale effects are outside the scope of 
this paper, and Froude scaling is attained for reasons of clarity. If one 
were to apply the HIL techniques proposed here in manoeuvrability tests 
with free-sailing models, realtime corrections for skin friction rudder 
effectiveness as demonstrated by Ueno and Tsukada (2015) and Ueno 
et al. (2017) would need to be applied, too. 

Dynamic scale effects, on the other hand, affect the dynamic behav
iour of the propulsion system. The mechanisms behind these scale ef
fects have received only limited attention in past literature, although 
they are relevant when considering the dynamic interaction between 
machinery and environment. The aim of this paper is therefore to shed 
more light on this subject. Dynamic scale effects can occur on the load 
side and the drive side. For example, distortions of flow settling times 
around the propeller blades may cause dynamic distortions of propeller 
torque, while different dynamic properties of the drive system may 
cause distortions of shaft dynamics. However, as dynamic distortions of 
hydrodynamic propeller torque and thrust are expected to be very 
limited, this paper concentrates on dynamic scale effects on the drive 
side. 

Dynamic scale effects can be illustrated by comparing the shaft dy
namics of the HIL setup with the shaft dynamics of the full scale pro
totype which it represents – the term shaft dynamics here refers to the 
dynamic behaviour of load and drive torque and the resulting angular 
acceleration and speed of the propulsion shaft. However, this compari
son can become rather involved, as one must apply scale factors for 
geometry and time. To eliminate these scale factors, the concept of ideal 
scale model is introduced. The ideal scale model is a downscaled, virtual 
prototype, assuming that no scale effects occur. Comparing the dynamic 
behaviour of the ideal scale model to that of the practical scale model, or 
HIL scale model, dynamic scale effects can be illustrated in a clear 
manner. 

The mechanisms behind dynamic scale effects can be pinpointed by 
examining the differences between the propulsion systems of the ideal 
and practical scale models. As appears from Figs. 1 and 2, the practical 
scale model contains components that are not present in the ideal scale 
model. Moreover, components that are present in both the ideal and 
practical scale models may have different physical properties. In spe
cific, three causes for dynamic scale effects can be distinguished:  

1 the electric drive, only present in the scale model, might introduce 
additional, unwanted dynamics;  

2 different types and sizes of drive machinery and bearings may cause 
incorrectly scaled friction; 

3 the geometry of the drivetrain is not the same, leading to an incor
rectly scaled moment of inertia. 

This paper aims to identify the components and mechanisms relevant 
for these three issues. In Section 2, mathematical descriptions are 
introduced to analyse the shaft dynamics of the ideal and practical scale 
models. In the same Section, the expected scale effects are illustrated in 
the frequency domain. These mathematical descriptions are subse
quently used in Section 3 to establish methods to correct for dynamic 
scale effects during HIL experiments. Finally, Section 4 compares sim
ulations and actual measurements from HIL open water experiments, 
demonstrating that the proposed corrections indeed allow to conduct 
HIL open water experiments with correctly scaled shaft dynamics. With 
that, this paper introduces a scientifically substantiated tool for exper
imental research on the intersection of marine engineering and 
hydrodynamics. 

All measurement data presented in this paper were published in a 
dedicated folder on the 4TU.ResearchData repository (Huijgens, 2020). 
Every Figure containing measurement data is accompanied by a refer
ence to the relevant data files. Data were recorded using the dSPACE 
ControlDesk and MATLAB software packages. Data files have the MAT 
format (.mat). In addition to these data files, the repository contains 
MATLAB scripts that can assist with visualising the stored measurement 
data. 

2. Mathematical description of scale models and scale effects 

In this paper, a diesel-mechanical propulsion system serves as the 
ideal scale model. Dynamic scale effects are illustrated and analysed by 
comparing the shaft dynamics of this ideal scale model to the shaft dy
namics of the HIL setup. Section 2.1 introduces non-linear mathematical 
descriptions of these ideal and practical scale models. These mathe
matical descriptions are subsequently linearised in Section 2.2. These 
linearisations are used in Section 2.3 to identify and illustrate dynamic 
scale effects during HIL experiments. Later, in Section 3, the linear de
scriptions are used to derive solutions for dynamic scale effects, as they 
will be demonstrated in Section 4. 

2.1. Non-linear descriptions of the ideal and practical scale model 

2.1.1. Ideal scale model: diesel-mechanical propulsion system 
Fig. 3 shows the block diagram of the diesel mechanical propulsion 

system. The diagram shows the eight items that constitute the non-linear 
description of the ideal scale model:  

1 shaft speed governor fuel rack response on the measured engine 
speed error;  

2 diesel engine torque response on engine speed and fuel rack position;  
3 shaft speed sensor response;  
4 gearbox torque and speed conversion;  
5 friction torque inside the engine, gearbox, bearings and power take- 

off (PTO);  
6 inertia of the complete drive train Itot,id; 
7 hydrodynamic propeller load as a function of shaft speed and pro

peller advance speed;  
8 integration of the shaft acceleration. 

The balance between the load and drive terms in this system divided 
by the total moment of inertia determines the dynamic response of the 
propeller shaft. The corresponding equation for propulsion shaft dy
namics is given in Eq. (1). 

Itot,id(t) ⋅
dω(t)

dt
= Md(t) − Mprop,hydro(t) (1) 

The inertia of the water entrained between the propeller blades is 
dynamic, rendering the total inertia of the propulsion system Itot,id time- 
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variant. However, the complex subject of added inertia is outside the 
scope of this paper; from here on, the moment of inertia of the propul
sion plant is assumed to be constant. Eq. (1) forms the link between the 
individual items listed before. These items will be expressed in mathe
matical terms in this Section. Parameters for the diesel-mechanical 
propulsion system considered in this paper are given in Table B.5; the 
environmental conditions are given in Table B.6. The geometric scale 
factor λ equals 17.9, while time is scaled according to Froude similarity. 
The first item in the list was the shaft speed governor, which controls the 
speed of the propulsion engine. This is a PI governor, as is common in 
modern merchant ships (Bondarenko and Kashiwagi, 2010). Before 
giving a mathematical description of this controller, some attention is 
paid to the input and output signals. One could directly supply measured 
and set shaft speed, expressed in rpm, to the speed controller, and define 
the output as a fuel rack setting in mm. In practice, however, the input 
and output signals – measured shaft speed ne and fuel rack setting FR – 
are often scaled between minimum and nominal values for ne, and be
tween minimum and maximum values for FR. This scaling to stand
ardised shaft speed n=

e and standardised fuel rack setting FR= is 
described by Eqs. (2) and (3), and illustrated by Figs. 4 and 5. As such, 
governor settings for diesel engines are more or less standardised. Eq. (4) 
shows how the PI controller calculates a standardised fuel rack com
mand from measured and set standardised shaft speeds. 

n=
e =

⎧
⎨

⎩

0, if ​ ne ≤ ne,min

ne − ne,min

ne,nom − ne,min
, otherwise

(2)  

FR=

⎧
⎨

⎩

FRmin, if ​ FR= < 0
FRmin + FR=⋅(FRmax − FRmin), if ​ 0 ≤ FR= ≤ 1
FRmax, otherwise

(3)  

FR=(t)=Kp,ω ⋅
(

n=
e,set(t) − n=

e (t)
)
+Ki,ω⋅

∫t

0

(
n=

e,set(t) − n=
e (t)

)
dt  

= Kp,ω⋅n=
e,error(t) + Ki,ω⋅

∫t

0

n=
e,error(t)dt (4) 

Eq. (4) shows that the PI controller has a static gain term and a time- 
dependent integration term. When conducting scale model experiments, 
time scaling must be taken into account for all time-dependent phe
nomena, including operations inside the shaft speed controller. This 
means that, while Kp,ω does not require scaling from full scale to model 
scale, Ki,ω does. Eq. (5) shows how shaft speed controller settings are 
scaled from full scale to model scale, assuming Froude time scaling. 

Kp,ω,MS =Kp,ω,FS (5a)  

Ki,ω,MS =Ki,ω,FS⋅λ0.5 (5b) 

As the next item, the diesel engine is represented by a fuel rack map, 
which maps engine brake torque Mb as a function of engine speed ne (in 
rpm) and fuel rack setting FR (in mm). Such a fuel rack map is mathe
matically described by Eq. (6), and visualised by Fig. 6. The general 
shape of the fuel rack map and the negative value for g around the 
nominal engine operating point is in line with past publications 
(Schulten, 2005; Vrijdag and Stapersma, 2017). Dynamic behaviour of 
the turbocharger is neglected, which means that delays in available air 
for combustion are not taken into account. In reality, a considerable, 
stepwise increase of injected fuel may cause the air-to-fuel ratio to drop 
to a level where not all fuel is burnt, temporarily limiting engine torque. 
In practice, however, this dynamic limit is usually accounted for by 

Fig. 3. Block diagram of the ideal scale model from speed setting to shaft speed. In this paper, a diesel-mechanical propulsion system is considered such as drawn in 
Fig. 1. The ideal scale model is the full scale propulsion system, scaled down without scale effects. 

Fig. 4. Scaling of the input signal, measured shaft speed, as commonly done in 
shaft speed governors of marine diesel engines. 

Fig. 5. Scaling of the output signal, the fuel rack setting, as commonly done in 
shaft speed governors of marine diesel engines. 
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limiters in the speed governor (Vrijdag and Stapersma, 2017). Here, it is 
assumed that the settings of the speed governor result in a sufficiently 
smooth response of the fuel rack setting on disturbances, rendering a 
model based on a fuel injection map sufficient to assess shaft dynamics. 
It can be argued that the model used here is rather simple, and that much 
more elaborate engine models are available. As a key benefit, however, 
the model used here can be linearised relatively easily, as will prove very 
useful in Section 2.2. Moreover, improving existing prime mover 
simulation models is outside the scope of this paper; no further attention 
is paid here to the validity of the diesel engine model. 

Mb(t)=
(

FR(t) − FRmin

FRmax − FRmin
+ g ⋅

ne(t) − ne,nom

ne,nom − ne,min

)

⋅Mb,nom (6) 

The third item is the shaft speed sensor. Here, it is assumed that this 
component does not introduce any additional propulsion shaft dy
namics. Therefore, it is not separately included in the non-linear 
description. Next, the multiplication of drive torque and shaft speed in 
the gearbox is modelled. Drive torque Md equals the brake torque of the 
diesel engine Mb, multiplied by the gearbox box reduction ratio igb. This 
relation is expressed by Eq. (7). 

Md(t)=Mb(t)⋅igb (7) 

Shaft speed is converted by the same factor, though in the opposite 
direction. The fifth listed item is the friction torque inside the engine, 
gearbox, bearings and PTO. Friction torque of the diesel-mechanical 
propulsion system is a subject in the field of tribology, which is 
outside the scope of this paper. Considering this, friction inside engine, 
gearbox and bearings is not considered, as is the case for torque absor
bed by PTO machinery such as shaft generators. 

Another important parameter with respect to shaft dynamics is the 
moment of inertia of the drive train, listed as item number six. The total 
moment of inertia, Itot,id, is the sum inertia of the diesel engine, gearbox 
and shaft (Imech,id), inertia of the propeller (Iprop,id), and inertia of the 
water entrained between the propeller blades (IH2O). Values for Imech,id 

and Iprop,id can be obtained from manufacturers. On the other hand, 
entrained mass and the resulting added inertia are a much more 
complicated, hydrodynamic phenomenon. Considering its complex na
ture, added inertia is not further considered in this Section. It will 
however be taken into account in Section 4. 

Propeller load torque is described by Eq. (8), in line with Kuiper 
(1992). Torque coefficient KQ is a function of advance ratio J, which in 
turn is a function of shaft speed ωs, propeller advance speed va and 
propeller diameter D, as is shown in Eq. (9). The exact relation between 
KQ and the mentioned variables depends on the propeller geometry; 
here, a Wageningen C4-40 controllable pitch propeller with a design 
P/D ratio of 1.0 and an actual P/D setting of 1.3 is considered. The co
efficients for this propeller, including KQ, were reported by Dang et al. 
(2013). Note that this pitch is kept constant throughout the simulations 
and experiments described in this paper, despite the choice for a 

controllable pitch geometry. Interaction between the hull and propeller 
is outside the scope of this paper, which implies that the propeller 
operates in open water. Relative rotative efficiency ηr of the propeller is 
therefore taken as 1, and not further included in the mathematical de
scriptions. In general, the interaction between the hull and propeller is 
not taken into account in open water experiments. To study this inter
action, a scale model hull must be introduced. The hydrodynamic 
interaction between hull and propeller is subject to scale effects, too; 
methods to correct for these effects have been demonstrated in past 
literature (Ueno and Tsukada, 2016). Yet, as this paper concentrates on 
scale effects on shaft dynamics rather than hydrodynamics, disturbances 
of the inflow caused by the presence of the hull are not considered in 
detail here. The wake fraction is assumed to be static at 0.25, as follows 
from the conditions given in Table B.5. 

Mprop,hydro(t)= ρ ⋅
(ωs(t)

2π

)2
⋅ D5⋅KQ(J(t)) (8)  

J(t)=
2π⋅va(t)
D⋅ωs(t)

(9) 

Finally, the balance between the combined load and drive torque 
components result in a shaft acceleration, depending on the total 
moment of inertia of the drive. The integral of this shaft acceleration 
equals the propeller shaft speed. The fluctuations in load and drive 
torque and the resulting fluctuations in shaft acceleration and shaft 
speed are the variables of interest in this paper. 

2.1.2. Practical scale model: HIL setup 
The aim during HIL open water experiments is to emulate the shaft 

dynamics of the ideal scale model, described in Section 2.1.1. As was 
indicated earlier, this can be problematic as the HIL setup, or practical 
scale model, is physically different from the ideal scale model. These 
differences can be pinpointed in the block diagram shown in Fig. 7. 

As a first difference, the governor, engine and gearbox are no longer 
physically present, but included as simulations. Second, an additional 
subsystem is introduced: the closed electric loop. This loop represents 
the electric propulsion drive, which is to emulate the ideal propulsion 
system. Third, friction, moment of inertia and hydrodynamic propeller 
load are still physically present, but may be different from the ideal scale 
model. 

The first difference, simulating rather than physically including the 
diesel-mechanical propulsion system, will not receive further attention 
here. As was mentioned in Section 2.1.1, validating the simulation 
model of the diesel-mechanical propulsion system is outside the scope. It 
is assumed that the non-linear descriptions and resulting simulation 
models are accurate, and that simulating rather than physically 
including components does not change dynamic behaviour. 

The other two differences, on the other hand, may have considerable 
effects on propulsion shaft dynamics. In previous Sections, dynamic 
behaviour of the electric propulsion drive was already mentioned as a 
possible source of dynamic distortions. In addition, changes in friction 
torque, moment of inertia and hydrodynamic propeller load were 
mentioned to influence shaft dynamics, too. Considering this, the 
practical scale model is essentially a modified and expanded version of 
the ideal scale model: a number of components are added, while the 
physical properties of components also present in the ideal scale model 
may be different. The components which are simulated in the practical 
scale model remain identical. 

First, the closed electric loop is described here, starting with the 
electric motor. Permanent magnet synchronous machines (PMSM) are 
particularly suited for the HIL setup’s electric propulsion system because 
of their compactness, and because their torque can be controlled rela
tively easily. Drive torque of these machines is proportional to winding 
current by torque constant kt, which is referred to as the motor torque 
constant. This relation is expressed by Eq. (10). 

Fig. 6. Fuel rack map visualising the relation between engine speed, fuel rack 
setting and engine torque for the diesel engine in this paper. 
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Md(t)= kt⋅i(t) (10) 

Parameters for the electric drive considered in this paper are given in 
Table B.7. The relation between voltage, speed and current of the PMSM 
is described by Eq. (11). Terminal voltage u has a maximum value umax. 

L ⋅
di(t)

dt
= − ke⋅ω(t) − R⋅i(t) + u(t) (11) 

Using the law of conservation of energy, one could show that torque 
constant kt and back EMF constant ke have practically equal values. Both 
variables will therefore be represented by kt from here on. 

The aim of the dynamic open water experiment is to emulate drive 
torque of an ideal propulsion system. This means that torque and 
therefore winding current of the electric motor must be precisely 
controlled. To this end, a PI controller for current is introduced. The 
current controller regulates voltage based on the difference between 
measured current to the current set point; Eq. (12) gives a mathematical 
description of this operation. 

u(t)=Kp,i ⋅ (iset(t) − im(t)) +Ki,i⋅
∫t

0

(iset(t) − im(t))dt  

= Kp,i⋅ierror(t) + Ki,i⋅
∫t

0

ierror(t)dt (12) 

R and L are the terminal resistance and inductance of the electric 
motor, respectively. Often, the current controller and sensor are inte
grated into the motor drive, which also commutates the motor. Since 
motor drives contain proven, off-the-shelf technology, it is assumed that 
commutation and current measurement is done sufficiently fast to avoid 
dynamic distortions. This means that the current sensor block, shown in 
Fig. 7, is not separately described. 

The physical components in the HIL setup, located on the right in 
Fig. 7, are governed by the same equations as in the ideal scale model. 
However, parameters in these equations such as moments of inertia and 
friction coefficients may have different values. This, too, results in dy
namic distortions, as will be demonstrated in Section 2.3. Table B.8 gives 
the inertia components for the ideal and practical scale models. The 
analysis in Section 2.3 relies on linear descriptions of both the ideal and 
practical scale model, which will be derived in Section 2.2. 

2.2. Linear descriptions of the ideal and practical scale model 

2.2.1. Linearised ideal scale model 
In order to facilitate the linearisation of the given mathematical 

descriptions, a number of simplifications is introduced. A first simplifi
cation is made to the prime mover model. As was mentioned earlier, this 
paper concentrates on dynamic distortions introduced by hardware 
components, such as the additional electric loop, rather than the accu
racy of the diesel engine’s simulation model. Therefore, the prime mover 

is modelled as a static gain in the linear descriptions. 
Two assumptions are made to facilitate the linearisation of the given 

mathematical descriptions. First, the total moment of inertia of the shaft, 
gearbox, propeller and entrained water, Itot,id, is assumed to be constant, 
which means that changes in entrained water mass in the propeller are 
neglected here. 

Second, it is assumed that the (simulated) gearbox does not introduce 
additional dynamic behaviour. Furthermore, the gearbox ratio is static 
and does not introduce any additional dynamics. This ratio is therefore 
eliminated from the linear descriptions. This means that there is no 
longer distinction between propeller and engine speed, and shaft speed 
can be referred to by ω without indices e or s. 

Before proceeding to the linear descriptions, some attention is paid to 
notation. Stapersma and Vrijdag (2017) proposed a linear model of 
torque of a controllable pitch propeller operating behind a ship. In their 
linearisation, they used operator δ to signify a small excursion from the 
equilibrium value (for sinusoidal fluctuations, this is the oscillation 
amplitude), and superscript * to indicate a normalised value. This no
tation is assumed here, too. As an example, Eq. (13) illustrates how ω 
relates to δω∗. 

δω∗ =
δω
ω0

=
ω − ω0

ω0
(13) 

Using this notation and the aforementioned simplifications, the non- 
linear descriptions given in Section 2.1.1 are linearised. The general, 
non-linear equation for shaft dynamics, given in Eq. (1), can be line
arised as shown in Eq. (14). 

τω ⋅
dω∗(t)

dt
= δM∗

d(t) − δM∗
prop,hydro(t) (14) 

Linearisation implies that non-linearities such as the fuel rack limits 
shown in Fig. 5 are neglected. Yet, these non-linearities are introduced 
in the HIL experiment by the experimenter, and are not the result of 
scale effects. As the linear descriptions will be used to analyse scale ef
fects in the frequency domain, non-linearities in the prime mover 
simulation model can be neglected in these descriptions. Linearising the 
shaft speed loop allows to introduce shaft speed time constant τω, which 
was derived by Stapersma and Vrijdag (2017). τω is calculated as shown 
in Eq. (15). 

τω =
I⋅ω0

Md,0
(15) 

For the time being, the prime mover is modelled as a static gain. In 
essence, this means that the fuel rack map as explained in Section 2.1.1 
is not included in the linear description here, and the output of the 
current controller function Cω equals drive torque Md. This results in a 
simpler and more generic linear description. As an important advantage, 
this facilitates the mathematical analysis with the aim of finding cor
rections for scale effects. 

Propeller torque Mprop,hydro can be linearised, too. Stapersma and 
Vrijdag (2017) proposed a method to linearise the non-linear propeller 

Fig. 7. Block diagram of the practical scale model from speed setting to shaft speed. Here, the practical scale model is the HIL setup drawn in Fig. 2.  
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load torque, as given in Eq. (8), to the form given in Eq. (16). 

δM∗
prop,hydro(t)= (2 − b) ⋅ δω∗(t)+ b⋅δv∗a(t) (16) 

This linearisation of propeller load torque will be used here, too. 
Propeller derivative b expresses the change of normalised torque coef
ficient δK∗

Q with changing normalised advance ratio δJ∗, as is shown in 
Eq. (17). For a further elaboration on propeller derivatives, reference is 
made to Stapersma and Vrijdag (2017). 

b=
dKQ

dJ
⋅

J0

KQ,0
(17) 

The equation for linearised propelled load torque, Eq. (16), can be 
substituted in the equation for linearised shaft dynamics, Eq. (14), 
resulting in Eq. (18). 

τω ⋅
dω∗(t)

dt
= δM∗

d(t) − (2 − b) ⋅ δω∗(t) − b⋅δv∗a(t) (18) 

After Laplace transform and some reordering, Eq. (18) can be written 
as shown in Eq. (19). 

δω∗(s)=
1

2− b
τω

2− b⋅s + 1
⋅δM∗

d(s) +
− b

2− b
τω

2− b⋅s + 1
⋅δv∗a(s) (19) 

In the non-linear description in Section 2.1.1, engine torque depends 
on the fuel rack position and on shaft speed. In order to keep the linear 
description as simple and generic as possible, this interaction will not be 
taken into account in this Section. It will however be included in the 
simulations and measurements reported in Section 4. From Eq. (19), two 
normalised Laplace transfer functions can be derived: one for shaft speed 
response on drive torque, and one for shaft speed response on advance 
speed. Both are given in Eq. (20). 

S∗
1(s)=

δω∗
1(s)

δM∗
d(s)

=
1

2− b
τω

2− b⋅s + 1
(20a)  

S∗
2(s)=

δω∗
2(s)

δv∗a(s)
=

− b
2− b

τω
2− b⋅s + 1

(20b) 

Next, the shaft speed controller described in Eq. (4) is linearised. As 
was indicated earlier, the scaling of the input and output signals is not 
included in the linear model. This means, first of all, that the behaviour 
of the linear model valid only for shaft speeds and fuel rack settings 
within their respective minimum and maximum values. Second, 
controller settings Kp,i and Ki,i need to be scaled. This scaling factor is the 
same for both settings, and depends on the nominal values in the linear 
and non-linear models. 

In general, the conversion factor for controller settings in different 
controllers and reference conditions depends on the equilibrium values 
of the process variables, as shown in Eq. (21). x is the variable to be 
controlled, while y is the output variable of the controller. 

Kconverted =
x0

x0,converted
⋅K⋅

y0,converted

y0
(21) 

The aim here is to convert shaft speed controller settings for the non- 
linear ideal scale model to settings for a linear model, based on the 
notation given in Eq. (13). Consequently, the variables x and y in Eq. 
(21) are engine speed and torque, respectively. In the specific case of the 
shaft speed controller described in Section 2.1.1, engine speed and 
torque are scaled between minimum and maximum values. These ranges 
must be taken into account in the conversion of controller settings, as is 
shown in Eq. (22). 

Kscaled =
x0

(xmax − xmin)⋅x0,converted
⋅ K⋅

(ymax − ymin)⋅y0,converted

y0
(22) 

Moreover, deviations from the equilibrium are expressed in fractions 
of one in the linear description, implying that equilibrium values 
x0,converted and y0,converted are equal to one. Taking this into account as well 

as the scaling ranges, Eq. (23) shows how the speed controller settings 
can be converted for use in the linear descriptions. 

K∗
ω =

ne,0

ne,nom − ne,min
⋅Kω⋅

Mb,nom − Mb,min

Mb,0
(23) 

Using these scaled settings, the shaft speed controller described in 
Eq. (4) can be linearised. The resulting Laplace transfer function is given 
in Eq. (24). 

Cω(s)=K∗
p,ω + K∗

i,ω⋅
1
s

(24) 

Table B.9gives values for the parameters of the linearised ideal scale 
model, corresponding to the conditions described in Table B.5. 

Fig. 8 gives a visual representation of the linearised ideal scale 
model, in which each block represents one of the Laplace transfer 
functions derived in this Section. The corresponding Laplace transfer 
function for response of shaft speed on set speed, δω∗/δω∗

set, is given in 
Eq. (25). 

δω∗(s)
δω∗

set(s)
=

Cω(s)⋅S∗
1(s)

1 + Cω(s)⋅S∗
1(s)

=

K∗
p,ω

K∗
i,ω

⋅s + 1
τω

K∗
i,ω

⋅s2 +
(2− b)+K∗

p,ω
K∗

i,ω
⋅s + 1

(25) 

The Laplace transfer function given in Eq. (25) represents the 
response of shaft speed on speed setting of the ideal scale model. It has 
one zero and two poles, which determine how gain and phase evolve as 
the input frequency increases. Generally, at very low frequencies, the 
absolute gain equals 1 and the phase equals 0, as the propulsion system 
can easily follow the set point. However, as the frequency of the set 
speed fluctuations increases, the gain asymptotically decreases to 0 and 
the phase to − 90◦, as the propulsion system can no longer attain the set 
speed and starts to lag behind. This effect will become apparent in 
Section 2.3. 

As a next step, Section 2.2.2 derives the linear description of the 
practical scale model, allowing a comparison of both scale models to be 
made in Section 2.3. 

2.2.2. Linearised practical scale model 
In Section 2.1.2, it was shown that the practical scale model – or HIL 

setup – is in fact a modified and expanded version of the ideal scale 
model. Introducing the mentioned additional components into the dia
gram shown in Fig. 8, one obtains the diagram shown in Fig. 9. 

Fig. 9 introduces three new transfer functions: Q∗
u, Q∗

ω and Ci. The 
first two describe the response of motor winding current on voltage and 
shaft speed, respectively, while the third represents the current 
controller. First, the response of motor current is linearised. After 
reordering and normalising, the relation between voltage, speed and 
current of the PMSM given in Eq. (11) can be written as shown in Eq. 
(26). 

δu∗(t)=
δω∗(t)

1 + i0⋅R
ω0⋅kt

+
δi∗(t)

1 + kt ⋅ω0
i0⋅R

+
L
R⋅di∗(t)

dt

1 + kt ⋅ω0
i0⋅R

(26) 

Laplace transform of Eq. (26) results in Eq. (27). 

δu∗(s)=
1

1 + i0⋅R
ω0⋅kt

⋅δω∗(s) +
L
R⋅s + 1
1 + kt ⋅ω0

i0⋅R

⋅δi∗(s) (27) 

Rearranging Eq. (27) to isolate normalised current increment δi∗

yields Eq. (28). 

δi∗(s)=
1 + kt ⋅ω0

i0⋅R
L
R⋅s + 1

⋅δu∗(s) −
kt ⋅ω0
i0⋅R

L
R⋅s + 1

⋅δω∗(s) (28) 

Eq. (28) shows that there are two input signals that cause response of 
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current i and hence, drive torque Md: terminal voltage u and shaft speed 
ω. These responses can be represented by two separate systems, Q∗

u and 
Q∗

ω, which are given in Eq. (29). 

Q∗
u(s)=

δi∗(s)
δu∗(s)

=
1 + kt ⋅ω0

i0⋅R
L
R⋅s + 1

=

u0
i0⋅R

L
R⋅s + 1

(29a)  

Q∗
ω(s)=

δi∗(s)
δω∗(s)

= −

kt ⋅ω0
i0⋅R

L
R⋅s + 1

(29b) 

Current and voltage corresponding to the equilibrium point consid
ered in this Chapter are given in Table B.10. With the relation between 
current, voltage and speed now expressed as Q∗

u and Q∗
ω, the description 

of the current controller given in Eq. (12) can be linearised. Recalling 
that the controller settings can be converted according to Eq. (21), Eq. 
(30) gives the Laplace transfer function of the linearised current 
controller. 

Ci(s)=K∗
p,i + K∗

i,i⋅
1
s

(30) 

Using the transfer functions derived in this Section and the block 
diagram given in Fig. 9, the dynamic behaviour of δω∗/ δω∗

set of the HIL 
setup can be derived. The resulting transfer function is shown in Eq. 
(31). 

δω∗(s)
δω∗

set(s)
=

Cω(s)⋅S∗
1(s)⋅

Ci(s)⋅Q∗
u(s)

1+Ci(s)⋅Q∗
u(s)

1 +
(
Cω(s)⋅Ci(s)⋅Q∗

u(s) − Q∗
ω(s)

)
⋅ S∗1(s)
1+Ci(s)⋅Q∗

u(s)

(31) 

The Laplace transfer function given in Eq. (31) represents the 
response of shaft speed on speed setting of the practical scale model. 
Based on Figs. 8 and 9, one could think of additional relevant transfer 
functions. A more detailed account on these transfer functions and their 
relation to Eq. (31) will be given by Huijgens (2021), expected to be 
published early 2021. Dynamic similarity is achieved until a given fre
quency if the gain and phase of Eq. (31) equals the gain and phase of Eq. 
(25) until that given frequency. In other words, the shape of the Bode 
diagram must be the same. 

However, this is not at all self-evident, as the transfer functions for 
the ideal and practical scale models are not the same. Moreover, the 
parameters in both transfer functions may be different. The resulting 

scale effects on the dynamic response of torque and speed are the dy
namic scale effects that form the subject of this paper. In Section 2.3, 
these scale effects will be analysed and demonstrated in the frequency 
domain. 

2.3. Analysis of dynamic scale effects in the frequency domain 

By comparing the propulsion systems shown in Figs. 3 and 7, three 
causes for dynamic scale effects can be identified: dynamic response of 
the electric drive, incorrectly scaled friction torque and incorrectly 
scaled moment of inertia. These three effects are illustrated using Bode 
diagrams of linear simulations in Sections 2.3.1 through 2.3.3. To 
conclude the analysis of dynamic scale effects, Section 2.3.4 introduces 
the criteria on shaft dynamics for accurate HIL experiments. These 
criteria will be used in Section 4 to assess whether or not the considered 
HIL setup and proposed solutions for dynamic scale effects result in 
accurate emulation of the actual ship’s propulsion system. 

2.3.1. Distortions of shaft dynamics by the electric drive 
A first difference between the ideal and practical scale model is the 

additional electric loop, which converts simulated drive torque into 
physical drive torque. To correctly emulate torque of the prime mover, 
the torque command from the simulator must be converted into physical 
drive torque sufficiently fast. The torque of the electric motor in the HIL 
setup is proportional to the current in the motor windings, so fast torque 
response can be achieved by controlling winding current. To this end, a 
current controller is introduced, as is also shown in Fig. 7. 

In order to achieve precise current control, the proportional and 
integral gains of the current controller, K∗

p,i and K∗
i,i, must be properly 

tuned. The significance of these settings is explained in Section 3. As a 
first indication of the importance of current controller tuning, Fig. 10 
shows the effect of choosing arbitrary controller settings. 

Fig. 10 presents a Bode diagram with shaft speed response on speed 
setting both for the ideal scale model and a practical scale model with 
electric propulsion system. Mechanical parameters for the practical 
scale model are given in Table B.9, while the additional electric drive 
has the equilibrium values given in Table B.10. At this point, no guid
ance is available for tuning the electric drive of a dynamic open water 
setup. As such, both K∗

p,i and K∗
i,i are arbitrarily set to a value of 1. 

Fig. 8. Graphical representation of the linearised ideal scale model.  

Fig. 9. Graphical representation of the linearised practical scale model or HIL setup.  
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Fig. 10. Bode diagram of linearised response of shaft speed δω∗ on set speed δω∗
set with distortions due to an improperly tuned current controller. Parameters and 

equilibrium values are given in Tables B.9 and B.10; current controller settings K∗
p,i and K∗

p,i are both set to 1 for the practical scale model. 

Fig. 11. Bode diagram of linearised response of shaft speed δω∗ on set speed δω∗
set with distortions due to model scale friction. Response is shown of the ideal scale 

model and a practical scale model with an equilibrium torque increased by 10% relative to its ideal value. Apart from the equilibrium torque of the practical scale 
model, parameters for both scale models are given in Table B.9. 
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Clearly, this results in considerably distorted shaft dynamics, indicating 
that proper settings are an absolute requirement for dynamic similarity. 
Considering this, Section 3 introduced tuning guidance for the current 
controller. 

2.3.2. Scale effects on friction 
Shaft dynamics also depend on the equilibrium torque of the pro

pulsion drive. To illustrate this, a practical scale model is simulated 
which is nearly the same as the ideal scale model described by Table B.9. 
The only difference in this case is that the equilibrium torque Md,0 is 
increased with 10% to 4.956 Nm due to friction in the model drive. As 
can be seen in Fig. 11, this too results in distorted shaft dynamics, 
although to a limited extent compared to other scale effects. In Section 3, 
a method is proposed to compensate for model scale friction. 

2.3.3. Scale effects on moment of inertia 
An incorrectly scaled moment of inertia of the propulsion systems 

may result in dynamic distortions, too. Fig. 12 illustrates this by 
comparing shaft speed response of the ideal scale model and a practical 
scale model which has a considerably smaller moment of inertia. 
Whereas the ideal moment of inertia Itot,id equals 0.0297 kgm2, practical 
inertia Itot,p is 0.0029 kgm2, or only 9.8% of the ideal value. As will be 
shown later on, the latter value corresponds to the actual HIL setup 
considered in this paper. Apart from a different moment of inertia, pa
rameters and equilibrium values are the same. Again, shaft dynamics 
appear to be distorted. Section 3 contains an elaboration on these dis
tortions, and proposes a method to compensate for incorrect moment of 
inertia. 

2.3.4. Criteria for accurate emulation of shaft dynamics 
Ideally, the response of the propeller shaft on all input disturbances 

would be exactly equal for the ideal and practical scale model. In 

practice, scale effects introduce distortions of shaft dynamics, and the 
aim in this paper is to derive methods to avoid or correct these 
distortions. 

To assess the performance of the formulated solutions, the response 
of shaft speed on speed setting for the ideal and practical scale models is 
compared. This is primarily done using Bode diagrams of the linear 
descriptions, as these allow to assess dynamics over a wide range of 
frequencies using only simulation models. Bode diagrams also allow to 
mathematically formulate criteria for dynamic similarity. Here, dy
namic similarity of shaft dynamics is achieved if the gain of the practical 
scale does not differ from the ideal gain by more than 5% of the ideal DC 
gain, and the phase does not differ more than 10◦. These criteria are 
expressed by Eq. (32). 
⃒
⃒
⃒
⃒
Gid − Gp

Gid,DC

⃒
⃒
⃒
⃒ ≤ 0.05 (32a)  

⃒
⃒ϕid − ϕp

⃒
⃒ ≤ 10 deg. (32b) 

The frequency interval in which these criteria are met is from here on 
referred to as the similarity range. For accurate HIL experiments, the 
similarity range should completely cover the relevant frequency range, 
which is the frequency range in which interaction between the simulated 
system and external disturbances is expected. In Section 4, the relevant 
frequency range will be defined, and the criteria stated here will be used 
to assess whether or not the proposed solutions for dynamic scale effects 
result in accurate HIL open water experiments. 

3. Corrections for dynamic scale effects 

Ideally, the shaft dynamics of the practical scale model should be 
exactly the same as for the ideal scale model. This implies that the Bode 
diagram for the practical scale model, as shown in Figs. 10 through 12, 

Fig. 12. Bode diagram of linearised response of shaft speed δω∗ on set speed δω∗
set with distortions due to incorrect moment of inertia. Response is shown of the ideal 

scale model and a practical scale model with a moment of inertia which is 9.8% of its ideal value. Apart from the moment of inertia of the practical scale model, 
parameters for both scale models are given in Table B.9. 
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should completely coincide with the Bode diagram for the ideal scale 
model. To obtain such dynamic similarity, the dynamic scale effects must 
be corrected for. Sections 3.1 through 3.3 introduce tuning guidance for 
the electric drive and corrections for friction and inertia, such that dy
namic scale effects are reduced to a minimum. 

3.1. Tuning of the electric drive 

The electric loop inside the HIL setup is an additional subsystem with 
its own transfer function. As such, it introduces additional poles and 
zeros. Comparing Eqs. (31) and (25), one finds that the electric loop 
introduces one additional zero in the numerator of the transfer function, 
and two additional zeros in the denominator. Zeros in the denominator 
will from here on be referred to as poles, while zeros in the numerator 
will be referred to as zeros. The poles and zeros corresponding to the 
electric loop will be referred to as electric poles and zeros, while the poles 
and zeros corresponding to the ideal propulsion system will be referred 
to as mechanical poles and zeros. 

As poles and zeros determine the dynamic behaviour of the system, 
the locations of the additional, electric poles and zeros should be chosen 
such that they have a negligible influence on shaft dynamics. With this 
in mind, it is recommended that one electric pole and the electric zero 
are made to coincide such that they cancel each other out. Furthermore, 
it is recommended that the remaining electric pole is moved to a fre
quency sufficiently high such that it does not influence the dynamics 
caused by the mechanical poles and zeros. Specifically, a frequency 
margin of at least two decades between the remaining electric pole and 
the mechanical pole with the highest frequency is recommended. This 
approach is shown in a simplified manner in Fig. 13. 

These recommendations regarding pole and zero locations materi
alise in recommended settings for the PI current controller. One could 
determine the poles and zeros for Eqs. (25) and (31), and substitute and 
isolate the current controller settings K∗

p,i and K∗
i,i. Doing so, one would 

find that the aforementioned conditions regarding pole and zero loca
tions are met if the current controller settings are chosen as shown in 
Eqs. (33) and (34). 

K∗
p,i ≥ 1E2 ⋅

L⋅i0⋅
(
(2 − b) + K∗

p,ω

)

τω⋅u0
−

i0⋅R
u0

(33)  

K∗
i,i =

R
L

⋅K∗
p,i (34) 

In case the planned experiment includes multiple static operating 
points, the minimum current controller settings are determined by the 
operating point that requires the largest value for K∗

p,i and thus K∗
i,i. 

3.2. Friction compensation 

Friction can be compensated by a-priori identification of friction 
torque as a function of shaft speed. For the experiments described in this 
paper, friction was determined rather than torque; as was shown in Eq. 
(10), current and motor torque are directly proportional in a PMSM. 

Friction current is measured at a range of speeds, after which friction 
current ifr is estimated by fitting a function with the form shown in Eq. 
(35). 

ifr,est = c0 +
∑3

j=1
cj⋅ωej (35) 

Fig. 14 shows current measurements on a submerged shaft without 
propeller and streamlined fairings. The speed of the shaft is varied be
tween 50 and 1000 rpm in positive direction. Polynomial regression on 
these measurements results in a polynomial fit with an R2 of 0.986, 
indicating that the fit adequately describes friction current. The corre
sponding coefficients are given in Table 1. Based on these coefficients, a 
real-time correction for friction was introduced during the experiments 
described in this paper, ensuring that friction torque inside the practical 
scale model did not affect shaft dynamics. 

It is recommended that this identification is performed prior to every 
experimental run, after the shaft has been rotated practically unloaded 
for at least 1 min. This can be achieved by lifting the propeller out of the 
water, or by dismounting the propeller. In the course of the research 
project described in this paper, the degree at which the friction curve is 
time variant was not studied in detail. 

3.3. Inertia correction 

The ship and HIL setup are powered by different kinds of propulsion 
systems: whereas the real ship is powered by a diesel-mechanical pro
pulsion system, the scale model has an electric drive. These systems have 
entirely different geometries, and therefore, different moments of 
inertia. Thus, in order to avoid distortions of shaft dynamics, a correc
tion for inertia is necessary. This correction will receive more attention 
than the solutions for the other dynamic scale effects, as it is consider
ably more involved. 

Paying attention to the different components of moment of inertia, 
the shaft dynamics of the ideal scale model can be mathematically 
expressed as in Eq. (36). Id, Iprop and IH2O refer to the moments of inertia 
of the propulsion motor and shafting, propeller and added mass, 
respectively. Id and Iprop are determined by the geometry and material 
density of the drive and propeller, which are constant. IH2O, on the other 

Fig. 13. To avoid dynamic distortion, the electric poles s1,i and s2,i and electric 
zero zi must be cancelled out and moved away from the mechanical poles 
and zero. 

Fig. 14. Polynomial regression of measured friction current at shaft speeds 
between 50 and 1000 rpm. In the shown measurement run, the shaft was 
completely submerged, with the propeller, streamline caps and fairing dis
mounted. The dark gray points indicate the averaged measured current per 0.1 
rad/s increment of shaft speed. The polynomial fit has an R2 of 0.986; Table 1 
shows the corresponding coefficients. This Figure is based on the data in 
cal_085.mat, stored in the measurement data repository (Huijgens, 2020). 
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hand, depends on the water entrained between the propeller blades, 
which may change with advance speed, propeller speed, propeller pitch 
and number blades. 

(
Id,id + Iprop,id + IH2O,id

)
⋅
dω(t)

dt
=Md(t) − Mfr,id(t) − Mprop,hydro(t) (36) 

As the geometries and materials of the full scale and model scale 
propulsion systems are not the same, this is not self-evident. In the 
practical scale model, shaft dynamics are governed by Eq. (37). 

(
Id,p + Iprop,p + IH2O,p

)
⋅
dω(t)

dt
=Md(t) − Mfr,p(t) − Mprop,hydro(t) (37) 

Note that the subscript has changed for the first two inertia terms, 
with p denoting the practical scale model. The inertia of the water 
entrained between the propeller blades, or added inertia IH2O, can be 
subject to distortions as well. Such distortions would be mainly the 
result of viscous scale effects on flow around the propeller blades. 
However, these effects are very limited compared to the other scale ef
fects considered in this paper. At the same time, entrained moment of 
inertia constitutes a highly complex hydrodynamic subject, and efforts 
to formulate a definitive estimation method for this parameter have so 
far remained inconclusive. Often, the estimation methods proposed by, 
among others, Lewis and Auslaender (Lewis and Auslaender, 1965), 
Burrill and Robson (Burrill and Robson, 1962) and Schwanecke (1963) 
are relied upon, although their applicability on modern propellers is 
disputed (Krüger and Abels, 2017). In brief, the subject of entrained 
inertia justifies a research project on its own. Considering the 
complexity of this subject and the limited magnitude of the associated 
scale effects, no detailed attention is paid to entrained inertia. Their 
values are hence the same for the ideal and practical scale model, 
allowing the indices id and p to be dropped for IH2O. 

These differences in moment of inertia result in distortions of shaft 
dynamics as shown in Fig. 12. Thus, in order to conduct accurate HIL 
open water experiments, one must apply a correction for moment of 
inertia. Eq. (38) gives a mathematical expression for the required 
correction of inertia, starting from the differential equation for the 
practical scale model. It is assumed that the dynamic behaviour of the 
electric drive and friction torque are corrected here, which means that 
Mfr,p can be neglected. 

(
Id,p + Iprop,p + IH2O + Ic

)
⋅
dω(t)

dt
=Md(t) − Mprop,hydro(t) (38)  

Ic is referred to as the inertia correction, required to correct the practical 
scale model inertia to its ideal value. To achieve dynamic similarity, the 
left hand side of the differential equation for the corrected practical scale 
model, given in Eq. (38), must be equal to the left hand side of the dif
ferential equation for the ideal scale model, given in Eq. (36). This 
requirement is written out in Eq. (39). 

(
Id,p + Iprop,p + IH2O + Ic

)
⋅
dω(t)

dt
=
(
Id,id + Iprop,id + IH2O

)
⋅
dω(t)

dt
(39) 

Eq. (39) can be developed into Eq. (40), isolating Ic. 

Ic = Id,id + Iprop,id − Id,p − Iprop,p (40)  

= Imech,id − Imech,p  

Ic can be positive or negative, a positive value indicating that the 
practical moment of inertia is too small. 

There are three different methods to put this mathematical correc
tion into physical practice. As a first option, one could physically change 
the moment of inertia, for example by means of a flywheel. This flywheel 
would have a moment of inertia equal to Ic. However, physical modifi
cations of the setup are impractical for several reasons. Limited acces
sibility of components inside the open water setup as well as spatial 
constrains render the mounting and exchanging of flywheels rather la
bour intensive. Moreover, there are no flywheels with negative inertia, 
allowing only corrections in positive direction. Physical flywheels are 
therefore not considered here. 

A second option is to emulate shaft speed instead of drive torque, as 
was demonstrated by Tanizawa et al. (2013a). In their setup, shaft ac
celeration is calculated each simulation step, based on measured pro
peller torque, simulated drive torque and the inertia of the simulated 
(ideal) propulsion system. The acceleration is then integrated, resulting 
in a simulated shaft speed, which is then communicated to the motor 
drive. In the resulting closed shaft speed loop, the moment of inertia of 
the practical scale model is implicitly corrected. Yet, this approach has 
two important disadvantages. Emulating shaft speed requires an addi
tional shaft speed loop, which in turn also introduces another possible 
source of dynamic distortions. More importantly, however, shaft speed 
emulation relies on propeller torque measured by a torque sensor. Such 
torque sensors are not designed to accurately measure torque at high 
frequencies, limiting the accuracy of such sensors in dynamic model 
basin tests. Although these sensors are generally able to accurately 
measure fluctuations of torque in the frequency range of incoming 
waves, and are thus suitable for present-day open water experiments, 
future HIL experiments may concentrate on disturbances at higher fre
quencies, such as dynamics caused by blade passing. Those frequencies 
may be near the eigen frequency of the shaft assembly with torque 
sensor, causing distorted measurements at such frequencies. Without 
elaborating on this subject here, it can be stated that shaft speed 
emulation is not the optimal solution for HIL open water tests. 

The third option is to emulate drive torque with an additional torque 
term which accounts for the error in inertia. This correction term is 
referred to as the torque correction Md,corr, shown separately in Eq. (41). 
The correction term consists of shaft acceleration dω/dt and an inertia 
correction Ic, which could be considered a “virtual flywheel”. 

Md,corr(t) = Ic⋅
dω(t)

dt
(41) 

Fig. 15 shows how the numerical inertia correction is applied in a HIL 
open water experiment. Note that the diagram also includes the friction 
torque compensation. Furthermore, the shaft speed calculation module 
is a separate software module which converts the time measured be
tween encoder pulses into a calculated shaft speed. For the experiments 

Table 1 
Polynomial regression coefficients for friction current resulting from the 
measurements shown in Fig. 14. These coefficients were obtained with a 
submerged shaft and with the propeller, streamline caps and fairing dis
mounted. The polynomial assumes the format given by Eq. (35).  

j C e 

0 0.162  
1 0.261 0.406 
2 0.0242 0.772 
3 − 0.00136 1.30  

Table 2 
Recommended minimum settings of the current controller recommended 
according to Section 3.1, and current controller settings that were actually 
used for HIL experiments. The minimum settings are based on the equilib
rium values given in Table B.11. Both absolute settings and normalised 
settings (with asterisk) are given.   

Minimum Actual 

Kp,i  3.7 6.3 
Ki,i  574.2 8689.7 
K∗

p,i  0.9 1.6 
K∗

i,i  145.8 2206.3  
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described in this paper, a dSPACE DS4004 digital I–O board connected 
to a DS1006 processor board was used. The diagram shows that the 
measured shaft speed is processed in three steps to obtain torque 
correction Md,corr:  

1 calculation of the discrete derivative (discrete differentiation);  
2 filtering;  
3 multiplication with Ic. 

The first step is described by Eq. (42). In essence, the discrete de

rivative equals the difference in measured shaft speed ωm between two 
time steps, divided by the length of the time step Δt. Here, the time step 
is the step size of the simulator. 

Δωm

Δt
(n)=

ωm(n) − ωm(n − 1)
Δt

(42) 

This derivative equals the shaft acceleration, which can be used to 
calculated the torque correction. However, the operation of discrete 
differentiation considerably increases the noise of the signal. This noise 
may conceal the relevant, physical dynamics, and even lead to numer
ical errors in the simulation model. The noise in the measured shaft 
speed signal and thus, the calculated acceleration depends on the 
properties of the shaft speed sensor and the shaft speed calculation 
module, shown in Fig. 15. Two important properties in this respect are a 
precisely constant spacing of the encoder pulses, and a high sample 
frequency of the shaft speed calculation module. 

To limit measurement noise, the calculated shaft acceleration is 
filtered by an Infinite Impulse Response (IIR) filter. Such a filter is simple 
to implement and requires only limited computational effort; for a 
detailed elaboration on IIR filters and other discrete filters, reference is 
made to Balmer (1998). Eq. (43) gives the difference equation of the IIR 
filter, applied on measured shaft speed ωm. 

ωm,f(n)= a0 ⋅ ωm(n)+ (1 − a0)⋅ωm,f(n − 1) (43) 

Here, a0 equals the filter coefficient, determining the extent to which 
the signal is filtered. Heavy filtering – or a low setting for a0 – results in a 
smooth signal. However, this also limits the frequency range in which 
the numerical inertia correction is accurate. Keeping this trade-off in 
mind, a value for a0 must be chosen sufficiently low to reduce noise to an 
acceptable level, yet sufficiently high to avoid unacceptable distortion of 
shaft dynamics by the filter. In the next step, a mathematical description 
is introduced to predict this effect of the IIR filter on shaft dynamics. 

As a final step, the filtered discrete derivative of shaft speed is 
multiplied by the inertia correction factor Ic. While introduced to reduce 
dynamic distortions caused by the scale effect on moment of inertia, 
these three operations introduce additional dynamic response. To pre
dict whether these additional dynamics remain within acceptable limits, 
a linear description of the shaft dynamics including this numerical 
correction was derived. The result of this derivation is given in Eq. (44), 
which describes the response of shaft speed on simulated drive torque, 
including the numerical inertia correction, in the discrete domain.   

Eq. (44) is in fact the discrete equivalent of Eq. (20a), introducing a 
discrete correction algorithm for moment of inertia. Eq. (44) will be used 
in Section 4 to predict the performance of the numerical inertia 
correction in a simulated environment. 

4. Results and discussion 

The findings in this paper are validated by comparing simulations 
and measurements on the ideal and practical scale models, as is 
visualised in Fig. 16. In Section 2, non-linear descriptions of the ideal 

Fig. 15. Block diagram of the practical dynamic open water test with numerical inertia correction, based on measured shaft speed.  

Fig. 16. Approach to validating mathematical descriptions and proposed so
lutions for scale effects, using numerical simulations and HIL experiments. Note 
that the ideal scale model has a dashed edge as it does not actually exist. 

δω
δMd,sim

(z)=
Δt − Δt⋅(1 − a0)⋅z− 1

Itot,p + (2 − b)⋅Δt +
(
(a0 − 2)⋅Itot,p + (a0 − 1)⋅(2 − b)⋅Δt + a0⋅Ic

)
⋅z− 1 +

(
(1 − a0)⋅Itot,p − a0⋅Ic

)
⋅z− 2 (44)   
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and practical scale models were formulated and subsequently used to 
derive linear descriptions. These non-linear and linear descriptions were 
then used to identify and illustrate scale effects on dynamic shaft 
behaviour. Following this, solutions for these scale effects were pro
posed in Section 3, resulting in non-linear and linear descriptions of the 
corrected, practical scale model. These stages are represented by dashed 
lines in the drawing. 

To validate the mathematical descriptions, non-linear and linear 
simulations of the practical scale model are compared to HIL measure
ments without numerical inertia correction. This comparison is made in 
Section 4, and is indicated by number 1 in Fig. 16. In Section 4, the 
performance of the proposed corrections is verified by comparing sim
ulations of the corrected scale model and ideal scale model to HIL 
measurements with the proposed corrections applied. This comparison 
is indicated by number 2 in Fig. 16. 

4.1. Validation of mathematical descriptions 

As is indicated by step 1 in Fig. 16, the mathematical descriptions are 
validated by comparing simulations based on these descriptions with 
experimental measurements. Here, only the linear descriptions will be 
evaluated, as these follow from the non-linear descriptions. Validation 
of the linear descriptions thus implies validation of the non-linear 
descriptions. 

The diagrams in Figs. 8 and 9 show two input signals: shaft speed 
setting ωset and propeller advance speed va. On the output side, two 
relevant signals can be pointed out: shaft speed ω and (simulated) drive 
torque Md,set. The response of each output on each input predicted by the 
linear descriptions will be compared to the measured response. First, 
however, the response in current i on current set point iset will be 
evaluated. 

4.1.1. Closed current loop response 
A first set of experiments was conducted to investigate whether the 

response of current i on current set point iset corresponds with the 
mathematical descriptions derived in Section 3. The original plan was to 
systematically vary the current controller settings, allowing comparison 
of the observed trends in dynamics with predictions by simulations. 
However, this was not possible, as the range of the current controller 
settings in the motor drive is limited by the manufacturer. 

Despite this limitation, the response of current on set current was 
evaluated with simulations and measurements. This showed a consid
erable difference between the mathematical description and the actual 
behaviour of the electric drive, as is indicated by Fig. 17. A possible 
explanation for this difference could be that the mathematical descrip
tion of the electric motor and control loop, on which these simulations 
are based, is incorrect. However, the descriptions derived in Section 2 
are in line with literature. Among others examples, Martinez-Alvarado 
et al. (2014) reported the use of a BLDC motor to power a small scale air 
thruster, basing their mathematical descriptions on the same funda
mental equations as those used in this paper. Although the extensiveness 
of the BLDC models varies from source to source, these differences in 
implementation cannot explain the substantial discrepancy between 
measured and simulated current response. 

As a more likely hypothesis, there may be an additional, dynamic 
system in or around the HIL setup, unaccounted for in the mathematical 
description. The following systems could be thought of in this respect:  

1 dynamics and discrete effects of subsystems inside and around the 
motor drive;  

2 dynamic response of the power supply. 

The dynamic response of subsystems inside the motor drive and 
power supply could not in all cases be identified due to limited time, 

Fig. 17. Simulated and measured response of current i on current setting iset. The current controller has the actual settings given in Table 2. This Figure is based on 
the data in exp_174.mat, exp_175.mat, exp_176.mat, exp_177.mat, exp_178.mat, exp_179.mat, exp_180.mat, exp_181.mat and exp_182.mat, stored in the measurement 
data repository (Huijgens, 2020). 
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material and accessibility. An example of such a subsystem is the current 
sensor, which may introduce a phase delay in the current control loop, 
but is inaccessibly mounted inside the motor drive. As another example, 
components such as transformers and sliding contacts in the 380 V 
supply rail along the towing tank may introduce unknown dynamic 
behaviour. 

The identification of the exact source of these unexpected dynamics 
is reserved for a future experimental campaign. Thus, the tuning guid
ance derived in Section 3.1 remains invalidated, even though the un
derlying mathematical descriptions are in line with literature. Yet, the 
results shown in Fig. 17 are very relevant, as they demonstrate the 
importance of verifying the dynamic response of the electric drive prior 
to conducting HIL experiments. As can be seen, the phase delay of the 
electric drive may become an issue already at frequencies two orders of 
magnitude lower than one would expect. 

In any case, the unexpected response of the considered electric drive 
is not as problematic as it may seem. In Section 4.1.2, it is shown that the 
mathematical descriptions of the shaft speed loop, derived in Section 2, 
still accurately represent the response of the HIL setup. 

4.1.2. Closed shaft speed loop response 
The HIL experiments to validate the mathematical descriptions of 

shaft speed loop are conducted with the actual current controller set
tings given in Table 2 and the friction compensation applied, while the 
moment of inertia is not corrected. This results in measurements that can 
be reproduced relatively easily. In the linear descriptions introduced in 
Section 2.2, the fuel rack map was not taken into account, facilitating the 
mathematical analysis. During the HIL experiments, however, the fuel 
rack map was included. Thus, for a correct comparison, the fuel rack 
map must be introduced into the linear descriptions. Doing so for all 
inputs and outputs mentioned earlier, one obtains the transfer function 
given in Eqs. (45) through (48), which also include engine derivative g. 

δω∗(s)
δω∗

set(s)
=

Cω(s)⋅S∗
1(s)

1 + (Cω(s) − g)⋅S∗
1(s)

(45)  

δM∗
d,set(s)

δω∗
set(s)

=
Cω(s)

1 + (Cω(s) − g)⋅S∗
1(s)

(46)  

δω∗(s)
δv∗a(s)

=
S∗

2(s)
1 + (Cω(s) − g)⋅S∗

1(s)
(47)  

δM∗
d,set(s)

δv∗a(s)
=

( − Cω(s) + g)⋅S∗
2(s)

1 + (Cω(s) − g)⋅S∗
1(s)

(48) 

To validate these linear descriptions, their predicted response is 
compared with results from actual HIL experiments. These experiments 
are conducted both in calm water and waves, which allows to individ
ually evaluate the response of shaft speed ω and simulated drive torque 
Md,set on shaft speed setting ωset and propeller advance speed va. First, 
the response on speed setting is analysed, followed by an analysis of the 
response on waves, which can be modelled as sinusoidal fluctuations of 
advance speed. 

Values for δω∗, δω∗
set and δM∗

d,set can be directly calculated from the 
measured shaft speed and set points for shaft speed and drive torque, 
stored in the data repository (Huijgens, 2020). In Eq. (13), it was shown 
how normalised values can be calculated for a given equilibrium point. 
For δv∗a, however, calculating these normalised values is a somewhat 
more involved, as va is not directly measured. Instead, the data re
pository contains measured wave heights, from which va can be deter
mined as shown in Eq. (49). 

Av =Aw⋅ωp⋅exp

(
ω2

p⋅h
g

)

(49) 

Eq. (49) merely expresses the amplitude of the advance velocities; as 
such, the trigonometric term containing time and frequency can be 

omitted. The theory supporting Eq. (49) was explained by, for instance, 
Molland (Molland, 2008). Wave heights were measured with a wave 
probe located close to the propeller. The wave probe essentially con
sisted of two submerged electric wires with a known resistance; by 
measuring the voltage potential across these wires, the water level was 
determined. Recalling that the equilibrium advance speed equals the 
speed of the towing tank carriage, δv∗a can be calculated. Note that there 
is a 90◦ phase lag between the observed water level and δv∗a. 

To evaluate whether or not the response obtained during HIL is ac
curate, the relevant frequency range is important. The relevant fre
quency range depends on the considered environment and thus, the 
wave field. Therefore, attention is paid to the considered wave spectrum 
first. 

In this paper, the wave spectrum described by Pierson and Mosko
witz (1964) is assumed. Rather than reproducing entire wave spectra, 
regular waves were generated with wave heights and modal frequencies 
corresponding to different wind speeds. Modal wave frequencies ωp of 
up to 5 rad/s at model scale were considered; above these frequencies, 
the energy carried by the waves becomes negligible. At an equilibrium 
propeller advance speed of 1.73 m/s in head waves, this results in a 
maximum wave encounter frequency ωE of 9.4 rad/s. This in turn means 
that practically all wave energy is carried at encounter frequencies 
below 12.7 rad/s. Table 3 lists the properties of the regular waves during 
the HIL experiments. Realistic significant wave heights and modal wave 
frequencies were chosen within the capabilities of the wave generator at 
the Delft University of Technology (TU Delft). However, before evalu
ating the response on waves, the response on fluctuating shaft speed was 
analysed, as this input can be controlled more easily during HIL 
experiments. 

Considering the relevant frequency range following from this wave 
spectrum, the speed setting is fluctuated with frequencies of 0.67 rad/s, 
2.66 rad/s and 10.63 rad/s. As a reference, these frequencies correspond 
to 0.025 Hz, 0.1 Hz and 0.4 Hz at full scale. As such, both low fre
quencies and frequencies near the end of the relevant frequency range 
are covered. Figs. 18 and 19 show linear simulations of the response on 
fluctuating shaft speed setting and HIL measurements in which the speed 
setting was sinusoidally varied with an amplitude of 4% of the equi
librium setting. Comparing linear simulations with measurements, one 
finds that the criteria given in Eq. (32) are met for all measured fre
quencies. Consequently, the linear and non-linear descriptions of the 
practical scale model without inertia correction are indeed valid, at least 
for the response on shaft speed setting. Note that this validation applies 
to both the shaft speed loop of the practical scale model and the ideal 
scale model: their transfer functions are the same, with differences 
occurring only in the values parameters. 

It can be argued that sinusoidal variations with such a limited 
amplitude as in Figs. 18 and 19 are not sufficient as a validation, as they 
do not provide insight into the non-linear behaviour of the shaft. 
Moreover, as frequencies higher than 10.63 rad/s are not considered, 
the response on very small time scales remains invalidated. With this in 
mind, the response of engine speed on an 11.1% step change in engine 

Table 3 
Parameters of different regular wave fields during HIL experiments, with cor
responding wind speeds according to Pierson and Moskowitz (1964). The fluc
tuations of normalised propeller advance speed δv∗a are calculated from an 
equilibrium advance speed of 1.73 m/s and a propeller hub immersion depth of 
0.418 m.  

Wave index Aw [m] ωp [rad /s] ωE [rad /s] δv∗a  

Bft 4 0.043 5 9.4 0.042 
Bft 5 low 0.066 4.3 7.5 0.075 
Bft 5 mid 0.099 3.7 6.1 0.119 
Bft 5 high 0.140 3.3 5.2 0.167 
Bft 6 0.186 2.9 4.4 0.218  
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Fig. 18. Simulated and measured closed loop 
response of shaft speed on set speed. Measurements 
with and without inertia correction are shown, 
while linear simulations are shown for the ideal 
scale model, practical scale model with inertia 
correction and practical scale model without inertia 
correction. The corresponding transfer function is 
given in Eq. (45). This Figure is based on the data in 
exp_216.mat, exp_217.mat, exp_218.mat (without 
inertia correction) and exp_212.mat, exp_213.mat, 
exp_214.mat (with inertia correction), stored in the 
measurement data repository (Huijgens, 2020).   

Fig. 19. Simulated and measured closed loop 
response of drive torque on set speed. Measure
ments with and without inertia correction are 
shown, while linear simulations are shown for the 
ideal scale model and practical scale model without 
inertia correction. The corresponding transfer 
function is given in Eq. (46). This Figure is based on 
the data in exp_216.mat, exp_217.mat, exp_218.mat 
(without inertia correction) and exp_212.mat, 
exp_213.mat, exp_214.mat (with inertia correction), 
stored in the measurement data repository (Huij
gens, 2020).   
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speed setting was emulated; the result is shown in Fig. 20. A delay of 
several milliseconds can be observed, caused by the relatively slow 
response of the electric loop. Still, it can be visually verified that mea
surements and non-linear simulations are well aligned. Although this 
analysis is not as quantitative as the analysis of the Bode diagrams, it can 

be concluded that the mathematical descriptions are valid also for non- 
linear phenomena in the propulsion system, while dynamics on small 
time scales are accurately described, too. 

This leaves the linear descriptions for response on fluctuating va to be 
validated. Due to the limited amount of time available in the towing 
tank, this response was validated only with the numerical inertia 
correction applied, as will be shown in Section 4.2. 

4.2. Validation of numerical inertia correction 

As was indicated in Fig. 16, the second validation step concentrates 
on the performance of the proposed corrections. Particular attention is 
paid here to the numerical inertia correction. This is done for both the 
response on shaft speed setting and incoming waves. The response of 
shaft speed and simulated drive torque on fluctuating shaft speed setting 
is plotted in Figs. 18 and 19, showing a good correspondence between 
measurements and linear predictions. This indicates that the numerical 
inertia correction, as described by Eq. (44), indeed results in accurate 
emulation of the shaft dynamics of the ideal scale model, at least for the 
response on shaft speed setting. The step response shown in Fig. 20 
shows that this also holds for non-linear behaviour and behaviour on 
small time scales. 

Second, the performance of the HIL setup with numerical inertia 
correction was validated in waves. To this end, measurements were 
conducted with the waves described in Table 3, and compared to linear 
predictions of torque and speed response. Note that these linear de
scriptions were validated in Section 4.1.2. The resulting measurements 
and linear simulations are shown in Figs. 21 and 22. Compared to the 
frequencies of speed setting fluctuations, these waves have a consider
ably smaller frequency spread. This is the result of the limitations of the 
wave generator and the choice for realistic peak frequencies and sig
nificant wave heights at a fixed advance speed in head waves. Validation 
in a wider frequency range could be obtained by conducting 

Fig. 20. Response of model scale engine speed ne on a step change in speed 
setting ne,set from 450 tot 500 rpm (full scale equivalent speed), for the ideal, 
uncorrected and corrected scale models. A close-up of the first half second of 
response is shown for HIL measurements and non-linear simulations. This 
Figure is based on the data in exp_220.mat (without inertia correction) and 
exp_219.mat (with inertia correction), stored in the measurement data re
pository (Huijgens, 2020). 

Fig. 21. Linear simulations and HIL measurements of closed loop response of shaft speed on waves, with numerical inertia correction. The corresponding transfer 
function is given in Eq. (47). This Figure is based on the data in exp_234.mat, exp_235.mat, exp_236.mat, exp_237.mat and exp_238.mat, stored in the measurement data 
repository (Huijgens, 2020). 
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experiments also in quartering waves and at higher equilibrium advance 
speeds; such additional experiments are left for future measurement 
campaigns. The Figures show that for the considered wave encounter 
frequencies, the predicted gains align very well with measurements for 
both speed and torque response. For the phase, however, a considerable 
error can be observed. 

These phase errors are practically the same for speed and torque, and 
increase with frequency. An almost certain explanation for this error is a 
flaw in the measurement setup: the wave probe was located slightly 
behind the propeller, causing wave peaks and thus, advance speed peaks 
to be measured slightly later than their moment of arrival at the pro
peller. This in turn resulted in a phase error in positive direction. Indeed, 
all phase errors seem to correspond to a rearward offset of the wave 
probe of approximately 0.07 m, as Table 4 indicates. Thus, these errors 
can be attributed to imprudent mounting of the wave probe rather than 

an inaccuracy in the numerical inertia correction algorithm. 
In fact, a certain forward offset of the wave probe relative to the 

propeller is recommended in future experiments, as such an offset would 
minimise the interaction between the propeller and measurement probe. 
Moreover, as measurements in this paper show, the phase delay caused 
by such an offset can be accounted for relatively easily during post- 
processing. 

5. Conclusions and recommendations 

Hardware in the Loop has the potential to increase insight into the 
complex interactions between propulsion machinery and hydrodynamic 
phenomena around ship’s hulls and propellers. Yet, a detailed analysis 
of the requirements to HIL setups for accurate emulation of propulsion 
machinery still lacks. This paper aims to provide this analysis in three 
steps, as the title implies. First, the challenges of HIL experiments in the 
ship model basin were identified in Section 2. Second, solutions to these 
challenges were formulated in Section 3. Finally, the simulations and 
measurements in Section 4 demonstrated that HIL can indeed be used to 
accurately emulate ship propulsion dynamics in the ship model basin. 

The simulations and measurements shown in Section 4 allow to draw 
two conclusions. First, the linear and non-linear mathematical de
scriptions for the shaft speed loop introduced in Section 2 are valid 
descriptions of the speed controlled ship propulsion system. Thus, linear 
and non-linear simulations can be used to predict the dynamic response 
of such a system at model scale and full scale, also at small time scales. 

Second, the proposed corrections allow to accurately emulate the 
shaft dynamics of the ideal scale model. Fig. 18 through 22 show that for 
both small sinusoidal fluctuations and large step changes in different 

Fig. 22. Linear simulations and HIL measurements of closed loop response of simulated engine torque on waves, with numerical inertia correction. The corre
sponding transfer function is given in Eq. (48). This Figure is based on the data in exp_234.mat, exp_235.mat, exp_236.mat, exp_237.mat and exp_238.mat, stored in the 
measurement data repository (Huijgens, 2020). 

Table 4 
Observed differences between measured and simulated phase angles, following 
from Figs. 21 and 22. In addition to the observed differences, the right column 
shows the expected differences based on a 0.07 m rearward offset of the wave 
probe.  

Wave index Observed ϕm− sim [deg.] Expected ϕm− sim [deg.]

δω∗/δv∗a  δM∗
d,set/δv∗a  

Bft 4 22.0 16.2 22.1 
Bft 5 low 19.2 14.3 15.7 
Bft 5 mid 13.5 15.1 11.5 
Bft 5 high 6.0 10.5 8.8 
Bft 6 7.0 8.8 6.8  
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kinds of input signals, all output signals respond as predicted by the 
mathematical descriptions of the ideal scale model. As these mathe
matical descriptions were validated in Section 4.1.2, this proves that the 
HIL experiments indeed accurately emulate the ideal scale model. 

An important concept in this respect is the relevant frequency range, 
or the range in which interaction between the simulated machinery and 
external disturbances is expected. In this paper, the upper limit of this 
range is set at 12.7 rad/s, based on the Pierson-Moskowitz wave spec
trum. The measurements presented in Section 4 indicate that the 
considered HIL setup is indeed capable of achieving dynamic similarity 
up to this frequency. Yet, the relevant frequency range is not a static 
given, as it depends on the considered environment, the ship’s speed and 
the factor for time scaling. For experiments at smaller geometric scales 
or in the cavitation tunnel, dynamics at smaller time scales may be 
relevant. Moreover, it was shown that the accuracy of the HIL setup 
depends on the dynamic response of the electric drive as well as the 
properties of the installed sensors. As such, not every setup may be 
suitable to conduct any experiment. In general, the relevant frequency 
range should be determined and compared to the dynamic response of 
the HIL setup before a HIL measurement campaign. Thus, it can be 
ensured that all relevant dynamic interactions are accurately emulated. 

As a general conclusion, it can be stated that accurate HIL experi
ments in the ship model basin are possible. The presented HIL setup 
allows to investigate complex interactions between machinery and 
environment with an unprecedented level of detail, including dynamic 
interactions that were traditionally neglected. There are numerous 
complex phenomena that could be investigated this way, such as the 
interaction between machinery and ventilating propellers, or the 

performance of novel propulsion technologies in rough seas. As such, 
HIL in the model basin has to potential to improve the understanding of 
complex phenomena in and around the ship, and accelerate the devel
opment and acceptance of the ship propulsion systems of the future. 

Finally, a general recommendation regarding HIL in the ship model 
basin is formulated. Introducing hardware in the loop into traditional 
experiments in the ship model basin adds a new layer of information to 
such experiments. At the same time, HIL requires relatively limited 
additional investment. Considering the increasing need for new tech
nologies in the maritime industry and the uncertainties regarding the 
performance of these technologies in complex, dynamic environments, 
HIL can likely accelerate technological development and uptake within 
the maritime industry. It is therefore recommended to apply HIL in all 
future model basin experiments with dynamic environments. 
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Appendix A. Nomenclature 

A Amplitude 
a0 [-] IIR filter coefficient 
b [-] Propeller torque derivative 
c Polynomial regression constant 
D [m] Propeller diameter 
e [-] Regression polynomial power 

FR [-] Fuel rack setting.  

G [-] Gain 
g [m/s2 ] Gravity constant 
g [–] Fuel rack torque slope 
h [m ] Propeller hub immersion 
I [kgm2 ] Moment of inertia 
i [A ] Current 
igb [-] Gearbox reduction ratio 
J [-] Propeller advance ratio 
ke [Vs/rad] Motor back EMF constant 
K∗

i [s− 1] Normalised integrator gain 
K∗

p [-] Normalised static gain 
KQ [-] Propeller torque constant 
KT [-] Propeller thrust constant 
kt [Nm/A] Motor torque constant 
L [H ] Inductance 
M [Nm ] Torque 
n [rpm] Shaft speed 
n [-] Step index 
P/D [-] Propeller pitch/diameter ratio 
R [Ω] Electric resistance 
S [m2s/rad] Spectral density of wave variance 
s [rad/s] Pole frequency 
t [s] Time 
U10 [m/s] Wind speed 10 m above the surface 
u [V ] Voltage 
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v [m/s ] Speed 
x Arbitrary input 
y Arbitrary output 
z [rad/s] Zero frequency 
z [-] Location in the z-plane 
η [-] Efficiency 
ϕ [deg] Phase angle 
λ [-] Geometric scale factor 
τ [s] Time constant 
ν [m2/s ] Kinematic viscosity 
ρ [kg/m3 ] Density 
ω [rad/s ] Shaft speed 
ω [rad/s ] Wave frequency  

Subscripts 
0 Equilibrium 
1 Shaft speed component 
2 Advance speed component 
A Advance 
B Brake 
C Correction 
D Drive 
E Encounter 
E Engine 
est Estimated 
F Filtered 
fr Friction 
FS Full scale 
H2O Entrained water 
hydro Hydrodynamic load 
i Current 
id Ideal scale model 
l Load 
M Torque 
m Measured 
max Maximum 
mech Propulsion motor and shaft 
MS Model scale 
n Pole index 
net Drive minus load 
nom Nominal 
prop Propeller 
p Practical scale model 
p Wave peak 
set Setting 
sim Simulated 
r Relative rotative 
s Shaft 
s Ship 
tot Total 
v Advance speed 
w Wave 
ω Shaft speed  

Superscripts 
* Normalised 
= Standardised controller setting 
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Appendix B. Parameters and Equilibrium Values for Ideal and Practical Scale Models  

Table B.5 
Main parameters and equilibrium values of the full scale (FS) and ideal model scale (id. MS) propulsion systems. Geometric scale 
factor λ equals 17.9; time is scaled according to Froude similarity. The propeller is a Wageningen C4-40 with a design P/D ratio of 
1.0.   

Symbol Unit FS  id. MS  

Nom. eng. power Pb,nom  [W] 8336 × 103 343.5 
Eq. eng. Power Pb,0  [W] 6926 × 103 285.5 
Nom. eng. torque Mb,nom  [Nm] 159.2 × 103 1.551 
Eq. eng. Torque Mb,0  [Nm] 132.3 × 103 1.289 
Nom. eng. speed ne,nom  [rpm] 500 2115 
Eq. eng. Speed ne,0  [rpm] 500 2115 
Min. eng. Speed ne,min  [rpm] 200 846.2 
Nom. eng. speed ne,max  [rpm] 500 2115 
Norm. eq. eng speed n=

e,0  [ − ] 1 1 
Governor static gain Kp,ω  [ − ] 1 1 
Governor int. gain Ki,ω  [ − ] 0.5 2.12 
Min. FR setting FRmin  [mm] 10 10 
Max. FR setting FRmax  [mm] 40 40 
Eq. FR setting FR0  [mm] 34.93 34.93 
Norm. eq. FR setting FR=

0  [ − ] 0.831 0.831 
Eng. Derivative g [ − ] − 0.25 − 0.25 
Gearbox reduction igb  [ − ] 3.4965 3.4965 
Eq. prop. torque Mprop,hydro,0  [Nm] 462.5 × 103 4.505 
Eq. prop. Thrust Tprop,0  [N] 572.8 × 103 99.87 
Eq. prop. Speed ns,0  [rpm] 143 605 
Mech. Inertia Imech  [kgm2

] 54.58 × 103 0.02970 
Prop. P/D ratio P/D  [ − ] 1.3 1.3 
Prop. Diameter D [m] 4.199 0.2346 
Prop. advance speed va  [m/s] 7.33 1.73 
Ship speed vs  [m/s] 9.77 2.31   

Table B.6 
Parameters of the environment in which the full scale ship and ideal scale model are operating.   

Symbol Unit  

Gravity constant g [N/kg] 9.81 
Water density ρH2O  [kg/m3] 1000 
Water kinematic viscosity ν [m2/s] 1.17E-6   

Table B.7 
Parameters of the electric drive, powering the practical scale model. Detailed descriptions of the pa
rameters and variables are given in Section 2.1.   

Symbol Unit Value  

Torque constant kt  [Nm/A] 0.55 
Back EMF constant ke  [Vs/rad] 0.55 
Terminal resistance R [Ω] 0.555 
Terminal inductance L [H] 3.6 × 10− 3 

Max. terminal voltage umax  [V] 400   

Table B.8 
Moments of inertia of the ideal and practical scale model propulsion systems. These values correspond to the downscaled diesel- 
mechanical propulsion system and the actual HIL setup used to emulate this propulsion system. The moment of inertia of the HIL 
setup is considerably smaller because of lighter propeller material, a more compact propulsion motor and the absence of gear 
reduction. Added inertia IH2O is estimated according to Burrill and Robson (1962).   

Symbol Unit Ideal  Practical  

Drive moment of inertia Id  [kgm2
] 0.02780 0.00226 

Prop. moment of inertia Iprop  [kgm2
] 0.00190 0.00064 

Mech. moment of inertia Imech  [kgm2
] 0.02970 0.00290 

Added inertia IH2O  [kgm2
] 0.00368 0.00368 

Total moment of inertia Itot  [kgm2
] 0.03338 0.00658 
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Table B.9 
Parameters and equilibrium values of the linearised ideal scale model.   

Symbol Unit Value  

Eq. drive torque Md,0  [Nm] 4.505 
Eq. shaft speed ω0  [rad/s] 63.36 
Moment of inertia Itot  [kgm2

] 0.0297 
Prop. derivative b [ − ] − 0.643 
Shaft time constant τω  [s] 0.4177 
Norm. governor static gain K∗

p,ω  [ − ] 2.01 
Norm. governor integral gain K∗

i,ω  [s− 1] 4.25   

Table B.10 
Equilibrium values of the electric propulsion system in the conditions described by 
Table B.9.   

Symbol Unit Value  

Eq. voltage u0  [V] 39.40 
Eq. current i0  [A] 8.19   

Table B.11 
Comparison of equilibrium values obtained through non-linear simulations and measurements in the towing tank. These values 
result from closed loop experiments with a full scale equivalent engine speed setting of 500 rpm, which corresponds to a model 
scale propeller speed of 605 rpm. The measured equilibrium values are valid for all closed loop HIL experiments in this paper 
unless mentioned otherwise.   

Symbol Unit Simulated  Measured  

Eq. prop. torque Mprop,hydro,0  [Nm] 4.505 4.7 
Eq. prop. thrust Tprop,0  [N] 99.87 102.4 
Eq. winding current i0  [A] 8.19 10.3 
Eq. prop. speed ns,0  [rpm] 605 605 
Prop. advance speed va  [m/s] 1.73 1.73  
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