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SUMMARY

The paradigm of swarm robotics aims to enable several independent robots to collab-
orate together toward collective goals, acting as a “swarm”. The distributed nature of a
swarm, whereby each robot acts independently in accordance with its perceived envi-
ronment, is expected to provide the system with a high degree of �exibility, robustness,
and scalability. However, this comes at the cost of increased system complexity. This the-
sis explores how to automatically design a collective behavior in a way that is transparent
and veri�able.

We begin by taking a step back and analyzing the design choices that need to be
made when designing a swarm of robots. At the “local” level, the individual robots needs
to be designed, specifying, for instance, their actuators, sensors, and computational ca-
pabilities. At the system level (or “global” level), the desired behavior of the collective
system needs to be designed. Popular examples of collective behaviors are: aggregation
(coming together into a group), pattern formation, area exploration, or foraging (gath-
ering objects from the environment). Through an in-depth literature study, focusing on
swarms of small drones as a case study, we found how sensor and actuator choices can
create constraints for the swarm behavior that can be achieved, and how desired swarm
behaviors can create requirements for the hardware design and local-level controllers.
Coincidentally, we found a prominent example of this in our own research on relative
localization sensors for swarms of tiny drones (performed in addition to the research in
this thesis). We developed a communication-based relative localization approach that
enabled teams of tiny drones to �y together in tight areas, the advantages being: omni-
directional sensing, independence from lighting conditions and/or visual clutter, low
mass, and low computational costs. However, this solution also comes with the restric-
tion of ensuring that robots never move parallel to each other, as this will present an
unobservable situation. Based on such lessons, the remainder of the thesis then aims
for a framework that is agnostic with respect to the robot and the task. The framework
proposed in this thesis is centered around the following notion: a collective goal can be
broken down into a set of locally observable objectives which the robots can sense, re-
ferred to as “desired” objectives. The robots then take actions in order to reach these
desired objectives. When all robots achieve the desired objectives, then the global goal
and/or collective behavior emerges.

This framework was �rst developed for the speci�c case study of pattern formation
by cognitively limited robots, which could only sense the relative location of close-by
neighbors. It was later generalized, and its use was demonstrated on other collective
tasks, namely: aggregation, consensus, and foraging. Through a local model of agent
transitions, it was possible to: 1) identify potential obstructions to achieving the collec-
tive goal, and 2) optimize the behavior of the robots so as to maximize the likelihood
of achieving the desired objectives. The optimization is performed by an evolutionary
algorithm that leverages the local model, whereby the �tness function maximizes the

xi



xii SUMMARY

probability of being in a desired local state. Using this approach, the policy evaluation
only scales with the size of the local state space, and demands much less computation
than swarm simulations would.

In the �nal stage of this research, a framework was developed to alleviate the need to
manually de�ne the desired objectives as well as the local models required for potential
veri�cation and/or optimization. The framework uses a data-driven approach to auto-
matically extract two models: 1) a deep neural network that estimates the global per-
formance of the swarm from the distribution of local sensor data, and 2) a probabilistic
state transition model that explicitly models the local state transitions (i.e., transitions
in observations from the perspective of a single robot in a swarm) given a policy. The
framework can ef�ciently lead to effective controllers, as demonstrated via multiple case
studies. It can also be used in combination with an evolutionary optimization process,
leading to higher ef�ciency, or for heterogeneous online learning.

Overall, the methods and insights developed in this thesis propose a new way to
approach the development of veri�able and understandable behaviors for swarms of
robots, using models in order to perform analysis, veri�cation, and optimization.



SAMENVATTING

Het paradigma van de zwermrobotica heeft als doel om verschillende onafhankelijke
robots samen te laten werken aan collectieve doelen, soortgelijk aan een “zwerm”. Het
gedistribueerde karakter van een zwerm, waarbij elke robot onafhankelijk handelt in
overeenstemming met zijn waargenomen omgeving, biedt het system een hoge mate
van �exibiliteit, robuustheid en schaabaarheid, naar verwachting. Dit gaat echter ten
koste van de complexiteit van het systeem. In deze proefschrift wordt onderzocht hoe
automatisch een collectief gedrag kan worden ontworpen op een manier die transparant
en veri�eerbaar is.

We beginnen met een stap terug te nemen en de ontwerpkeuzes te analyseren die
gemaakt moeten worden bij het ontwerpen van een zwerm robots. Op het “lokale” niveau
moeten de individuele robots worden ontworpen, waarbij bijvoorbeeld hun actuatoren,
sensoren, en rekencapaciteiten worden gespeci�ceerd. Op systeemniveau (of “lobale”
niveau) moet het gewenste gedrag van het collectieve systeem worden ontworpen. Pop-
ulaire voorbeelden van collectief gedrag zijn: aggregatie (samenkomen in een groep),
patroonvorming, gebiedsverkenning, of foerageren (voorwerpen uit de omgeving verza-
melen). Via een diepgaande literatuurstudie, waarbij we ons concentreerden op zw-
ermen van kleine drones als casestudy, ontdekten we hoe sensor- en actuatorkeuzes
beperkingen kunnen creëren voor het zwermgedrag dat kan worden bereikt, en hoe
gewenst zwermgedrag eisen kan stellen aan het hardwareontwerp en de regelaars op
lokaal niveau. Toevallig vonden we een prominent voorbeeld hiervan in ons eigen on-
derzoek naar relatieve lokalisatiesensoren voor zwermen kleine drones (uitgevoerd naast
het onderzoek in deze proefschrift). We ontwikkelden een communicatie–gebaseerde
relatieve lokalisatie aanpak die teams van kleine drones in staat stelde om samen te
vliegen in krappe gebieden, met als voordelen: omnidirectionele sensing, onafhanke-
lijkheid van lichtcondities en/of visuele clutter, lage massa, en lage computerkosten.
Deze oplossing heeft echter ook de beperking dat de robots nooit evenwijdig met elkaar
mogen bewegen, omdat dit een onwaarneembare situatie zal opleveren. Op basis van
deze lessen wordt in de rest van het proefschrift gestreefd naar een raamwerk dat agnos-
tisch is met betrekking tot de robot en de taak. Het raamwerk dat in deze proefschrift
wordt voorgesteld is gecentreerd rond het volgende begrip: een collectief doel kan wor-
den opgesplitst in een verzameling van lokaal-waarneembare doelen die de robots kun-
nen observeren, aangeduid als “gewenste” doelen. De robots bewegen vervolgens door
de omgeving om deze gewenste doelen te bereiken. Wanneer alle robots de gewenste
doelen bereiken, dan ontstaat het globale doel en/of collectief gedrag.

Dit raamwerk werd eerst ontwikkeld voor het speci�eke geval van patroonvorming
door cognitief beperkte robots, die alleen de relatieve locatie van nabije buren konden
waarnemen. Het werd later veralgemeend, en het gebruik ervan werd gedemonstreerd
op andere collectieve taken, namelijk: aggregatie, consensus, en foerageren. Door mid-
del van een lokaal model van agent-transities, was het mogelijk om: 1) potentiële belem-
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meringen voor het bereiken van het collectieve doel te identi�ceren, en 2) het gedrag
van de robots te optimaliseren om de kans op het bereiken van de gewenste doelen
te maximaliseren. De optimalisatie wordt uitgevoerd door een evolutionair algoritme
dat gebruik maakt van het lokale model, waarbij de �tnessfunctie de waarschijnlijkheid
maximaliseert om in een gewenste lokale toestand te zijn. Door deze aanpak schaalt
de beleidsevaluatie enkel met de grootte van de lokale toestandsruimte, en vergt ze veel
minder rekenwerk dan zwermsimulaties zouden vergen.

In de laatste fase van dit onderzoek werd een raamwerk ontwikkeld om de noodzaak
te verlichten van het handmatig de�niëren van de gewenste doelstellingen, alsmede van
de lokale modellen die nodig zijn voor eventuele veri�catie en/of optimalisatie. Het
raamwerk gebruikt een datagedreven benadering om automatisch twee modellen te ex-
traheren: 1) een diep neuraal netwerk dat de globale prestaties van de zwerm schat uit de
verdeling van lokale sensorgegevens, en 2) een probabilistisch toestandsovergangsmodel
dat expliciet de lokale toestandsovergangen modelleert (d.w.z. overgangen in waarne-
mingen vanuit het perspectief van een enkele robot in een zwerm) gegeven een beleid.
Het raamwerk kan ef�ciënt leiden tot effectieve controllers, zoals aangetoond via meerdere
case studies. Het kan ook gebruikt worden in combinatie met een evolutionair optimal-
isatieproces, wat leidt tot een hogere ef�ciëntie, of voor heterogeen online leren.

Samenvattend stellen de methoden en inzichten die in dit proefschrift zijn ontwikkeld
een nieuwe manier voor om de ontwikkeling van veri�eerbaar en begrijpelijk gedrag
voor zwermen robots te benaderen, waarbij modellen worden gebruikt om analyse, ver-
i�catie en optimalisatie uit te voeren.



1
I NTRODUCTION

The goal of robotics is to create advanced machines that can physically interact with
their environment. Nature is perhaps our greatest inspiration. From the simplest of
robotic arms to full-scale humanoid robots or �apping wing drones, the animal kingdom
never ceases to provide us with examples of how successful robots could be designed.
Yet, one of the most interesting displays of nature is not necessarily observed when we
study individual entities, like a particular ant or bird, but in the way that they collab-
orate with other members of their species. This collaboration can take several forms:
from simple acts, such as a mother bringing food to her offspring, to more complex in-
teractions, such as the construction of shelter by entire communities. A community, as a
whole, is much more complex than the individuals that compose it, and can also achieve
more complex and ambitious goals as a result. The examples are numerous. Ants help
each other to �nd and carry food effectively. Fish work together to fend off and confuse
their bigger predators. By enabling robots to collaborate together in a swarm-like fash-
ion, we can hope to unlock new potentials in robotics. The challenge, however, lies in
ef�ciently guiding a robotic swarm toward the successful completion of a common goal
of our choice. This is especially challenging, because each individual robot, much like
the individual animal, only has a very limited view of the environment as given by its on-
board sensors. In this thesis, we will explore how we can control swarms of robots and
enable them to collaborate successfully.

1.1. EMERGENCE, SWARM ROBOTICS, AND ITS HURDLES
Swarms are often said to display emergent properties. Across �elds ranging from parti-
cle physics to social studies, the concept of emergence can be used to describe a process
for which the outcome results from the complex (inter-)actions of its consitutent parts.
It is then often said that “the whole is more than the sum of its parts”, as it is only when
the parts interact that the system, as a whole, achieves the emergent outcome. Emer-
gent outcomes may not be directly obvious when observing the system's constituent el-
ements, because the result emerges from the complex network of interactions between
them, which may carry a certain degree of unpredictability. Although emergent pro-
cesses are generally not well understood, their potential is greatly acknowledged. 1

1Even the very de�nition of emergence is often the subject of debate. Several (re-)de�nitions have been at-
tempted and contemplated, without a clear consensus (Deguet et al., 2006; Hamann, 2018).

1



1

2 1. INTRODUCTION

If we could �nd a way to “engineer” emergence for swarms of robots, then we would
be able to create collective multi-robot systems whose cumulative capabilities transcend
the limitations of any of the individual robots that compose it. We would be able to use
several simple and inexpensive robots, and still ful�ll complex goals by exploiting their
(inter-)actions. Such systems are envisioned to be robust to the loss of individual robots,
�exible and adaptable to different tasks via recon�guration, and scalable in the number
of robots (Şahin et al., 2008). This is the ambition of swarm robotics .

The complexity of swarm robotics stems from the fact that each robot only has the in-
formation that can be measured within its direct environment, via its onboard sensors.
We refer to this as the “local” information, or the “microscopic” view. Meanwhile, the
actions of each robot can have “global” (or “macroscopic”) repercussions on the whole
swarm, something which the individual robot cannot directly observe. Further complex-
ity stems from the fact that the actions of a robot may, in turn, cause another robot to
take a different decision, and so on. This creates a non-deterministic dynamic environ-
ment for each robot to navigate through. The �eld of swarm robotics aims to tackle this
challenge with the goal of achieving desired and predictable collective behaviors from
simple robots and their interactions, so that we can use them in real-world tasks.

1.2. SWARM ROBOTICS: A BRIEF OVERVIEW
Swarm robotics is the application of swarm intelligence to robots. Several early works
that studied swarms did so for purposes outside of robotics. Reynolds (1987) published
a pioneering work on swarming in the context of computer graphics. The work showed
that it was possible to visually simulate large bird-like �ocks by only combining three
very simple rules that each simulated entity should follow: 1) cohesion, 2) repulsion,
and 3) alignment. In simpler terms, each simulated bird aimed to: 1) be close to its
nearby neighbors, 2) avoid getting too close, and 3) align its direction of �ight with them.
Together, these rules resulted in behaviors that appeared very similar to bird �ocks to
the external observer. 2 Meanwhile, the idea of swarm intelligence had also found its way
to optimization algorithms, such as the Ant Colony Optimization algorithm published
by Dorigo et al. (1996), whereby simulated ants offered an effective way to �nd optimal
paths. In the �eld of biology, there was also a drive to understand the rules that these
complex systems exhibited in nature (Bonabeau et al., 1999). Thanks to all these studies,
two notions had become clearly established:

1. Swarm intelligence can be a powerful paradigm to achieve complex goals effec-
tively.

2. These complex goals can be achieved with simple individuals following simple
rules.

Combined with the many concurrent improvements in robotics, applying swarm intelli-
gence to robots became an attractive opportunity (Beni, 2005). This can enable robots to
achieve more challenging tasks while keeping the individual unit cost low, lending itself
to economies of scale. In addition, the system as a whole has the potential of becoming

2This approach is still very popular in modern applications, see for instance the works of Hauert et al. (2011)
and Vásárhelyi et al. (2018).
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more robust to the loss/malfunctioning of individual robots, �exible to different tasks
(by changing the way in which the robots collaborate), and scalable (Brambilla et al.,
2013; Hamann, 2018; Şahin, 2005).

Early works in swarm robotics include the works of Matarić et al. (1995), Matarić
(1997), Hayes et al. (2001), and Lerman et al. (2001). In the last two decades, the research
�eld has grown and several additional studies have been published, including dedicated
real world demonstrations, such as Swarm-bot (Mondada et al., 2004) and Swarmanoid
(Dorigo et al., 2013), which showcase practical use cases for robot swarms. Several appli-
cations can be unlocked by creating a distributed robotic system. Swarms have been de-
veloped to explore areas ef�ciently (by adequately spreading and covering more ground)
(Duarte et al., 2016), move large and/or heavy loads by uniting forces (Dorigo et al., 2013),
or form shapes and structures (Rubenstein et al., 2014; Werfel et al., 2014). The potential
applications also extend to �ying vehicles or satellites. For example, the OLFAR mission
aimed to use a large swarm of satellites as a distributed radio interferometer (Engelen
et al., 2014; Verhoeven et al., 2011). Similarly, with the rising popularity of drones in the
last decade, a lot of swarm robotics research has also expanded into this novel domain
(McGuire et al., 2019; Vásárhelyi et al., 2018). Overall, swarm robotics is now regarded as
one of the main challenges in robotics (Yang et al., 2018).

The objective in swarm robotics is to engineer the correct local rules that lead to a de-
sired goal reliably when deployed in the real world (Beni, 2005). It is also important that
the swarm achieves the goal without exhibiting unexpected behaviors, as these could
lead to safety hazards (Win�eld et al., 2005a). Developing local rules and behaviors man-
ually, although seemingly attractive and with many successful examples, has two general
disadvantages: 1) it is limited by the ability of the designer to model and solve the prob-
lem at hand, and 2) it needs to be repeated ad hoc for each new task. Therefore, even if
we were to design a perfect behavior, complete with a proof that the behavior will lead
to the desired goal, this would only be speci�c to the particular system and task at hand.
We can abstract away from this issue by using machine learning techniques to automat-
ically �nd the correct behavior, a strategy that has been immensely successful in other
branches of robotics and arti�cial intelligence, such as decision-making (Silver et al.,
2016, 2017), computer vision (Redmon et al., 2016), or locomotion (Kolter and Ng, 2011),
to name a few examples. The power of machine learning approaches has also been es-
tablished in the swarming community through several works, many of which also bring
the controllers outside of the simulation domain and into the real world (Duarte et al.,
2016; Trianni et al., 2003, 2006). Among the machine learning paradigms used in swarm
robotics, evolutionary robotics (Floreano and Nol�, 2000) has taken the limelight over re-
inforcement learning, which, although highly effective, generally faces more issues with
partially observable domains (Oliehoek and Amato, 2016; Sutton and Barto, 2018).

Despite many impressive developments on all fronts, which we will return to in Chap-
ter 2, a mature methodology for the automatic development of local behaviors starting
from a global goal is still to be established (Francesca and Birattari, 2016). In addition,
although many current machine learning methodologies offer a way to �nd suitable con-
trollers, the methods to non-empirically verify the functionality of these controllers re-
main limited for the general case. This is either because the controllers are not trans-
parent enough for analysis (e.g., neural networks), or because of scalability issues in the
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veri�cation procedure when analyzing all potential repercussions of a microscopic be-
havior for the full swarm (Dixon et al., 2012). Even in the absence of veri�cation pro-
cedures, transparency is a very desirable property, because it allows us to inspect and
understand the behavior of the robot before it is implemented (Jones et al., 2019).

1.3. RESEARCH OBJECTIVE
In this thesis, we focus on two fundamental open challenges in swarm robotics:

1. The top-down automatic development of local rules from a global goal.
2. The bottom-up veri�cation of whether the local rules will lead to the desired global

goal.

The aim is to develop an end-to-end method to automatically extract robot behaviors
that will lead to the desired result, with the inclusion of an automatic method to check
whether the swarm will eventually achieve this desired result. We are guided by the fol-
lowing research question:

Guiding research question: How can we automatically design a swarm of robots
to systematically and ef�ciently produce a desired emergent result?

To provide a solid and irrefutable answer to the above would mean to solve one of the
main questions in the �eld of swarm robotics, and I do not have suf�cient hubris to claim
that this was (or could ever be) achieved in the mere four years that I have dedicated to
it. However, very much in line with a swarming philosophy, I hope that the contributions
that have been made in this thesis provide original insights as well as new methods that
can help the community move forward. The speci�c objective, exploratory in nature, is
the following:

Research Objective: To develop a novel methodology to automatically design
the behavior of a swarm of robots such that they can ef�ciently and successfully
achieve a cooperative goal, while taking into account their local constraints.

Such a goal is intended to provide an answer to the main research question to the
best extent possible, the results of which are recounted in this thesis.

1.4. RESEARCH QUESTIONS AND THESIS OUTLINE
The main research objective was broken down into four main steps. This enabled an
exploratory approach from which we could develop a �nal solution.

1.4.1. U NDERSTANDING THE CHALLENGE IN DEPTH

As a �rst step, we explored the practical issues with developing a real robot swarm —
what exactly makes it so dif�cult?
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Research Question 1: What are the challenges of developing a successful swarm
of robots?

To answer this question with depth, we focused on the speci�c case study of aerial
robotics, which features an interesting mix of challenges for swarm robotics (Kumar and
Michael, 2012; Yang et al., 2018). For this particular case study, we delved into the entire
design process in order to extract and analyze challenges that need to be solved at each
stage. This analysis showed just how limited a real swarm can be, and that the primary
issue of swarming lies in the sensory information available to the control system. Quite
basic knowledge, such as knowing the relative location of neighboring robots, can be
very dif�cult to obtain, and may even impose certain restrictions on the way in which
each robot should behave. This creates a fundamental link between sensory informa-
tion and the actions that a robot in the swarm can take. Additional components, such
as effective intra-swarm communication, also face several challenges as the size of the
swarm grows. The result of this survey, published in Coppola et al. (2020), can be found
in Chapter 2. Mapping out all underlying relationships showed a clear need to better
understand how a very limited local perception can be exploited.

1.4.2. A NOVEL METHOD FOR PROVABLE PATTERN FORMATION
Based on the insights from the �rst work, we set out to explore the relationship between
a local objective and local sensory data. To de�ne the scope without losing ourselves
in generality, we focused on a speci�c case study: pattern formation. This was chosen
because it is a �xed goal with a binary outcome — a desired pattern will either form, or
fail to do so. We strongly limited the sensory knowledge of the robots such that they were
only aware of their current closest neighborhood (and nothing else), and then aimed to
devise a behavior that enabled the robots to generate the pattern based on local actions.
Our research question was:

Research Question 2: How can a swarm of cognitively limited robots arrange in
an arbitrary formation, in a way that provably leads to success?

The outcome of this research was a novel algorithm to achieve pattern formation
based on an automatically generated probabilistic policy. The policy is generated based
on three simple bio-inspired rules:

• Be “safe” (avoid collisions)
• Be “social” (avoid moving away from peers)
• Be “happy” (stay in desired local states)

The �rst two rules allow the swarm to reshuf�e freely while never separating in multiple
groups or experiencing collisions. The third rule tells robots that, if its local neighbor-
hood matches one of the pre-speci�ed desired local states, then it should stop moving.
Here, a local state is a state describing the current observation of a single robot. Then,
unbeknownst to the robots, the global desired pattern is achieved once all robots are
“happy”. In addition, based on a model of local interactions and states, we could also
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verify whether a pattern would always eventually be formed without endless reshuf�ing.
The advantage of this veri�cation procedure was that it was based on a local model,
meaning that it did not scale with the size of the swarm, but with the (quite limited) size
of the local state space. The outcome of the research was published in Coppola et al.
(2019b) and is recounted in Chapter 3.

1.4.3. GENERALIZING AND OPTIMIZING THE BEHAVIOR OF SWARMS
The contribution above provided us with a methodology to lead swarms to achieve a
global pattern and with a way to verify whether the outcome would always eventually
happen. The methodology was to break down the pattern into desired local states, shared
by all robots, which would then enable them to reconstruct the pattern in spite of their
limitations. At this stage, we were faced with two subsequent challenges:

1. Abstracting the methodology to cooperative tasks other than pattern formation.
2. Optimizing the behavior of the robots so that they would achieve the global goal

more ef�ciently, as opposed to moving around randomly until it was achieved.

These two challenges were synthesized in the research question below.

Research Question 3: How can a swarm of robots coordinate to achieve a global
goal ef�ciently?

The main output of this research was a novel way to use a local model of the expe-
riences of a robot in order to optimize the global performance of the swarm. Based on
a model of the local state transitions, we optimized a controller so as to increase the
probability that the robot would achieve a “happy” local states, which is a representa-
tion of the global goal from the local perspective of an agent. This approach allows for
the controller to be optimized only based on a local model, thus avoiding several of the
otherwise common scalability issues that arise in such optimization problems. When
the controller is applied to the whole swarm, it shows major improvements in perfor-
mance at the macroscopic level. This procedure was applied to the pattern formation
method from (Coppola et al., 2019b), and was also generalized and applied to two new
case studies: consensus and aggregation.3 For the pattern formation, the previously de-
veloped local proof procedure could be included in the optimization procedure. The
contribution of this work was published in Coppola et al. (2019a), and it is recounted in
Chapter 4.

1.4.4. AN END-TO-END FRAMEWORK
In this �nal task, we aimed to complete the end-to-end framework that we set out to
develop in the beginning. So far, in addition to our in-depth survey, we had achieved
two main contributions: 1) a method to extract local states that represent the global
goal, and 2) an approach to ef�ciently extract/optimize the swarm behavior. The �nal
goal was to develop a framework where a global goal is translated into a local behavior.
Our fourth and �nal research question was:

3Consensus refers to when several robots have to form an agreement. Aggregation refers to when several robots
have to come together into one group.
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Research Question 4: How can we design the behavior of a swarm of robots such
that it reliably achieves a cooperative goal?

To achieve this objective, two new challenges needed to be overcome.

1. Automatically breaking down a global cooperative goal into desired local states,
for the general case.

2. Automatically extracting a local model of the swarm, so as to provide a means to
optimize the behavior (using the PageRank approach) and verifying whether the
global goal can always eventually be achieved.

We showed how these two goals can be achieved using a data-driven model-based ap-
proach. By creating a data set we can train a deep neural network to correlate local states
with the global �tness. In turn, despite having a data set of random behaviors with poor
performance, we can extrapolate the trend and extract which combination of local states
is expected to maximize the global �tness. Using the same data set, we can also ex-
tract a probabilistic state transition model of the system, which can be further re�ned if
needed. Altogether, the framework can determine a transparent and ef�cient behavior
for a swarming task. Thanks to the model, we can also analyze it to �nd potential pit-
falls using quanti�able metrics and/or formal conditions. The output of this work can
be found in Chapter 5.

This thesis ends in Chapter 6 with a summary of our main contributions as well as
an explanation of their implications for future work in the �eld of swarm robotics.





2
ROBOT SWARMS: FUNDAMENTAL

CHALLENGES AND CONSTRAINTS

This chapter presents an in-depth review and discussion of the challenges that must be
solved in order to successfully develop swarms of robots. As a particular case study, we will
focus on Micro Air Vehicles (MAVs) for real world operations. We will extract constraints
and links that relate the local level MAV capabilities to the global operations of the swarm.
It will be explained how these should be taken into account when designing swarm behav-
iors in order to maximize the utility of the group, which will become a foundational pillar
in future chapters. At the lowest level, each MAV should operate safely. Robustness is often
hailed as a pillar of swarm robotics, and a minimum level of local reliability is needed for
it to propagate to the global level. At the swarm level, the �nal outcome is intrinsically
in�uenced by the onboard abilities and sensors of the individual. The real-world behavior
and operations of an MAV swarm intrinsically follow in a bottom-up fashion as a result
of the local level limitations in cognition, relative knowledge, communication, power, and
safety. Taking these local limitations into account when designing a global swarm behav-
ior is key in order to take full advantage of the system, enabling local limitations to become
true strengths of the swarm.

The contents of this chapter have been published in Coppola et al. (2020).

9
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2.1. BACKGROUND
Micro Air Vehicles (MAVs), or “small drones”, are becoming commonplace robots in the
modern world. The term refers to small, light-weight, �ying robots. Several MAV designs
exist, including multi-rotors (Kumar and Michael, 2012), �apping wing (de Croon et al.,
2016; Michelson and Reece, 1998; Wood et al., 2013), �xed wing (Green and Oh, 2006),
morphing designs (Falanga et al., 2019b), or hybrid vehicles (Itasse et al., 2011). Of these,
quadrotors have enjoyed the spotlight due to their high maneuverability, their ability to
take off vertically (as opposed to most �xed wing MAVs, for instance), and their relative
simplicity in design (Gupte et al., 2012; Kumar and Michael, 2012). MAVs can be used for
surveillance and mapping (Mohr and Fitzpatrick, 2008; Saska et al., 2016b; Scaramuzza
et al., 2014), infrastructure inspection (Sa and Corke, 2014), load transport and deliv-
ery (Palunko et al., 2012), or construction (Augugliaro et al., 2014; Lindsey et al., 2012).
Such applications are particularly useful in areas that are not easily accessible by hu-
mans, like forests or disaster sites (Achtelik et al., 2012; Alexis et al., 2009). Smaller and
lighter designs push the boundaries of their applications further. Aside from the asset
of increased portability, smaller MAVs can also navigate through tighter spaces such as
narrow indoor environments with higher agility (Mohr and Fitzpatrick, 2008). They also
cause less damage to their surroundings (including people) in the event of a collision,
making them intrinsically safer tools (Kushleyev et al., 2013).

Unfortunately, smaller size comes at the expense of more limited capabilities. The
interplay between limited �ight time, limited sensing, and limited power hinder an MAV
from performing grander tasks on its own. This has created a strong interest in devel-
oping MAV swarms (Yang et al., 2018). The paradigm of swarm robotics aims to tran-
scend the limitations of a single robot by enabling cooperation in larger teams. This is
inspired by the animal kingdom, where animals and insects have been observed to unite
forces toward a common goal that is otherwise too complex or challenging for the lone
individual (Garnier et al., 2007). Using several robots at once can bring several advan-
tages and possibilities such as: redundancy, faster task completion due to parallelization,
or the execution of collaborative tasks (Martinoli and Easton, 2003; Nedjah and Junior,
2019; Trianni and Campo, 2015). The control of robotic swarms is envisioned to be fully
distributed. The individual robots perceive and process their environment locally and
then act accordingly without global awareness or direct awareness of the �nal goal of
the swarm. Nevertheless, by means of collaboration, the robots can achieve an objec-
tive that they would not have been able to achieve by themselves. As they say: there is
strength in numbers.

It is easy to imagine swarms of MAVs jointly carrying a load that is too heavy for a
single one to lift, or persistently exploring an area without interruption. As is often the
case, however, putting such visions into practice is another story altogether. Develop-
ing self-organizing swarms of MAVs in the real world is a multi-disciplinary challenge
coarsely divided in two main aspects. One aspect is that of the individual MAV design,
where the local abilities of a single MAV are de�ned. The second aspect is the swarm
design, whereby we need to develop controllers with which the global goal can be ef�-
ciently achieved, autonomously, by the swarm. To make matters more complicated, the
two are not decoupled. As we shall explore in this chapter, there exist fundamental links
between the local limitations of an MAV and the behaviors that a swarm of MAVs could,
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or should, execute as a result. Vice versa, in order to realize certain swarm behaviors,
there are local requirements that the individual MAVs must meet. This bond between
the local and the global cannot be ignored if MAV swarms are to be brought to the real
world. In this chapter, we aim to reconcile these two aspects and present a discussion
of the fundamental challenges and constraints linking local MAV properties and global
swarm behaviors. In the grander context of this thesis, we use MAVs as a case study in
order to better understand the intricacies of developing swarms of robots, as well as the
general state of the art in the �eld.

2.2. CO-DEPENDENCE OF SWARM DESIGN AND DRONE DESIGN
Let us begin from the primary challenge of swarm robotics: to design local controllers
that successfully lead to global swarm behaviors (Şahin et al., 2008). Concerning MAVs,
these global behaviors include, but are not limited to: collaborative transport, collab-
orative construction, distributed sensing, collaborative object manipulation, and par-
allelized exploration and mapping of environments. Albeit the individual MAV may be
limited in its ability to successfully perform these tasks (for instance, as areas get larger or
loads get heavier), they can be tackled by collaborating in a swarm. Generally, swarms of
robots are expected to feature the following inherent advantages (Brambilla et al., 2013;
Şahin et al., 2008):

• Robustness. The swarm is robust to the loss or failure of individual robots.
• Flexibility . The swarm can recon�gure to tackle different tasks.
• Scalability . The swarm can grow and shrink in size depending on the needs of the

global task.

When designing a swarm of MAVs, we must then ask ourselves: how can we design
a swarm that is robust, �exible, and scalable? It is true that these properties pertain to
the swarm rather than the individual, but if the swarm is composed of individual units,
then it follows that they must also be present (although perhaps not always apparent) at
the local level. We cannot use individual robots that are not robust and merely expect the
swarm as a whole to be immune or tolerant to individual failures (Bjerknes and Win�eld,
2013). If there is a high probability of errors at the local level, such as erroneous observa-
tions, poorly executed commands, or failure of a unit, then this may have a repercussion
on the swarm's performance; an effect that Bjerknes and Win�eld (2013) have shown
can worsen with the number of robots in a swarm. There is a point after which the in-
dividual robots are too unreliable and the swarm can fail to achieve its goal, or it can
be shown to be outperformed by smaller teams with more reliable units (Stancliff et al.,
2006) or even by a single reliable system (Engelen et al., 2014). The further complication
with MAVs is that local failures do not remain local, but are likely to cause collisions and
damages to other nearby MAVs and/or objects. For some tasks, such as collective trans-
port, the impact may be even more severe as the MAVs are mechanically attached to the
load (Tagliabue et al., 2019). It thus follows that to develop a robust swarm for real world
deployment, we must also ensure robustness at the local level.

Of equal importance is to make sure that the robots have the necessary tools and
sensors to carry out their individual components of a global task. The more capable the
sensors are, the more likely it is that the swarm can be �exible and adjust to different
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tasks or unexpected changes. When performing pure swarm intelligence research, we
can afford to abstract away from lower-level issues (Brutschy et al., 2015). For instance, in
a study on making a decision about selecting a new location for a swarm's nest, one can
abstract away from actually evaluating the quality of a nest location, and instead focus
the analysis on a particular aspect of the system such as the decision making process.
However, when dealing with real-world applications, this is not an option. If we want to
develop nest selection capabilities for a swarm in the real world, each robot should be
capable of: �ying and operating safely, recognizing the existence of a site, evaluating the
quality of a site with a certain reliability, exchanging this information with its neighbors,
and more. All these lower-level requirements need to be appropriately realized for the
global-level outcome to emerge, or otherwise need to be accepted as limitations of the
system. The way in which they are implemented shapes the �nal behavior of the swarm.

Last but not least, unless properly accounted for, there are scalability problems that
may also occur as the swarm grows in size. Examples of issues are: a congested airspace
whereby the MAVs are unable to adhere to safety distances, a cluttered visual environ-
ment as a result of the presence of several MAVs (thus obstructing the task), or poor
connectivity as a result of low-range communication capabilities. To achieve scalabil-
ity, the MAV design must be such that the swarm's desired properties are appropriately
accommodated, from the appropriate hardware design all the way to the higher-level
controllers which make up the swarm behavior.

2.2.1. THE CHALLENGE OF LOCAL SENSING AND CONTROL

When �ying several MAVs at once, the control architecture can be of two types: 1) cen-
tralized, or 2) decentralized. In the centralized case, all MAVs in a swarm are controlled
by a single computer. This “omniscient” entity knows the relevant states of all MAVs
and can (pre-)plan their actions accordingly. The planning can be done a priori and/or
online. In the decentralized case, the MAVs make their decisions locally. A second di-
chotomy can also be de�ned for how the MAVs sense their environment: 1) using exter-
nal position sensing, or 2) locally. External positioning is typically achieved with a Global
Navigation Satellite System (GNSS) or with a Motion Capture System (MCS), depending
on whether the MAVs are �ying outdoors or indoors, respectively. Alternatively, the latter
only relies on the sensors that are onboard of the MAV.

Currently, the combination of centralized architecture and external positioning have
achieved the highest stage of maturity, allowing for �ights with several MAVs. Kushleyev
et al. (2013) showed a swarm of 20 micro quadrotors that could reorganize in several
formations. Lindsey et al. (2012), Augugliaro et al. (2014), and Mirjan et al. (2016) devel-
oped impressive collaborative construction schemes using a team of MAVs. Preiss et al.
(2017) showcased Crazyswarm, an indoor display of 49 small quadrotors �ying together.
The strategy of centralized planning and external positioning has also attracted large
industry investments, leading to shows with record-breaking number of MAVs �ying si-
multaneously. In 2015, Intel and Ars Electronica Futurelab �rst �ew 100 MAVs, making a
Guinness World Record (Swatman, 2016a). In 2016, Intel beat its own record by �ying 500
MAVs simultaneously (Swatman, 2016b). In 2018, EHang claimed the record with 1,374
MAVs �ying above the city of Xi'an, China (Cadell, 2018). Intel later reclaimed the title
by �ying 2,066 MAVs outdoors. In September 2020, the record was broken yet again by
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Figure 2.1 Scatter plot of the number of MAVs that have been �own in sampled state of the art studies dis-
cussed in this chapter. The combination of centralized planning/control with external positioning has allowed
to �y signi�cantly larger swarms. The numbers are lower for the works featuring decentralized control with
external positioning, or centralized control with local sensing. The works that use both decentralized control
and do not rely on external positioning can be seen to feature the fewest MAVs due to the increased complexity
of the control and perception task.

Shenzhen Damoda Intelligent Control Technology Co., Ltd., in Zhuhai, China with 3,051
drones (Echo Zhan, 2020). Meanwhile, the record for the most MAVs �ying indoors (from
a single computer) was broken by BT with 160 MAVs in 2019 (Guinness World Records,
2019).

Without external positioning systems or centralized planning/control, the problem
of �ying several MAVs at once becomes more challenging. This is because: 1) the MAVs
have to rely only on onboard perception, or 2) they have to make local decisions without
the bene�t of global planning, or 3) both. It is then not surprising that, as shown in Fig-
ure 2.1, the swarms that have been �own without external positioning and/or centralized
control are signi�cantly smaller. When the control is decentralized, but the MAVs bene�t
from an external positioning system, or vice versa, the largest swarms are in the dozens
(Hauert et al., 2011; Vásárhelyi et al., 2018; Weinstein et al., 2018). For swarms featuring
both local perception and distributed control, the highest numbers are currently in the
single digits (Guo et al., 2017; McGuire et al., 2019; Nägeli et al., 2014; Saska et al., 2017).
Despite the fact that these numbers have been increasing in the last few years, they are
still lower, as the operations are shifted away from external system and toward onboard
perception and control. If the past is any indication for the future, we expect that: 1) the
numbers of drones will keep increasing for all cases, and 2) the industry will continue
to break new records as the technologies for onboard decision making and perception
become more mature.

Although we can �y a high number of MAVs when using centralized planning and ex-
ternal positioning, swarming is not just a numbers game. Flying with many MAVs does
not automatically imply that we are achieving the bene�ts of swarm robotics (Hamann,
2018). A centralized system relies on a main computer to take all decisions. This means
that a prompt online replanning by the main computer is needed in order to achieve ro-
bustness and �exibility in case of changes. This replanning grows in complexity with the
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size of the swarm, making the system unscalable. Moreover, the central computer rep-
resents a single point of failure. Instead, a swarm adopts a distributed strategy whereby
each robot takes decisions independently. The fact that each MAV needs to take its own
decisions, and, additionally, if the MAVs do not rely on external infrastructure, intro-
duces a new layer of dif�culty. However, this is also what brings new advantages: redun-
dancy, scalability, and adaptability to changes (Bonabeau and Theraulaz, 2008; Şahin,
2005).1

When we analyze swarms of MAVs with local onboard sensing and control, we can
observe two trends: 1) As the size of the swarm increases, the relative knowledge that
each MAV will have of its global environment, which includes the remainder of the swarm,
decreases (Bouffanais, 2016); 2) as the individual MAV's size and/or mass decreases, its
capability to sense its own local environment decreases (Kumar and Michael, 2012). This
creates an interesting challenge. On the one hand, we aim to design smaller, lighter,
cheaper, and more ef�cient MAVs. On the other hand, as we make these MAVs smaller,
the gap between the microscopic and macroscopic widens further. Designing the swarm
becomes a more challenging task because each MAV has less information about its en-
vironment and is also less capable to act on it. This can be generalized to other robotic
platforms as well, but MAVs feature the increased dif�culty of having a tightly bound re-
lationship between their onboard capabilities, their dynamics, their processing power,
and their sensing (Chung et al., 2018). This is sometimes referred to as the SWaP (Size,
Weight, and Power) trade-off (Liu et al., 2018; Mahony et al., 2012). The relationship is of-
ten complex. For many MAVs, especially the smaller varieties, grams and milliwatts mat-
ter (de Croon et al., 2016). This makes the design of autonomous decentralized swarms
of MAVs a more unique challenge.

2.2.2. OVERVIEW OF CHALLENGES THROUGHOUT THE DESIGN CHAIN
Throughout this chapter, we shall review the state of the art in MAV technology from the
swarm robotics perspective. To facilitate our discussion, we will break down the chal-
lenges for the design and control of an MAV swarm in the following four levels, from
local to global .

1. MAV design . This de�nes the processing power, �ight time, dynamics, and capa-
bilities of the single MAV. Most importantly from a swarm engineering perspective,
it de�nes the sensory information available on each unit, from which it can estab-
lish its view of the world. This is discussed in Section 2.3.

2. Local ego-state estimation and control . At the lowest level, an MAV must be ca-
pable of controlling its motion with suf�cient accuracy. This lower-level layer han-
dles basic �ight operations of the MAV. This includes attitude control, height con-
trol, and velocity estimation and control. Moreover, the MAV should be capable of
safely navigating in its environment. Minimally, it should detect and avoid poten-
tial obstacles. The challenges and state of the art for these methods are discussed
in Section 2.4.

1Of course, �ying several MAVs with a centralized controller has its own challenges, which we do not mean to
undermine. We only mean that it appears that these methods are at a more mature stage when compared to
self-organized approaches, which is the focus of this work.



2.3. M ICRO AIR VEHICLE DESIGN

2

15

3. Intra-swarm relative sensing and avoidance . There are two key enabling tech-
nologies for swarming. The �rst is the knowledge on (the location of) nearby
neighbors. This is particularly important for MAV swarms as it not only enables
several higher-level swarming behaviors, but it also ensures that MAVs do not col-
lide with one another in mid-air. The second enabling technology is communica-
tion between MAVs, such that they can share information and thus expand their
knowledge of the environment via their neighborhood. These are is discussed in
Section 2.5.

4. Swarm behavior . This is the higher-level control policy that the robots follow
to generate the global swarm behavior. Examples of higher-level controllers in
swarms range from attraction and repulsion forces for �ocking (Gazi and Passino,
2002; Vásárhelyi et al., 2018) to neural networks for aggregation, dispersion, or
homing (Duarte et al., 2016). We discuss how MAV swarm behaviors can be de-
signed in Section 2.6.

Other similar taxonomies have been de�ned. Floreano and Wood (2015) describe
three levels of robotic cognition: sensory-motor autonomy, reactive autonomy, and cog-
nitive autonomy. Meanwhile, de Croon et al. (2016) divide the control process for au-
tonomous �ight into four levels: attitude control, height control, collision avoidance,
and navigation. Although the taxonomies above are conceptually similar (generally go-
ing from low-level sensing and control to a higher level of cognition), the rede�nition
that we provide here is designed to better organize our discussion within the context of
swarm robotics. Moreover, we also include the design of the MAV within the chain. As we
will explain in this manuscript, this has a fundamental impact on the higher-level layers.

The four stages that have been de�ned have an increasing level of abstraction. The
lower levels enable the robustness, �exibility, and scalability properties expected at the
higher level, while the higher levels dictate, accommodate, and make the most out of the
capabilities set at the lower level. From a systems engineering perspective, the MAV de-
sign poses constraints on what the higher-level controllers can expect to achieve, while
the higher-level controllers create requirements that the MAV must be able to ful�ll. A
simpli�ed view of the �ow of requirements and constraints is shown in Figure 2.2.

Throughout the remainder of this chapter, as we discuss the state of the art at each
level, we will highlight the major constraints that �ow upward and the requirements that
�ow downward. Naturally, each sub-topic that we will treat features a plethora of solu-
tions, challenges, and methods, each deserving of a review paper of its own. It is beyond
the scope (and probably far beyond any acceptable word limit, too) to present an ex-
haustive review about each topic. Instead, we keep our focus to highlighting the main
methodologies and how they can be used to design swarms of MAVs. Where possible, we
will refer the reader to more in-depth reviews on a speci�c topic.

2.3. M ICRO AIR VEHICLE DESIGN
The differentiating challenge faced by a �ying robot, namely (and somewhat trivially)
the fact that it has to carry its own mass around, creates a strong design driver toward
minimalism. Despite battery mass consisting of up to 20% to 30% of the total system
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Figure 2.2 Generalized depiction of �ow of requirements and constraints for the design of MAV swarms.
The lower-level design choices create constraints on the higher-level properties of the swarm. Higher-level
design choices create requirements for the lower levels, down to the physical design of the MAV. Note that, for
the speci�c case, the �ow of requirements and constraints is likely to be more intricate than this picture makes
it out to be. However, the general idea remains.

mass, the �ight time of quadrotor MAVs still remains limited to the order of magnitude
of minutes (Kumar and Michael, 2012; Mulgaonkar et al., 2014; Oleynikova et al., 2015).
To increase the carrying capabilities of an MAV, enabling it to carry more/better sensors,
processors, or actuators, while keeping �ight time constant, means that the size of the
battery should also increase. In turn, this leads to a new increase in mass, and so on.
This type of spiral, often referred to as the “snowball effect”, is a well-known issue for
the design of any �ying vehicle, from MAVs to trans-Atlantic airliners (Lammering et al.,
2012; Obert, 2009; Voskuijl et al., 2018). It then becomes paramount for an MAV design
to be as minimalist as possible relative to its task, such that it may ful�ll the mission re-
quirements with a minimum mass (or, at the very least, there is a trade-off to be consid-
ered). This design driver has been taken to the extreme and has lead to the development
of miniature MAV systems, popular examples of which include the Ladybird drone and
the Crazy�ie (Giernacki et al., 2017; Lehnert and Corke, 2013; Remes et al., 2014). These
MAVs have a mass of less than 50 g, making them attractive due to their low cost and
the fact that they are safer to operate around people. This makes them appealing for
swarming, especially in indoor environments (Preiss et al., 2017).

A substantial body of literature already exists on single MAV design, the speci�cs of
which largely vary depending on the type of MAV in question. We refer the reader to the
works of Mulgaonkar et al. (2014) and Floreano and Wood (2015) and the sources therein
for more details. From the swarming perspective, it is important to understand that,
independently of the type of MAV in question, the following constraints are intertwined
during the design phase: 1) �ight time, 2) onboard sensing, 3) onboard processing power,
and 4) dynamics. This means that the choice of MAV directly constrains the application
as well as the swarming behavior that can be achieved (or, vice versa, a desired swarm-
ing behavior requires a speci�c type of MAV). For example, �xed wing MAVs bene�t from
longer autonomy. This makes them better candidates for long term operations, and also
give the operators more time to launch an entire �eet and replace members with low
batteries (Chung et al., 2016). However, �xed wing MAVs also have limited agility in
comparison to quadrotors or �apping wing MAVs. The latter, for instance, can have a
very high agility (Karásek et al., 2018), but also comes with more limited endurance and
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payload constraints (Olejnik et al., 2019). The MAV design impacts the number and type
of sensors that can be taken on board. It can also impact how these sensors are posi-
tioned and their eventual disturbances and noise. In turn, this affects the local sensing
and control properties of the MAV and can also impact its ability to sense neighbors and
operate in a team more effectively. We will return to these issues in the next sections of
this chapter, whereby we discuss how an MAV can estimate and control its motion, sense
its neighbors, and navigate in an environment together with the rest of the swarm.

A special note is made to designs that are intended for collaboration. Oung and
D'Andrea (2011) introduced the Distributed Flight Array, a design whereby multiple sin-
gle rotors can attach and detach from each other to form larger multi-rotors. More
recently, Saldaña et al. (2018) introduced the ModQuad: a quadrotor with a magnetic
frame designed for self-assembly with its neighbors. This design provides a solution for
collaborative transport by creating a more powerful rigid structure with several drones.
Gabrich et al. (2018) have shown how the ModQuad design can be used to form an aerial
gripper. Because of the frame design, one of the dif�culties of the ModQuad was in the
disassembly back to individual quadrotors. This was tackled with a new frame design
which enabled the quadrotors to disassemble by moving away from each other with a
suf�ciently high roll/pitch angle (Saldaña et al., 2019).

2.4. LOCAL EGO-STATE ESTIMATION AND CONTROL
The primary objective for a single MAV operating in a swarm is to remain in �ight and
perform higher-level tasks with a given accuracy. This requires a robust estimation of
the onboard state as well as robust lower-level control, preferably while minimizing the
size, power, and processing required. The design choices made here dictate the accuracy
(i.e., noise, bias, and disturbances) with which each MAV will know its own state, as well
as which variables the state is actually comprised of. In turn, this affects the type of ma-
neuvers and actions that an MAV can execute. For instance, aggressive �ight maneuvers
likely require relatively accurate real-time state estimation (Bry et al., 2015). Of equal
importance are the considerations for the processing power that remains for higher-
level tasks. While it can be attractive to implement increasingly advanced algorithms
to achieve a more reliable ego-state estimate, these can be too computationally expen-
sive to run on board even by modern standards (Ghadiok et al., 2012; Schauwecker and
Zell, 2014). This limits the MAV, as processing power is diverted from tasks at a higher-
level of cognition. If not properly handled, it can lead to sub-optimal �nal performances
by the MAVs and by the swarm. 2

2.4.1. LOW-LEVEL STATE ESTIMATION AND CONTROL

This section outlines the main sensors and methods that can be used by MAVs to mea-
sure their onboard states, laying the foundations for our swarm-focused discussion in
later sections. We organize the discussion by focusing on the following parameters: atti-
tude, velocity and odometry, and height and altitude. Moreover, we restrict our overview

2When we relate this to nature, then low-level control and state-estimation seldom require large “computa-
tional” efforts by the individual animal. Rather, they eventually become second nature (Rasmussen, 1983).
The real focus is directed to higher-level tasks.
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to onboard sensing, as this is in line with the swarming philosophy and the relevant ap-
plications.

ATTITUDE

It is essential for an MAV to estimate and control its own attitude in order to control its
�ight (Beard, 2007; Bouabdallah and Siegwart, 2007). Angular rotation rates and accel-
erations are typically measured through the onboard Inertial Measurement Unit (IMU)
sensor (Bouabdallah et al., 2004; Gupte et al., 2012). The IMU measurements can be
fused together to both estimate and control the attitude of an MAV (Macdonald et al.,
2014; Mulgaonkar et al., 2015; Schauwecker et al., 2012; Shen et al., 2011). Additionally
to the IMU, MAVs equipped with cameras can also use it to infer the attitude with respect
to certain reference features or planar surfaces, as in Schauwecker and Zell (2014). Thur-
rowgood et al. (2009), Dusha et al. (2011), de Croon et al. (2012a), and Carrio et al. (2018)
estimate the roll and pitch angles of an MAV based on the horizon line (outdoors). The
measurements from the IMU and vision can then be �ltered together to improve the es-
timate as well as �lter out the accumulating bias from the IMU (Martinelli, 2011). Once
known, attitude control can be achieved with a variety of controllers. For a recent survey
that treats the topic of attitude control in more detail, we refer the reader to the review by
Nascimento and Saska (2019). Of particular interest to swarming are controllers that can
provide robustness to disturbances or mishaps. One interesting example is the scheme
devised by Faessler et al. (2015), which can automatically reinitialize the leveled �ight of
an MAV in mid-air.

Measuring and controlling the heading (for instance, with respect to north) is not
strictly needed for basic �ight. However, it can be an enabler for collective motion by
providing a common reference that can be measured locally by all MAVs (Flocchini et al.,
2008). Heading with respect to north can be measured with a magnetometer, which is
a common component for MAVs (Beard, 2007). A main limitation of this sensor is that
it is highly sensitive to disturbances in the environment (Afzal et al., 2011). The distur-
bances can be corrected for with the use of other attitude sensors. For example, Pascoal
et al. (2000) fused gyroscope measurements with the magnetometer in order to �lter out
disturbances from the magnetometer while also reducing the noise from the gyroscope.
Another sensor that has been explored is the celestial compass, which extracts the orien-
tation based on the Sun (Dupeyroux et al., 2019; Jung et al., 2013). Although this sensor
is not subject to electro-magnetic disturbances, it is limited to outdoor scenarios and
performs best under a clear sky, which may also not always be the case.

VELOCITY AND ODOMETRY

A tuned sensor fusion �lter with an accurate prediction model can estimate velocity just
based on the IMU readings (Leishman et al., 2014). However, the use of additional and
dedicated velocity sensors is commonly used to achieve a more robust system without
bias. Fixed wing MAVs can be equipped with a pitot tube in order to measure airspeed
(Chung et al., 2016). For other designs, such as quadrotors, a popular solution is to mea-
sure the optic �ow, i.e., the motion of features in the environment, from which an MAV
can extract its own velocity (Santamaria-Navarro et al., 2015). To observe velocity, the
�ow needs to be scaled with the help of a distance measurement such as height (albeit
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this assumes that the ground is �at, which may be untrue in cluttered/outdoor environ-
ments). Optic �ow can be measured with a camera or with dedicated sensors, such as
PX4FLOW (Honegger et al., 2013) or the PixArt sensor.3 Using optical mouse sensors,
Briod et al. (2013) were able to make a 46 g quadrotor �y based on only inertial and optic
�ow sensors, even without the need to scale the �ow by a distance measurement. This
was achieved by only using the direction of the optic �ow and disregarding its magni-
tude. In nature, optic �ow has also been shown to be directly correlated with how in-
sects control their velocity in an environment (Lecoeur et al., 2019; Portelli et al., 2011).
Similar ideas have also been ported to the drone world, whereby the optic �ow detection
is directly correlated to a control input, without even necessarily extracting states from
it (Zufferey et al., 2010). This can be an attractive property in order to create a natural
correlation between a sensor and its control properties. State estimates improve when
optic �ow is fused with other sensors, such as IMU readings or pressure sensors (Kendoul
et al., 2009a,b; Santamaria-Navarro et al., 2015), or with the control input of the drone
(Ho et al., 2017). As opposed to optic �ow sensors, a camera has the advantage that it
can observe both optic �ow as well as other features in the environment, thus enabling
an MAV to get more out of a single sensor. Although this may be more computationally
expensive, it also provides versatility.

The use of vision also enables the tracking of features in the environment, which a
robot can use to estimate its odometry. Using Visual Odometry (VO), a robot integrates
vision-based measurements during �ight in order to estimate its motion. The inertial
variant of VO, known as Visual Inertial Odometry (VIO), further fuses visual tracking to-
gether with IMU measurements. This makes it possible for an MAV to move accurately
relative to an initial position (Scaramuzza and Zhang, 2019). VIO has been exploited
for swarm-like behaviors, such as in the work by Weinstein et al. (2018), whereby twelve
MAVs form patterns by �ying pre-planned trajectories and use VIO to track their mo-
tion. A step beyond VO and its variants is to use Simultaneous Localization And Mapping
(SLAM). The advantage of SLAM is that it can mitigate the integration drift of VO-based
methods. When solving the full SLAM problem, a robot estimates its odometry in the en-
vironment and then corrects it by recognizing previously visited places and optimizing
the result accordingly, so as to make a consistent map (Cadena et al., 2016; Cieslewski
and Scaramuzza, 2017). Yousif et al. (2015) and Cadena et al. (2016) provide more in-
depth reviews of VO and SLAM algorithms. Within the swarming context, a map can
also be shared so as to make use of places and features that have been seen by other
members of the swarm. One common drawback of VO and SLAM methods is that they
are computationally intensive and thus reserved for larger MAVs (Ghadiok et al., 2012;
Schauwecker and Zell, 2014). However, recent developments have also seen the intro-
duction of more light-weight solutions such as Navion (Suleiman et al., 2018).

Odometry and SLAM are not limited to the use of vision. A viable alternative sensor is
the LIDAR (LIght Detection And Ranging) scanner, more commonly referred to as laser
scanner. LIDAR-based SLAM feature the same philosophy as the vision counterparts,
but instead of a camera it uses LIDAR to measure depth information and build a map
(Bachrach et al., 2011; Doer et al., 2017; Opromolla et al., 2016; Tripicchio et al., 2018). A
LIDAR is generally less dependent on lighting conditions and needs less computations,

3See “PMW3901MB Product Datasheet” by PixArt Imaging Inc., June 2017.
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but it is also heavier, more expensive, and consumes more onboard power (Opromolla
et al., 2016). Vision and LIDAR can also be used together to further enhance the �nal
estimates (López et al., 2016; Shi et al., 2016).

H EIGHT AND ALTITUDE

In an abstract sense, the ground represents an obstacle that the MAV must avoid, much
like walls, objects, or other MAVs. It does not need to be explicitly known in order to
control an MAV, as shown in the work of Beyeler et al. (2009). Unlike other obstacles,
however, gravity continuously pulls the MAV toward the ground, meaning that measur-
ing and controlling height and altitude often requires special attention.

Note that we differentiate here between height and altitude. Height is the distance to
the ground surface, which can vary when there is a high building, a canyon, or a table.
The height of an MAV can be measured with an ultrasonic range �nder (or sonar). Sonar
can provide more accurate data at the cost of power, mass, size, and a limited range. Its
accuracy, however, made it a part of several designs (Abeywardena et al., 2013; Ghadiok
et al., 2012; Krajník et al., 2011). Infrared or laser range �nders have also been used as an
alternative (Grzonka et al., 2009; Gupte et al., 2012). The advantage of an infrared sensor
is that it can be very power ef�cient, albeit it is only reliable up to a limited range of a
few meters, and on favorable light conditions (Laković et al., 2019) 4. Altitude is the dis-
tance to a �xed reference point, such as sea level or a takeoff position. A pressure sensor
is a common sensor to obtain this measurement (Beard, 2007), but it can be subject to
large noise and disturbances in the short term, which can be reduced via low pass �l-
ters (Sabatini and Genovese, 2013; Shilov, 2014). If �ying outdoors, a Global Navigation
Satellite System (GNSS) can also be used to obtain altitude.

The choice of height/altitude sensor has an impact on the swarm behaviors that can
be programmed. GNSS and pressure sensors provide a measurement of the altitude of
the MAV with respect to a certain position. This is an attractive property, although, as
previously noted, GNSS is limited to outdoor environments, while pressure sensors can
be noisy. Moreover, all pressure sensors of all MAVs in the swarm should be equally cali-
brated. Unlike pressure sensors, ultrasonic sensors or laser range �nders do not require
this calibration step, since the measurement is made from the MAV to the nearest sur-
face. However, one must then assume that the MAVs all �y on a �at plane with no objects
(or other MAVs below them), which may turn out to not be a valid assumption. SLAM
and VIO methods, previously discussed, can also estimate altitude/height as part of the
odometry/mapping procedure provided that a downward facing camera is available.

Just as for the use of a common heading like north, the measurements of height
and/or altitude can provide a common reference plane for a swarm of MAVs. If the ver-
tical distance between the MAVs is suf�cient, it can provide a relatively simple solution
for intra-swarm collision avoidance (albeit with constraints — we return to this in Sec-
tion 2.5.2). It can also enable self-organized behaviors, such as in the work of Chung et al.
(2016), where the MAVs are made to follow the one with the highest altitude within their
sub-swarm. In this way, the leader is automatically elected in a self-organized manner
by the swarm. For example, should a current leader MAV need to land as a result of a

4Seewww.st.com/en/imaging-and-photonics-solutions/vl53l0x.html .

www.st.com/en/imaging-and-photonics-solutions/vl53l0x.html
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malfunction, a new leader can be automatically re-elected so that the rest of the swarm
can keep operating.

2.4.2. ACHIEVING SAFE NAVIGATION

It is important that each MAV remains safe and that it does not collide with its surround-
ings, or that damages remain limited in case this happens. This safety requirement can
be satis�ed in two ways. The �rst, which is more passive and brings us back to MAV de-
sign, is to develop MAVs that are mechanically collision resilient. This allows the MAV
to hit obstacles without risking signi�cant damage to itself or its environment. With this
rationale, Briod et al. (2012), Mulgaonkar et al. (2015, 2018), and Kornatowski et al. (2017)
proposed protective cages to be placed around an MAV. However, the additional mass of
a cage can negatively impact �ight time and the cage can also introduce drag and con-
trollability issues (Floreano et al., 2017). Instead, Mintchev et al. (2017) developed a �ex-
ible design for miniature quadrotors in order to be more collision resilient upon impact
with walls. The use of airships has also been proposed as a more collision resilient solu-
tion (Melhuish and Welsby, 2002; Troub et al., 2017). The limitations of airships, however,
are in their lower agility and restricted payload capacity. More recently, Chen et al. (2019)
demonstrated insect-scale designs that use soft arti�cial muscles for �apping �ight. The
soft actuators, combined with the small scale of the MAV, are such that the MAVs can
be physically robust to collisions with obstacles and with each other. Collision resistant
designs can even be exploited to improve onboard state estimation, such as in the recent
work by Lew et al. (2019), whereby collisions are used as pseudo velocity measurement
under the assumption that the velocity perpendicular to an obstacle, at the time of im-
pact, is null. The alternative, or complementary, solution to passive collision resistance
is active obstacle sensing and avoidance, whereby an MAV uses its onboard sensors to
identify and avoid obstacles in the environment.

Collision-free �ight can be achieved via two main navigation philosophies: 1) map-
based navigation, and 2) reactive navigation. With the former, a map of the environment
can be used to create a collision-free trajectory (Ghadiok et al., 2012; Shen et al., 2011;
Weiss et al., 2011). The map can be generated during �ight (using SLAM) and/or, for
known environments, it can be provided a priori. The advantage of a map-based ap-
proach is that obstacle avoidance can be directly integrated with higher-level swarming
behaviors (Saska et al., 2016b). Instead, a reactive control strategy uses a different phi-
losophy whereby the MAV only reacts to obstacles in real-time as they are measured, re-
gardless of its absolute position within the environment. In this case, if an MAV detects
an obstacle, it reacts with an avoidance maneuver without taking its higher-level goal
into account. The trajectories pursued with a reactive controller may be less optimal,
but the advantage of a reactive control strategy is that it naturally accounts for dynamic
obstacles and it is not limited to a static map. The two can also operate in a hierarchical
manner, such that the reactive controller takes over if there is a need to avoid an obsta-
cle, and the MAV is otherwise controlled at a higher level by a path planning behavior.
Regardless of the navigation philosophy in use, if the MAV needs to sense and avoid ob-
stacles during �ight, it will require sensors that can provide it with the right information
in a timely manner.

Of all sensors, vision provides a vast amount of information from which an MAV can
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interpret its direct environment. By using a stereo-camera, the disparity between two
images gives depth information (Heng et al., 2011; Matthies et al., 2014; McGuire et al.,
2017b; Oleynikova et al., 2015). Alternatively, a single camera can also be used. For exam-
ple, the work of de Croon et al. (2012b) exploited the decrease in the variance of features
when approaching obstacles. Ross et al. (2013) used a learning routine to map monocu-
lar camera images to a pilot command in order to teach obstacle avoidance by imitating
a human pilot. Kong et al. (2014) proposed edge detection to detect the boundary of
potential obstacles in an image. Saha et al. (2014) and Aguilar et al. (2017) used feature
detection techniques in order to extract potential obstacles from images. Alvarez et al.
(2016) used consecutive images to extract a depth map (a technique known as motion
parallax), albeit the accuracy of this method is dependent on the ego-motion estima-
tion of the quadrotor. Learning approaches have also been investigated in order to over-
come the limitations of monocular vision. By exploiting the collision resistant design of
a Parrot AR Drone, Gandhi et al. (2017) collected data from 11,500 crashes and used a
self-supervised learning approach to teach the drone how to avoid obstacles from only
a monocular camera. Self-supervised learning of distance from monocular images can
also be accomplished without the need to crash, but with the aid of an additional sensor.
Lamers et al. (2016) did this by exploiting an infrared range sensor, and van Hecke et al.
(2018) applied this to see distances with one single camera by learning a behavior that
used a stereo-camera. This is useful if the stereo-camera were to malfunction and sud-
denly become monocular. Alternative camera technologies have also been developed,
providing new possibilities. RGB-D sensors are cameras that also provide a per-pixel
depth map, a mainstream example of which is the Microsoft Kinect camera (Newcombe
et al., 2011). This particular sensor augments one RGB camera with an IR camera and an
IR projector, which together are capable of measuring depth (Smisek et al., 2013). RGB-
D sensors have been used on MAVs to navigate in an environment and avoid obstacles
(Huang et al., 2017; Odelga et al., 2016; Shen et al., 2014; Stegagno et al., 2014). One of
the disadvantages of these RGB-D sensors over a stereo-camera setup (whereby depth is
inferred from the disparity) is that RGB-D sensors can be more sensitive to natural light,
and may thus perform less well in outdoor environments (Stegagno et al., 2014). Fi-
nally, in recent years, the introduction of Dynamic Vision Sensor (DVS) cameras has also
enabled new possibilities for reactive obstacle sensing. A DVS camera only measures
changes in the brightness, and can thus provide a higher data throughput. This enables
a robot to quickly react to sudden changes in the environment, such as the appearance
of a fast moving obstacle (Falanga et al., 2019a; Mueggler et al., 2015).

The capabilities of a vision algorithm depend on the resolution of the onboard cam-
eras, the number of the onboard cameras, as well as the processing power on board. On
very lightweight MAVs, such as �apping wings, even carrying a small stereo-camera can
be challenging (Olejnik et al., 2019). A further known disadvantage of vision is the lim-
ited Field of View (FOV) of cameras. Omni-directional sensing can only be achieved with
multiple sets of cameras (Floreano et al., 2013; Moore et al., 2014) at the cost of additional
mass, the impact of which is dependent on the design of the MAV.

Although vision is a rich sensor, in that it can provide different types of information,
other sensors also can be used for reactive collision avoidance. LIDAR, for instance, has
the advantage that it is less dependent on lighting conditions and can provide more ac-
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curate data for localization and navigation (Bachrach et al., 2011; Tripicchio et al., 2018).
Alternatively, time-of-�ight laser ranging sensors have also been proposed for reactive
obstacle avoidance algorithms on small drones (Laković et al., 2019). These unidirec-
tional sensors can sense whether an object appears along their line of sight (typically up
to a few meters). Due to their small size and low power requirements, they can be used
on tiny MAVs (Bitcraze AB, 2019). 5

2.5. I NTRA-SWARM RELATIVE SENSING AND COLLISION AVOID-
ANCE

Once we have an MAV design that can perform basic safe �ight, we begin to expand its
capabilities toward collaboration in a swarm. Two fundamental challenges need to be
considered in this domain. The �rst is relative localization. This is not only required to
ensure intra-swarm collision avoidance, which is a basic safety requirement, but also to
enable several swarm behaviors (Bouffanais, 2016). The design choice used for intra-
swarm relative localization de�nes and constrains the motion of the MAVs relative to
one another, which affects the swarming behavior that can be implemented. The second
challenge is intra-swarm communication. Much like knowing the position of neighbors,
the exchange of information between MAVs can help the swarm to coordinate (Hamann,
2018; Valentini, 2017). In this section, we explore the state of the art for relative local-
ization (Section 2.5.1), reactive collision avoidance maneuvers (Section 2.5.2), and we
discuss intra-swarm communication technologies (Section 2.5.3).

2.5.1. RELATIVE LOCALIZATION
In outdoor environments, relative position can be obtained via a combination of GNSS
and intra-swarm communication. Global position information obtained via GNSS is
communicated between MAVs and then used to extract relative position information.
This has enabled connected swarms that can operate in formations or �ocks (Chung
et al., 2016; Yuan et al., 2017). An impressive recent display of this in the real world was
put into practice by Vásárhelyi et al. (2018), who programmed a swarm of 30 MAVs to
�ock. The same concept can be applied to indoor environments if pre-�tted with, for
example: external markers (Pestana et al., 2014), motion-tracking cameras (Kushleyev
et al., 2013), antenna beacons (Guo et al., 2016; Ledergerber et al., 2015), or ultra sound
beacons (Vedder et al., 2015). However, this dependency on external infrastructure lim-
its the swarm to being operable only in areas that have been properly �tted to the task.
Several tasks, especially the ones that involve exploration, cannot rely on these meth-
ods. In order to remove the dependency on external infrastructure, there is a need for
technologies that allows the MAVs themselves to obtain a direct MAV-to-MAV relative
location estimate. This is still an open challenge, with several technologies and sensors
currently being developed.

One of the earlier solutions for direct relative localization on �ying robots proposed
the use of infrared sensors (Roberts et al., 2012). However, since infrared sensors are uni-
directional, this used an array of sensors (both emitting and receiving) placed around
the MAV in order to approach omni-directionality, making for a relatively heavy system.

5Seewww.bitcraze.io/multi-ranger-deck/ .

www.bitcraze.io/multi-ranger-deck/
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Alternatively, vision-based algorithms have once again been extensively explored. How-
ever, the robust visual detection of neighboring MAVs is not a simple task. The object
needs to be recognized at different angles, positions, speeds, and sizes. Moreover, the
image can be subject to blur or poor lighting conditions. One way to address this chal-
lenge is with the use of visual aids mounted on the MAVs, such as visual markers (Faigl
et al., 2013; Krajník et al., 2014; Nägeli et al., 2014), colored balls (Epstein and Feldman,
2018; Roelofsen et al., 2015), or active markers such as infrared markers (Faessler et al.,
2014; Teixeira et al., 2018)6 or Ultra Violet (UV) markers (Walter et al., 2018, 2019). Visual
aids simplify the task and improve the detection accuracy and reliability. However, they
are not as easily feasible on all designs, such as �apping wing MAVs or smaller quadro-
tors. Markerless detection of other MAVs is very challenging, since other MAVs have to
be detected against cluttered, possibly dynamic backgrounds while the detecting MAV is
moving by itself as well. A successful current approach is to rely on stereo vision, where
other drones can be detected because they “�oat” in the air unlike other objects like trees
or buildings. Carrio et al. (2018) explored a deep learning algorithm for the detection of
other MAVs in stereo-based disparity images. An alternative is to detect other MAVs in
monocular still images. Like the detection in stereo disparity images, this removes the
dif�culty of interpreting complex motion �elds between frames, but it introduces the dif-
�culty of detecting other, potentially (seemingly) small MAVs against background clut-
ter. To solve the challenge, Opromolla et al. (2019) used a machine learning framework
that exploited the knowledge that the MAVs were supposed to �y in formation. Their
scheme used the knowledge of the formation in order to predict the expected position
of a neighboring MAV and focus the vision-based detection on the expected region, thus
simplifying the task. Employing a more end-to-end learning technique, Schilling et al.
(2019) used imitation learning to autonomously learn a �ocking behavior from camera
images. Following the attribution method by Selvaraju et al. (2017), Schilling et al. stud-
ied the in�uence that each pixel of an input image had on the predicted velocity. It was
shown that the parts of the image whereby neighboring MAVs could be seen were more
in�uential, demonstrating that the network had implicitly learned to localize its neigh-
bors. Despite the promising preliminary results, it is yet to be seen how it can handle
other MAVs sizes or more cluttered backgrounds. Finally, it is possible to use the optic
�ow �eld for detecting other MAVs. This approach could have the bene�t of generality,
but it would require the calculation and interpretation of a complex, dense optic �ow
�eld. To our knowledge, this method has not yet been investigated.

From a swarming perspective, it may also be desirable to know the ID of a neighbor.
However, IDs may be dif�cult to detect using vision without the aid of markers. This
issue was explored by Stegagno et al. (2011), Cognetti et al. (2012), and Franchi et al.
(2013) with fusion �lters that infer IDs over time with the aid of communication. More-
over, cameras have a limited FOV. This limits the behaviors that can be achieved by the
swarm. For instance, it may be limiting for surveillance tasks where quadrotors may
need to look away from each other, but can't or else they may collide or disperse. It can
be addressed by placing several cameras around the MAVs (Schilling et al., 2019), but at
the cost of additional mass, size, and power, which in turn creates new repercussions.

The use of vision is not only limited to directly recognizing other drones in the en-

6The solution by Teixeira et al. (2018) additionally uses communication between the MAVs.
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vironment. With the aid of communication, two or more MAVs can also estimate their
relative location indirectly by matching mutually observed features in the environment.
The MAVs can compare their respective views and infer their relative location. In the
most complete case, each MAV uses a SLAM algorithm to construct a map of its envi-
ronment, which is then compared in full with the rest of the team (as discussed in Sec-
tion 2.4, mapping can also be accomplished using other sensors such as LIDAR, so this
approach is not only reserved for vision). Although SLAM is a computationally expensive
task, more easily handled centrally (Achtelik et al., 2012; Forster et al., 2013), it can also be
run in a distributed manner, making for an infrastructure free system (Cieslewski et al.,
2018; Cunningham et al., 2013; Lajoie et al., 2019). For a survey of collaborative visual
SLAM, we refer the reader to the paper by Zou et al. (2019) and the sources therein. An
additional bene�t of collective map generation is that the MAVs bene�t from the obser-
vations of their teammates and can thus achieve a better collective map. However, if the
desired objective is only to achieve relative localization, the computations can be simpli-
�ed. Instead of computing and matching an entire map, the MAVs need only to concern
themselves with the comparison of mutually observed features in order to extract their
relative geometric pose (Achtelik et al., 2011; Montijano et al., 2016). This requires that
the images compared by the MAVs have suf�cient overlap and can be uniquely identi-
�ed.

An alternative stream of research leverages communication between MAVs to achieve
relative localization, while also using the antennas as relative range sensors. Here, we
will refer to these methods as communication-based ranging localization. The advan-
tage of this method is that it offers omni-directional information at a relatively low mass,
power, and processing penalty, leveraging a technology that is likely available on even
the smallest of MAVs. Szabo (2015) �rst proposed the use of signal strength to detect the
presence of nearby MAVs and engage in avoidance maneuvers. Also for the purposes of
collision avoidance, in Coppola et al. (2018) we implemented a beacon-less relative lo-
calization approach based on the signal strength between antennas, using the Bluetooth
Low Energy connectivity already available on even the smaller drones. Guo et al. (2017)
proposed a similar solution using UltraWide Band (UWB) antennas for relative ranging,
which offer a higher resolution even at larger distances. However, this work used one of
the drones as a reference beacon for the others. One commonality between our solu-
tion (Coppola et al., 2018) and the one by Guo et al. (2017) is that the MAVs are required
to have a knowledge of north, which enables them to compare each other's velocities
along the same global axis. However, in practice this is a signi�cant limitation due to
the dif�culties of reliably measuring north, especially if indoors, as already discussed in
Section 2.4.1. To tackle this, in van der Helm et al. (2020) we showed that, if using a high
accuracy ranging antenna such as UWB, then it is not necessary for the MAVs to measure
a common north. However, selecting this option creates fundamental constraints on the
high-level behaviors of the swarm. This issue is there for the case where north is known
and when it is not, albeit the requirement when north is not known are more stringent.
If north is known, at least one of the MAVs must be moving relative to the other for the
relative localization to remain theoretically observable. If north is not known, all MAVs
must be moving. The MAVs remain bound to trajectories that excite the �lter (van der
Helm et al., 2020). For the case where north is known, Nguyen et al. (2019) proposed that
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a portion of MAVs in the swarm should act as “observers” and perform trajectories that
persistently excite the system.

Another solution is to use sound. Early research in this domain was performed by Tijs
et al. (2010), who used a microphone to hear nearby MAVs. This was explored in more
depth by Basiri (2015) using full microphone arrays for relative localization. A primary
issue encountered was that the sound emitted by the listening quadrotor would mask the
sound of the neighboring MAVs, which were also similar. This issue was addressed with
the use of a “chirp” sound, which can then be more easily heard by neighbors (Basiri
et al., 2014, 2016). In recent work, Cabrera-Ponce et al. (2019) proposed the use of a
Convolutional Neural Network to detect the presence of nearby MAVs. This is done using
a large scale microphone array (Ruiz-Espitia et al., 2018) featuring eight microphones
based on the ManyEars framework (Grondin et al., 2013). Speci�c to sound sensors,
the accuracy of the detection depends on how similar the sounds of other MAVs are.
Moreover, the localization accuracy depends on the microphone setup. Most works use a
microphone array, where the localization accuracy depends on the length of the baseline
between microphones, which is inherently limited on small MAVs.

As it can be seen, several different techniques exist. Minimally, these technologies
should enable neighboring MAVs to avoid collisions with one another. However, the
particular choice of relative localization technology creates a fundamental constraint on
the swarm behavior that can be achieved. For example, communication-based ranging
methods have unobservable conditions depending on the MAVs' motion, and sound-
based localization with microphone arrays will be less accurate when used on smaller
MAVs. Similarly, certain swarm behaviors (e.g., one that requires known IDs, or long
range distances) may place certain requirements on which technology is best to be used.
In Table 2.1, we outline the major relative localization approaches with their advantages
and disadvantages.

2.5.2. I NTRA-SWARM COLLISION AVOIDANCE
Collision detection and avoidance of objects in the environment has already been dis-
cussed in Section 2.4.2. As MAVs operate in teams, relative intra-swarm collision avoid-
ance becomes a safety-critical behavior that should be implemented. The complexity of
this task is that it requires a collaborative maneuver between two or more MAVs.

MAVs operate in 3D space, and thus relative collision avoidance could be tackled by
vertical separation. However, particularly in indoor environments where vertical space is
limited, vertical avoidance maneuvers may cause undesirable aerodynamic interactions
with other MAVs as well as other parts of the environment. For quadrotors, while aero-
dynamic in�uence is relatively negligible when �ying side-by-side, �ying above another
will create a disturbance for the lower one (Michael et al., 2010; Powers et al., 2013). Fur-
thermore, emergency vertical maneuvers could also cause a quadrotor to �y too close
to the ground, which creates a ground effect and pushes it upward, or, if indoors, to �y
too close to the ceiling, which creates a pulling effect toward the ceiling (Powers et al.,
2013). Vertical avoidance may also corrupt the sensor readings of the MAV. For instance,
height may be compromised if another MAV obstructs a sonar sensors. Overall, horizon-
tal avoidance maneuvers are desired.
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A popular algorithm for obstacle avoidance, provided that the robots know their rel-
ative position and velocity, is the Velocity Obstacle (VO) method (Fiorini and Shiller,
1998). The core idea is for a robot to determine a set of all velocities that will lead to
collisions with the obstacle (a collision cone), and then choose a velocity outside of that
set, usually the one that requires minimum change from the current velocity. VO has
stemmed a number of variants speci�cally designed to deal with multi-agent avoidance,
such as Reciprocal Velocity Obstacle (RVO) (van den Berg et al., 2008, 2011), Hybrid Re-
ciprocal Velocity Obstacle (HRVO) (Snape et al., 2009), and Optimal Reciprocal Collision
Avoidance (ORCA) (Snape et al., 2011). These variants alter the set of forbidden velocities
in order to address reciprocity, which may otherwise lead to oscillations in the behavior.
These methods have been successfully applied on MAVs, both in a decentralized way
as well as via centralized replanners. They accounted for uncertainties by arti�cially in-
creasing the perceived radii of the robots. Alonso-Mora et al. (2015) showed the success-
ful use of RVO on a team of MAVs such that they may adjust their trajectory with respect
to a reference. This was done using an external MCS for (relative) positioning. In Cop-
pola et al. (2018), we showed a collision cone scheme with onboard relative localization,
introducing a method to adjust the cone angle in order to better account for uncertain-
ties in the relative localization estimates. A disadvantage of VO methods and its deriva-
tives is scalability. If the �ying area is limited and the airspace becomes too crowded,
then it may become dif�cult for MAVs to �nd safe �ight directions (Coppola et al., 2018).
Another avoidance algorithm, called Human-Like (HL), presents the advantage that the
heading selection is decoupled from speed selection (Guzzi et al., 2013a; Guzzi et al.,
2014), such that the MAVs only engage in a change in heading. HL has been found to be
successful even when operating at relatively lower rates (Guzzi et al., 2013b). Although
it has not been tested on MAVs, their tests also demonstrated generally better scalability
properties.

Alternatively, attraction and repulsion forces between obstacles are also a valid algo-
rithm for collision avoidance. This is a common technique which has been extensively
studied in swarm research (Gazi and Passino, 2002; Gazi and Passino, 2004; Reynolds,
1987). If one wishes for the MAVs to �ock, these attraction and repulsion forces can
also be directly merged with the swarm controller (Vásárhelyi et al., 2018). One potential
shortcoming of this approach is that it can lead to equilibrium states whereby the swarm
remains in a �xed �nal formation, although this can also be seen as a positive property
that can be exploited (Gazi and Passino, 2011).

In summary, multiple methods exist for intra-swarm collision avoidance. Given suf-
�ciently accurate relative locations, these methods are very successful. The main chal-
lenges here are: 1) how to deal with uncertainties and unobservable conditions deriving
from the localization mechanism used by the drones, and 2) how to keep guaranteeing
successful collision avoidance when the swarm scales up to very large numbers.

2.5.3. I NTRA-SWARM COMMUNICATION

Direct sharing of information between neighboring robots is an enabler for swarm be-
haviors as well as relative sensing (Hamann, 2018; Pitonakova et al., 2018; Valentini,
2017). To achieve the desired effect, it needs to be implemented with scalability, ro-
bustness, and �exibility in mind. Common problems that can otherwise arise are: 1) the
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messaging rate between robots is too low (low scalability); 2) high packet loss (low ro-
bustness); 3) communication range is too low (low scalability and �exibility); 4) inability
to adapt to a switching network topology (low �exibility) (Chamanbaz et al., 2017).

Solutions to the above depend on the application. With respect to hardware, the
three main technologies in the state of the art are: Bluetooth, WiFi, and ZigBee (Bensky,
2019). All three operate in the 2.4 GHz band.7 Bluetooth is energy ef�cient, but features
a low maximum communication distances of ¼10-20 m (indoors, depending on the en-
vironment and version). This makes it more important to establish a network that can
adapt to a switching topology, as it is very likely to change during operations. The latest
version of the Bluetooth standard, Bluetooth 5, features a higher range and a higher data-
rate despite keeping a low power consumption. It also has longer advertising messages,
such that, without pairing, asynchronous network nodes can exchange messages of 255
bytes instead of 31 (Collotta et al., 2018). Bluetooth antennas were used in the previously
discussed work of (Coppola et al., 2018) on a swarm of three MAVs to exchange data in-
doors and to measure their relative range. In comparison to Bluetooth, WiFi is known to
be less energy ef�cient, but works more reliably at longer ranges and has a higher data
throughput. Chung et al. (2016) used WiFi to enable a swarm of 50 MAVs to form an
ad hoc network. WiFi was also used by Vásárhelyi et al. (2018) in combination with an
XBee module8 using a proprietary communication protocol. ZigBee's primary bene�ts
are scalability (it can keep up to, theoretically, 64000 nodes) and low power, although
it has a low data communication rate (Bensky, 2019). 9 Depending on the application,
this may or may not be an issue depending on what the intra-swarm communication
requirements are. Allred et al. (2007) used a ZigBee module to enable communication
on a �ock of �xed wing MAVs due to its combination of light energy consumption and
long range (offering “a range of over 1 mile at 60mW” ). For comparisons of technical de-
tails of these technologies we refer the reader to the detailed book by Bensky (2019), the
MAV-focused review by Zufferey et al. (2013), as well as the earlier comparisons by Lee
et al. (2007).

In addition to the technologies discussed above, there is also the possibility of en-
abling indirect communication via cellular networks. In the near future, 5G networks
are expected to make it possible to have a reliable and high data throughput between
several MAVs (Campion et al., 2018). Finally, the use of UWB can also gain more rele-
vance in the future, especially because its additional capability to accurately measure
the range between MAVs, as discussed in Section 2.5.1, can be very helpful for swarms.
One technological challenge is that communication needs power, and while this may be
near-negligible for the bigger MAVs, it is not so for the smaller designs (Petricca et al.,
2011). From this perspective, the communication-based relative localization discussed
in Section 2.5.1, which can also double as a communication device for MAVs, is an in-
teresting solution if one desires a system that can achieve both goals simultaneously.
However, using any relative localization approach that relies on communication means

7WiFi also operates at other frequency bands. The 5 GHz band, for instance, is typically known to feature
a lower interference (Verma et al., 2013). ZigBee can also operate at the 868 MHz and 915 MHz frequency
bands (Collotta et al., 2018).

8Not to be confused with ZigBee (Faludi, 2010).
9Note that Bluetooth Low Energy, a sub-version of the Bluetooth standard, also requires very little power. Tests
by Collotta et al. (2018) return that Bluetooth 4.2 and 5.0 have a lower power consumption than ZigBee.
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that having a stable connection among MAVs is an important requirement, and possibly
a safety-critical one. Moreover, high messaging rates also become important in order to
have a high update rate.

2.6. SWARM-LEVEL CONTROL
We �nally arrive at the swarm part of this chapter. Once we have reliable MAVs that can
safely �y in an environment, localize one another, and perhaps even communicate, we
can begin to exploit them as a swarm. The complexity of this task stems from the fact
that, due to the decentralized nature of the swarm, the local actions that a robot takes
can have any number of repercussions at the global level. These cannot be known unless
the system is fully observed and optimized for, which the individual robot cannot do.

This section discusses possible approaches to design MAV swarm behaviors. Promi-
nent examples of behaviors are: �ocking, formation �ight, distributed sensing (e.g., map-
ping/surveillance), and collaborative transport and object manipulation. 10 Of these, for-
mation �ight receives signi�cant attention. It can be useful for several applications such
as surveillance, mapping, or cinematography, so as to collaboratively observe a scene
(Mademlis et al., 2019). Additionally, it can also be used for collaborative transport (de
Marina and Smeur, 2019), and it has even been shown that certain formations lead to en-
ergy ef�cient �ight for groups (Weimerskirch et al., 2001). Flocking behaviors bear simi-
lar properties to formation �ight, but with more “�uid” inter-agent behaviors that allow
the swarm to reorganize according to their current neighborhood and the environment.
Distributed sensing behaviors may require the swarm to travel in a formation or �ock,
but may also include behaviors in which the swarm distributes over pre-speci�ed areas
(Bähnemann et al., 2017) or disperses (McGuire et al., 2019). Collaborative transport and
object manipulations take two forms. The �rst is that of MAVs individually foraging for
different objects and bringing them to base (Bähnemann et al., 2017). The second is that
of jointly carrying a load that is too heavy for the individual MAV to carry (Tagliabue et al.,
2019). In order to achieve the behaviors above, and others, the MAVs can also engage in
a number of more general swarm behaviors such as distributed task allocation or collec-
tive decision making. For all cases, the challenge is to endow the MAVs with a controller
that achieves the desired swarm behavior while also avoiding undesired results (Win�eld
et al., 2005a, 2006).

Similarly to the review by Brambilla et al. (2013) (which the reader is referred to for
a general overview of swarm robotics and engineering), we divide the design methods
in two categories. The �rst, which we call “manual design methods”, refers to hand-
crafted controllers that instigate a particular behavior in the swarm. These are discussed
in Section 2.6.1, where we provide an overview of the state of the art for different swarm
behaviors. The second, which we refer to as “automatic design methods”, uses machine
learning techniques in order to design and/or optimize the controller for an arbitrary
goal. This is discussed in Section 2.6.2. We discuss the advantages and disadvantages
between the two, from the perspective of designing swarms of MAVs, in Section 2.6.3.

10Note that this list is not exhaustive. Additionally, we will see that there may also be overlaps between these
behaviors. For example, as explored in section Section 2.6.1, �ocking behaviors may achieve �xed formations
under certain equilibria.



2.6. SWARM-LEVEL CONTROL

2

31

2.6.1. M ANUAL DESIGN METHODS

This is the “classical” strategy to control, whereby a swarm designer develops the con-
trollers so as to achieve a desired global behavior. For swarm robotics, we differentiate
between two approaches. One approach is to design local behaviors, analyze them, and
then manually iterate until the swarm behaves as desired. Another approach is to make
mathematical models of the robots and their interactions and then design a suitable
controller that comes with a certain proof of convergence. The latter approach has some
obvious advantages if one succeeds, but it makes the designer face the full complexity
of swarm systems. Hence, such methods typically have limited applicability. For exam-
ple, in the work of Izzo and Pettazzi (2007), the behavior is limited to only symmetrical
formations of limited numbers of agents. The preferred approach is dependent on the
swarm behavior that the designer wishes to achieve, under the constraints of the local
properties of each MAV.

A large portion of methods focuses on formation control algorithms, whereby the
goal is for the MAVs to form and/or keep a tight formation during �ight. To hold a for-
mation, the MAVs must hold a relative position or distance between given neighbors,
such that they can move as one unit through space. See, for instance, the works of Quin-
tero et al. (2013), Schiano et al. (2016), Yuan et al. (2017), de Marina et al. (2017), and
de Marina and Smeur (2019). One advantage of �ying in formation for MAV swarms is
their predictability during operations. Several methods provide robust controllers with
mathematical proofs that the formation can be achieved and maintained during �ight.
A review dedicated to formation control algorithms for MAVs is provided by Oh et al.
(2015). Chung et al. (2018) also discuss different methods.

There are applications for which a rigid formation is sub-optimal, undesired, or un-
necessary, and it is better for the MAVs to move through space in a �ock. Flocking be-
haviors were originally synthesized from the motion of animals in nature (Aoki, 1982),
and were most famously formalized by Reynolds (1987) with the intent of simulating
swarms in computer animations. The behavior is typically characterized by a combi-
nation of simple local rules: attraction forces, repulsion forces, heading alignment with
neighbors, speed agreement with neighbors. This behavior naturally incorporates colli-
sion avoidance via the repulsion rule, and it has also been explored as a means to col-
lectively navigate in an environment with obstacles, whereby the obstacles provide ad-
ditional repulsion fores (Saska, 2015; Saska et al., 2014). Alternatively, the local rules can
also be exploited to achieve formations by making use of equilibrium points between
attraction and repulsion forces (Gazi, 2005). Depending on the way in which the rules
are used, they can be incorporated into an iterative approach, or they can be made part
of a mathematical regime combined with the model of the robot. An early real-world
demonstration of distributed �ocking was achieved by Hauert et al. (2011) with a swarm
of ten �xed wing MAVs. The more recent work by Vásárhelyi et al. (2018) demonstrated
outdoor �ocking for a swarm of 30 quadrotors.

Concerning behaviors such as distributed sensing, exploration, or mapping, there
are several different types of solutions that have been developed speci�cally for MAVs.
Typically, these are found to vary depending on the nature of the task, requiring the
designer to make careful choices on the best algorithm to be used. Bähnemann et al.
(2017) and Spurný et al. (2019), aided by GNSS for positioning, divided a search area
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into multiple regions so that a team of three MAVs could ef�ciently explore it with a pre-
planned trajectory. The recent work of McGuire et al. (2019) demonstrated a swarm of six
Crazy�ie MAVs performing an autonomous exploration task in an unknown indoor envi-
ronment. Each MAV acted entirely locally based on a manually designed bug algorithm
which enabled exploration as well as homing to a reference beacon.

2.6.2. AUTOMATIC METHODS FOR BEHAVIOR DESIGN AND OPTIMIZATION
In the last few decades, the increasing power of machine learning methods cannot be de-
nied, with multiple examples in robotics, autonomous driving, smart homes, and more.
Machine learning techniques are a way to automatically extract the local controller that
can ful�ll a task, relieving us from the need to design it ourselves. However, the problem
shifts to devising algorithms that can ef�ciently and effectively discover the controllers.
In this section, we discuss the possibilities based on two primary machine learning ap-
proaches in swarm intelligence research: Evolutionary Robotics (ER) and Reinforcement
Learning (RL).

EVOLUTIONARY ROBOTICS

ER uses the concept of survival of the �ttest in order to ef�ciently search through the
design space for an effective controller (Nol�, 2002). 11 It has been widely adopted in
swarm robotics literature in order to evolve local robot controllers that optimize the per-
formance of the swarm with respect to a global, swarm-level objective (Trianni, 2008).
ER bypasses the analysis of the relation between the local controllers and the global be-
havior of the swarm. Instead, it optimizes the controllers “blindly” by means of several
evaluations in an evolutionary process, which most often happens in simulation, but
can also be performed in the real world (Eiben, 2014). Evolved solutions often exploit
the robots' bodies and environment, including the behaviors of other swarm members.
Moreover, thanks to the blind optimization, other factors can also be evolved, such as the
communication between robots (Ampatzis et al., 2008). ER offers a generic approach to
generate swarm controllers of different types, including, but not limited to: neural net-
works (Silva et al., 2015; Trianni et al., 2003), grammar rules (Ferrante et al., 2013), be-
havior trees (Jones et al., 2018, 2019; Scheper et al., 2016), and state machines (Francesca
et al., 2014). Although neural network architectures can be very powerful, the advantage
of the latter methods is that they can be better understood by a designer, which makes it
easier to cross the reality gap between simulation and the real world when deploying the
controllers on the real robots (Jones et al., 2019). Crossing the reality gap is a major chal-
lenge in the �eld of ER and many different approaches have been investigated, also for
neural networks. See Scheper (2019) for a more extensive discussion on these methods.

A major challenge for the effective use of ER, especially for swarm robotics, is the
design of the �tness functions to be optimized (Francesca and Birattari, 2016). This is
usually left to the designer's ability to explicitly de�ne the key elements that indicate the
success of a behavior in a measurable and quantitative manner. It is not uncommon

11Looking at the complexity achieved by natural swarming systems, it also seems intuitive that such com-
plexity could be achieved automatically by mimicking an evolutionary process (Bouffanais, 2016). It is not
surprising that a closely related discipline to ER is that of Arti�cial Life (AL), dedicated to arti�cially repre-
senting life-like processes, albeit with generally more open-ended exploratory goals (Bedau, 2003; Trianni,
2014)
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to see empirically de�ned parameters that represent certain desired elements, such as
safety in the example of Duarte et al. (2016). As task complexity increases, so does the
challenge of designing a �tness function. In the worst case, it may become uninforma-
tive or even deceptive, leading the algorithm to not �nding the desired behavior (Silva
et al., 2016). Different approaches have been proposed to tackle this issue, such as be-
havioral decomposition or incremental learning (Nelson et al., 2009). The risk with these
strategies, however, is that the designer shapes the learning of the task too much, which
may lead to sub-optimal performances. As an alternative strategy for learning complex
tasks, Lehman and Stanley (2011) proposed novelty search, whereby the �tness is not
de�ned by how well the task is performed, but by how novel a behavior is. This can lead
to �nding more unorthodox solutions, also for swarm robotics (Gomes et al., 2013). Po-
tential drawbacks of this approach are that the search becomes less directed, and that
the shaping shifts from de�ning a �tness function to de�ning what constitutes a novel
behavior.

To conclude, the ER approach applied to swarming has the large advantage that it
deals with complexity by actually bypassing it. However, this currently comes at the cost
of needing many evaluations involving the simulation of not one but multiple robots,
which leads to longer lasting evolutions. An additional problem of simulating a speci�c
number of robots to evolve a swarm behavior is that the evolution may over�t the be-
haviors not only to the (simulation) environment, but also to the exact number of robots
that were used during the evolution. A naive solution is to simulate different swarm sizes
over the evolution, but this will take even more simulation time and, in any case, the
number of robots will be limited, meaning that scalability is not guaranteed. Recent de-
velopments in this domain have seen the introduction of size-agnostic techniques (Cop-
pola et al., 2019a). Finally, although there are studies on online evolutionary learning for
swarm robotics (Bredeche et al., 2018), online evolutionary strategies have yet to be ex-
plored (in practice) for MAVs.

REINFORCEMENT LEARNING

With RL, a robot is made to learn by trial-and-error from interacting with its environment
under a certain reward scheme. This approach teaches the robot an optimal mapping
between a state and the action that it should take so as to maximize its �nal reward (Sut-
ton and Barto, 2018). RL has been widely used in robotics, and it has thus also found its
way to swarm robotics (Brambilla et al., 2013). The advantage of RL is that the robots
can explore the environment and continuously adapt their behavior. Several techniques
have been proposed over the years for multi-agent RL (Busoniu et al., 2008). However,
within swarm robotics literature, it has generally received less attention than ER (Bram-
billa et al., 2013). A main dif�culty with this approach is that, from the perspective of the
individual robot, being in a swarm is a non-Markovian task, and each robot only has a
partial observation of the full global state. A potential issue, for instance, is state aliasing,
which refers to when multiple states appear to be the same from the perspective of the
agent, even though they are not (McCallum, 1997). It has been demonstrated that ER can
achieve better solutions for non-Markovian tasks (de Croon et al., 2005).

The solution to use RL with non-Markovian task leads to a Partially Observable Markov
Decision Problem (POMDP). In this case, a robot keeps a history of its observations and
thus extracts the most likely global state from them. RL can be applied to POMDPs (Ishii



2

34 2. ROBOT SWARMS: FUNDAMENTAL CHALLENGES AND CONSTRAINTS

et al., 2005), yet features scalability issues (the so called “state explosion”), especially
when ported to the swarm domain because the global state of the swarm, which it tries
to estimate, can take exponentially many forms (Parsons and Wooldridge, 2002). In re-
cent work, Hüttenrauch et al. (2017) proposed to use mean feature embeddings which
encode a mean distribution of the agents. Another known dif�culty of RL with respect
to ER is the credit assignment problem. This refers to the challenge of decomposing the
global rewards into local rewards for each robot, as the individual contribution of a single
robot to a global task may not always be clearly determined (Brambilla et al., 2013). The
credit assignment problem is also manifested over time, as it is dif�cult to judge which
prior action was most conducive.

In short, until now ER appears to be a more appropriate choice for learning control
in swarms, as it allows robots to exploit non-Markovian properties of the problem (e.g.,
the states and behaviors of other robots). However, because of the reality gap, online
learning methods may turn out very useful in the future, including RL methods.

2.6.3. M ANUAL VS. AUTOMATIC METHODS

A primary advantage of manual design methods for MAV swarms is that the solutions
are generally better understood, given that they have to be designed and programmed
manually. The algorithms that are developed can be analyzed, and in certain cases it
can even be assessed whether the system will converge to the desired properties and
even be resilient to faults (Saldaña et al., 2017; Saulnier et al., 2017). This is a particularly
attractive property for MAV applications, where safety and predictability are a primary
concern. A second advantage is that they carry a clearer breakdown of the requirements.
For these reasons, it is not surprising that, to the best of our knowledge and as con�rmed
by Chung et al. (2018), most real-world implementations of MAV swarms to date have re-
lied on primarily manually designed swarming algorithms. These advantages have also
been acknowledged by the automatic design community, which has brought a general
interest in using automatic approach to develop explicit controllers such as state ma-
chines (Francesca et al., 2014, 2015) or behavior trees (Jones et al., 2019; Kuckling et al.,
2018). In future work, the use of these methods could lead to a compromise between ex-
tracting an understandable controller and exploiting the power of automatic methods.

A challenge of designing an algorithm manually is in the need to ensure that it can
work within the limitations of the system. For instance, if using a communication-based
ranging relative localization system, the relative location estimate is only observable
when both MAVs are moving in such a way that the system is excited (Nguyen et al.,
2019). Alternatively, cameras can be limited by the FOV and be forced to keep a reference
neighbor in the center (Nägeli et al., 2014). This may be undesirable for the �nal appli-
cation of the swarm (e.g., surveillance), since the camera is kept pointing to other MAVs
as opposed to interesting features in the environment. Examples such as these serve to
show how a manually designed algorithm can either fail to regard certain elements, or
may not exploit the environment optimally so as to best deal with the limitations. An
automatic method, on the other hand, could extract a controller that best deals with
the limitations, possibly �nding solutions that cannot be easily designed manually. For
instance, ER studies show that evolved robot controllers can �nd behaviors that tightly
exploit the sensory and motor capabilities of the given robot (Nol�, 2002) — this is called
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sensory-motor coordination.

Despite their power, the application of automatic design methods to MAV swarms
are relatively few. One of the �rst steps was done by Hauert et al. (2009) for the purposes
of developing a �ying communication network. In this case, the authors proposed to re-
verse engineer the behavior of an evolved neural network and subsequently program a
similar behavior manually. This approach provided original and “creative” insights that
enabled them to design a viable and �exible behavior. In later work, Szabo (2015) applied
evolutionary behavior trees to a team of MAVs for the purposes of collision avoidance,
exploiting the increased readability of behavior trees. The MAVs only knew each other's
relative distance (not position) as measured by noisy Bluetooth signal strength, yet the
evolved behavior was capable of reducing the number of collisions in a cluttered space.
The automatically evolved behavior tree was not only simpler (fewer nodes/branches),
but also performed better when compared to a manually designed one. Scheper and de
Croon (2017) trained a neural network to form a triangle with a team of three MAVs, in-
spired by a similar task by Izzo et al. (2014). Although not aimed at MAVs, Izzo et al. (2014)
had previously shown that an automatic method was able to extract a behavior with
which homogeneous agents could self-organize into asymmetric patterns, whereas the
previously developed manual approaches for the same system were limited to symmet-
ric patterns (Izzo and Pettazzi, 2007). Scheper and de Croon (2017) additionally showed
that evolving a controller at a higher level of abstraction does not necessarily compro-
mise the ability of automatic methods to exploit an environment and sensory-motor re-
lationships, yet helps to reduce the reality gap. The more recent work of Schilling et al.
(2019) showed that it's possible to learn a �ocking behavior directly from camera images
using imitation learning. This was demonstrated in a real-world environment with two
MAVs. This automatic approach was able to �nd a viable, collision-free behavior that
could also localize neighbors.

The limited amount of works show that this �eld is still young. The extra challenge
comes from the several constraints that �ow from the lower levels as well as the addi-
tional cost and dif�culty of real-world experimentation. Nevertheless, there are argu-
ments to show that automatic methods may eventually provide a way to make the most
out of the swarms (Francesca and Birattari, 2016). We expect that in the future, once both
MAVs as well as automatic swarming design technologies become more mature, we will
begin to see an increase of (experimental) works in this domain.

2.7. FURTHER CHALLENGES AND FUTURE DEVELOPMENTS

2.7.1. BATTERY RECHARGING AND SCHEDULING

As already discussed, �ight time is a fundamental constraint for MAVs. Swarming can
help to increase the �ight time of the whole system, as a portion of MAVs can recharge
while others are still in operation. This is subject to two main challenges. The �rst is the
design of the combined MAV + recharging ecosystem, and the second is the distributed
scheduling between drones. Research has already begun on this front, albeit to the best
of our knowledge an automated and distributed recharging method for a swarm of MAVs
has yet to be demonstrated outside of a controlled environment. Toksoz et al. (2011) and
Lee et al. (2015) designed a battery swapping station to quickly exchange batteries on a
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quadrotor. The advantage of such a system is that the battery can be changed quickly.
However, it also requires an intricate design as well as highly accurate landing to ensure
that the battery is properly replaced. Instead, a contact-based recharging station such as
the one proposed by Leonard et al. (2014) offers a simpler system, albeit at the cost of a
slower turnover. The authors investigated its use for a multi-robot system, whereby the
MAVs queued their use of the charging stations via a prioritization function. Using a sim-
ilar charging system, Mulgaonkar and Kumar (2014) demonstrated a system where three
quadrotors take turns to surveil a target region, such that one operates while the other
two recharge. Vasile and Belta (2014) and Leahy et al. (2016) proposed formal strate-
gies based on temporal logic constraints to ensure that the MAVs would correctly queue
for recharging. However, the experimental efforts focused on the case where only one
MAV operates at a given time. Nowadays, commercial charging station are also available
(Brommer et al., 2018). This will likely accelerate the research progress. Wireless charg-
ing, albeit slower, is also an attractive choice as it softens the requirement on precision
landing (Choi et al., 2016; Junaid et al., 2017).

Flight time can also be increased at the MAV design level by designing MAVs with on-
board recharging or longer endurance. The capability for long endurance would allow
the swarm to be more �exible and take on a more diverse set of missions. One possible
method to increase the �ight time is to use solar cells. These have mostly been applied to
�xed wing designs such as the Skysailor MAV (Noth and Siegwart, 2010), bene�ting from
ef�cient �ight conditions and large wing areas. It can in fact be shown that the bene�t
of solar cells begins to have little effect on smaller platforms, due to the reduced surface
area available (Bronz et al., 2009). This trend is even more prominent on quadrotors,
which have higher energy requirements. As a solution, D'Sa et al. (2016) proposed an
MAV design that can alternate between �xed wing and quadrotor mode, such that “sur-
plus energy collected and stored while in a �xed wing con�guration is utilized while in a
quadrotor con�guration” . Recently, Goh et al. (2019) demonstrated a fully solar-powered
quadrotor. To meet the energy requirements, an area of 4 m 2 was required. A different
solution is to use combustion engines (Nex and Remondino, 2014; Ross, 2014; Zufferey
et al., 2013). They bene�t from the high-energy density of fuel and can help to provide
long endurance �ight, although they are typically applied to larger drones in outdoor
environments Alternatively, fuel cells have also been explored as a power source for long
endurance �ight, with increasingly promising results in the recent years (De Wagter et al.,
2019; Gong and Verstraete, 2017; Pan et al., 2019).

2.7.2. SWARM-LEVEL ACTIVE FAULT DETECTION
Active and decentralized fault detection should also play a fundamental role for the re-
alization of MAV swarms. 12 If not catered to, then there is a risk that the erroneous ac-
tions of one MAV hinder the entire swarm (Bjerknes and Win�eld, 2013). Win�eld and
Nembrini (2006) applied the Failure Mode and Effect Analysis (FMEA) methodology to
evaluate the reliability of an entire swarm based on its possible failure points. From such
studies it can be evaluated whether, and to what extent, local failures can incapacitate

12We differentiate between fault detection and fault tolerance. Fault detection refers to the ability of the robots
in the swarm to detect issues, and thus possibly also cope with them. Fault tolerance refers to the ability of
the system to be robust to faults.
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the swarm. The question is how such faults can be detected and dealt with during oper-
ations. Doing so would create a system that is more robust to failures.

Li and Parker (2007) developed the Sensor Analysis based Fault Detection (SAFDe-
tection). In this approach, a clustering algorithm is used to learn a model of the robots'
expected behavior. This model is then used to determine whether the behavior of a robot
in the swarm can be considered “normal” (i.e., falls within the learned model), or “ab-
normal”, in which case a likely fault has been detected. A distributed version of the al-
gorithm has also been developed (Li and Parker, 2009), in which case each robot learns
its own behavior model locally and then shares it. This strategy scales better with the
size of the swarm, as it parallelizes the clustering computations. The works by Tarapore
et al. (2013, 2015a,b) also propose a strategy for normal/abnormal behavior classi�ca-
tion by synthesizing the behavior of neighbors within a binary feature vector. In more
recent work, Tarapore et al. (2017) proposed the use of a consensus algorithm so that
the robots can collectively reach a decision on whether the behavior of a team-member
can be considered normal or abnormal. This was also tested on a real robotic system
(Tarapore et al., 2019). Strobel et al. (2018) explored the use of Blockchain technology
within robot swarms in order to identify and exclude faulty/malicious members, further
implemented on real robots in Pacheco et al. (2020). Qin et al. (2014) wrote a review on
this active area of research. Bringing these solutions to MAV swarms can largely improve
the operational safety of the full system, which is paramount for deployment in the real
world.

2.7.3. CONTROLLING AND SUPERVISING SWARMS

A control interface should enable an operator to provide commands to the swarm, such
as takeoff and landing, the commencement of mission objectives, or the engagement of
swarm-wide emergency procedures. All should be done in a direct and intuitive way to
minimize the effort by the operator (Dousse et al., 2016; Fuchs et al., 2014). To this end,
Nagi et al. (2014) explored the use of a gesture vocabulary which allows a human operator
to instruct a team of MAVs. The human operator and the gestures are detected directly
by the MAVs using their onboard camera. Thanks to their multiple viewpoints, they are
able to discern the operator's commands in a distributed fashion. Tsykunov et al. (2018)
explored how to use a haptic glove to control a team of drones as if they were all con-
nected via a spring-damper system. Research has also focused on the development of
gesture languages, as in the works of Soto-Gerrero and Ramrez-Torres (2016) and Cou-
ture et al. (2018). Virtual reality is also becoming an increasingly popular technology,
and is beginning to be applied to the control of MAVs (Tsykunov and Tsetserukou, 2019;
Vempati et al., 2019). Besides the above, a less technical, yet highly signi�cant, challenge
to overcome on this front is the (understandably) stringent legislation surrounding MAV
�ight, particularly in outdoor scenarios, often requiring at least one pilot per drone (the
speci�cs vary based on the location) (Vincenzi et al., 2015). We refer the interested reader
to Hocraffer and Nam (2017) and the sources therein for a more thorough overview of the
challenges and the current technologies for human control of aerial swarms.
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2.8. D ISCUSSION: H OW FAR ARE WE?
Following the many topics discussed in this chapter comes the inevitable question: how
far are we from large scale aerial swarms that can cooperatively explore areas, carry
heavier objects, and autonomously complete complex tasks without low level human-
in-the-loop control? Despite the large amount of research and development that has
been done to tackle the topics within this grander scheme, the �eld of robotics and the
�eld of swarm intelligence are both still relatively young, and there remain advances to
be made. In this chapter, we discussed how the swarm behavior depends on the con-
straints set by lower-level properties, and vice versa. This interdependency and iterative
nature of design means that, if we wish to bring full-�edged MAV swarms to the real
world, there must be a mutual understanding between the design levels as to what is
required and what can be achieved in reality.

One of the main technologies required to make the leap from �ying a single MAV to
�ying a decentralized swarm is an accurate and reliable intra-swarm relative localization
technology. Even for those applications where cooperation is limited and each member
in the swarm acts mostly independently, relative localization is still needed to ensure
relative collision avoidance, which is a safety-critical requirement. As we have shown
throughout this chapter, several technologies are currently under exploration and it is
still unclear which will prove most reliable and advantageous in the long run. As the
choice of these systems very directly shapes the behavior of the swarm, the challenge
of designing the swarm behavior needs to be tightly coupled to it, additionally to the
way it is coupled to the design of the individual robots. As such, automatic design al-
gorithms of swarm behaviors can provide a way to make the most out of the individual
MAVs and their limitations, albeit at the potential cost of relying on less well understood
controllers.

Additionally, the on-going standardization of tools is expected to help the �eld to
reach a new level of maturity (Nedjah and Junior, 2019). Systems such as ROS (Quigley
et al., 2009), Paparazzi (Brisset and Hattenberger, 2008; Mueller and Drouin, 2007), or
PX4 (Meier et al., 2015) have now accelerated the process of prototyping and testing
on real-world MAVs, and have also made it easier to share hardware/software advance-
ments. Low cost programmable MAVs such as the Crazy�ie are also available, making it
more feasible to experiment with large numbers of MAVs. Additionally, dedicated stan-
dards such as MAVLink, which provides communication between software modules, are
becoming increasingly popular (Dietrich et al., 2016), and full-stack frameworks have
been developed to handle the entire pipeline (Millan-Romera et al., 2019; Sanchez-Lopez
et al., 2016). The combination of these systems together with simulators, such as the
well known Gazebo (Koenig and Howard, 2004), ARGoS (Pinciroli et al., 2012), or AirSim
(Shah et al., 2018), further help to quickly prototype software in a realistic simulation
environment. Combined with models and frameworks such as hector-quadrotor (Meyer
et al., 2012) or RotorS (Furrer et al., 2016), simulation environments can signi�cantly ac-
celerate the development time (Johnson and Mishra, 2002). Mairaj et al. (2019) provides
an extensive review of several simulators for this purpose. Dedicated swarm languages
such as Buzz (Pinciroli and Beltrame, 2016) also provide a simpler prototyping frame-
work dedicated to swarm robotics, which can also be applied to MAVs.

Finally, the prominent rise in popularity of MAVs in the last decade has brought about
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several technology accelerators. MAV focused robotics competitions such as the Mo-
hamed Bin Z̈ayed International Robotics Challenge (MBZIRC) or the International Mi-
cro Air Vehicle (IMAV) competition have now also begun to integrate swarming or multi-
robot elements (Bähnemann et al., 2017; Nieuwenhuisen et al., 2017; Pestana et al., 2014;
Saska et al., 2016a; Spurný et al., 2019). This pushes researchers to take a technology out
of the lab and into unknown environments, thereby increasing their robustness.

2.9. CHAPTER CONCLUSIONS
The challenges to solve before we can expect to see swarms of autonomous MAVs are
many. They begin at the lowest level, forcing us to think of how the MAV design will
impact the swarm behavior, and they end at the highest level, where we must design
collective behaviors that best exploit our lower-level designs, controllers, and sensors. In
the last decade, the �eld of swarm robotics and MAV design have started to merge more
and more, leading to increasingly impressive achievements. To go further, the tight and
complex relationship between the low level and the high level needs to be appreciated
in order to break into a new era of truly autonomous and distributed swarms of MAVs.

Several of the principles that have been explored in this chapter also apply to other
robotic systems. Overall, in order to achieve a reliable swarm of robots, we need to have a
method that transparently relates the global goal to the local sensory data. Additionally,
for the sytem to be safe to use, each robot should be capable of prioritizing long-term
safety over achieving the goal.





3
PROVABLE SELF-ORGANIZING PATTERN

FORMATION WITH LIMITED KNOWLEDGE

In the previous chapter, we studied the relationship between sensory observations and
swarm design, and emphasized the need to establish transparent procedures in order to
actualize real world swarms. In this chapter, we thus explore how to automatically de-
sign and verify the local behavior of robots with highly limited cognition, while ensuring
safety. We will focus on the task of pattern formation as a case study (the method will
be generalized in later chapters). All robots in this particular pattern formation task are:
anonymous, homogeneous, non-communicating, memoryless, reactive, do not know their
global position, do not have global state information, and operate by a local clock. They
only know: 1) the relative location of their neighbors within a short range and 2) a com-
mon direction (north). We developed a procedure to generate a local behavior that allows
the robots to self-organize into a desired global pattern despite their individual limita-
tions. This is done while also avoiding collisions and keeping the coherence of the swarm
at all times. The generated local behavior is a probabilistic local state-action map. The
robots follow this stochastic policy to select an action based on their current observation,
referred to in this work as their local state. It is this stochasticity, in fact, that allows the
global pattern to eventually emerge. For a generated local behavior, we then present a set
of conditions to verify whether the desired pattern will always eventually emerge from the
local actions of the agents. The novelty of the veri�cation procedure is that it is primarily
local in nature and focuses on the local states of the robots and the global implications
of their local actions. A local approach is of interest to reduce the computational effort
as much as possible when verifying the emergence of larger patterns. Finally, we explore
how the behavior could be implemented on real robots and investigate this with extensive
simulations on a realistic robot (drone) model using ROS and Gazebo.

The contents of this chapter have been published in Coppola et al. (2019b).
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3.1. BACKGROUND
The objective of swarm robotics is to enable several robots to collaborate toward a com-
mon goal. The goal of pattern formation, which is when the swarm must form a desired
spatial con�guration, has been a topic of signi�cant attention with many applications
for aerial robots (Achtelik et al., 2012; Saska et al., 2016b), underwater robots (Joordens
and Jamshidi, 2010), satellites (Engelen et al., 2011; Verhoeven et al., 2011), and more.
For safety reasons, the behavior should also ensure that collision paths are avoided and
that the swarm remains coherent (i.e., the swarm does not break apart into multiple
groups). Our principal interest in this chapter lies in developing a simple behavior to
achieve pattern formation with a swarm of robots with extremely low levels of cognition.

One relevant example of an extremely limited robot is miniature quadrotors, hence-
forth referred to as Micro Air Vehicles (MAVs). They are characterized by low memory
and processing capabilities due to their increasingly small size and mass (McGuire et al.,
2016). When operating in closed environments, where Global Navigation Satellite Sys-
tems (GNSSs) may be unavailable, they should coordinate only using the relative posi-
tion of their neighbors, of which they may also be unable to discern the identity, as for
instance in the system studied by Faigl et al. (2013) or by Stegagno et al. (2016). Further-
more, intra-swarm communication may prove itself challenging to achieve in practice
and is best kept at a minimum (Hamann, 2018). For example, our recent experiments
showed how a small group of three MAVs can already begin to suffer from relatively
limited rate of communication and growing interference (Coppola et al., 2018; van der
Helm et al., 2020). Finally, in our pursuit of a minimalist swarm, we also expect all MAVs
to be functionally homogeneous without individually pre-allocated tasks. Mesbahi and
Egerstedt (2010) refer to this as assignment free. Accepting all these limitations leads us
to robots that have no knowledge of their surroundings except (in what we assume to
be a minimal requirement for collaboration) the current relative location of their clos-
est neighbors. The motivation behind this work was thus to determine a local behavior
with which a swarm of robots with such minimal knowledge could nevertheless be able
to both handle safety critical goals (i.e., collision avoidance and swarm coherence) as
well as systematically self-organize into a pattern. Moreover, we aimed for a simple re-
active behavior that could be concisely stored and processed even by the least capable
of robots.

As discussed in the introduction, there are two fundamental challenges in the devel-
opment of swarm behavior for such limited robots:

1) The top-down automatic development of local rules from a global goal.
2) The bottom-up veri�cation of whether the local rules will lead to the desired global

goal.

The two main contributions in this chapter directly address these two challenges for the
domain at hand. For our very limited robots, we automatically de�ne the local rules
that they must follow in order to form a pattern. As it will be seen, these rules are pre-
sented as a probabilistic state-action map that can be automatically generated with a
few steps. This is the �rst main contribution. We then provide a method to automati-
cally verify whether the swarm will always eventually form the pattern, or whether cer-
tain other spurious results may occur. The proof procedure has the novel aspect that it
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largely focuses on the analysis of local states of the agents, rather than all global states of
the swarm, in order to determine the successful formation of the global desired pattern
from any other initial pattern. This allows for computation tractability and constitutes
the second main contribution.

The generated local behavior of the robots is de�ned by a probabilistic local state-
action map. The local state of a robot is simply a discretized view of its current neigh-
borhood, and the actions are directions that it can move toward. This local state-action
map can easily be developed to simultaneously handle collision avoidance, avoidance of
swarm separation, and formation of a desired pattern. The swarm acts entirely stochasti-
cally only based on this. All robots have the same state-action map. As the robots operate
using local clocks, any robot can move at any time. When it does, it uses the probabilis-
tic state-action map to stochastically select its next action out of the available options
(with equal probability, optimizing the probabilities will be addressed in Chapter 4). The
global pattern emerges from this stochastic process once all robots �nd themselves in
local states in which they cannot select any action to move anymore. This stochastic be-
havior means that the same pattern will be formed in several different ways even when
starting from the same initial conditions, and how the pattern is formed is left to the
robots. However, although it may not necessarily be important how the goal is reached,
it is important that it is reached. This is the reason that we present an automatic veri�-
cation procedure to verify whether the local behaviors will always eventually lead to the
intended higher-level behavior.

This chapter is organized as follows. We de�ne the problem in Section 3.2. In Sec-
tion 3.3, we review other solutions to pattern formation and we explain the context and
novelty of our contributions. The methodology is then detailed in Section 3.4. Here, we
explain how to generate the probabilistic state-action map and we present the proof pro-
cedure to check whether the desired pattern will always eventually emerge. We then per-
form extensive simulations of an increasing level of �delity. In this way, we explore dif-
ferent aspects of the behavior, from the more fundamental to the more practical. Speci�-
cally, we start with an idealized system operating on a discrete grid in discrete time steps
in Section 3.5. We then move on to accelerated particles in continuous space and to
simulated MAVs with a realistic quadrotor model and sensor noise in Section 3.6. The
insights gathered are further discussed in Section 3.7. Finally, Section 3.8 provides con-
cluding remarks and summarizes future research directions.

3.2. PROBLEM DEFINITION , CONSTRAINTS, AND ASSUMPTIONS
The problem tackled in this chapter is for a swarm of robots to reshuf�e into a pattern
while avoiding collisions and group separation. In this work, a pattern P is an anony-
mous spatial con�guration of robots on a 2D plane with speci�c relative positions to
one another. 1 Let Pdes be the desired �nal pattern that the swarm settles in. Consid-
ering our interest in robotics, Pdes must be achieved while also avoiding collision paths
and swarm separation. More formally, we are interested in achieving a behavior that can
ensure that the swarm is safe (De�nition 3.2.1) and live (De�nition 3.2.2).

1This de�nition of pattern is adapted from the de�nition used in the context of cellular automata by Sapin
(2010).
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De�nition 3.2.1. The swarm is safe if neither of the following events occurs: 1) a colli-
sion between two or more robots, 2) the swarm disconnects into two or more groups.

De�nition 3.2.2. The swarm is live if, starting from any initial pattern P0 6ÆPdes, it will
always eventually form the desired pattern Pdes, where the only restriction on P0 and
Pdes is that the swarm has a connected sensing topology. 2

The robots have the following constraints:

C1: The robots are homogeneous (all entirely identical).
C2: The robots are anonymous (they cannot sense each other's identity).
C3: The robots are reactive (they only select an action based on their current state).
C4: The robots are memoryless (they do not remember past states).
C5: No robot can be a leader or seed.
C6: The robots cannot communicate with each other.
C7: The robots only have access to their local state.
C8: The robots do not know their global position.
C9: The robots exist in an unbounded space. 3

C10: Each robot can only sense the relative location of its neighbors up to a short range.

The following assumptions are made:

A1: The robots all have knowledge of a common direction (i.e., north).
A2: The robots operate on a 2D plane.
A3: When a robot senses the relative location of a neighbor, it can sense it with enough

accuracy and update frequency to establish if a neighbor is moving or standing still
(e.g., hovering).

A4: P0, the initial pattern formed by the robots, has a connected sensing topology.

The rationale behind each assumption is:

• Assumption A1 is a typical assumption in several swarm designs (Ji and Egerstedt,
2007; Shiell and Vardy, 2016). On real robots, a common direction can be known
using onboard sensors such as, but not limited to, a magnetic sensor and/or a
gyroscope (Conroy et al., 2005; Oh et al., 2015).

• Assumption A2 is representative of ground robots, or MAVs �ying at approximately
the same height.

• Assumption A3 deserves a more in-depth analysis. For general robotic platforms,
relative localization is deemed a fundamental tool for collision avoidance and co-
ordination. Concerning MAVs, for instance, a suf�ciently accurate relative local-
ization technology is required if collision avoidance (a basic behavior needed for
them to swarm safely) is required. As was discussed in depth in Section 2.5.1, there
exist several technologies to achieve relative localization. Pugh et al. (2009) and
Roberts et al. (2012) used technology based on infrared (IR) signals. Basiri et al.

2A connected graph is one that features a path from any node to any other node. In this case, the robots in the
swarm are the nodes, and the edges of the graph represent how the robots sense one another.

3This is listed as a constraint because it means that the robots cannot exploit the environment, such as the
walls of an arena, to complete their task.
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(2014) introduced an audio-based solution with a microphone array. Faigl et al.
(2013) and Roelofsen et al. (2015) proposed vision based methods relying solely
on (one or more) onboard cameras. Coppola et al. (2018) and Guo et al. (2017) ex-
plored relative localization sensors based on signal ranging. In this chapter, we will
show that ful�lling Assumption A3 up to a certain extent is paramount to provide
safe behavior in spite of all other constraints. In our �nal simulations, to be found
in Section 3.6.3, we will show that in practice the swarm can also function even
when the robots are only able to detect movements beyond a certain threshold
velocity, rather than if adhering perfectly to the assumption.

• Assumption A4 is needed for the entire swarm to begin acting as a collective. If
Assumption A4 were violated (and, for instance, the swarm was to begin while
separated into two groups that cannot sense each other), then it could not ever
be expected for the separate groups to �nd each other in an unbounded space.

3.3. RELATED WORKS AND RESEARCH CONTEXT
Pattern formation is a well studied problem in robotics. A review of existing solutions is
presented in Section 3.3.1. The swarm treated in this work sets itself apart by its mini-
malist nature, constraining the knowledge of the robots to only the relative location of
near-by neighbors and a north direction. We discuss our contributions and their context
in Section 3.3.2.

3.3.1. REVIEW OF APPROACHES TO PATTERN FORMATION BY A SWARM OF

ROBOTS

The solutions to pattern formation found in the literature rightfully vary depending on
the sensing capabilities of the robots. In this section, we review solutions present in
the literature, starting from cases where the robots are more knowledgeable of their sur-
roundings to increasingly more minimalist cases more similar to our own (as introduced
in Section 3.2).

Several solutions are based on the assumption that each robot in the swarm can di-
rectly sense every other robot. In this case, the topology of the swarm is said to be fully
connected or complete. This endows each robot with a global view of the swarm. This
type of swarm is found to self-stabilize to an equilibrium only by means of attraction and
repulsion forces (Gazi and Passino, 2004). Izzo and Pettazzi (2005, 2007) showed how the
attraction and repulsion forces alone could be tuned such that the swarm stabilizes into
a desired pattern. However, the results had two limitations: 1) the swarm can unpre-
dictably form spurious patterns depending on the initial conditions due to the presence
of spurious equilibria, and 2) they were limited to symmetric patterns. Asymmetry is
dif�cult for a homogeneous non-communicating swarm to resolve, and it was tackled
with the use of neural networks in later work (Izzo et al., 2014; Scheper and de Croon,
2016). Formation control algorithms have also been proposed, whereby the robots are
allocated positions/distances to achieve and maintain with the other robots (de Marina,
2016; Pereira and Hsu, 2008). With this strategy, the swarm will quickly form the de-
sired pattern. However, it is required for one to specify the necessary inter-robot dis-
tances/locations without anonymity.



3

46 3. PROVABLE SELF-ORGANIZING PATTERN FORMATION WITH LIMITED KNOWLEDGE

To address that the swarm may not always begin in a fully connected topology, Ji
and Egerstedt (2007) and Mesbahi and Egerstedt (2010) proposed the use of a gather-
ing algorithm so that all robots come together prior to initiating the pattern formation
task. In several scenarios, however, being in a fully connected topology is simply not
viable, and we must accept that the topology of the system is just connected, and not
fully connected. For instance, if robots sense each other using onboard cameras or IR
sensors, as could likely be the case for either MAVs or ground robots, they will be unable
to see behind other robots or beyond a certain distance. 4 Tanner (2004) and Rahmani
et al. (2009) showed how to control swarms with a static connected topology, yet when
the robots can only sense their closest neighbors, the topology of the swarm will not be
static but it will change depending on the current relative positions. Falconi et al. (2010)
showed how to combine local positioning information together with a communication
protocol in a consensus algorithm. Similarly to formation control, however, this algo-
rithm requires specifying the formation parameters without anonymity. Another popu-
lar solution found in the literature is to use seed robots. These are robots in the swarm
that do not move and act as a reference to the other robots. Rubenstein et al. (2014) used
this to enable an impressively large swarm of simple robots (up to 1,024) to form shapes.
Four seed robots were manually placed in a cross formation, and the other robots then
circled around them and “�lled up” the shape. Wessnitzer et al. (2001) used seed robots
to build up patterns in a chain-like fashion, starting from a seed robot that recruits other
robots. A seed was also used for a system of self-arranging blocks by Grushin and Reggia
(2008, 2010). Here, a static seed block acted as a reference for others to determine their
correct relative position (through communication with neighbors), virtually providing
them with a global reference albeit while still only making use of local communication.
Bonabeau et al. (2000) also studied the rules for the construction of a structure by robots.
The robots would begin by placing blocks next to a seed block according to speci�c rule
sets, whereby the blocks could no longer be moved once a robot had placed them. This
created a slowly evolving construction. More recently, Werfel and Nagpal (2008) and
Werfel et al. (2014) developed and implemented an algorithm in order to coordinate the
construction task for a team of robots. This algorithm also relied on the use of a seed
block, which the robots could use as a unique shared reference to determine where to
place the other blocks. However, in general, the use of a reference (which for pattern
formation would be a seed robot) requires that other robots can identify it, which is not
the case here given that the robots are all anonymous. Moreover, when they are all func-
tionally homogeneous, no robot can be assigned as the seed. Without communication,
then they cannot elect one themselves either, as otherwise explored by Yamauchi and
Yamashita (2014), Derakhshandeh et al. (2016), and Di Luna et al. (2017), where a swarm
could self-elect a leader/seed robot.

We now move to even simpler systems. For homogeneous and anonymous robots
with no seeds, Klavins (2002) proposed to encode a pattern as a graph and a collection
of its sub-graphs. This technique set the way for the use of graph grammars, later devel-

4As also discussed in Section 2.5.1, there is a vast amount of solutions for relative localization in swarm
robotics, and it is also a separate topic of exploration in our own current research (Coppola et al., 2018; Li
et al., 2020; van der Helm et al., 2020). In this chapter, however, we declare the challenge outside of the scope
of this work and we deem it suf�cient to assume that the robots are endowed with the necessary sensors to
sense neighboring robots within a short omni-directional range.
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oped in Klavins (2007) for self-assembly by a team of robots. The robots randomly drifted
in a con�ned environment and could latch together upon encounter. Once latched, they
could communicate their state and determine whether the connection formed a part of
the total graph, in which case they would remain attached. Otherwise, they would de-
tach and continue drifting. Using this approach, the pattern would slowly assemble.
Similar strategies were studied by Smith et al. (2009), Arbuckle and Requicha (2010), Ar-
buckle and Requicha (2012), Fox and Shamma (2015). In more recent work, Haghighat
and Martinoli (2017) proposed an algorithm for the automatic encoding of such rules
for rotationally symmetric modules. However, the local rules used in these studies do
not incorporate the additional fundamental constraints of the robots that are studied in
this work, namely that the robots cannot: collide, latch together, randomly drift apart,
or (most importantly for these algorithms to work) communicate. Without communi-
cation it is not possible for the assembly to grow, because the robots are not capable of
knowing more than their local state at any point and thus require a different decision
making process on the level of the individual agent.

Intra-swarm communication is a very powerful tool. It allows robots to share their
intentions and their perspectives. It was used in several works that we already discussed
and more, including consensus algorithms (Falconi et al., 2010, 2011, 2015), leader elec-
tion algorithms (Di Luna et al., 2017), or bidding algorithms for task allocation (Gerkey
and Matarić, 2004). More recently, Slavkov et al. (2018) studied how to use a communi-
cation architecture to diffuse activation values across the swarm. The swarm could then
rearrange itself so as to protrude in regions of high activation values, creating emergent
morphologies. Communication can also double as a sensor. Nembrini et al. (2002) and
Win�eld et al. (2008) used communication to enable a swarm to remain connected even
in the presence of obstacles by repeatedly checking for connectivity with the neighbors
through a broadcast and listening protocol. In Win�eld and Nembrini (2012), the robots
communicate their adjacency matrix to one another in order to extend their knowledge
beyond what their sensors allow, which is found to increase the coherence performance.

Despite its advantages, considering the dif�culties in ensuring a high throughput and
reliable intra-swarm wireless communication (Coppola et al., 2018; Hamann, 2018), we
have taken an interest in establishing a behavior that also does not natively require com-
munication, such that it can work even when such hardware is not available. Once even
communication is removed, few works, to the best of our knowledge, explore the coor-
dination of a swarm of robots that is as limited as the one presented in this work. Kr-
ishnanand and Ghose (2005) developed alignment behaviors by which they could form
non-�nite grids and lines. Flocchini et al. (2005) explored the gathering problem, whereby
all robots must aggregate together as much as possible. Yamauchi and Yamashita (2013)
examined the formation power of very limited agents, but a behavior to achieve the pat-
terns was not developed. This leaves a knowledge gap in the �eld of minimalist swarm-
ing.

3.3.2. CONTRIBUTIONS AND RESEARCH CONTEXT
There are two principal scienti�c contributions in this chapter:

1. An automatic procedure to extract the local behavior so that a swarm of robots
with extremely limited cognition and no communication can form a desired pat-
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tern, while also avoiding collisions and keeping the swarm in a connected sensing
topology.

2. An automatic proof procedure to verify whether the set of local rules will always
eventually cause the swarm to generate the pattern. We present a primarily lo-
cal analysis of the behavior which allows to verify that the global pattern can be
achieved from any initial pattern P0. The large advantage of such a local analysis
is that it limits the computational explosion of global proof methods.

Automatic procedures to generate local rules that create high-level functions are already
present in the literature. Two notable recent works in this domain are from Rubenstein
et al. (2014) and Werfel et al. (2014). Both systems demonstrate an ef�cient distributed
behavior. Looked at from above, we see that the global goal is slowly reached by the
robots. The difference with our work stems from the limitations of our robots, which
do not (and cannot, in light of their limited cognition) rely on a reference. As a result,
their behavior is fully dictated by their local environment without any global context.
Furthermore, unlike the system tackled by Grushin and Reggia (2008, 2010), our robots
also cannot see far, meaning that they do not know what they will �nd when they move.
Therefore, they cannot knowingly move toward local target locations. This is why they
must rely on a probabilistic scheme.

The �nal pattern is automatically encoded from the larger pattern within the state-
action map under this rule: if a robot �nds itself in a local state that may constitute the
global desired pattern, it will stay still. This eventually gives rise to the pattern once all
robots end up in such states. Conceptually, the breakdown of a large pattern into smaller
parts resembles graph grammar approaches, as for instance used by Klavins (2007) or
Haghighat and Martinoli (2017). In our case, however, the robots cannot communicate
and must only use the knowledge that a neighbor is (or is not) there in order to decide
their next action. Furthermore, the robots cannot detach and drift freely, which restricts
how the swarm can evolve. Overall, this means that the pattern does not slowly assem-
ble, but rather forms by the stochastic (inter-)actions of the robots. The phenomenon
can only be detected at the macroscopic scale and not by the robots themselves. This
behavior is characteristic to emergent processes (Bonabeau and Dessalles, 1997), and its
complexity is the reason that we also need to verify that our desired pattern is the sole
emergent result.

Our veri�cation of the emergent property (i.e., the �nal pattern) is based on a for-
mal analysis of the swarm, inspired by Win�eld et al. (2005b). Dixon et al. (2012) and
Gjondrekaj et al. (2012) applied this with the use of model checking and demonstrated
its potential. However, an issue with model checking is that it performs an exhaustive
search of all global states (Clarke, Jr. et al., 1999) and it is subject to a computational
explosion as the size of the swarm grows. Konur et al. (2012) tackled this using macro-
scopic swarm models. These models ef�ciently describe the evolution of the swarm by
means of one �nite state machine (Win�eld et al., 2008). However, macroscopic models
typically assume that robots are uniformly distributed, or, in general, make probabilistic
assumptions about the presence of robots in a given area (Lerman et al., 2001; Prorok
et al., 2011). These assumptions may be suitable for more abstract spatial goals, such
as aggregation, exploration, or coherence, but they do not apply to pattern formation,
which by de�nition has a strict requirement on the spatial arrangement. To be able to
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verify the emergent property yet keep the computations low, we focus on a local analy-
sis of the behavior. With this novel analysis, we provide a set of local conditions that, if
met, guarantee that the swarm will always eventually self-organize into the desired pat-
tern. Unlike the macroscopic models discussed above, this analysis means that we do
not merely assume that there is enough free movement/motion in the swarm, but use
the conditions to check that this is in fact the case. With this, we limit the global analysis
only to the discovery of spurious patterns. However, this search only needs to be exe-
cuted on a very restricted subspace, for which we provide a methodology to identify the
candidates.

3.4. DESIGNING AND VERIFYING THE BEHAVIOR OF THE ROBOTS
This section describes the design and veri�cation of the probabilistic local state-action
map that dictates the behavior of the robots. We detail how the state-action map can
be crafted such that the swarm will remain safe (De�nition 3.2.1) and (possibly) also live
(De�nition 3.2.2). As we are dealing with robots with extremely limited knowledge, it
can be expected that it is not always the case that both properties can be achieved at the
same time. Safety is a hard requirement, but it will naturally restrict the ways in which
the swarm can evolve. This could lead the swarm to a livelock .

De�nition 3.4.1. A livelock is a situation in which the swarm will endlessly transition
through a set of patterns (e.g., P0 ! P1 ! P2 ! P0 ! P1 ! P2 ! P0 . . . ) and cannot tran-
sition to any other patterns.

Furthermore, the limited view that the robots have of their surroundings limits the
knowledge that they have of the structure, which may cause other (perhaps undesired)
patterns to form. We will refer to this situation as deadlock .

De�nition 3.4.2. A deadlock is a situation in which the swarm forms an undesired pat-
tern P 6ÆPdes, where no robot in the swarm can take action.

We have developed proof procedures to verify that livelocks or deadlocks will not
happen. We will provide a set of conditions and checks that, if ful�lled, guarantee that
the state-action map constructed for a given pattern is such that livelocks and deadlocks
do not occur, and thus imply that the swarm is safe and live. The state-action map is
developed and veri�ed in a formal domain, assuming robots to be idealized agents ex-
isting on a 2D grid and operating in discrete time. Although this may seem restrictive, we
will show in Section 3.6 how it can be used on robots operating in a realistic setting. The
idealized framework is described in Section 3.4.1, and the method to design the proba-
bilistic state-action map is detailed in Section 3.4.2. The conditions to prove whether a
state-action map is safe, free of livelocks, and free of deadlocks are provided in sections
3.4.3, 3.4.4, and 3.4.5, respectively.

3.4.1. THE FORMALIZED FRAMEWORK

Consider N agents (idealized robots) that exist in an unbounded discrete 2D grid. Each
robot is endowed with short range omni-directional relative sensors and knowledge of
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(a) Example of an agent (black circle) in a lo-
cal state si , given by the relative positions of
its neighbors (white circles).

(b) Possible actions that an agent can take.
It can move omnidirectionally in the grid.

Figure 3.1 Depictions of local state and the actions that an agent can take as used in this chapter.

north. Here we will focus our attention to robots with omni-directional sensing and mo-
tion capabilities, albeit the concepts presented hold for other state spaces and action
spaces as well.

In the idealized case, each agent R i can sense the location of its neighbors in the
eight grid points that surround it (Figure 3.1a). Let si be the current state of agent R i ,
and let S be the local state space of the agents. It follows that jSj Æ28, as it represents
all local combinations of neighbors that could be sensed. To represent omni-directional
motion, the agents are also able to move to any of the eight grid points surrounding it, as
depicted in Figure 3.1b. This forms the action space of the agents, denoted A . Note that
other discretizations of S or A could also apply depending on the sensors and motors
available on the robot of interest.

At time step k Æ0, we assume the swarm begins in an arbitrary pattern P0 on the
grid. The only restriction on P0 is that it has a connected sensing topology (Assumption
A4). At each discrete time step, a random agent in the swarm takes an action and moves
to a new location on the grid. 5

3.4.2. D EVELOPING THE PROBABILISTIC STATE -ACTION MAP
In analogy to biological systems, the behavior that we will design replicates these three
rules:

1. be careful (do not take actions that are in collision course with others),
2. be social (do not take actions whereby the swarm might locally break apart),
3. be happy (when in a desired local state, do not move).

Let us begin with the full state-action map, given by ¦ Ã S £ A . With ¦ , any agent R i

in any state si 2 S can stochastically take any action in A . Naturally, this can readily

5At �rst sight, this seems rigid and dif�cult to implement on real robots. It can be in part justi�ed under the
intuition that the probability that two robots with different internal clocks begin to move at exactly the same
time is small. A similar assumption was also suggested by Win�eld et al. (2005b) as a method to model random
concurrency in the swarm. In Section 3.6 we will show that, if robots are able to sense whether their neighbors
are taking an action (assumption A3 from Section 3.2), then it can be exported to real robots. Multiple robots
within the swarm will move, yet locally only one neighbor will move on a �rst-come �rst-served basis. In the
idealized system, this is simpli�ed to only one robot moving at one time step.
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cause both collisions and/or group separation, which we want to avoid (if the swarm
separates, then there is a chance that the two groups will never �nd each other, since
they are operating in an unbounded environment). Therefore, we scan through ¦ to
identify all state-action pairs that:

a) are in the direction of a neighbor.
These state-action pairs will lead to collisions (two agents occupying the same grid
point). They form the set ¦ col l i sion .

b) may cause the swarm to become disconnected.
These actions will break the local connectivity of the agents (the local neighborhood
splits into two or more groups). They form the set ¦ separ at ion .

We then de�ne ¦ sa f e:

¦ sa f e Æ¦ ¡ (¦ col l i sion [ ¦ separ at ion ). (3.1)

If the agents follow ¦ sa f e, we can guarantee that the swarm remains safe while randomly
reshuf�ing. The proofs for this are provided in Section 3.4.3.

¦ sa f e can be further modi�ed to also make a desired pattern form. To do this, let
us extract the set of local states that the agents are in when the desired pattern Pdes is
achieved. This forms a set of local desired states, denoted Sdes, examples of which are
shown in Figure 3.2 for different patterns. If an agent R i �nds itself in a state si 2 Sdes,
then it should not move. The rationale behind this is that, from its perspective, the goal
has been achieved (although this may or may not be the case at the global level, the
robot does not know this). Therefore, for these states, we exclude all possible actions.
The state-action map to form a given pattern Pdes is:

¦ f Æ¦ sa f e ¡ (Sdes£ A ). (3.2)

With ¦ f , the robots are capable of moving around until the swarm self-organizes into
the desired pattern. Sections 3.4.4 and 3.4.5 provide the procedures to prove whether ¦ f

is such that the desired pattern always eventually forms from any initial pattern P0.
The states in S can be divided into three groups:

Desired: When in these states, the agent should not move. ¦ f does not map these
states to any action. Desired states are grouped in the set Sdes.
Blocked: These are all states in S ¡ Sdes where the agent cannot move because all
actions are unsafe. ¦ f does not map these states to any action. We group these
states in the set Sblocked .
Active: These are states that ¦ f maps to one or more actions in A . We group these
states in the set Sact i ve .

Functionally speaking, Sblocked and Sdes are equivalent. In either case, the agent will
not move. Based on this, we also de�ne the superset Sstat i c ÆSdes[ Sblocked . Overall, the
local behavior of an agent is summarized by the Finite State Machine (FSM) in Figure 3.3.
Two examples of blocked states are shown in Figure 3.4a and 3.4b.

Additionally to the taxonomy above, we also de�ne a set of states as simplicial .
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Figure 3.2 Examples of patterns and their respective desired states Sdes. The set Sdes can be intuitively
extracted from a pattern Pdes, making it easy for a designer to de�ne the local behavior of the robots.

De�nition 3.4.3. A simplicial state is a state s2 S¡ Sblocked for which its neighbors form
only one clique.

De�nition 3.4.4. A clique is a connected set of an agent's neighbors.

These de�nitions are borrowed from, but not equivalent to, the typical de�nitions
of simplicial node and clique (van Steen, 2010). In standard graph theory, a simplicial
node is a node whose neighboring nodes are fully connected among each other, not just
connected. Similarly, a clique is a fully connected set of neighbors, whereas in our case
it is just a connected set.

Simplicial states are grouped under the set Ssimpl ici al . All states in S that are not
simplicial are denoted S: simpl ici al . From this, it follows that Sblocked µ S: simpl ici al . An
example of a state that is both simplicial and active is shown in Figure 3.4c. By contrast,
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Figure 3.3 FSM of agent behavior.

(a) (b) (c) (d)

Figure 3.4 Examples of an agent (black circle) in different states depending on the relative positions of its
neighbors (white circles). Speci�cally: (a) a state s 2 Sblocked , all actions will cause a collision; (b) a state
s2 Sblocked , all actions will either cause a collision or the local topology to disconnect; (c) a state s2 Sact i ve \
Ssimpl ici al , its neighbors form one clique, which allows it to (potentially) travel freely away from or around
its neighborhood; (d) a state s 2 Sact i ve \ S: simpl ici al , its neighbors form two cliques, the agent can move,
but it cannot leave its neighborhood.

a non-simplicial active state is shown in Figure 3.4d. An agent in a simplicial state could
potentially move without risking that the swarm ceases to be in a connected topology,
unlike the non-simplicial case. Intuitively, agents who happen to be in a simplicial state
thus have the potential to travel freely across the swarm and break livelocks. For this rea-
son, simplicial states are going to be an important element to the local proof procedure
to determine whether the swarm is free of livelocks, which can be found in Section 3.4.4.

3.4.3. VERIFYING SAFETY
Our swarm consists of several agents that can choose to take actions at any point in
time. Safety can be guaranteed when agents do not simultaneously perform con�icting
actions. To formalize this, we bring forward Proposition 3.4.1.

Proposition 3.4.1. If the swarm never features more than one agent moving at the same
time, then the swarm can remain safe.

Proof. Consider a connected swarm organized into an arbitrary pattern P. At a given
time t Æt1, agent R i decides to take an action based on action space A . This action
should last until t Æt2. However, at time t1 Ç t Ç t2, an unsafe event takes place. It
follows that the event must have been the fault of agent R i , because it was the only
agent that moved. Therefore, if agent R i could select only from safe actions, this would
be suf�cient to guarantee that the swarm is safe at time t Æt2. ç

Proposition 3.4.1 only applies to the idealized system and cannot be implemented on
the real system where robots use local clocks. This explains the importance for Assump-
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tion A3 from Section 3.2: an agent must know whether its neighbors are executing an
action. If then a robot does not move whenever one of its neighbors is moving (on a �rst-
come-�rst-served basis), then the swarm can locally approach the formal requirement
of Proposition 3.4.1 even if several robots may be moving in different neighborhoods. We
will return to this in Section 3.6.

Under the assumption that the conditions of Proposition 3.4.1, if ¦ sa f e meets the
conditions in Propositions 3.4.2 and 3.4.3, then the swarm is safe.

Proposition 3.4.2. If an agent is the only agent moving in the entire swarm, and ¦ sa f e is
such that the agent can only select actions in directions that can be sensed by its onboard
sensors, then no collisions will occur in the swarm.

Proof. Consider an agent R i in a swarm. Following Proposition 3.4.1, we know that the
agent will be the only agent to move. The agent moves in the environment according
to the action space A . If all actions in A lead to a location that is already sensed, then
agent R i can establish whether the action will cause a collision, and it can choose against
performing these actions. ç

Proposition 3.4.3. If an agent is the only agent moving in the entire swarm, and ¦ sa f e is
such that the agent can only select actions where, at its next location, all its prior neighbors
and itself remain connected, then the whole swarm will remain connected.

Proof. Consider a connected swarm of N agents. The graph of the swarm is connected
if any node (agent) R i features a path to any other node (agent) R j . Consider the case
where agent R i takes an action. If, following the action, agent R i is still connected to all
its original neighbors, then the connectivity of the graph was not affected. If agent R i

only selects actions where, at its �nal position, this principle is respected, then it will be
able to move while guaranteeing that the swarm remains connected. ç

3.4.4. VERIFYING AGAINST THE PRESENCE OF LIVELOCKS
We now provide the proof procedure to check that the system can form the patterns and
will do so without ending up in livelocks. Let us begin at the global level and de�ne a
directed graph GP Æ(VP ,EP). The vertices VP represent all possible patterns that the
swarm could generate. The edges EP represent all global pattern transitions that could
take place whenever one agent in the swarm executes an action from ¦ f . Our �nal ob-
jective is to establish whether ¦ f is such that GP always features a path from any vertex
(i.e. an arbitrary initial pattern P0) to the global desired pattern Pdes. If this is the case,
then it is proven that livelocks will not occur.

This problem could be tackled by directly inspecting GP , but an exhaustive compu-
tation of GP quickly becomes intractable (Dixon et al., 2012). Otherwise, livelocks (if
existent) could be found using heuristic search algorithms, as done by Sapin (2010) to
�nd loops (gliders) for Game of Life Cellular Automata. However, should we not �nd
any, then it is not guaranteed that livelocks do not exist. It only means that the heuristic
search did not �nd them. We thus take a different route and extract local conditions that,
if respected, also guarantee the global property . Although this comes at the cost of im-
posing certain local restrictions that may not necessarily be required at the global level,
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it bears the advantage that they can be veri�ed at the local level and thus independently
of the number of robots in the swarm.

In the following analysis, it is assumed that P0 always has a connected sensing topol-
ogy (Assumption A4) and that it has Ndes agents, where Ndes is the number of agents
required to form Pdes. We also assume that deadlocks are not present. This is not re-
quired, and is merely done for simplicity. The absence of deadlocks can be veri�ed inde-
pendently by the methodology in Section 3.4.5.

ENSURING MOTION

We begin by showing that, if no deadlocks are present, then any pattern P 6ÆPdes will
always have at least one agent in an active state, as per Lemma 3.4.1.

Lemma 3.4.1. For a swarm of N des agents, if Sstat i c is such that the desired pattern P des

is unique (i.e., no deadlocks can occur), any arbitrary pattern P 6ÆPdes will feature at least
1 agent with a state s 2 Sact i ve .

Proof. By de�nition: Sstat i c \ Sact i ve Æ ; and Sstat i c [ Sact i ve ÆS. For a swarm of Ndes

agents that can be in states s 2 S, Ndes instances of states s 2 Sstat i c can only coexist
into Pdes, which is known to be the unique outcome. Therefore, it follows that any other
pattern must feature at least one agent that is in a state s62Sstat i c , meaning that it is in a
state s2 Sact i ve . ç

Lemma 3.4.1 says that if the swarm cannot be in a deadlock then it must always have
at least one agent that is active, unless Pdes forms. Therefore, if we can establish that no
livelocks can occur, then we know that the swarm will always eventually self-organize
into Pdes. To do this, we need to analyze the local state transitions that an agent can
experience over time.

THE LOCAL STATE TRANSITION GRAPHS

To conduct a local analysis, let us look at ¦ f and de�ne its role from the perspective of
an agent. When an agent in the swarm experiences a transition from state s to a state s0,
this can be due to three events:

Event 1 The agent was in a state s 2 Sact i ve and computed an action in ¦ f . When
this happens, some neighbors may disappear from view, while new neighbors may
come into view.
Event 2 The agent did not move, but one of its neighbors did. In this case, the
neighbor may also have moved away from view.
Event 3 The agent did not move, but some other agent which was previously not
in view has moved into view and has become a new neighbor.

Based on the above, let GS Æ(VS ,ES) be a directed graph where each vertex VS rep-
resents a different local state s 2 S, such that VS ÆS, and the edges ES represent all
local state transitions that an agent could experience. More speci�cally, let us de�ne
ES ÆE1 [ E2 [ E3, where E1 are all edges describing Event 1, E2 are all edges describing
Event 2, and E3 are all edges describing Event 3. Similarly, G1

S Æ(VS ,E1), G2
S Æ(VS ,E2),

G3
S Æ(VS ,E3). The graphs G1

S, G2
S, and G3

S are illustrated in Figure 3.5.
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Figure 3.5 Exemplary depiction of portions of G1
S Æ(VS ,E1), G2

S Æ(VS ,E2), and G3
S Æ(VS ,E3) (from left

to right). Green nodes indicate a desired state, blue nodes indicate an active state, and red nodes indicate a
blocked state. The states are visually depicted within each node, showing the agent (in black) and its neighbors.
In G1

S the edges E1 represent transitions where the agent itself executes an action (shown by the arrows), from
which it may probabilistically end up in several local states depending on what it �nds after it has moved (no-
tice the bifurcations in the arrows). Note how in G1

S both the green node (desired) and the red node (blocked)

act as sinks, because in these states the agent will not take actions. In G2
S the edges E2 represent state transi-

tions experienced by the agent when a neighbor of the agent executes an action. This is shown by one of the
neighbors (in white) taking an action. Finally, in G3

S the edges E3 represent state transitions that occur when
another agent moves into view and becomes a new neighbor. This is shown by the red agents in the transitions.

LOCAL ACHIEVABILITY OF DESIRED STATES

As a prerequisite for a pattern to form, we require that ¦ f ensures that any local state can
experience a local transition to a desired local state. If this is the case, we will say that the
pattern is achievable , as de�ned by De�nition 3.4.5.

De�nition 3.4.5. A pattern Pdes is achievable if all local states Sdes can be reached start-
ing from any local state in S.

If a pattern is achievable, then there are no restrictions on the local states that can be
present in P0, else there might be certain starting patterns with agents in local states that
are unable to transition to certain desired states. This is proven by Lemma 3.4.2.

Lemma 3.4.2. If the digraph G 1
S [ G2

S shows that each state in S features a path to each
state in Sdes, then Pdes is achievable independently of the local states that compose P0.

Proof. Pdes is formed if and only if all agents have a state s 2 Sdes, where Sdes µ S. Con-
sider an arbitrary initial pattern P0 for which the local states of the agents form an ar-
bitrary set S0. Via Lemma 3.4.1 we know that there is at least one agent in the swarm
that is active for any pattern P0 6ÆPdes, and in turn any set of states S0 6ÆSdes. As the ac-
tive agents move, they will experience transitions described by G1

S , and their neighbors
will experience transitions described by G2

S . By the uni�ed graph G1
S [ G2

S we describe
the local transitions that an agent experiences as it moves and as its neighbors move.
Consider a state s 2 S0 that is incapable (either by its own actions or by the actions of
its potential neighbors) to transition to a state in Sdes. It follows that having this state
in S0 may mean that a state in Sdes cannot be achieved, and in turn that Pdes cannot be
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realized. However, if it is possible for any state in S to experience local transitions such
that it may reach any state Sdes, it follows that Pdes is achievable independently of the
local states that compose P0 (i.e, the set S0), because there is no state s 2 S0 that is in-
capable of experiencing the necessary transitions that would lead it to be in a state Sdes.
By purposely ignoring the role of G3

S , we restrict the analysis such that:

1. Any state s that has too few links for a desired state will have to be active and move
to a position where it is surrounded by enough agents. It cannot wait for a local
desired state to arise by other agents moving in from outside of its neighborhood.

2. Any state s2 Sblocked can only become active by the actions of a neighbor.
3. The transitions that occur must occur because of changes in the local neighbor-

hood.

This additional restriction ensures that the system can rely on the actions of an agent
and/or its neighbors. ç

By ful�lling the condition of Lemma 3.4.2, we ensure that any initial state could po-
tentially turn into a desired state and avoid placing local level restrictions on P0. How-
ever, this is still only a local property, and it does not yet fully con�rm that, at the global
level, Pdes will always eventually form from any initial pattern P0, which is the property
that we wish to verify. We continue our analysis in the text below.

ENSURING THE PRESENCE OF AGENTS WITH SIMPLICIAL STATES

In Section 3.4.2 we have already discussed that an agent in a state s2 Ssimpl ici al \ Sact i ve

can potentially move away from its neighborhood. This is an important property. Intu-
itively, an agent in this state has suf�cient freedom for the swarm to escape any livelock.
To exemplify this, let us once again consider the global graph GP as introduced at the
beginning of Section 3.4.4, and consider the example in Figure 3.6a. When the global
pattern formed by the swarm is such that no agent is in a simplicial state, then the swarm
is unable to exit the livelock. There is an agent in the swarm that can move, but, because
¦ f is designed to keep the swarm safe, it cannot leave its neighborhood and can only
move left and right. The result is that the swarm cycles endlessly between the two pat-
terns. By contrast, the patterns in Figure 3.6b always have an agent in a simplicial state
and no livelocks occur. In this section, we introduce the local conditions necessary such
that any vertex (pattern) in GP always eventually transitions to a pattern with at least one
agent with a state that is both active and simplicial (unless Pdes is reached). This will be
an important stepping stone to the �nal veri�cation in Theorem 3.4.1.

Let PAS be the set of all patterns where one or more agents are in a state s2 Ssimpl ici al \
Sact i ve (the subscript AS stands for Active and Simplicial). We wish to ensure a pattern
P 2 PAS[ Pdes will be reached from any other pattern. This is veri�ed via Lemma 3.4.3. In
this Lemma we also make use of a graph G2r

S µ G2
S , which only considers the transitions

in G2
S that do not feature a neighbor leaving the neighborhood when moving, but only

holds transitions about the agent. We also single out a special state in Sblocked , which is
the one that is fully surrounded by neighbors as in Figure 3.4a. We refer to this state as
ssur rounded .

Lemma 3.4.3. If the following conditions are satis�ed:
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(a) Example of a livelock. The
livelock cannot be exited because
only the robots with an active
state will move (shown in or-
ange).

(b) Pattern where a livelock is not possible.

Figure 3.6 Illustrations of how a swarm can transition between different patterns, based on movements of
the agents that are in active states. More speci�cally, the �gure shows a portion of GP for two possible desired
patterns. The arrows between the nodes are swarm transitions that happen as a result of one of the robots
taking an action. Notice that the livelock in (a) does not feature any agents with a state that is both active and
simplicial. There is an agent in an active state (in the middle), but because it is not simplicial it cannot escape
its neighborhood and repeatedly moves right and left, causing the livelock.

1. for all states s 2 Sstat i c \ S: simpl ici al ¡ ssur rounded , none of the cliques of each state
can be formed only by agents that are in a state s 2 Sdes \ Ssimpl ici al ,

2. G2r
S shows that all static states with two neighbors will directly transition to an ac-

tive state,

then a pattern in P 2 PAS [ Pdes will always be reached from any other pattern P 62PAS [
Pdes.

Proof. Consider an agent R i with state si 2 Sstat i c \ S: simpl ici al . By de�nition, si must
have more than one clique, unless si Æssur rounded . If si Æssur rounded and P 6ÆPdes then
one of R i 's neighbors must be in a state s 2 Sact i ve \ Ssimpl ici al , or else there must exist
other agents beyond R i 's direct neighborhood. If si 6Æssur rounded , then the neighbors of
agent R i form two or more cliques. In all cases, the pattern P 6ÆPdes extends in two or
more directions that stem from agent R i . If we trace any branch, because only a �nite
number of agents Ndes exists, we have the two following possible situations:

1. The branch eventually features an agent R j with state sj 2 Ssimpl ici al . In the ex-
treme, this is a leaf on the edge of the pattern. Here, we can have two situations:

(a) sj 2 Sdes \ Ssimpl ici al . If this exists, then the simplicial agent is also static.
Therefore, it is possible that the entire pattern does not feature any active
and simplicial agent.
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Figure 3.7 Illustration of two exemplary loops that “collapse”. Notice that the active states present at the
borders cause a chain reaction until eventually a simplicial active agent is present. This is a property that can
be determined by inspecting G2r

S , which will show that the static agents will become active and propel the
chain reaction.

(b) If sj 62Sdes \ Ssimpl ici al , then sj 2 Sact i ve \ Ssimpl ici al and so we are done.

If, by design, states s2 Sdes\ Ssimpl ici al cannot be combined to form the clique of
a state in Sstat i c \ S: simpl ici al ¡ ssur rounded , then it is guaranteed that sj 62Sdes \
Ssimpl ici al . Therefore, we can locally impose that situation (b) always occurs, that
situation (a) never occurs, and we thus guarantee that sj 2 Sact i ve \ Ssimpl ici al .
This is the �rst condition of this Lemma.

2. If all branches from agent R i only feature non-simplicial states, then this is only
the case if the branches form loops, otherwise at least one leaf would be present
as in situation 1. However, it can be ensured that a loop will always collapse and
feature one simplicial active agent. In a loop, all agents have two cliques, each
formed by one neighbor. G2r

S tells whether any static agent with two neighbors,
by the action of its neighbors, will become active. This is the second condition of
this Lemma. If this is the case for all states, then we know that the action of any
neighbor will cause a chain reaction about the loop. This will eventually cause
the loop to collapse about one corner point and create a simplicial leaf, unless
Pdes forms. In either case, we reach a pattern P 2 PAS [ Pdes. The collapse of two
exemplary loops is depicted in Figure 3.7.

In summary, by creating the conditions such that situation 1(a) never occurs, we restrict
the possible patterns that can exist outside of PAS [ Pdes to patterns with only loops
(situation 2). If P0 is a loop, then through G2r

S we know that loop patterns will collapse
into a pattern that exists within PAS [ Pdes. Else, P0 already exists within PAS [ Pdes.
This means that any pattern P0 will either exist within PAS [ Pdes, or will transition into
PAS [ Pdes. ç



3

60 3. PROVABLE SELF-ORGANIZING PATTERN FORMATION WITH LIMITED KNOWLEDGE

LOCAL PROOF CONDITIONS TO GUARANTEE THAT LIVELOCKS DO NOT OCCUR

With the conditions from Lemma 3.4.3 we ensure that a simplicial active agent will al-
ways be present regardless of P0. We can now introduce Theorem 3.4.1, which we use to
determine that Pdes will eventually form from P0 without livelocks.

Theorem 3.4.1. If the following conditions are satis�ed:

1. Pdes is achievable,
2. a pattern in P 2 PAS[ Pdes will always be reached from any other pattern P 62PAS[

Pdes,
3. G1

S shows that any agent in any state s 2 Sact i ve \ Ssimpl ici al can move to explore
all open positions surrounding its neighbors (with the exception of when a loop is
formed or when it enters a state s 2 Sstat i c ),

4. in G 3
S , any agent in any state s 2 Sstat i c only has outward edges toward states s 2

Sact i ve (with the exception of a state that is fully surrounded along two or more
perpendicular directions),

then Pdes will always eventually be reached from any initial pattern P 0.

Proof. Consider a swarm of Ndes agents arranged in a pattern P0. If Pdes is achievable,
via Lemma 3.4.2, P0 can be composed of any combination of local states without im-
pacting the local ability of the agents to transition into the states Sdes (this is the �rst
condition in this theorem). Then, through Lemma 3.4.3 we know that if P0 62PAS [ Pdes,
then it will always eventually form a pattern P 2 PAS [ Pdes (this is the second condition
in this theorem). In the following, we will show that any pattern P 2 PAS [ Pdes will keep
transitioning until it forms Pdes. We observe the case where at least one agent, agent R i ,
exists with state si 2 Sact i ve \ Ssimpl ici al . As agentR i moves, one of the following events
can happen:

1. Agent R i enters a state s0
i 62Ssimpl ici al . Via Lemma 3.4.3, at least one other agent

is (or will be) in state s2 Sact i ve \ Ssimpl ici al , taking us to point 3 in this list.
2. Agent R i enters a state s0

i 2 Sstat i c . If Pdes is not yet achieved, then at least one
other agent in the swarm is in an active state (Lemma 3.4.1). If the active agent(s)
are in state s 2 Sact i ve \ S: simpl ici al , then this takes us back to point 1 in this list.
If the active agent(s) are in state s 2 Sact i ve \ Ssimpl ici al , this takes us to point 3 in
this list.

3. Agent R i , and/or the agent(s) taking over, keeps moving and each time enters a
state s0

i 2 Sact i ve \ Ssimpl ici al . Via G1
S we know that it can potentially explore all

open positions surrounding all its neighbors (this is the third condition of this the-
orem). As it moves, its neighbors also change, such that it always can potentially
explore all open positions around all agents, and thus all open positions in the pat-
tern (see Figure 3.8a for a depiction). This means that the swarm can evolve toward
a pattern that is closer to the desired one.

Any situation will always develop into the situation of point 3. This is free of livelocks, as
all possible livelock situations are mitigated:
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(a) Simplicial
agent that can
travel to all open
positions in the
pattern.

(b) Two possibilities for how, should the agent be globally surrounded in
a loop and unable to travel to all open positions, then a new simplicial
and active agent will take over.

Figure 3.8 Illustration of how an agent with a state that is active and simplicial can travel to all open posi-
tions in the structure.

1. It may happen that a simplicial and active agent cannot actually visit all open posi-
tions in the swarm because, at the global level, it is enclosed in a loop by the other
agents. Alternatively, it may happen that it itself creates a loop while moving (this is
the �rst exception to condition 3 of this theorem). By Lemma 3.4.3, the loop will al-
ways collapse, meaning that a new agent will enter a state s2 Sact i ve \ Ssimpl ici al .
The new agent will be able to travel to all positions external to the loop, avoiding a
livelock. This resolution is depicted in Figure 3.8b.

2. Agent R i can travel about all open positions in the swarm. Let us assume the
extreme case in which R i is the only agent that can potentially do this in the entire
swarm. Via G3

S , we can verify that, unless Pdes forms, this must eventually cause
at least one static agent to become active (following the fourth condition of this
theorem). Consider a static agent R j which becomes active when R i becomes its
neighbor. This may lead to one of the following developments, all of which avoid
livelocks.

(a) Agent R i remains in state s0
i 2 Sact i ve \ Ssimpl ici al . The pattern can keep

evolving further. A livelock is avoided.
(b) Agent R i enters a state s0

i 2 Sact i ve \ S: simpl ici al . By Lemma 3, another sim-
plicial and active agent will be present elsewhere in the swarm. A livelock is
avoided.

(c) As per the second exception to condition 3 of this theorem, agent R i enters
a state s 2 Sstat i c upon becoming a neighbor of agent R j , before agent R j

moves. In this case, the departure of agent R j will bring it back to a state
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si 2 Sact i ve taking us back to points 2(a) or 2(b) in this list.
(d) Agent R i enters a state s 2 Sstat i c upon becoming a neighbor of agent R j ,

after agent R j moves. At this point, either R j will move back to its original
position and agent R i will return to to a state si 2 Sact i ve \ Ssimpl ici al and
keep moving, or R j will continue to move elsewhere. In either case, when
agent R j moves, it will also cause other neighbors to become active. In turn,
these will move, and R i , who also neighbors them, will then return to being
in an active state, bringing us back to to points 2(a) or 2(b) in this list.

(e) Agent R i , after agent R j has moved, enters the position (and state) that was
originally taken by agent R j . As in point 2(d) in this list, it is not possible that
agent R j will always only free R i in exactly the same way that agent R i freed
agent R j , because G3

S shows that motions of agent R j will free any static
agent in the neighborhood, and not just agent R i .

There is an exception to the fourth condition of this theorem, which is the static
state that is fully surrounded by other agents along two perpendicular axes. In this
case,G3

S may show that it will not directly become active. However, it is trivially
impossible (since there is a �nite number of agents) for the swarm to only feature
agents that are surrounded. A situation where all agents areall surrounded cannot
occur; at least one agent will not be surrounded. This justi�es the exception to the
fourth condition in this theorem.

With the above it is con�rmed that 1) any open position in the pattern can potentially
be �lled, and 2) no livelocks will arise. This means that the swarm will evolve into all
patterns in PAS [ Pdes. Therefore, Pdes will always eventually be formed starting from
any pattern P0. ç

We thus conclude the proof procedure to check that livelocks will not occur. We
showed that by ful�lling a set of local conditions we can determine that the pattern will
be achieved from any initial con�guration of the swarm. These conditions, being local
in nature, are more strict than it is potentially required at the global level. It can be seen
that it is actually the agents' ability to stochastically select from a pool of actions that en-
dows them with the potential to keep exploring new neighborhoods and ensure that the
swarm keeps evolving without livelocks. A primary condition is the important presence
of agents in simplicial active states, which brings interesting insights. Here, we note the
following:

• Any desired state with only one neighbor violates the �rst condition of Lemma
3.4.3. This is because this desired state can form the clique of a blocked state on
its own. If this occurs, the local conditions are too restrictive to formally guarantee
that the swarm will not run into livelocks.

• Removing a dependency on north (Assumption A1) may lead to a violation of the
�rst condition of Lemma 3.4.3. This is because desired states become rotation
invariant.

3.4.5. VERIFYING AGAINST THE PRESENCE OF DEADLOCKS
We now have means to verify that no livelocks will occur, but to know that the swarm
will always self-organize into the desired pattern, we must also show that no deadlocks
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can form. That is, there can be no pattern other than the desired pattern Pdes where
none of the agents can take an action. Let us begin, once again, with GP as introduced
in Section 3.4.4. Similarly as to the livelock, we could search exhaustively though GP

for possible nodes with no outgoing edges. Alternatively, we could repeatedly simulate
the swarm and experimentally check whether any other pattern forms, but this would
not strictly ensure that other patterns cannot manifest. 6 In this work, we still choose to
search through GP . However, to counter the computation explosion, we show that if no
livelock exists then it is only necessary to search through a small subset of GP , and we
also provide a method to quickly scan through the remaining subspace (alternatively, if
livelocks may exist, then there is technically also no reason to search for deadlocks since
we already know that the swarm may evolve undesirably).

RESTRICTING THE SEARCH SPACE

By de�nition, deadlocks are patterns P 6ÆPdes where all agents are in a state s2 Sstat i c Æ
Sdes[ Sblocked . By Proposition 3.4.4 the search space is restricted to patterns that contain
at least one agent with state s2 Sdes.

Proposition 3.4.4. A deadlock cannot consist only of agents with state s 2 Sblocked .

Proof. Following the same reasoning in Lemma 3.4.3, any �nite pattern, at its edges,
features one of the following:

1. an agent with state Ssimpl ici al . By de�nition, however, Sblocked \ Ssimpl ici al Æ ; ,
2. agents with a state S: simpl ici al forming a loop boundary. Then, at least one agent

must be in a state Sdes, else it would be in a state s 2 Sact i ve , which we are not
concerned with.

Therefore, in both occurrences, there must be at least one agent with state s 62Sblocked .
ç

Then, for a certain class of patterns, it can be shown that all agents must be in a state
s2 Sdes, as per Proposition 3.4.5.

Proposition 3.4.5. If the conditions of Lemma 3.4.3 hold and Sdes µ Ssimpl ici al [ ssur rounded ,
then all agents in a deadlock must be in a state s 2 Sdes.

Proof. If Sdes µ Ssimpl ici al [ ssur rounded , then all states in Sdes are either simplicial or
ssur rounded . By the �rst condition of Lemma 3.4.3, none of the states in Sdes can satisfy
the cliques of any state Sstat i c \ S: simpl ici al ¡ ssur rounded . This means that they cannot
ever coexist in the same pattern. By Proposition 3.4.4, however, at least one agent must
exist with state s 2 Sdes. Therefore, all agents in the spurious pattern must be in a state
s2 Sdes. Alternatively, this proposition can also be veri�ed by a local inspection. ç

Therefore, if a pattern is such that Sdes µ Ssimpl ici al [ ssur rounded , we can further
restrict our search to patterns that only have agents in Sdes. The patterns shown in Fig-
ure 3.2, with the exception of the hexagon and the line, meet this condition (the line,
however, also does not meet Lemma 3.4.3).

6Considering that the self-organization of the pattern resembles an emergent property, Darley (1994) argues
that this would be more ef�cient.
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Figure 3.9 Example of a set Sdes for a triangle with 4 agents. l i , i Æ1, . . . ,8 represent the eight directions
where a neighbor is expected. In a binary representation, if l i Æ0 then a neighbor is not expected in that
direction, and if l i Æ1 then a neighbor is expected. The states s1,. . . ,s4 are realizations of this.

FINDING SPURIOUS PATTERNS

In this section we detail our implementation to �nd spurious patterns for an arbitrary set
Sdes. To sort through the possibilities more ef�ciently, we analyze state combinations to
determine whether they could potentially make a pattern. By �rst analyzing combina-
tions we need not concern ourselves with the spatial arrangement but only determine
whether the states could potentially be combined together independently of order. It
is only if such a combination is found that we explore its spatial arrangement, which is
done by the use of spanning tree graphs.

Preliminaries Consider a set Sdes. Because the agents can sense each other omni-
directionally, then any two states “match” when two neighbors could have those two
states and be neighbors. We introduce two tools to summarize how the states in an arbi-
trary set Sdes match:

• Match-Direction matrix , denoted D, is a square matrix ( d £ d ) that holds the di-
rections along which any two states in Sdes are reciprocal to each other.

• Match-Count matrix , denoted M , is a square matrix ( d £ d ) that holds the number
of directions along which any two states in Sdes match. M is symmetric. Intu-
itively, this is because if agent R i is a neighbor of agent R j , then agent R j is a
neighbor of agent R i .

For example, consider the set Sdes Æ{s1,s2,s3,s4} in Figure 3.9. For this set:

D(Sdes) Æ

8
>>>>><

>>>>>:

¡ [l 2] ¡ [l 3]

[l 6] ¡ [l 4] [ l 5]

¡ [l 8] ¡ [l 7]

[l 7] [ l 1] [ l 3] ¡

9
>>>>>=

>>>>>;

M (Sdes) Æ

2

6
4

0 1 0 1
1 0 1 1
0 1 0 1
1 1 1 0

3

7
5

All entries with 0 in M (Sdes) correspond to empty entries in D(Sdes). From M (Sdes) we
can quickly extract that state s1 can never connect to itself or to s3, but it can connect to
states s2 and s4.7 With D(Sdes) we can see that s1 can match with s2 along l 2 and with s4

7If analyzed visually, s1 cannot connect to itself because it expects a neighbor to its right ( l 3) and top-right
(l 2), yet if it were to connect to itself, then the robot next to it would have a neighbor to its left, which thus
cannot be s1. Also, s1 cannot connect to s3 because s1 does not expect a neighbor to be right above itself (at
l 1), whereas s3 would expect a neighbor to be there because it expects a neighbor on its top-left (at l 8), and
vice versa.



3.4. DESIGNING AND VERIFYING THE BEHAVIOR OF THE ROBOTS

3

65

along l 3. Note that D(Sdes), although not strictly symmetric, also has a symmetry to it:
each link always features, at its symmetry position, a link along the opposite direction.
For example, if s1 matches with s2 along direction l 2, then s2 matches with s1 along l 6.
Therefore, the two matrices essentially provide a local summary of which states can be
neighbors and which cannot. This will be used in the following analysis.

Combination analysis A combination of local states should meet a set of conditions
independently of how they are arranged. Using these conditions, it is possible to quickly
restrict the search space without performing a more computationally expensive spatial
analysis. The conditions are:

1. The topology graph is �nite and undirected. For any �nite undirected graph
G Æ(V,E), the sum of the vertex degrees must be equal to twice the amount of
edges (Ismail et al., 2009; van Steen, 2010). As a consequence, the graph will al-
ways feature an even amount of vertices with an odd degree. This is known as the
handshaking theorem (Ismail et al., 2009). In our context, this translates to the fact
that any valid combination should feature an even amount of states that expect an
odd number of neighbors.

2. The neighbor expectations are reciprocal. In a combination, each state that ex-
pects a neighbor in one direction should have at least another state expecting a
neighbor in the opposite direction.

3. The pattern is �nite. For each direction, there should be at least one state in a
combination that does not expect a neighbor along that direction. Else, the pattern
cannot be �nite.

4. The pattern has edges. For each direction, there must be at least one state in the
combination that expects a neighbor in that direction, but not in the opposite di-
rection. Otherwise, no state in the combination should expect any neighbor along
either direction.

5. The states can match with each other along all expected directions. Each state in
a combination should be capable of being potentially matched (i.e., be a neighbor
of) to the other states in a combination suf�ciently to cover its expected neigh-
borhood. This information is provided by M (Sdes) and D(Sdes). The reasoning is
best explained via an example. Consider a swarm of four agents with Sdes as in
Figure 3.9 and a potential combination Ci Æ{s1,s1,s2,s3}. Using M (Sdes), we ob-
serve pair-wise matches that are possible between the states in Ci . M (Sdes) tells
us that s1 only matches with s2 in one direction. In D(Sdes) we can see that this is
direction l 2 from the perspective of s1, and l 6 from the perspective of s2. However,
Ci features two instances of s1 and only one instance of s2. This means that one
instance of s1 can never be satis�ed — the combination cannot exist. This can be
checked for all states.

Spanning trees analysis Combinations that have the potential to form a pattern are
analyzed further. We do this by composing spanning tree graphs. Let Ti (Ck ) represent an
arbitrary spanning tree generated from a combination Ck . The nodes of Ti are the states
in Ck , and the edges of Ti are one of the connections between the states. A representative
spanning tree must meet the conditions below.
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(a) (b) (c) (d)

Figure 3.10 Examples of: (a) an invalid spanning tree, because the graph is not connected; (b) an impossible
spanning tree, because one agent is expected to have more neighbors than it can support; (c) an impossible
spanning tree, because some states end up with unful�lled neighbor expectations; (d) a possible spanning
tree.

• It is acyclic.
• It is simple (no duplicate edges).
• The edges must at least meet the match conditions in M (Sdes), or else we know

that the edges are impossible because the two states can never be neighboring
states.

• It is connected. If operating by ¦ f , then the swarm is connected. This means that
it can be represented by a connected spanning tree. If Ti (Ck ) is not connected, as
in the example in Figure 3.10a, then it is invalid.

• The degree of each state should be less than or equal to the number of neighbors
that an agent in that state expects. If the degree of a node in Ti (Ck ) is larger than
the degree of the state, then Ti (Ck ) is invalid and the spanning tree is discarded, as
for the example in Figure 3.10b.

• The spatial arrangement must be feasible. All other conditions above depend on
the properties of the spanning tree graph and are not (directly) dependent on the
spatial arrangement of the states. In this last condition, we analyze the spatial
arrangement of the graph to see if all neighboring states match without lose ends
(i.e., “unful�lled neighbors”), or loops where two states are eventually expected to
occupy the same positions. For instance, Figure 3.10c shows a spanning tree that
fails this test. D(Sdes) can be used to quickly generate the full pattern.

If a possible spanning tree is found, as in Figure 3.10d, then a possible pattern has
been identi�ed and it can be checked to determine whether it is equivalent to Pdes or
whether it is spurious. A variety of methods can be used to do so automatically (Loncaric,
1998).

3.5. EVALUATION OF THE IDEALIZED SYSTEM
We begin by evaluating the performance of the idealized swarm as described in Sec-
tion 3.4.1. This allows us to investigate more fundamental properties and gain initial
high level insights. We also explore how further tuning of ¦ f could affect the statistical
performance of the swarm in forming a desired pattern more quickly. The latter leads to
insights on possible optimization strategies, which we discuss further in Section 3.7.3.

The simulation environment used in this section replicates the idealized framework
from Section 3.4.1. We simulated idealized agents on a discrete 2D grid world operating
in discrete time. At each time step, one random agent with state s 2 Sact i ve executes an



3.5. EVALUATION OF THE IDEALIZED SYSTEM

3

67

Figure 3.11 Example of a spurious pattern with the slanted line, forming a slanted “H” due to the combi-
nation of desired states (in green) and static states (depicted in red), which can form a bridge between two
lines.

action based on ¦ f . All tests begin by initializing the agents in a random pattern P0 and
end when all agents are in a state s2 Sstat i c .

We evaluated the formation of the patterns from Figure 3.2. All patterns were suc-
cessfully achieved, with no collisions or separation ever occurring. This also happened
for the slanted line, which did not pass the proof and was additionally also prone to spu-
rious patterns, as the one that is for instance depicted in Figure 3.11. Generally, as the
complexity of the pattern and size of the swarm grew, the cumulative actions taken by
the swarm to go from P0 to Pdes also grew signi�cantly. The swarm is successfully safe
and forms the desired patterns, even though (as expected due to the low cognition of the
robots) it can take a signi�cant amount of steps before the swarm self-organizes into the
pattern. This can be appreciated in the histograms of the results shown in Figure 3.12,
split in two graphs to address the difference in scale. Note that the line with 50 robots
performed better than the T with only 12 robots. When we also analyze the mean num-
ber of actions per agent, we see that the histograms of the line with 50 robots and the
triangle with nine robots are comparable. This implies that there is a deeper correlation
with shape complexity that should be explored further.

Motivated by the increasingly low performance of larger and/or more complex pat-
terns, we explored certain alterations of the behavior in order to investigate whether it
was possible to achieve the pattern faster than in the baseline tests above. We tested this
for the triangles with four and nine robots and the hexagon, for which the expected num-
ber of actions were fewer and the differences could be better investigated. We explored
the following alterations:

• Alteration 1 (ALT1) : same as baseline; however, when an agent moves at time step
k , the same agent will not move at time step k Å1 (unless it is the only active agent).

• Alteration 2 (ALT2) : same as ALT1; additionally, all states with more than �ve neigh-
bors are now not mapped to any actions.

• Alteration 3 (ALT3) : same as ALT2; additionally, all actions must ensure that all
agents in the neighborhood, following the action, have at least one neighbor at
north, south, east, or west, else the state-action pair is discarded from ¦ f . For
the triangle with nine agents, we made one exception to this, and it is the state
s Æ

£
1 0 1 0 0 0 1 0

¤
(following the layout in Figure 3.9) for which oth-

erwise a spurious pattern could also form.
• Alteration 4 (ALT4) : same as ALT3; additionally, all states with more than four

neighbors are now not mapped to any actions.
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Figure 3.12 Normalized histograms of the actions taken before the pattern is achieved for the different pat-
terns tested. The plots are separated in two for scale differences. The bin width was adjusted to show the
overall trend for each pattern. The cross with 20 robots is excluded for scale reasons, with the lowest amount
of steps measured being ¼2.5¢105.

(a) Triangle with four robots (b) Hexagon (c) Triangle with nine robots

Figure 3.13 Normalized histograms of actions to completion by different alternations of the state-action
spaces for three patterns. The bin width was adjusted to show the overall trend for each case.

ALT3 and ALT4 stem from the intuition to let agents “cut corners” and have fewer
functionally active states. In turn, however, ALT3 and ALT4 do no meet the conditions of
Lemma 3.4.2 for the hexagon of six robots, and do not meet Condition 3 of Theorem 3.4.1
for all patterns tested with it. This is because some states in Ssimpl ici al lost their property
of enabling the agent to potentially move freely around its neighborhood. Functionally,
they behaved like states in the set S: simpl ici al , and a few even like states in Sblocked .
Normalized distributions for the number of steps to completion using ALT1-ALT4 are
shown in Figure 3.13a, Figure 3.13b, Figure 3.13c for the triangle with four agents, the
hexagon, and the triangle with nine agents, respectively. For ALT1 and ALT2 the �nal
pattern is achieved in all cases. As the size of the pattern grows, ALT1 and ALT2 are seen
to provide a marginally better performance, but not signi�cantly so. The real improve-
ment is seen with ALT3 and ALT4. By blocking more local states and cutting corners,
the swarm is less chaotic and forms the pattern orders of magnitude faster. As expected
through Lemma 3.4.2, however, ALT3 and ALT4 prevented the hexagon from forming.
Instead, failing condition 3 of Theorem 3.4.1 did not stop ALT3 and ALT4 from achieving
the triangles with four and nine robots. This could imply that Theorem 3.4.1, by nature
of featuring local conditions, becomes more restrictive than necessary for some global
patterns. This was also the case for the line with 50 agents, because the line also does not
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meet the condition. Alternatively, it could also be possible that the robots were simply
“lucky” to not encounter deadlock situations during any of our simulations.

3.6. I MPLEMENTING THE BEHAVIOR ON ROBOTS
Until now, we have dealt with idealized agents on a 2D grid. In this section, we describe
how the behavior can be brought to real robots operating in continuous time and space
and using local clocks. We test the behavior in two stages of �delity: 1) accelerated par-
ticles, and 2) simulated MAV �ights, showing that the behavior is also robust to noise.

3.6.1. ROBOT BEHAVIOR
The robots can sense omni-directionally all their neighbors within a range ½sensor and
can determine whether their neighbors are computing an action (Assumption A3). A
robot R i determines its discrete local state si 2 S following the bearing based discretiza-
tion in Figure 3.14a.

All robots act following the FSM in Figure 3.14b. This FSM locally enforces that only
one robot in the neighborhood can move at any time. Following this FSM, a robot will
initiate and pursue an action from ¦ f if and only if no other robot in a neighborhood is
sensed to be already doing so, which locally recreates the conditions of the idealized sys-
tem. Therefore, even though multiple robots around the swarm can take actions at the
same time, this does not occur at the local level. If two robots who are not neighbors be-
come neighbors while both are executing an action, the actions will interrupt, ensuring
safety. Using tad j È 0 and twai t È 0 the robots have allocated time to execute attrac-
tion, repulsion, and alignment behaviors. As these alignments maneuvers are minimal,
they are not sensed by neighbors as actions and therefore create natural time windows
whereby robots take turns in taking actions.

We have designed a uni�ed attraction, repulsion, and alignment behavior that al-
lows the robots to naturally arrange in a grid structure whenever not executing an ac-
tion. Consider a robot R i and its neighbor R j . The robots are controlled according to
a northeast (NE) frame of reference. The commanded velocity of R i along north (and,
equivalently, east) is given by:

vNcmdi j
Æ(vr i j Å vbi j )cos(¯ i j )

| {z }
Attraction and repulsion

¡ vbi j cos(2¯ des¡ ¯ i j ).
| {z }

Alignment

(3.3)

The �rst term handles attraction and repulsion. The second term aligns R i at a bearing
¯ des to R j . ¯ i j is the bearing of R i to R j with respect to north. vbi j is the desired radial
velocity. The attraction-repulsion velocity vr i j is:

vr i j Æ ¡k r
1

j½i j j
Å

1

1Å e¡ ka (j½i j j¡ ½s)
, (3.4)

where k r ¸ 0 is the repulsion gain, ka ¸ 0 is the attraction gain, ½i j is the range between
R i and R j , ½s is a shift in the attraction term used to tune the equilibrium distance
to ½des. Equation 3.4 has Lyapunov stability (Gazi and Passino, 2002). For given ½des,
k r , and ka , one can extract ½s such that vr i j Æ0. The two robots are in equilibrium
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(a) Rounding method used by the robots to discretize their local state

(b) FSM of robot behavior

Figure 3.14 State discretization and FSM of robot behavior

(vNcmd i j
ÆvEcmd i j

ÆvNcmd j i
ÆvEcmd j i

Æ0) when ¯ i j Æ¯ des, ¯ j i Æ¯ des § ¼, and vr i j Æ

vr j i Æ0. Note that Equation 3.3 is reciprocal. For each ¯ des, there exists a corresponding
equilibrium point at ¯ des§ ¼. This is due to the identities sin( ¯ Å¼) Æ ¡ sin(¯ ) and cos(¯ Å
¼) Æ ¡ cos(¯ ). Furthermore, multiple desired bearings ¯ des can be de�ned, such that
each robot can gravitate to the one that is closest to its current ¯ . We provided the robots
with ¯ des Æ{0,¼/4, ¼/2,3¼/4}, making them adjust at all the eight bearings to each other
that match the idealized grid. For ¯ des Æ¼/4 and ¯ des Æ3¼/4, then we de�ne ½des Æp

2 m instead of ½des Æ1 m. For a robot R i which senses m neighbors, the complete
command along north is vNcmd i

Æ
P m

j Æ1 vNcmdi j
, and the equivalent for east. This is unless

the closest neighbor is at a distance ½Ç ½sa f e, in which case only the closest neighbor is
considered.
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3.6.2. SIMULATION TESTS WITH ACCELERATED PARTICLES
We begin by testing the behavior from Section 3.6.1 on accelerated particles in an un-
bounded 2D space. This allows us to quickly test the performance of large swarms while
remaining independent of the dynamics of any particular robot.

The simulations in these sections have been executed on an in-house simulator called
Swarmulator . Swarmulator is a light-weight swarm simulator designed to quickly de-
velop and prototype spatial swarm behavior. 8 Swarmulator's simplicity and emphasis
on quick prototyping is the reason that it was chosen for this phase. Each robot is sim-
ulated as a point in an unbounded 2D space by a detached C++ thread, thus simulating
a random asynchronicity and minimizing the simulation artifact that would otherwise
stem from simulating the swarm in a loop. Swarmulator is described in more detail in
Chapter A. To further reduce simulation artifacts, the robots initiate the behavior with
a random local time 0 Ç t Ç twai t . Other detached threads handle animation and log-
ging, allowing automatic checks of global properties. In the simulations: ½sensor Æ1.6m,
½des Æ1 m, ½sa f e Æ0.5 m, tad j Æ1.8 s, twai t Æ3.6 s, k r Æ1, ka Æ5, vact ion Æ1 m/ s,
vb Æ10 m/ s. The state-action map ¦ f was as in ALT4 from Section 3.5.

Results The results for the triangles with four and nine agents from Section 3.5, using
the controller from ALT4, were validated in this continuous setting. Figure 3.15a and
Figure 3.15b shows sample trajectories over time. 9 We can see that the agents reshuf-
�e until the desired pattern is achieved. All simulations were repeated 50 times. The
triangle with four agents was achieved successfully in 50 out of 50 trials, with generally
fast convergence times (within 100 seconds of simulated time). The triangle with nine
agents was achieved successfully in 49 out of 50 trials. Only one trial experienced a sep-
aration. This happened as two non-neighboring agents chose to perform an action at
approximately the same time, came into each other's view, but the alignment maneu-
vers that followed were such that two agents (who were the link between two parts of the
swarm) momentarily moved further than 1.6 m apart, which was the limit of the sensor.
Although we could be more lenient and accept the fact that the swarm quickly recon-
nects, as done by Win�eld and Nembrini (2012), the issue is noted and should be tackled
in future work to further guarantee safety even in a continuous setting. Nevertheless,
this was the only “unsafe” event that took place out of thousands of maneuvers executed
over all 50 trials. We also successfully simulated the behavior of the swarm with large
groups tasked with making a line with 50 robots, for which a sample trajectory is shown
in Figure 3.15c. Here, it is interesting to see how the line slowly forms as robots all over
the swarm begin to align themselves as required.

3.6.3. M ICRO AIR VEHICLE SIMULATIONS
Having developed and tested a behavior that can be used in a continuous domain, we
now explore whether it can be used when robots have more realistic dynamics and re-
action times. This section provides a proof of concept and shows how the selected al-

8The source code can be found at https://github.com/coppolam/swarmulator/tree/SI_
PatternFormation

9Videos of other sample runs are available at https://www.youtube.com/playlist?list=PL_
KSX9GOn2P8BYpwA-_WfXmtb7CRnVhC3

https://github.com/coppolam/swarmulator/tree/SI_PatternFormation
https://github.com/coppolam/swarmulator/tree/SI_PatternFormation
https://www.youtube.com/playlist?list=PL_KSX9GOn2P8BYpwA-_WfXmtb7CRnVhC3
https://www.youtube.com/playlist?list=PL_KSX9GOn2P8BYpwA-_WfXmtb7CRnVhC3
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(a) Triangle with four robots (b) Triangle with nine robots (c) Line with 50 robots

Figure 3.15 Simulated trajectories to the desired patterns

gorithm can work on a team of real MAVs with the relevant dynamic constraints and
perturbations.

The simulations were executed using using Robotics Operating System (ROS) (Quigley
et al., 2009) and the Gazebo physics engine (Koenig and Howard, 2004). The hector-
quadrotor model provided by Meyer et al. (2012) simulates the dynamics of a quadrotor
MAV. Each MAV is simulated on a separate module and runs independently, with the
higher level controller running at 10 Hz. The same simulation environment was used
in both Coppola et al. (2018) and McGuire et al. (2017a) with successful replication of
the controllers on real-world MAVs, and it was chosen for this reason. We assumed that
the MAVs could measure the position of their nearest neighbors up to 1.6 m, and that
they could then sense whenever a neighbor was moving at more than 0.1 m/ s, which
they would interpret as the neighbor taking an action. All other control parameters were
kept the same as in the Swarmulator trials, with some minimal tuning to suit the new
dynamics (namely: vb Æ2 m/ s, tad j Æ1.5 s, twai t Æ3 s).

Results The results of Section 3.6 were successfully replicated using this set-up. We
show two sample trajectories of �ights in Figure 3.16a and Figure 3.16b. 10 As for the
accelerated particles, the triangle with four MAVs was generally reached within only 100 s
of �ight, and in 48 out of 50 cases it was completed before the �nal simulation time of
500 s. As expected based on our idealized simulation, the �ight time was not enough
for such a high success rate also with the signi�cantly more complex triangle with nine
MAVs. 20 out of 50 cases �nished the triangle within the maximum simulation time of
5000 s for these simulations. Nevertheless, the MAVs never collided with each other and
the swarm never separated in any of the trials, showing that the idealized rules translate
well to realistic dynamics.

Simulation results with sensor noise Additionally, we explored the performance of the
behavior under the in�uence of noise in the relative position readings of neighbors by

10Videos are available at https://www.youtube.com/playlist?list=PL_KSX9GOn2P8BYpwA-_
WfXmtb7CRnVhC3

https://www.youtube.com/playlist?list=PL_KSX9GOn2P8BYpwA-_WfXmtb7CRnVhC3
https://www.youtube.com/playlist?list=PL_KSX9GOn2P8BYpwA-_WfXmtb7CRnVhC3
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(a) Triangle with four robots (b) Triangle with nine robots (c) Simulated �ight of nine
MAVs with sensor noise

Figure 3.16 Exemplary results of ROS simulations

applying Guassian noise with standard deviation of 0.1 m and 0.1 r ad for relative range
and bearing, respectively. The only change was that the MAVs could see up to 2 m instead
of 1.6 m in order to restrict false negatives. The results were robust to the noise. Consider,
for instance, the 300 s �ight with nine MAVs shown in Figure 3.16c. It can be seen that
the swarm distances are kept, while the swarm still reshuf�es, and no collisions occur.
The discretization imposed by the state-action map is such that the behavior is robust to
sensor noise. The behavior is robust even when the same set-up from the noiseless case
is used, without any �ltering of the Gaussian noise (e.g., using a Kalman �lter or a low
pass �lter), which would otherwise drastically improve the results further.

3.7. D ISCUSSION

3.7.1. I NTUITIVE AND VERIFIABLE DESIGN OF COMPLEX BEHAVIORS
The approach presented in this chapter allows a swarm designer to intuitively de�ne
local behavior of cognitively limited robots faced with a global task. It is merely necessary
to divide the global task into the locally observable constituents and incorporate this
into the state-action map of the robots. Doing so provides the robots with a behavior
that forms the pattern, even though the robots are incapable of locally knowing when/if
this ever occurs.

Having such an intuitive method allows us to form patterns that (for systems with
similarly limited capabilities) had previously not been achieved using an explicit design.
We showed six patterns as examples, but the limits of the algorithm do not stop there.
Izzo et al. (2014) and Scheper and de Croon (2016), for instance, both proposed neu-
ral networks to tackle the formation of an asymmetric triangle, whereby the dif�culty
was that three non-communicating homogeneous robots could not resolve the asym-
metry. However, using the approach presented in this chapter, it becomes easy to form
any asymmetric triangle. The desired states to develop ¦ f are readily extracted, as in
Figure 3.17a and the dimensions of the triangle can be tuned by adjusting the attraction
and repulsion forces along north and east. The asymmetric triangle is then obtained as
exempli�ed in Figure 3.17b and Figure 3.17c.

In this work we focused on pattern formation, but we postulate that this framework
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(a) Desired pattern and
related desired states

(b) Asymmetric triangle in
ROS simulation

(c) Flight path

Figure 3.17 Development of an asymmetric triangle and test on ROS

could also be extended to other global tasks such as organized navigation or task alloca-
tion. In future work, we aim to investigate how the framework can be generalized.

3.7.2. GENERATING ARBITRARY PATTERNS WITHOUT LIVELOCKS AND DEAD -
LOCKS

Section 3.4.2 showed how ¦ f can be readily computed for any pattern. However, be-
cause of how limited the robots are, it is not necessary that the swarm is able to reach
this pattern from any initial condition while being free of livelocks or deadlocks. Dead-
locks and livelocks, however, stem from the limited knowledge that is available to the
robots. If the robots could see further, or remember past states, or communicate, they
would be able to form more complex patterns and would be able to move more freely.
Theoretically then, any pattern can be formed provided that the state space is suf�ciently
detailed to uniquely represent the desired goal and allow enough freedom to the robots.
In line with the goals of generalizing the scheme that was presented here, we also wish to
determine how providing the agents with some extra capabilities can allow more com-
plex goals to emerge. This is while resting on the knowledge that the swarm can also
operate when these extra capabilities malfunction. Furthermore, the proof conditions
have been shown to be more restrictive than it can turn out to be in the real swarm. The
advantage of using local properties are that we do not need to analyze the global states
of the swarm, yet this comes at the cost of possibly being more strict than required from
the global perspective. At this moment, however, we have seen that patterns that do not
respect some of the conditions still form in our simulations, such as the line pattern.
Indeed, it may be that the subset of global states that represent a deadlock or livelock is
very small compared to the total state space, making such failures possible, yet extremely
unlikely. More focused investigations should be conducted in order to understand when
it is possible to be more lenient on some conditions while still ensuring that livelocks
and deadlocks do not arise.
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3.7.3. T IME FOR SELF-ORGANIZATION
In Section 3.5, generally speaking, it was found that as the size of the swarm and the
intricacy of the pattern grow, the pattern could form only after a possibly unrealistic
number of actions by the robots. This property was expected in light of all the limitations
of the robots, as it becomes increasingly unlikely that the agents' random actions will
lead to the desired global pattern, given that essentially the swarm randomly transitions
between possible global patterns. 11 However, there are two important things to note:

1. In real robot swarms, several actions will be taking place at the same time, so the
time to completion will be faster than expected. For instance, in Figure 3.15c the
line is seen to slowly form across the entire swarm, whereas this is not the case for
the idealized system.

2. Our investigations in Section 3.5 showed that it is possible to improve performance
by several orders of magnitude by further altering the local state-action map.

The latter leads to questions about how to best alter a local state-action map. The alter-
ations in this work were done manually, using intuition, for exploratory purposes. The
problem could be solved more optimally using machine learning methodologies such
as reinforcement learning or evolutionary robotics. The objective would be to alter ¦ f

such that, statistically, the time for the robots to self-organize into a desired pattern is
minimized. Here, the local proofs would allow us to verify that the alterations are such
that the system is still guaranteed, at all times, to always eventually reach the pattern.
Policy optimization will be explored in Chapter 4.

3.7.4. TOWARD REAL-WORLD IMPLEMENTATIONS AND APPLICATIONS
The simulations using ROS in Section 3.6.3 provide a large degree of con�dence in the
possibility to implement the system on real MAVs (or other robots). Provided that the
necessary sensory information is available, then they are able to follow the behavior even
when behaving by their own internal clock and in the presence of sensor noise, and this
is without the aid of any additional �ltering. We then �nd that the local behavior can
also be used simply to guarantee collision avoidance and swarm coherence in spite of
all limitations of the robots. This has several applications of its own. For instance, it
can be used to preemptively guarantee that a robotic sensor network never separates in
multiple groups.

3.7.5. SCALABILITY OF PROOF PROCEDURE
Our proof procedure focused as much as possible on the local level, making it largely
independent of the number of agents in the swarm, and thus able to mitigate state ex-
plosion issues. Most notably, we are able to prove, only by a local level analysis, that
livelocks will not exist when starting from any initial pattern. A key element of this proof
was an analysis of the simplicial states and the intuition that they could help the swarm
to resolve livelocks. Nevertheless, the complete proof still requires us to verify that dead-
lock patterns will not occur, and this part is still done using an ultimately global analysis.
We have shown how to mitigate the computational explosion by looking at a limited sub-
set of state combinations and using a procedure to quickly sort through the possibilities,

11In popular adage, one might say that there is no such thing as a free lunch.
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yet the issue is not yet fully eliminated. In future research, there should be efforts to
further mitigate its effects for �nite patterns. Here, we expect that the match matrices
introduced will be a fundamental tool to analyze local connections between the robots.

For now, three solution directions have been identi�ed in order to mitigate the com-
putational explosion. The �rst is to focus on the agents at the border of the structure,
assuming that all other agents will be enclosed by these agents. The second avenue is to
use repeating sub-patterns. The local states could be made such that the agents can ar-
range into in�nitely repeating patterns (e.g., in�nitely connecting hexagons) and create
a large complex structure without de�ning or checking the larger structure in full. This
we actually already did, in part, for the line pattern. The third solution, perhaps most
trivial, is to allow robots that have been blocked for a long time to temporarily perform
partially unsafe maneuvers, which might set the system free from deadlocks (but may
come at other costs).

3.8. CHAPTER CONCLUSIONS
In this chapter we introduced a method to design the local behavior of robots in a swarm
so as to form desired global patterns in spite of extremely limited cognitive abilities. Be-
cause the robots only know the relative location of their closest neighbors and have no
memory of the past, they cannot take “purposeful” actions. Therefore, a mechanism has
been designed that makes the global pattern emerge from the local, stochastic behaviors
of the agents. Approaching the problem from top-down, the method simply requires
one to identify the local states that build the desired global pattern in order to design the
behavior. Then, to close the loop, we presented a proof procedure to verify whether the
desired pattern will always eventually emerge from the random interaction of the agents.
An important insight from these proofs is the crucial roles that simplicial states play in
helping the swarm to avoid livelocks and minimizing the possibility of deadlocks. It is
important to note here, however, that should we �nd that livelocks and deadlocks are
possible, then this tells us that the robots have an insuf�cient sensory knowledge for the
desired global goal to always eventually happen, which is equally valuable information
when designing a robotic swarm. Despite developing the behavior for idealized agents
on a grid world, we have presented very promising results that show that it can poten-
tially be successfully reproduced by robots operating in continuous time and space, with
local clocks, even in the presence of noise. In follow-up work, Ripoll Sanchez (2019) also
explored the possibility of using this algorithm on swarms of satellites. In this context, it
could be especially useful as a fail-safe mechanism in case the communication between
satellites fails.

The methodology presented here has been used for pattern formation. At its core,
however, it is based on the more general idea of synthesizing a global goal into a proba-
bilistic state-action map executed by the robots, and the veri�cation of the global prop-
erty by ensuring that the swarm features agents with a state that empowers them to help
the swarm evolve (i.e., simplicial states). With a modi�ed mapping, we expect this strat-
egy to also be applicable to systems with signi�cantly different state and action spaces.
A further challenge that must be solved is to use an optimization procedure to enable
larger and more complex patterns to form faster. The next chapter tackles these chal-
lenges. We will introduce a model-based optimization algorithm, and we will abstract



3.8. CHAPTER CONCLUSIONS

3

77

our methodology and apply it to two more tasks: consensus and aggregation.

CODE
• The simulation code used in this chapter can be downloaded at https://github.

com/coppolam/swarmulator/tree/SI_PatternFormation .

• The ROS simulator can be downloaded at https://github.com/coppolam/ros_
mav_swarm_simulator.

• All data used in this chapter can be downloaded at: https://surfdrive.surf.
nl/files/index.php/s/ZNM2mtKFdWHnRH9 .

https://github.com/coppolam/swarmulator/tree/SI_PatternFormation
https://github.com/coppolam/swarmulator/tree/SI_PatternFormation
https://github.com/coppolam/ros_mav_swarm_simulator
https://github.com/coppolam/ros_mav_swarm_simulator
https://surfdrive.surf.nl/files/index.php/s/ZNM2mtKFdWHnRH9
https://surfdrive.surf.nl/files/index.php/s/ZNM2mtKFdWHnRH9




4
PAGERANK CENTRALITY AS A MEASURE TO

OPTIMIZE SWARM BEHAVIORS

In the prior chapter, we have established a procedure to break down a global goal into lo-
cal states, and enabling a swarm to achieve this goal. In particular, we focused on the goal
of pattern formation. In this chapter, we generalize the method to additional tasks, and
introduce a novel method, based on PageRank centrality, that enables us to optimize the
behavior of the swarms using the concept of desired states. PageRank is a graph centrality
measure that assesses the importance of nodes based on how likely they are to be reached
when traversing a graph. We relate this to a random robot in a swarm that transitions
through local states by executing local actions, using PageRank to evaluate how likely it
is, given a local policy, for a robot in the swarm to visit each local state. This is used to
optimize a stochastic policy such that a robot is most likely to reach the local states that
are desirable, based on the swarm's global goal. The optimization is performed by an evo-
lutionary algorithm, whereby the �tness function maximizes the PageRank score of these
local states. The calculation of the PageRank score only scales with the size of the local
state space, and demands much less computation than swarm simulations would. The
approach is applied to a consensus task, a pattern formation task (as seen in the previous
chapter), and an aggregation task. For each task, when all robots in the swarm execute
the evolved policy, the swarm signi�cantly outperforms a swarm that uses the baseline
policy. When compared to globally optimized policies, the �nal performance achieved by
the swarm is also shown to be comparable. As this new approach is based on a local model,
it natively produces controllers that are �exible and robust to global parameters such as
the number of robots in the swarm, the environment, and the initial conditions. Further-
more, as the wall-clock time to evaluate the �tness function does not scale with the size
of the swarm, it is possible to optimize for larger swarms at no additional computational
expense.

The contents of this chapter have been published in Coppola et al. (2019a).
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4.1. BACKGROUND
Machine learning techniques are a powerful approach to develop swarm behaviors. Evo-
lutionary algorithms, for instance, can ef�ciently explore a solution space and extract vi-
able local behaviors that ful�ll a desired global goal (Francesca and Birattari, 2016; Nol�,
2002). They have been used on numerous architectures, including: neural networks
(Duarte et al., 2016; Izzo et al., 2014), state machines (Francesca et al., 2015), behavior
trees (Jones et al., 2018; Scheper et al., 2016), and grammar rules (Ferrante et al., 2013). A
bottleneck of these algorithms is in the need to evaluate how the whole swarm performs
against each controller that they generate. Because of the complexity of swarms and the
dif�culty in predicting the global outcome, a full simulation of the entire swarm is car-
ried out each time. This is subject to scalability issues as the size of the swarm increases,
for example:

1. The computational load required to execute the simulations increases with the
size of the swarm.

2. It may take longer for the desired behavior to emerge, requiring a longer simula-
tion time for each evaluation trial, especially in the initial stages of the evolution.

3. The evolved policy may be over-�tted to the global parameters used during the
simulation, such as the number of robots, the initial conditions, or the environ-
ment.

4. A solution needs to be simulated multiple times in order to reliably assess the ex-
pected performance of a given behavior (Trianni et al., 2006). Avoiding re-evaluation
may result in poor behaviors being erroneously assigned a higher �tness thanks to
one lucky run, which may ultimately result in a performance drop (Di Mario et al.,
2015a,b).1

5. The evolution may be subject to bootstrap issues (Gomes et al., 2013; Silva et al.,
2016).

In order to tackle these scalability problems, we introduce a new approach to the
�eld of swarm robotics: PageRank (Brin and Page, 1998; Page et al., 1999). PageRank is
a graph centrality and node ranking algorithm. It was originally developed by Sergey
Brin and Larry Page as part of Google™. Its objective was to rank the importance of Web
pages based on the hyperlink structure of the World Wide Web. PageRank's philosophy
was to model the browsing behavior of a user who surfs the Web by randomly clicking
through hyperlinks, and to measure the value of Web pages based on how likely it would
be for this user to visit them. In this chapter, we port this idea to the world of swarm
robotics. Here, a robot in a swarm becomes analogous to a Web surfer. The robot moves
through local states by taking actions, much like a Web surfer navigates through Web
pages by clicking hyperlinks. With PageRank centrality, we can then evaluate the relative
likelihood with which the robot will end up in the local states. Then, with the knowl-
edge that a desired global goal is more likely to be achieved when the robots are (or pass
through) a given set of local states, we can ef�ciently quantify the global performance of
the swarm in achieving its goal. More speci�cally, we propose a �tness function, based

1An alternative to re-evaluation is to vary other parameters. For instance, one could simulate once but for a
longer time (Di Mario and Martinoli, 2014), although this is applicable to continuing task and not to tasks
with a de�nite global goal.
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on PageRank, that can assess theglobal performance of a swarm while only evaluating
the local model of a single robot in the swarm. This micro-macro link frees us from the
need to simulate the swarm. Due to the local nature of this approach, the evaluation is
independent from global parameters such as the size of the swarm, the initial condition,
the environment, or lower-level controllers. The introduction of this method is the main
contribution of this chapter. We will showcase its potential by applying it to optimize the
local behavior for three different swarming tasks: 1) consensus agreement, 2) pattern
formation, and 3) aggregation.

We begin by discussing related work in Section 4.2. Here, we place our contribu-
tion within the context of other solutions found in the literature which also had the aim
of tackling scalability issues. We further compare our use of a PageRank-based micro-
scopic model to other swarm modeling approaches. In Section 4.3, we then detail how
PageRank works and explain how it can be applied to model, assess, and optimize the
performance of a robotic swarm. The approach is then directly applied to optimize the
behavior of three swarming tasks, as follows.

• Consensus agreement (Section 4.4).In this task we optimize the behavior of a swarm
that must achieve consensus between multiple options. Each robot can sense the
opinion of its neighbors and, based on a stochastic policy, decide whether it should
change its opinion (and, if so, what to change its opinion to). Using PageRank,
we optimize the stochastic policy so as to help the swarm achieve consensus as
quickly as possible. The policy is optimized independently of the size of the swarm
or its spatial con�guration. We further optimize a more limited variant of this task
whereby robots cannot sense the opinion of their neighbors, but can only sense
whether they are in agreement with their neighborhood or not.

• Pattern formation (Section 4.5). For this task, we optimize the performance of a
swarm of robots with the global goal of arranging into a desired spatial con�gura-
tion. The robots in the swarm have very limited knowledge of their surroundings.
This section directly extends the work from Chapter 3, published in Coppola et al.
(2019b), as well as the work published in Coppola and de Croon (2018). In the
latter, we attempted to optimize the behavior of a swarm in a pattern formation
task, yet quickly encountered scalability problems for larger swarms/patterns. The
scalability problems were a result of the fact that the swarm had to be simulated
in order to assess the ef�cacy of a controller. This was infeasible for larger swarms,
especially in early generations where performance is poor. Using the PageRank
algorithm we can now tackle these scalability issues, as it is no longer needed to
simulate the swarm in order to assess the �tness of a behavior.

• Aggregation (Section 4.6). In this task, we study a swarm of robots in a closed
arena which should aggregate in groups of three or more. In comparison with
the other two tasks, this optimization tunes a higher-level policy featuring two
sub-behaviors ( random walk and stop) with a probability that is dependent on
the number of neighbors that a robot in the swarm can sense. The �nal achieved
policy allows the swarm as a whole to aggregate successfully.

In Section 4.7 we discuss our general �ndings, including an analysis of the strengths
and the current limitations of using PageRank centrality as a behavior optimization tool
for swarm robotics. Section 4.8 provides concluding remarks.
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4.2. RELATED WORKS AND RESEARCH CONTEXT

In state of the art, the problems of scalability discussed in Section 4.1 have mostly been
tackled in two ways. First, there are methods that try to deal with the broad solution
space that comes as the number of robots increases. For example, Gomes et al. (2012)
used novelty search to encourage a broader exploration of the solution space. The sec-
ond way is to use global insights to aid the evolutionary process. For example, Duarte
et al. (2016) partitioned complex swarm behavior into simpler sub-behaviors. Hütten-
rauch et al. (2017), with a focus on deep reinforcement learning, used global information
to guide the learning process toward a solution. Alternatively, Trianni et al. (2006) and Er-
icksen et al. (2017) explored whether evolved behaviors for smaller swarms could gener-
alize to larger swarms. In all cases, the need to simulate the swarm remains a bottleneck
for both evaluating the behavior and generalizing the behavior beyond the parameters
used in simulation. Here, we offer a different solution which discards simulation and ex-
ploits a micro-macro link based on evaluating the relative PageRank score between local
states using only a local model of a single robot in the swarm. It extracts performance
parameters without simulation or propagation from an initial condition and only relies
on an analysis of the model for a given policy.

This approach differs from other swarm modeling and evaluation solutions found
in the literature, such as the multi-level modeling framework introduced by Lerman
et al. (2001), Martinoli and Easton (2003), and Martinoli et al. (2004). There, the idea
is to model the evolution of a swarm via probabilistic �nite state machines, propagat-
ing the �ow between states over time. At the microscopic level, one probabilistic �nite
state machine is propagated from an initial condition for each robot in the swarm. At
the macroscopic level, which can be readily abstracted from the microscopic, the �nite
state machine describes the mean transition of robots between states. The macroscopic
model probabilistically describes, at the global level, how many robots are in each state
at a given point in time. This can also be expressed in terms of rate equations. For each
level, the relevant transition rates between states are extrapolated from an analysis of
the policy, as well as from geometric reasoning (e.g., based on the size of the arena and
the expected robot density that ensues) (Martinoli et al., 2004) or from empirical data
(Berman et al., 2007). To predict the global evolution of the swarm, the models are prop-
agated in time from an initial condition, essentially simulating the swarm at an abstract
level. For certain tasks, these models have been shown to be highly effective in predict-
ing the general behavior of a swarm (Lerman et al., 2005). However, their accuracy and
applicability are limited by the validity of the global assumptions which de�ne the tran-
sition rates. For instance, to estimate the probability of interaction between any two
robots, one assumption is that the system is “well mixed”, meaning that the robots are
all equally distributed within an area at all times and always have the same probability
of encountering any neighbor. For reasons such as this, their use has been largely lim-
ited to the evaluation of tasks with few states and by swarms in bounded arenas. Exam-
ples where these models have been used are the modeling of collective decision making
(Hamann et al., 2014; Reina et al., 2015), area exploration/foraging (Campo and Dorigo,
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