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analysis of detours to secondary activities

Florian Schneider , Winnie Daamen and Serge Hoogendoorn

Department of Transport and Planning, Delft University of Technology, Delft, The Netherlands

ABSTRACT
A largely overlooked mode choice factor of cycling is the mode-
dependent capability of visiting several activity locationswithin a trip
chain. Due to the bicycle’s limited reach in comparison to the car,
this capability can be increased by urban environments that facil-
itate trip chaining by bicycle. In the present paper, we empirically
study travel distances between activity locations that facilitate trip
chaining by the example of Dutch commute tours. More precisely,
we address the question of howmuch cyclists extend commute tour
distances compared to car travellers to include a secondary activ-
ity. For this purpose, a Bayesian regression model is proposed to
analyse the effects of travel mode, secondary activity type and a
series of control variables such as age and time of the day on com-
mute tour extensions. The model results propose that people make
on average detours of 7.4 km by car and 1.3 km by bicycle. These
values strongly differ depending on the type of secondary activity,
gender, the distance of the home-work tour and the duration of
the secondary activity. In addition, the comparison between car and
bicycle travel revealed some behavioural peculiarities of the active
modes, which have implications for bicycle-friendly urban planning
and several transport-related concepts.
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1. Introduction

Activity participation and the reduction of travel-related impacts are often two contra-
dictory objectives of policy-makers. People mainly travel to perform activities that satisfy
their personal needs, such as going to work, buying food in a supermarket or bringing
their child to a day-care centre. While this activity participation is crucial for the function-
ing of modern society, the related (and predominantly motorised) mobility causes a long
list of environmental and societal problems, such as air pollution or congestion. To mit-
igate these conflicting goals, many cities aim for increasing the mode share of cycling
at the expense of the car. However, such a mode shift requires that urban environments
support activity-travelling by bicycle. A largely overlooked aspect in this context is trip
chaining.
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Trip chaining is an efficient way of activity participation regarding necessary travel. A
home-based trip chain or tour is a sequence of trips that starts and ends at the home loca-
tion (Primerano et al. 2007). By tying trips to several activity locations together, fewer trips
and, typically, less travel resistance in termsof timeordistancehas tobeovercome to imple-
ment a person’s out-of-homeactivity programme. As a consequence, themode-dependent
capability of visiting several destinations within a tour is an important mode choice factor
(Ho and Mulley 2013).

The capability of forming complex trip chains (i.e. trip chains which include at least two
destinations) by bicycle largely depends on the distances between activity locations. Sev-
eral studies concluded that differences in trip chain complexity between car and public
transport are largely caused by varying degrees of spatial and temporal flexibility (Dun-
can 2016). In line with these outcomes, recent research found that trip chains related to
the bicycle (which is temporally and spatially flexible but restrained by the physical effort
of locomotion) include more often two or more different activity locations than public
transport trip chains but less often than car trip chains (Schneider et al. 2020). Reducing
the constraint induced by the limited reach through intelligent urban planning makes the
bicycle more competitive for complex trip chaining and, by implication, increases its mode
share. To design such urban environments, empirical knowledge on spatial trip chaining
behaviour of cyclists is required. However, this information is, to our knowledge, largely
lacking. This paper aims to fill this gap.

When we analyse the spatial relationship between activity locations that facilitate trip
chaining, a basic understanding of activity planning is necessary. Former research suggests
that activity planning is a dynamic process in time that is organised around a skeleton of
anchor activities (Cullen and Godson 1975; Lee andMcNally 2006). These anchor or primary
activities appear to be the activities in a trip chain that are furthest away while less distant
(secondary) activities are added opportunistically (Lee andMcNally 2003). An opportunistic
situation can be assumed once the detour related to the inclusion of a secondary activity
from the need list entails some efficiency gain in terms of travel distance or time. In practical
terms, this is usually the case when the location of the secondary activity is close to the
route between home and primary activity. The identification of primary activity types from
travel diary data, however, is not trivial (Doherty 2006; Doherty and Mohammadian 2011).
Research has shown that work seems to be the activity type that stably structures tours in
time and space (Schneider et al. n.d.).

This is why this paper used commute tours as a reference to analyse the spatial arrange-
mentsof activity locations that result in complex trip chains.Moreprecisely,we investigated
howmuch people extend simple commute tours (i.e. tours involving only one destination)
to include different types of secondary activities by bicycle and car. The comparison with
the car as a spatially and temporally flexible travelmode (andmain competitor) was chosen
to identify bicycle-specific peculiarities of trip chaining behaviour. Using Dutch travel diary
data, a linear regressionmodelwasdeveloped, inwhich thedistanceextensionof a tourwas
used as dependent variable and travel mode, type of secondary activity and several con-
trol variables as independent variables. As the effect of a variable can be mode-dependent
(e.g. age might only affect bicycle travel but not car travel), all independent variables were
additionally interacted with both travel modes.

The results give urban planners indications of how residential areas, companies and
other destinations should be arranged to stimulate bicycle trip chaining. A further
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contribution of this study is the disclosure of some behavioural principles related to cycling
that differ from car travel behaviour.

In the remainder of this paper, we first introduce the theoretical reflections that under-
lie this analysis. Then, we explain the commute tour data set in Section 3. Subsequently,
the employed statistical model is described in Section 4. Finally, the results are shown and
discussed in Section 5, before drawing conclusions in Section 6.

2. Theoretical framework of the study

The objective of this study is to reveal spatial arrangements of activity locations that
facilitate bicycle and car trip chaining. The scope is commute tours to which another
out-of-home activity is added.

The relationship between activities and travel can be described by a physical model,
in which activities attract people to change locations while the related travel represents
a resistance (Annema 2013). Following this conceptualisation, we can think of the com-
mute tour formation as a hierarchical attraction-resistance problem. The hierarchy refers to
the priorities in the activity planning process in which work is assumed to be the primary
activity and another activity to be the secondary purpose of the tour. This means that the
importance of work causes a person to accept the resistance that is related to the travel
distance from home towork and fromwork to home. In this research, travel distance desig-
nates the covered distance of a person who travelled from a point A (e.g. home) to a point
B (e.g. work) in a network. When adding another activity to the commute tour, its attraction
only has to be in equilibrium with the travel distance that is related to the detour. For the
event that several options would meet this requirement, we make the explicit assumption
that the traveller picks the alternative that maximises his or her utility (i.e. the alternative
for which, conceptually, the difference between activity attraction and travel resistance is
largest).

Another necessary assumption within the theoretical framework concerns the spa-
tial knowledge of the commuter regarding locations of secondary activities and related
detours. Based on the anchor-point theory of Golledge, it can be argued that each observa-
tion stands for an accepted trade-off between the attraction of a secondary activity and the
resistance of the related detour. The anchor-point theory explains how humans gain and
store spatial knowledge (Couclelis et al. 1987). Within a hierarchical structure (which could
be compared to different zoom levels of a map), people arrange their mental maps around
so-called anchor points. According to the theory, geographical knowledge is built up and
stored around these anchor points. At the level of an urban environment, anchor points
can be often visited places of a person, widely known landmarks or frequently used paths.
Applied to the context of our study, locations of work and home would be typical anchor
points. Consequently, the geographical knowledge in the area around both places as well
as along the corridorwhich connects themcanbe assumed tobehigh. Thismeans that peo-
ple have good knowledge of available activity locations and canmake realistic estimations
of detours related to the inclusion of a secondary activity in the commute tour.

Travel distance is only one measurement of travel resistance. In the literature, more fac-
tors are linked to travel resistance. Annema (2013), for instance, divides travel resistance
into the components travel time, travel costs and efforts. As a consequence, the same travel
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Figure 1. Tour distances in simple (Dsimple) and complex (Dcomplex) commute tours.

distance with a particular mode can entail different travel resistances depending on traf-
fic conditions, the features of the respective road network (e.g. the allowed travel speed
or the perceived safety) or the fitness of the traveller. In light of the spatial focus of this
research, however, we make the simplified assumption that travel distance approximates
themode-specific travel resistance at the aggregated level of a sample (which includes data
from different people, traffic states, networks, etc . . . ).

Consequently, spatial arrangements of activity locations that lead to complex commute
tours canbedescribedby the travel distanceextension e that is calculatedbycomparing the
tour distance of an observed complex commute tour Dcomplex with the tour distance of its
simplehypothetical counterpartDsimple (see Figure 1). Inmathematical terms, theextension
e for each tour observation n ∈ N is:

e = Dcomplex − Dsimple = (dWork + dSec + dHome) − (2 × dWork) = dSec + dHome − dWork,
(1)

wheredWork is the travel distance fromhome (or the secondary activity) to thework location;
dSec is the travel distance from work (or home) to the activity location of the secondary
activity; and dHome is the travel distance from the secondary activity (or work) to the home
location.

To reveal spatial relationships betweenhome,work and secondary activity locations that
stimulate complex commute tours, it is useful to group secondary activities into types (e.g.
leisure or grocery shopping) and relate these types to typical distance extensions. Further-
more, the effect of travel mode on these extensions should be isolated to gain knowledge
that can be used for mode-specific spatial planning. Therefore, we addressed the following
two research questions:

(1) How much do people extend commute tour distances to accommodate secondary
activities of different types?

(2) What is the effect of bicycle compared to car travel on these extensions?

These research questions refer to two major elements that relate to commute tour
extensions, that is, secondaryactivity type and travelmode. In Figure 2,weput forward a con-
ceptual model that illustrates the assumed relationships. Below, we elaborate the different
elements in Figure 2.
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Figure 2. Conceptual model of commute tour extensions.

First, secondaryactivity type influences observed commute tour extensions. By definition,
the secondary activity causes the extension. On the one hand, we assume that the question
of whether a secondary activity is added to a commute tour depends on its importance (or
attraction potential). Accordingly, some activity types will only be added when they are
close by. On the other hand, the detours to include a secondary activity also depend on
the spatial availability. Observed extensions thus do not only reflect the importance of the
secondary activities. For instance, one would expect that extensions for grocery shopping
will generally be shorter than those for visiting a language school. In sum, we expect that
different activity types have on average distinct tour extension ranges.

Second, travel mode relates to observed commute tour extensions. While travel resis-
tance increases with the length of the detour, it is perceived differently between bicycle
and car travellers. For example, an extension by five kilometres represents a major barrier
by bicycle, but an effortless extensionby car. Considering thedifferent travel resistanceper-
ceptions, we isolated the effect of travel mode on commute tour extensions from the effect
of the secondary activity type. We did so by considering both amain effect that shows how
much bicycle and car tour extensions are different in scale and an interaction effect that
specifies the effect of the secondary activity type depending on the used travel mode (see
Figure 2).

Third, a series of control variables are expected to affect commute tour extensions.
Therefore, a list of potential control variables was identified based on the literature. Note,
though, that not all variables of the list were available in our data set (see Section 3 for
the data description and Section 4.1 for the variable selection). The list included commonly
used socio-demographic variables (age and gender) as well as variables that represent the
built environment and related availability constraints (urban density and land-use (Susilo
and Maat 2007; van Acker and Witlox 2011)). Furthermore, a set of variables that capture
space–time constraints (time of the day, simple tour distance, work duration (Brunow and
Gründer 2013; Kondo and Kitamura 1987; Krygsman, Arentze, and Timmermans 2007; van
Acker and Witlox 2011)) and the importance of the secondary activity (activity duration
(Doherty andMohammadian 2011; Schneider, et al., n.d.))were added to the list. Similarly to
the secondary activity type, these control variablesmight also have different effects on tour
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extensions dependent on the used travel mode. Asmentioned above, agemight not affect
commute tour extensions by car, but it might affect commute tour extensions by bicycle.
For this reason, we also interacted available control variables with the travel modes (see
Figure 2).

3. Trip chain data set

The study was based on data from the Netherlands Mobility Panel (MPN), a longitudinal
panel that covers the whole Netherlands. The MPN consists (among other things) of a
3-day travel diary, a personal survey and a household survey. All three surveys are con-
ducted yearly with around 4000 participants. TheMPN has been described inmore detail in
(Hoogendoorn-Lanser, Schaap, and Oldekalter 2015). The current analyses employed data
from the years 2013–2016 to increase the number of observed commute tours.

To derive commute tours from travel diary data, some data processing on both trip and
tour-level was conducted. First, incomplete observations concerning trip origins and desti-
nations, andobservationswith unrealistic reported travel distanceswere excluded. Second,
trip purposes that did not lead to a fixed activity location (e.g. strolling, professional driving)
were discarded. Third, trips were assigned to one of the five aggregated travel modes car
(driver and passengers), public transport (train, metro, tram and bus), bicycle,walk and other
modes based on the reported main mode of the trip. Fourth, activity durations were calcu-
lated by subtracting the ending time of a trip from the starting time of the consecutive trip
of the same person. And last, commute tours that include a secondary activity were derived
from travel diary data. Therefore, the following set of conditions was imposed:

• A sequence of consecutive trips had to start and end at the (same) home location.
• The origin of each trip had to be the destination of the previous trip.
• One of the two included activities had to be work.

The trip chain data set contained information on several trip chain properties. Each trip
chain was associated with a travel mode based on the travel mode(s) of the included trips.
Only unimodal trip chains, where all trips were travelled by bicycle or by car were consid-
ered for this research. Each trip chain was attributed to activity type, activity duration and
time category (morning, noon and evening) of the secondary activity. In addition, we cal-
culated for each trip chain both simple tour distance Dsimple (which is dWork times two) and
travel distance extension e based on the reported distances of all related trips (see section
2). And finally, information pertaining to the traveller (age, gender) was connected with all
trip chains.

Further filtering of the resulting trip chain data set was necessary in consideration of the
proposed analysis framework. A tour extension e is supposed to be a positive value, how-
ever, some observations accounted for negative extensions. While these observations can
be plausible, they are problematic to interpret and were therefore discarded. Furthermore,
the longitudinal character of the data can result in multiple observations per person. To
mitigate dependency between observations, we discarded duplicates of a person (i.e. tours
that were travelled by the same travel mode to the identic destinations). Lastly, tours were
excluded inwhichwork appeared tobe clearly the secondary activity.We assumed this case
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Figure 3. Sample description regarding all considered explanatory variables, grouped in socio-
demographics (a), categorical (b) and continuous (c) trip chain characteristics and durations of the
secondary activities per type (d).

once (i) the simple tour distanceDsimple was shorter than the tour extension e, (ii) work dura-
tion was simultaneously shorter than the duration of the secondary activity (Doherty and
Mohammadian 2011) and (iii) when the secondary activity was education (Schneider et al.
n.d.). The trip chain data set included 1488 trip chains that were travelled by 1424 different
persons.

Figure 3 provides information on the sample composition regarding the explanatory
variables that were considered for the analysis. Under (a) socio-demographic features of
the sample are presented. Most commute tours were as expected made by working age
people. While few commute tours were observed for people under 20 years, people who
are usually still in education, a surprisingly large number of commute tours was related
to people in retirement age. This indicates that many people continue to work (part-time)
even after reaching the official retirement age (i.e. 65 by 2016 in the Netherlands). Another
interesting feature of the samplewas the high share of trip chains ofwomen. Thiswas partly
caused by the composition of the underlying data set (womenweremore likely to fill in the
questionnaires and diaries). In addition, former findings suggest that complex trip chains
are more often formed by women than men (Islam and Habib 2012).

Concerning the categorical trip chain characteristics presented in Figure 3(b), themajor-
ity of the trip chains were travelled by car but also the bicycle accounted for a sufficiently
large number of observations to perform statistical analyses. With regard to urban density
at the municipality level, a similar proportion of trip chains was related to people living in
highly urbanised areas and people residing in suburban or rural environments. The cut-
off point between both urban density categories was chosen 1500 inhabitants per square
kilometre. Figure 3(b) also shows the sample composition regarding the secondary activity
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types. While grocery, escort and visitwere often included in commute tours, pick up/drop off
goodswere rarely observed. The variable time of the day refers to the moment in which the
secondary activity is performed. In this sample, smaller shares of the secondary activities
were performed in themorning (6 h00–10 h59) and during noon (11 h00–15 h59), while the
majority of secondary activities was conducted in the evening (and few observations also in
the night). This can be explained by less temporal constraints after work than before work
(Krygsman, Arentze, and Timmermans 2007).

Next, mean values and standard deviations are provided for simple tour distances and
the durations of work and the secondary activity in Figure 3(c). The standard deviations of
simple tour distance and durationof secondary activity indicate that therewas large variation
regarding how far people commute and how long secondary activities last. Thismeans that
the sample covered commuters whose work is situated close to their residence as well as
long-distance commuters. Similarly, secondary activity durations ranged from activities of
a few minutes to activities that last several hours. Conversely, the heterogeneity of work
durations was rather small.

Finally, Figure 3(d) indicates mean durations per type of secondary activity and related
standarddeviations. Activity duration is a proxy for activity attraction (Doherty andMoham-
madian 2011) and, therefore, useful information to interpret the model results. The figure
shows that the different activity types had different duration profiles, both with regard to
mean durations as well as concerning the spread. For instance, sport activities seemed to
be consistently long while grocery activities were predominantly short. In contrast, picking
up or dropping of goods or shopping durations accounted for a lot of variation.

4. Model development

The objective of this paper is to analyse the effects of different types of activities on detours,
which are caused by the inclusion of a secondary activity into a commute tour. To answer
the related research questions, inference about the relationships between the type of sec-
ondary activity and commute tour extensions is necessary. Unlike with machine learning
techniques (where prediction is often the principal interest), inference is conceptually at
the core of statistical modelling (Bzdok, Altman, and Krzywinski 2018). For this reason, this
section describes how the postulated conceptualmodel (see Figure 2) was translated into a
statistical model that reveals the effect of a set of explanatory variables on calculated com-
mute tour extensions. First, we specify the included explanatory variables in Section 4.1.
Then, we explain how these variables are coded in Section 4.2. And finally, we describe the
chosen statistical procedure to estimate the effect of each explanatory variable.

4.1. Variable selection

In light of the addressed research questions, the following variables were considered in
themodel. The comparison between travel modes includes bicycle and car commute tours.
With respect to secondary activity types, grocery, escort, dropoff/pick upgoods, leisure, shop,
service, visit and sport were taken into account. This selection comprises all available activ-
ity types in the data set except activities that do not lead to a specific activity location (e.g.
strolling) and education. This latter activity type was discarded since former research found
that the (rare) combination between work and education is predominantly representing
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Figure 4. Composition of statistical model of commute tour extensions.

situations in which work is the secondary activity (Schneider et al. n.d.). Concerning the
selection of control variables, the factors derived from the literature (see Section 2) were
mostly included in the final model. The exception were the variables that represent the
built environment and related availability constraints. Due to data constraints, only urban
density at a relatively aggregated level was suitable for inclusion. The resulting variable
selection of the statistical model is presented in Figure 4.

4.2. Variable coding

The postulated model included a series of categorical variables. Categorical variables can
be entered in a statistical model using coding techniques, such as dummy coding or
effect coding. Both techniques build upon a transformation of variable categories into so-
called dummy variables. A technical description of these transformations can be found in
(Alkharusi 2012). Differences between dummy coding and effect coding arise regarding
the point of reference to which they pertain. While dummy-coded estimates indicate the
effect of a category relative to an omitted reference category (whose effect is expressed
by the constant of the model), effect-coded estimates refer to the grand mean (average
of the estimated means of all categories) (te Grotenhuis et al. 2017b). Consequently, there
is no confounding of reference categories in the constant using effect-coding. This is an
important property given the large number of categorical variables in our analysis. Another
advantage of effect coding is that estimated parameter values are stable regardless of the
omitted category. This allows estimating the effects of all categories by employing two
(main effects only) or four complementary models (main effects and interaction effects)
and merging the results afterwards.

In this study, we usedweighted effect coding since the categories of our categorical vari-
ables did not account for equal numbers of observations (resulting in different values for
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grand mean and sample mean). As the grand mean weighs a category with few observa-
tions equally as a category with many observations, it is not suitable to display the central
tendency of unbalanced data. By using weighted effect coding, all estimates relate to the
sample mean. We coded the categorical variables following the procedure described in (te
Grotenhuis et al. 2017b), the interaction termsbetween twocategorical variables as defined
in (te Grotenhuis et al. 2017a) and the interaction terms between categorical and continu-
ous variables using themethod explained in (Nieuwenhuis, Grotenhuis, and Pelzer 2017). In
addition, explanatory variables with a continuous measurement level were mean-centred.

4.3. Parameter estimation

The statistical model estimating the effects of the variables from FIGURE 4 should ideally
satisfy the following requirements. First, the model should allow estimating not only the
main effects but also interaction effects. In this context, limited data as a consequence of
interacting a variable category that contains few observationswith the less frequently used
bicycle should not systematically result in statistical insignificance for interaction terms.
Next, the model should be a generalised linear model (GLM), as this is a requirement for
the use of effect coding (te Grotenhuis et al. 2017a). Furthermore, the estimates should
be easily understandable given the relevance of the research for practice. This condition
entails that linear models are preferred in general, and GLM models with an identity link
and non-transformed data in particular. And last, themodel should not only allow inferring
behavioural insights, but also predicting beyond the limits of the sample.

In light of these requirements, we used a Bayesian linear regression model to estimate
themean effect of each variable on the outcome variable (Wakefield 2013). Bayesianmeth-
ods can be used to estimate the parameters of GLMmodels and can, hence, treat weighted
effect coded variables. The reason to prefer Bayesian interference over frequentist inter-
ference (such as ordinary least square regression (OLS)) was its advantageous properties
when having to deal with small samples (Depaoli and van de Schoot 2014). This has to
do with the way how each method treats the uncertainty arising from few observations.
The frequentist approach assumes that there is only one true parameter value, which holds
for the whole population. Since statistical significance indicates how sure one can be that
the estimated parameter corresponds to this true value, small sample sizes easily lead to
insignificant effects. In contrast, the Bayesian approach conceptually assumes that param-
eter values followaprobability distribution,which is characterisedbyameanandameasure
of spread. In this context, more uncertainty leads to a flatter probability distribution of the
parameter but does not prevent from interpreting the effects (Depaoli and van de Schoot
2014).

Having said that, we did estimate an accordant OLS model to enrich Bayesian esti-
mates with information on statistical significance. Both models are based on the following
equation:

Y = Xβ + ε (2)

whereY is the vector of observed commute tour extensions [in km];X isthe designmatrix that
includes the values of selected variables; β is the vector of parameters and ε is the vector of
errors
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We estimated the Bayesian regression models using the stan_glm function from the
R rstanarm package and OLS regression models running the basic R function lm. As our
research problem has (to our knowledge) never been studied before in a comparable set-
ting, no suitable prior knowledge exists to construct the prior distribution for the Bayesian
estimation. As a consequence, we used the uninformative prior of the stan_glm function
(which is also the default setting). This entails that all parameter values are equally likely
to be estimated before considering the data and that interference is only made based
on the assumed model and the available data. We applied 10,000 iterations to estimate
the posterior distributions. An exploration of the assumptions of linear regression models
revealed that the residuals of the proposed model were neither normally distributed nor
homoscedastic. Thismeans that we could not, as aimed for, generalise findings beyond the
sample of observed values (Field 2009).

Themodel performance was assessed using R squared as a simplemeasure of goodness
of fit. Indicating howwell a postulatedmodel fits the data, the R squared is a standard statis-
tic of OLSmodels. Very recently, Gelman et al. (2019) defined a similarmeasure for Bayesian
regression models. Similarly to the conventional R squared, this Bayesian R squared can be
considered as the part of the variance that is explained by the postulated model. We cal-
culated the Bayesian R squared using the bayes_R2 function from the R rstanarm package.
Both R squared values will be provided in the results section. To determine the effects of
all main and interaction effects, four models were estimated in which we omitted different
categories of each categorical variable (see Table 1). This entails the use of four different
designmatrices X1 to X4. In model 1, for instance, the dummy variables for themain effects
of bicycle, grocery, older than 65 years, female, suburban/rural and evening were omitted.
Accordingly, model 2 estimated these main effects by omitting a complementary category
of the respective categorical variables. As interaction terms could only be calculated for
the travel mode that is included in the respective model, model 3 and 4 were necessary to
estimate the missing interaction effects.

The applied effect coding scheme allowed to merge the results of all four models into
a single results table since the parameters do not depend on the omitted category. The
reported results comprised themean, standard deviation and 95% credible interval of each
posterior distribution. In addition, we augmented the results by highlighting the effects
that were statistically significant at a 0.05 level in the OLS model.

5. Results and discussion

This section discusses the results and is divided into three sections. Section 5.1 provides
descriptive statistics of commute tour extensions for travel modes and secondary activity
types. Subsequently, Section 5.2 presents the results of the regression model explained in
Section 4 before discussing the outcomes in Section 5.3.

5.1. Descriptive statistics of commute tour extensions

Table 2 provides mean commute tour extensions for car and bicycle and secondary activ-
ity types. Extensions of commute tours travelled by car accounted for on average 7.4 km
whereas extensions by bicycle were considerably shorter with a mean value of approx-
imately 1.3 km. The coefficient of variation (which is a standardised measure of spread)
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Table 1. Omitted categories in the different models where applicable (omission for continuous variables is not applicable, indicated by n.a.).

Model 1 Model 2 Model 3 Model 4

Variable Main effect Interaction effect Main effect Interaction effect Main effect Interaction effect Main effect Interaction effect

Travel mode Bicycle n.a. Car n.a. Bicycle n.a. Car n.a.
Secondary activity type Grocery Grocery∗Car Sport Sport Bicycle Sport Sport∗Car Grocery Grocery∗Bicycle
Age ≥ 65 years ≥ 65 years∗Car < 20 years < 20 years∗Bicycle < 20 years < 20 years∗Car ≥ 65 years ≥ 65 years∗Bicycle
Gender Female Female∗Car Male Male∗Bicycle Male Male∗Car Female Female∗Bicycle
Urban density Suburban/ rural Suburban/rural ∗Car Urban Urban∗Bicycle Urban Urban∗Car Suburban/rural Suburban/rural∗Bicycle
Time of the day Evening Morning∗Car Morning Evening∗Bicycle Morning Evening∗Car Evening Morning∗Bicycle
Simple tour distance (DIST) n.a. DIST∗Bicycle n.a. DIST∗Car n.a. DIST∗Bicycle n.a. DIST∗Car
Duration of secondary
activity (DURSEC)

n.a. DURSEC∗Bicycle n.a. DURSEC∗Car n.a. DURSEC∗Bicycle n.a. DURSEC∗Car

Duration ofwork (DURWORK) n.a. DURWORK ∗Bicycle n.a. DURWORK∗Car n.a. DURWORK ∗Bicycle n.a. DURWORK∗Car
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Table 2. Descriptive statistics of extensions in kilometres per travel mode and activity type.

Variable N (N by bicycle) Mean SD CV 95 percentile

Car 1053 7.37 18.49 2.50 36.00
Bike 435 1.28 2.14 1.67 5.62
Grocery 452 (194) 1.17 2.33 1.99 4.33
Escort 314 (56) 5.38 15.97 2.97 19.78
Pick up/drop off goods 66 (13) 4.65 10.41 2.24 20.51
Leisure 102 (32) 8.40 14.99 1.78 46.7
Shop 142 (48) 4.13 7.12 1.72 20.70
Service 126 (34) 8.60 16.41 1.91 47.20
Visit 193 (30) 12.81 29.00 2.26 60.00
Sport 93 (28) 8.53 20.02 2.35 40.60
Complete sample 1488 5.59 15.57 2.79 25.00

revealed that the distance extension of car tours was quite heterogeneous compared to
the bicycle. This means that even though 7.4 kmwas themean of car extensions, both con-
siderably shorter and longer extensions frequently occurred. In contrast, bicycle trip chains
seem to have more limited distance extension ranges.

The different secondary activity types entail quite different distance extensions. Grocery
and other shopping detours were generally very short, reflecting the good spatial distribu-
tion of supermarkets and stores in the Netherlands. Dutch planning policies, as opposed
to those of many other countries in Northern America and Western Europe, rejected the
concentration of retail activities in large-scale shopping centres on the outskirts of cities in
favour of integrated locations in city centres and residential areas (Nijkamp, Klamer, and
Gorter 2003; Wagenaar 2015). While grocery and other shopping are characterised by some
extent of spatial flexibility, visit is muchmore constrained (a person cannot choose e.g. the
place where the parents live). This means that a person is either willing to accept the result-
ing detour or the visit is not included in a commute tour. Interestingly, escort is the activity
type that accounts for most (standardised) spread regarding observed tour extensions.
These outcomes suggest that some people bring their children to the closest available
location while others choose dedicated locations (e.g. an institution associated to a spe-
cific religious group), which are further away. The spread could also be related to different
urban environments.

Table 2 also shows the total available data per secondary activity type (i.e. car and bicy-
cle observations together) and the number of observations pertaining to the bicycle. The
table reveals that the bicycle is more used for some particular types of secondary activities
than for others. This can be seen by calculating the proportion of bicycle to total observa-
tions, which is not stable across activity types. The bicycle seems to be particularly used
for work-grocery tours while visit, pick up or drop off goods and escort are proportionally
less often added to the commute tour. Considering the mean extensions per secondary
activity type, the small proportion of visit might be explained by on average long related
detours. Conversely, both escort and pick up or drop off goods could be (at least partly)
related to the higher inconvenience of transporting people and goods by bicycle. Nonethe-
less, most secondary activity types still have enough observations pertaining to the bicycle
to perform the intended statistical analyses (with the exception for pick up or drop off
goods).

Overall, we identified different average commute tour extensions by travel mode and
secondary activity type. What is missing is the disclosure of the effects of both aspects
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(travel mode and secondary type) at the same time while considering other control vari-
ables as well, such as the age of the traveller or the distance of the simple commute tour.
This is done in the next section.

5.2. Results of regressionmodel

This section shows and discusses the results of the postulated Bayesian andOLS regression
models (see Section 4).

The convergence statistics of the stan_glm function indicated that chain convergence
was reached for all parameters of the estimated 4 Bayesian models. The goodness of fit of
the proposed models reached an R squared of 0.20 for the Bayesian and 0.16 for the OLS
models. Both values are acceptable proportions of explained variance considering the com-
plex context in which trip chaining behaviour takes place. Nonetheless, we can note that
a significant proportion variance remains unexplained, suggesting that some important
explanatory variables are still missing (e.g. variables pertaining to the built environment).

Table 3 presents the estimated coefficients of the posterior distributions of all main
and interaction effects. The posterior distribution represents the uncertainty regarding the

Table 3. Bayesian linear regression.

Main effect
Interaction

effect Mean
Standard
deviation

Lower
bound∗∗

Upper
bound∗∗

Constant (= sample mean) 5.59∗ 0.38 4.85 6.34

TRAVELMODE
Bike −2.26∗ 0.68 −3.60 −0.92
Car 0.94∗ 0.28 0.39 1.49

SECONDARY ACTIVITY TYPE
Grocery −1.97∗ 0.66 −3.26 −0.68

Bicycle 0.79 0.70 −0.59 2.15
Car −0.60 0.53 −1.65 0.44

Escort 2.22∗ 0.89 0.49 3.95
Bicycle −2.82 1.91 −6.59 0.85
Car 0.61 0.41 −0.19 1.42

Drop off/pick up goods 0.99 1.80 −2.53 4.49
Bicycle −1.14 3.66 −8.31 6.05
Car 0.29 0.90 −1.48 2.04

Leisure −2.64 1.55 −5.72 0.40
Bicycle 2.05 2.30 −2.46 6.56
Car −0.94 1.06 −3.01 1.12

Shop −0.31 1.21 −2.68 2.06
Bicycle 0.11 1.68 −3.18 3.36
Car −0.05 0.87 −1.75 1.65

Service 3.53∗ 1.27 1.05 6.01
Bicycle −1.79 2.08 −5.89 2.29
Car 0.67 0.78 −0.85 2.19

Visit 0.85 1.18 −1.47 3.15
Bicycle −1.09 2.65 −6.33 4.08
Car 0.21 0.49 −0.76 1.16

Sport −1.77 1.59 −4.88 1.34
Bicycle 1.55 2.41 −3.19 6.29
Car −0.68 1.05 −2.75 1.38

AGE [years]
Under 20 1.43 4.70 −7.82 10.57

Bicycle 0.41 3.81 −7.08 7.83

(continued).
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Table 3. Continued.

Main effect
Interaction

effect Mean
Standard
deviation

Lower
bound∗∗

Upper
bound∗∗

Car −0.56 5.71 −11.70 10.58
20–39 −0.69 0.56 −1.77 0.39

Bicycle 0.93 0.85 −0.73 2.59
Car −0.41 0.37 −1.14 0.32

40–64 0.62 0.50 −0.37 1.60
Bicycle −0.88 0.80 −2.45 0.68
Car 0.36 0.33 −0.28 1.01

65 and older −0.04 0.62 −1.26 1.18
Bicycle −0.01 1.03 −2.03 1.98
Car 0.00 0.38 −0.73 0.74

GENDER
Female −1.19∗ 0.33 −1.85 −0.54

Bicycle 0.74 0.41 −0.08 1.54
Car −0.39 0.21 −0.80 0.04

Male 1.76∗ 0.49 0.79 2.70
Bicycle −1.71 0.95 −3.59 0.17
Car 0.48 0.27 −0.05 1.00

URBAN DENSITY
Highly urbanised 0.26 0.38 −0.49 1.00

Bicycle −0.20 0.42 −1.01 0.63
Car 0.12 0.27 −0.40 0.65

Suburban or rural −0.29 0.42 −1.12 0.55
Bicycle 0.45 0.95 −1.42 2.31
Car −0.10 0.22 −0.55 0.33

TIME OF THE DAY
Morning −0.57 0.85 −2.23 1.09

Bicycle 0.36 1.34 −2.24 3.01
Car −0.14 0.53 −1.18 0.91

Noon 0.28 0.72 −1.13 1.70
Bicycle −0.22 1.05 −2.27 1.81
Car 0.11 0.50 −0.88 1.08

Evening 0.09 0.44 −0.77 0.94
Bicycle −0.01 0.72 −1.42 1.40
Car 0.00 0.28 −0.55 0.56

SIMPLE TOUR DISTANCE [km]
Distance 0.03∗ 0.01 0.01 0.05

Bicycle −0.01 0.11 −0.23 0.20
Car 0.00 0.00 0.00 0.00

DURATION SECONDARY ACTIVITY [h]
Duration 4.22∗ 0.49 3.27 5.17

Bicycle −3.82∗ 0.97 −5.72 −1.93
Car 0.91∗ 0.23 0.46 1.37

DURATIONWORK [h]
Duration −0.19 0.17 −0.52 0.15

Bicycle 0.13 0.24 −0.34 0.61
Car −0.07 0.13 −0.33 0.18

∗ Statistically significant effect at 5% level of significance in OLS regression model.
∗∗ 95% Credible Interval.

effect of a particular variable. The provided lower and upper bounds indicate the values of
the 95% credible interval for each value. This means that there is a 95% probability, given
the prior and the data, that the population parameter of a particular explanatory variable
on the outcome variable lies within this credible interval (Depaoli and van de Schoot 2014).
Since we used an uninformative prior, the posterior distribution only depends on the data.
As a result, themean of each posterior distribution approximates the regression coefficient
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that was estimatedwith the OLS regressionmodel (see section 4.3). Moreover, insignificant
results from the OLS model coincide with high credible intervals in the Bayesian model.
The estimated main effects in Table 3 refer to the sample mean, which is expressed via
the constant. Conversely, the interaction terms pertain to the corresponding main effect
(Nieuwenhuis et al., 2017; te Grotenhuis et al. 2017a). Note that the presented features of
the posterior distributions represent the average values of all four estimatedmodels in case
that small deviations occurred (e.g. the mean of the posterior distribution of visit varied
between 0.84 and 0.86).

Gender
We interpret in detail the effect of gender (which is with only two categories an easy
example) on commute tour extensions to show how to interpret the estimates of Table
3. The estimated mean value of the main effect of each gender indicates the deviation
from the sample mean. The estimated mean distance extension of women was hence
5.59–1.19 = 4.40 km and the mean distance extension ofmen 5.59+ 1.76 = 7.35 km. The
difference between both genders can directly be calculated by subtracting the mean val-
ues of the main effects. Consequently, the model results suggest that female extensions
were on average 2.95 km shorter than those of men (−1.19–1.76 = −2.95 km). The main
effects of gender were statistically significant in the OLS model. When we are interested
in the effect of bicycle commute tour extensions of women, we have to take into account
two main effects (travel mode and gender) and the corresponding interaction term. This
means that bicycle commute tours by women were on average extended by 5.59 (sam-
ple mean) – 1.19 (female main effect) – 2.26 (bicycle main effect)+ 0.74 (female×bicycle
interaction effect) = 2.88 km. To calculate the differences betweenmale and female exten-
sions of bicycle commute tours, we can omit constant and bicycle main effect. Hence, the
difference results from the sumofmain and interaction effect for eachgender and then sub-
tracting the two sums: (1.76+ (−1.71) – (−1.19+ 0.74)) = 0.50 km. Thedifferencebetween
estimated average male and female car commute tour extensions was 3.82 km. However,
the interaction effects were both insignificant in the OLS model. In conclusion, the model
results propose thatmale tour extensionswere considerably longer than female tour exten-
sions. This findingmight be related by a (still) different distribution of household tasks (e.g.
more grocery shopping of women) or longer simple commute tour distances of men (com-
pare the description of respective effects below). The gender effect was considerably more
pronounced for car than for bicycle trip chains.

Travel mode
The model results suggest that the isolated effect of travel mode on commute tour exten-
sions was large. Estimated mean extensions by car were 6.53 km and those by bicycle
3.33 km. Both main effects were statistically significant in the OLS model. These outcomes
are not surprising considering typical travel speeds of both modes and the different mean
extensions presented in Table 2.

Secondary activity type
Themodel estimates propose that different activity types entail considerably different com-
mute tour extensions. Leisure, sport, grocery and shopwere all related to shorter extensions
than the sample mean while visit, drop off/pick up goods, escort and servicewere associated
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with longer extensions. In this context, leisure had the smallest effect on tour distanceswith
an estimated 2.95 km detour, whereas service entailed the longest mean extensions with
9.12 km. Interestingly, the estimated effects of the model did not always correspond to the
means presented in Table 2. This signifies that the presented means of Table 2 confound
several features of tours that also affect commute tour extensions. For instance, the mean
of escort extensions shown in Table 2 appeared to be relatively small but it might have
accounted for short activity durations and a high proportion of tours conducted bywomen
at the same time (see the discussion of these specific effects below). As a consequence, the
isolated effect of escortwas larger. The OLSmodel revealed that themain effects of grocery,
escort and servicewere all statistically significant.

The effect of secondary activity type on bicycle commute tour extensions ranged from
1.18 km below cycling average extension (i.e. 3.33 km) for grocery shopping to 1.75 km
above cycling average for service. This was a considerably lower spread than for those of
car tours, for which leisure was 3.58 km below and service 20.4 km above the average of
6.53 km. This finding indicates that differencesbetween secondary activity types are smaller
for bicycle commute tours than for car commute tours as both travel modes have different
operational distance ranges.

Some of the estimated effects of the model deserve further discussion. Interestingly,
escort and picking up or dropping off goods had inversed estimated effects on the mode-
specific means. More specifically, both activity types had positive effects on car detours
and negative effects on bicycle commute tour extensions. It can be hypothesised that the
inconvenience of transporting people and goods lead to these inversed effects.

Another remarkable outcome is related to leisure and sport. While bothmain effectswere
negative for the whole sample with 2.64 and 1.77 km respectively, the negative effects of
car were considerably more pronounced. As a result, the estimated mean commute tour
extensions of both modes approached each other and deviated the least among all con-
sidered secondary activity types (0.21 km for leisure and 0.97 km for sport). This finding is
noteworthy against the backdrop that both activity types are recreational. In this context, it
can be speculated that the disutility of travel might be reduced by a utility that potentially
arises frombicycle use. Former research found that people often perceive cycling as a travel
mode that is outstandingly ‘fun’ and ‘relaxing’ (Ton et al. 2019). This potential of the bicycle
might particularly take effect when the utility of bicycle use (recreation, physical exercise)
is in line with the purpose of the related activity.

Age classes
Themodel results suggest that commute tour extensions of the age group of under 20 years
were longest with 7.02 km and shortest for the age group of 20–39 yearswith 4.90 km. The
age group of people aged 40–64 accounted for a small positive effect for the whole sam-
ple (extensions of around 6.21 km), while the oldest age group did not considerably deviate
from the sample mean. When looking separately at the effects for car and bicycle tours, an
interesting observation can be made. While the younger age groups were related to larger
and the older to smaller tour extensions than average for the bicycle, no clear relationship
could be found for the car. At first glance, this finding suggests for bicycle travel that the
physical effort related to extending a commute tour becomes an increasing barrier with
age. However, the deviations of in particular the oldest age group with only 0.05 were sur-
prisingly small. This unexpected outcome could be explained by the increasing number of



18 F. SCHNEIDER ET AL.

e-bikes in the Netherlands (Kroesen 2017), which are assumed to be more used by elderly
people. Moreover, the estimates of the youngest age group are highly uncertain (indicated
by the large 95% credible interval) due to the small group size. All main and interaction
terms were statistically insignificant, indicating that age was nomajor factor to explain trip
chaining behaviour of commuters.

Urban density
The outcomes of the model proposed that commute tour extensions relating to highly
urbanised municipalities are 0.53 km longer than those of suburban or rural municipalities.
This result is counterintuitive at first sight. Since highurbandensities usually coincidewith a
higher supply of services, onewould rather expect a negative relationship. Interestingly, the
positive effect for the whole sample seems to be caused by car commute tours. According
to themodel estimates, corresponding extensions were 0.77 km longer in highly urbanised
municipalities than in suburban or rural municipalities. In contrast, bicycle commute tour
extensions were, as intuitively expected, slightly longer in the suburban or rural context
(by estimated 0.10 km). An explanation of the car estimates could be that car travellers
residing in highly urbanised environments have access to more specialised services (e.g.
an organic supermarket), for which they are willing to travel further. Their counterparts
from suburban and rural areas as well as cyclist commuters, however, do not have these
choices and go for the closest available destination. While this explanation is speculation,
main and interaction effects related to urban density were both insignificant in the OLS
model.

A caveat to the surprising car estimates in particular and all estimates, in general, is a
feature of the variable urban density. As this variable refers to the municipality of residence
in theMPNdata set, it ismore informative for commute tours that start and end in the same
municipality than for tours that involve further (unknown) municipalities. This latter case is
more likely to occur for car commuters, who travel on average 24 km towork in our data set
as compared to four kilometres by bicycle.

Time of the day
Commute tour extensions for secondary activities that tookplace in themorning (andhence
before work) were estimated more than half a kilometre shorter than those in the evening.
This finding is in line with former evidence, revealing that the morning is characterised
by stronger time constraints (Kondo and Kitamura 1987; Krygsman, Arentze, and Timmer-
mans 2007). Interestingly, the model results further suggest that the longest commute
tour extensions occurred during noon. This finding might be related to people that work
part-time (as noonwas defined as the time span from 11 am to 4 pm). These people poten-
tially have fewer time constraints (as they have the afternoon available) what might allow
them tomake longer detours to include a secondary activity. While the difference between
detours during noon andmorningwas 0.85 km, all main effects were non-significant in the
OLS model. When we look at the effects for bicycle commute tours only, the differences
between morning, noon and evening were trivial. Conversely, differences in car commute
tour extensions were more pronounced and accounted for up to 1.1 km between morn-
ing and noon. This contrast suggests that observed car commute tour extensions are more
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constrained by available time than detour distance while it is the other way round for bicy-
cle commute tour extensions. However, also the (car) interaction effects were statistically
insignificant.

Simple tour distance
Themodel results propose for the complete sample that commute tour extensions slightly
increase with increasing distances of the simple commute tour. This mode-independent
outcome is surprising as longer distances to work come along with higher time constraints
for the inclusion of a secondary activity, suggesting hence a negative effect on commute
tour extensions. An explanation behind the unexpected (and statistically significant) trend
could be that longer commute distances reduce the perceived travel resistance of the
detour since the ratio between simple commute tour and detour is decreasing. Having
said this, the positive effect of simple commute tour distances does not seem to be very
important for both modes. For example, a simple commute tour distance of 50 km by car
would relate to a 1.50 km detour and a simple commute tour distance of 10 km by bicycle
an extension of only 0.20 km.

Duration of secondary activity
The findings reveal a strong effect of the activity duration of the secondary activity on
commute tour extensions, which is also statistically significant for both main and interac-
tion effects. The model results propose that the commute tour extensions are increasing
by 4.22 km per hour of activity duration. This finding is expected as activity duration
is often a proxy for the importance (attraction potential) of an activity (Doherty and
Mohammadian 2011). In addition, longer durations also justify longer travel distances,
and thereby, longer travel times since the so-called travel time ratio (which relates travel
to activity time) remains stable (Dijst and Vidakovic 2000; Schwanen and Dijst 2002).
The model further suggests that extensions differ substantially between car and bicy-
cle commute tours. Car tours are extended by 5.13 and bicycle tours by 0.40 km per
marginal unit. An explanation of this finding could be that a linear relationship between
activity duration and commute tour extension only exists up to an acceptable total com-
mute tour distance is reached. This boundary is likely to be smaller for cyclists than
for car drivers as it is not only determined by time and cost constraints but also by
the fitness of the cyclist. Once the boundary is passed, cyclists will not extend tour dis-
tances anymore regardless of the activity duration, entailing that a smaller overall effect is
estimated.

Duration of work
The model suggests that commute tour extensions are decreasing by 0.19 km per hour
of work. This negative relationship is expected based on time-geography (Hägerstrand
1970). Since longer working time is reducing the available time for both travel and per-
forming a secondary activity, also accessible space is limited. This notion seems to be
mode-independent. While car commute tour extensions decrease by 0.26 km per work-
ing hour, bicycle commute tour extensions decrease by 0.06 km. Applied to an eight-hour
working day, the effects add up to 2.08 km by car and 0.48 km by bicycle. The values
roughly represent the difference of commute tour extensions in scale between both
modes. Since both main and interaction effects were non-significant in the OLS model,
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the activity duration of work does not seem to be an important predictor of commute tour
extensions.

5.3. Discussion

To sum up the results, the presented model outcomes revealed the effects of different
factors on commute tour extensions that were related to the inclusion of a secondary
activity in the tour. Obviously, the choice of travel mode had the biggest effect on the
extent of such detours: bicycle commute tours were considerably less extended than car
commute tours. In addition, large differences were observed between types of secondary
activities. Moreover, considerable differences in tour extensions were found between men
and women. Furthermore, the simple commute tour distance had a small effect on detour
lengths. Last but not least, tour extensions were strongly related to the duration of the
secondary activity. Besides these statistically significant effects, the work duration and
time of the day had noteworthy effects on commute tour extensions. Surprisingly, the
age of the traveller was not related to any consistent influence on trip chain extensions.
Finally, the effect of urban density was marginal. However, this latter effect should be
interpreted with caution due to potentially missing density information around the work
location. In the following, we discuss the implications of our findings for research and
policy.

The comparison between car and bicycle trip chains provided some indications of the
way in which trip chaining behaviour of both travel modes differs. First, bicycle trip chain-
ing seems tobe less influencedbyavailable timeor the importanceof the secondary activity
than car trip chaining. In contrast to car tours, extensions were similarly long independent
of the time of the day, and activity duration was only related to moderate tour extensions.
While car trip chains seemed to be more constrained by time availability, bicycle travel
behaviour appeared to be more subject to distance restrictions. These findings raise the
question if there is something like a travel distancebudget that acts (similarly to the concept
of travel time budget (Stopher, Ahmed, and Liu 2017)) as a regulative principle of bicycle
travel behaviour. The high distance-sensitivity of cyclists could also explain why cyclists
seem to have higher values of time (Börjesson and Eliasson 2012). And second, we found
an indication that the concept of travel resistance (or disutility in econometric terms) has
to be carefully used for bicycle travel. The effects of commute tour extensions related to
leisure and sport suggest that bicycle travel is not only a necessary burden to reach activity
destinations but can partly have a utility in its own.

The findings of this research are policy-relevant in several respects. First, the research
revealed the types of secondary activities that frequently can be found in commute tours.
These types often seem to be in reach and appear to be functionally combinable with the
features of work travel. Land-use planning that increases the spatial availability of these
activity types between residence and work locations would facilitate trip chaining and
could thereby increase the efficiency of the transport system. In particular, the locations
of supermarkets, shops, medical and day-care centres, primary schools or sports facili-
ties can be placed accordingly by the urban planner. Second, the results of the model
directly give guiding values for the design of such trip chaining-friendly environments. For
instance, urban planners could run a four-step travel demand model only for bicycle com-
mute trips and optimise the locations of secondary activities in such a way that they are
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within realistic detours for a maximum number of bicycle commuters. In general, the high
distance-sensitivity of cyclists suggests that a concentration of jobs and activity locations
in central areas of the city in combination with high urban densities can foster complex
trip chaining by bicycle. By facilitating the formation of complex trip chains, there are also
goodprospects that thebicyclemode share increases. And third, thebehavioural insights of
activemode travel that emerged from this analysismay have implications for several policy
tools. Travel time, often expressed in monetary terms via the value of time, is a central fac-
tor ofmany transport applications (e.g. mode choicemodels or cost–benefit-analyses). The
findings of this research, however, challenge that time is the principal driver of activemode
travel behaviour. Similarly, the notion that activemode travelmight come alongwith some
utility, as opposed to the motorised travel modes, might require a review of choice models
and appraisal methods. Having said this, more knowledge is needed to clearly disentan-
gle the complex interrelationship between travel time and travel distance and to better
understand the trade-off between utility and disutility in active mode travel.

A limitation of the study is the limited consideration of built environment variables. Due
to data constraints, only urban density at an aggregated level was included in the analy-
sis. Further information on the characteristics of the respective urban environment could
improve the estimatedmodels and refine our understanding of complex commute tours by
car and bicycle. In this context, wewould expect the highest increase of explanatory power
by the inclusion of small-scale land-use variables, capturing the density of different types of
activity locations in an area. A challenge, however, is to not only consider this information
around the home location but also along the corridor between home and work. Features
of the transport system, such as street network characteristics (e.g. speed limits, connectiv-
ity, intersection design, . . . ), would probably add less to the postulatedmodel due to similar
planning principles across the country. Those principles include, for instance, that bicycle
networks are generally denser than those of cars. An interesting feature with regard to trip
chaining behaviour by car, however, could be the availability of on-street parking facilities.

6. Conclusions and future research

In this study, we investigated distance extensions of simple commute tours to accommo-
date a second activity in the tour for both bicycle and car trip chains. We conducted a
regression analysis, in which commute tour extensions were used as the dependent vari-
able and travel mode, secondary activity type, age, gender, urban density, time of the day,
simple commute tour distance andduration ofwork and secondary activitywere employed
as the independent variables. In addition, all independent variables were interacted with
both travel modes to reveal mode-specific effects.

The results comprise the disclosure of typical distance extensions by car and by bicycle
to reach different types of destinations. The model outcomes suggest that commute tour
extensions depend first and foremost on the travel mode.While average bicycle tours were
extended by 3.33 km, car tours accounted on average by 6.53 km. Besides the travel mode,
commute tour extensions also differed considerably depending on the type of secondary
activity. For instance, the accommodation of specific services, such as a visit to the doctor,
was related to 3.5 km longer detours compared to the average commute tour extension in
the sample. Conversely, the effect of the secondary activity types leisure, sport and grocery
were estimated to be around 2 km shorter than average. The estimated interaction terms,
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however, revealed that these effects are mode-dependent. In general, much larger effects
were found for car travel than for bicycle travel. In addition, some effects on the mode-
specificmeanswere even inversed between bicycle and car. For instance, themodel results
suggest that the secondary activities escort and pick up or drop off goods have a negative
effect on the length of the extension when travelling by bicycle but a positive effect when
the travel mode is the car.

The findings of this paper are of interest for both transportation scientists andpractition-
ers. The identified behavioural differences between active and motorised travel behaviour
have implications for example for the space–timeprism concept, inwhich space should not
only be restrictedby available time for activemode travellers, but alsoby ameasureof phys-
ical capacity. Furthermore, the interpretation that cycling can be related to positive utility
challenges the foundations of current econometric choice modelling practice. Urban plan-
ners can use the outcomes to develop dedicated urban environments that stimulate trip
chaining behaviour in general or bicycle trip chaining in particular (and thereby increase
the mode share of the bicycle). The estimated mean extensions can be used to identify
hot spot areas between residential zones and jobs in which further destinations such as
day-care centres, supermarkets, other shops and further services (e.g. surgeries) could be
concentrated. Such areas could additionally be accompanied by bicycle-friendly policies
such as providing safe and accessible bicycle parking facilities, publicly available lockers to
store purchases or charging stations for electric bicycles.

As the data did not meet the parametric assumptions of the used regression models,
caution is needed when transferring the results to data with a considerably different sam-
ple composition. In this context, we recommend interpreting the estimates of this model
rather as an upper limit of distance extensions that enable trip chaining. Further research
shouldaddress this limitationbyemployingmore robust regression techniques. In addition,
we advise to include more variables that capture the urban context in which the commute
tour takes place. This holds for the urban context at the home location, but also at the
work location and the locationof the secondary activity. Especiallywhendistancesbetween
these locations are large, the built environmentmay change considerably. Themissing link
to the built environment is a limitation of this study. Moreover, we recommend to further
explore the role of utility and disutility in active mode travel decisions. And finally, we sug-
gest reviewing various concepts in transportation which are built around travel time, such
as travel time budget for active mode travel.
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