

Delft University of Technology

The influence of SRA programming on algorithmic thinking and self-efficacy using Lego
robotics in two types of instruction

Fanchamps, Nardie L.J.A.; Slangen, Lou; Hennissen, Paul; Specht, Marcus

DOI
10.1007/s10798-019-09559-9
Publication date
2021
Document Version
Final published version
Published in
International Journal of Technology and Design Education

Citation (APA)
Fanchamps, N. L. J. A., Slangen, L., Hennissen, P., & Specht, M. (2021). The influence of SRA
programming on algorithmic thinking and self-efficacy using Lego robotics in two types of instruction.
International Journal of Technology and Design Education, 31(2), 203-222. https://doi.org/10.1007/s10798-
019-09559-9
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s10798-019-09559-9
https://doi.org/10.1007/s10798-019-09559-9
https://doi.org/10.1007/s10798-019-09559-9

Vol.:(0123456789)

International Journal of Technology and Design Education (2021) 31:203–222
https://doi.org/10.1007/s10798-019-09559-9

1 3

The influence of SRA programming on algorithmic
thinking and self‑efficacy using Lego robotics in two types
of instruction

Nardie L. J. A. Fanchamps1,2 · Lou Slangen1 · Paul Hennissen3 · Marcus Specht2,4

Accepted: 13 December 2019 / Published online: 24 December 2019
© The Author(s) 2019

Abstract
This study investigates the development of algorithmic thinking as a part of computational
thinking skills and self-efficacy of primary school pupils using programmable robots in dif-
ferent instruction variants. Computational thinking is defined in the context of twenty-first
century skills and describes processes involved in (re)formulating a problem in a way that
a computer can process it. Programming robots offers specific affordances as it can be used
to develop programs following a Sense-Reason-Act (SRA) cycle. The literature provides
evidence that programming robots has the potential to enhance algorithmic thinking as a
component of computational thinking. Specifically there are indications that pupils who
use SRA-programming learn algorithmic skills better and achieve a higher level of self-
efficacy in an open, scaffold learning environment than through direct instruction. In order
to determine the influence of the instruction variant used, an experimental research design
was made in which pupils solved algorithm-based mathematical problems (grid diagrams)
in a preliminary measurement and their self-efficacy determined via a questionnaire. As an
intervention, pupils learn to solve programming issues in pairs using “Lego NXT” robots
and “Mindstorms” software in two instruction variants. The post-measurement consists
of a Lego challenge, solving mathematical problems (grid diagrams), and a repeated self-
efficacy questionnaire. This research shows an increase of our measures on algorithmic
thinking dependent on the amount of SRA usage (though not significant). Programming
using the SRA-cycle can be considered as the cause of the measured effect. The instruction
variant used during the robotic intervention seems to play only a marginal role.

Keywords Programming · Sense-reason-act · Robotics · Computational thinking ·
Mathematics · Self-efficacy

 * Nardie L. J. A. Fanchamps
 nardie.fanchamps@fontys.nl

1 Fontys University of Applied Science, Mgr. Claessenstraat 4, 6131 AJ Sittard, The Netherlands
2 Welten Institute (TELI), Open University, Valkenburgerweg 177, 6419 AT Heerlen,

The Netherlands
3 Zuyd University of Applied Science, Nieuw Eyckholt 300, 6419 DJ Heerlen, The Netherlands
4 Centre for Expertise and Learning, Delft University of Technology, Van Mourikbroekmanweg 6,

2628 XE Delft, The Netherlands

http://orcid.org/0000-0001-7509-2251
http://crossmark.crossref.org/dialog/?doi=10.1007/s10798-019-09559-9&domain=pdf

204 N. L. J. A. Fanchamps et al.

1 3

Introduction

The impact of information technology, robotics and programming on our modern lives is tre-
mendous. In order to be able to participate functionally in such a digital oriented society, it is
necessary to become Information Communication Technology (ICT) literate (Kennisnet 2015;
Maas 2015; Pelgrum 2001). For this reason, it is essential to allow young children to develop
relevant ICT competencies (Aesaert et al. 2015). Research emphasizes the fact that primary
education already has a responsibility to teach the required competences (Toh et al. 2016).
Programming is one of these ICT-competencies and should be structurally embedded in pri-
mary education (Kazakoff et al. 2013).

Programming has been shown to have a positive effect on children’s algorithmic thinking
(Futschek and Moschitz 2011) and can play a powerful role by making concealed mathemati-
cal assumptions explicit and concrete (Kolovou et al. 2008; Silk et al. 2010; Wilensky 1995).
Translating problem solving into a software program can help pupils to develop a deeper
understanding of the working principles of algorithms, which in turn helps solving mathemati-
cal problems better. (Thijs et al. 2014; Kolovou et al. 2008). Understanding algorithmic think-
ing contributes to the development of computational thinking in general (Wing 2006).

Robotic contexts turn out to be powerful environments to learn computational thinking
(Benitti 2012; Tay et al. 2014), since they make programming concrete and tangible (Horn
et al. 2009; Wang et al. 2014). More specifically, programmable robots offer excellent oppor-
tunities to comprehend algorithmic solution strategies (Kolovou et al. 2008; Silk et al. 2010).
The so-called Sense-Reason-Act (SRA) programming approach is based on the understanding
of variable solution strategies that can play an important role in the development of computa-
tional thinking (Slangen et al. 2011b). By making pupils aware of the difference between the
SRA-approach and a linear programming approach, pupils learn to understand that SRA can
be a more efficient approach to finding a solution to complex programming problems.

Tangible programmable robots offer a Direct Manipulation Environment (DME) (Jonas-
sen 2006) which makes the coherence between sensing (input), reasoning and acting (output)
visible and understandable. Previous research shows that primary school pupils have difficul-
ties in using SRA based reasoning (Slangen et al. 2011b). Even when pupils can use SRA
programming, it is reasonable this usage requires a certain degree of self-efficacy (tenacity,
self-responsibility and self-determination) to accomplish a difficult task in a self-directed way.

This research examines the influence of SRA-programming on algorithmic thinking as a
component of computational thinking and the impact on self-efficacy among primary school
pupils. The focus is on to what extent this development depends on the nature of teacher sup-
port and to what extent there is an increase on the self-allocated degree of self-efficacy. There-
fore, it is investigated whether pupils with Lego Robotics NXT are able to construct a series
of programming instructions in the correct order, with the result that a functioning algorithm
is created.

Theoretical framework

In this research we are particularly interested in the relationship between learning to con-
figure robot control programs using a SRA-approach and the impact this has on algorith-
mic and computational thinking. We also want to know if the type of instruction used
influences SRA-thinking and impacts the level of self-efficacy. From research we know
that solving more advanced programming problems require more complex algorithmic

205The influence of SRA programming on algorithmic thinking and…

1 3

structures and only enables efficient problem solutions and programs if we go beyond lin-
ear programming (Slangen et al. 2011b; Wyeth et al. 2003). When programming following
a SRA-approach users need to explicitly link the relationship between observations based
on sensor use (sense), with a logic reasoning component which infers actions based on
these observations (reason) and the process of acting based on the given inferences (act).
Slangen (2016) examined the application of the SRA-concept in primary school practice
using Lego Mindstorms robots and concluded that primary school pupils, although capable
of programming robots, have considerable difficulties with understanding and applying the
SRA-programming cycle. Mainly complex elements of programming like the ‘if-then-else’
and the ‘nested loop’ seemed to be difficult to understand. The ability to functionally apply
the SRA-cycle in a robotics context requires pupils to apply logic reasoning in program-
ming environments (Kurland et al. 1986; Pea and Kurland 1984). It also requires system-
atic thinking for a correct choice of sensors and actuators to program a robot that can actu-
ally anticipate the physical environment (Slangen et al. 2011b). SRA programming applied
through robotic environments, provides meaningful opportunities to incorporate compu-
tational thinking skills and mathematics. SRA-programming is based on an algorithmic,
mathematical approach and can be used to reformulate robotic problems. Moreover solving
mathematical problems demands specific, algorithmic thinking skills to solve challenging
computing and mathematical issues (Guzdial 2008) and stimulates analytical competences
(Basawapatna et al. 2011).

Robotic-contexts provide relevant, interesting and challenging opportunities for the
development of algorithmic thinking (King et al. 2012; Highfield et al. 2008). Silk and
Schunn (2008) analysed a curriculum which provides a synergetic context for robotics,
engineering and mathematics. They showed by means of content analyses, cases stud-
ies, and comparative studies, that unravelling robotics-based problems contributes to the
skill of algorithmic thinking, which includes logical reasoning, argumentation, induction
and deduction (Jacobs et al. 2010; Drijvers 2015; Schoenfeld and Sloane 2016). This also
implies that algorithmic thinking can be taught by means of well-designed robotic-based
environments which offers pupils the opportunity to activate and concretize such skills.

Computational thinking can enrich mathematics and vice versa, the integration of
mathematical contexts can improve mathematical learning (Weintrop et al. 2016). Com-
putational thinking is the processes involved in formulating a problem and expressing its
solution(s) in such a way that a computer can effectively solve the problem (Barr et al.
2011). It is an iterative process based on three stages, i.e. problem formulation, solution
expression and solution execution & evaluation (Yadav et al. 2016; Wong 2014; Wing
2006). Computational thinking refers to skills such as problem decomposition, pattern rec-
ognition/data representation, generalization/abstraction, and algorithmisation (Voogt and
Roblin 2010). Through decomposing a problem, identifying the variables, using data rep-
resentation and creating algorithms a generic solution results (Thijs et al. 2014). Robotic
contexts provide the opportunity to apply components of computational thinking which
facilitates the development of algorithmic thinking enabling the elucidation of underlying
mathematical principles (Drijvers et al. 2009; Silk et al. 2010), i.e. understanding the core
of an algorithm.

Teaching and learning how to program robotics depends on the instructional approach
and is a mutual process between teachers and pupils (Bers et al. 2002). It is likely that
variations in the pedagogical approach, for example the variation in the extent to which
the teacher gives guidance on process and content, leads to different outcomes (Suárez
et al. 2018). On the one hand we see guided instruction in which the initiative for set-
ting out the next steps in the learning process lies with the teacher rather than with the

206 N. L. J. A. Fanchamps et al.

1 3

learner. On the other hand we also notice pedagogical approaches in which pupils learn
by themselves through solving authentic problems with negligible teacher support. This
form is also known as Project-based learning (PBL). Project-based learning is a teaching
method in which pupils gain knowledge and skills by working for an extended period of
time to investigate and respond to an authentic, engaging and complex question, problem
or challenge (Blumenfeld et al. 1991; Kong 2008). It goes without saying that good teach-
ers, depending on the pedagogical need of pupil-teacher interaction, can choose between
a more guiding or coaching strategy. A teacher who understands the influence of the use
of specific approaches in the teacher–pupil interaction is expected to make teaching more
effective (Vosniadou et al. 2001). Therefore it is important that the teacher has a variety of
coaching skills, intervention competences and dialog techniques at his disposal (Crasborn
and Hennissen 2010).

Direct instruction can be defined as acts of the teacher with the aim to support the
learning activities of pupils to structure those in a desired direction (Veenman 2001). The
starting point for direct instruction is the assumption that there are moments in a teach-
ing process when knowledge, insights and skills are most effective, meaningful, functional,
and targeted when taught in a direct guided way to pupils (Kirschner et al. 2006). Direct
instruction is particularly appropriate when a well-structured set of knowledge, insights
and skills must be mastered by all pupils (Leenders et al. 2010).

Scaffolding can be defined as an approach that lets pupils learn more independently
whereby the guidance provided by the teacher is temporary adapted to the level of pupil’s
understanding (Kapur and Bielaczyc 2012). It’s a method used by the teacher to help the
pupils to retrieve existing knowledge and to stimulate them to reach higher levels of com-
prehension and skill acquisition (Kawalkar and Vijapurkar 2011). When using scaffold-
ing the teacher supports and guides pupils during the process when they are not capable
by themselves or when the teacher notices that pupils are taking an entirely wrong direc-
tion and get stuck in the process (Hogan and Pressley 1997). Referring to the viewpoint
of (Hmelo-Silver et al. 2007) the process to learn can be best organized in such a way
that pupils are able to perform and solve problems independently. The teacher must ensure
that he’s not going to instruct however can use verbal scaffolding techniques whereby the
thought process remains primarily by pupils.

It is important that the teacher is aware which impact the method of teaching used has
on the learning outcomes of pupils (Slangen et al. 2008). Slangen (2016) addresses the
question of whether pupils, when they learn to program, learn best when they carry out all
the actions and steps themselves or whether the learning outcome is more extensive when
the teacher constantly intervenes and explains everything to the pupils. Therefore, in this
study two different instruction methods are used to determine which instruction variant
shows the most optimal yield: direct instruction or scaffolding.

It is not yet clear why one person, in an introduction course, learns to program eas-
ily while another person under the same conditions experiences major difficulties (Hasan
2003). Despite instructions given by the teacher on how to program, learners often make
completely autonomous decisions that deviate from the received instruction (Tay et al.
2014). It appears that the level of self-efficacy of the learner plays a decisive role in learn-
ing how to program (Igbaria and Iivari 1995). Bandura (1977) and Zimmerman (2000)
describe self-efficacy as someone’s belief in their own ability to complete a task success-
fully. Working autonomously and independently decision making contributes to the level of
self-efficacy and self-effectiveness (Ramalingam and Wiedenbeck 1998). Previous research
shows that primary schools pupils’ self-efficacy for programming is influenced by previ-
ous programming experience and self-efficacy also increases as pupils progress through an

207The influence of SRA programming on algorithmic thinking and…

1 3

introductory programming course (Ramalingam et al. 2004) and showed positive effects
on pupils perceived self-efficacy when learning to program Lego robotics (Liu et al. 2010).

Building on the theoretical exploration above, we presume a correlation between the
SRA-approach, the instruction variant used with an impact on self-efficacy, the quality
of programming e.g. more generic the influence on computational thinking or more spe-
cifically on algorithmic thinking. Therefore our conceptual model in Fig. 1 provides an
overview of relationships and interconnections between the independent and the dependent
variables.

Research question, sub‑questions and hypotheses

Based on the literature study we focus on investigating to what extent there is a relationship
between problem-solving robotic programming, self-efficacy, computational thinking and
algorithmic thinking.

In this research, the aim is to clarify the main research question: “What outcomes con-
cerning algorithmic thinking and self-efficacy does SRA-programming in a Lego robotic
context lead to when using a scaffolding approach or using a direct instructional approach?”

In addition to the main research question, the sub-questions are:

1. Can SRA-programming achieve a higher degree of algorithmic thinking?
2. Does SRA-programming lead to a higher degree of self-efficacy?
3. What is the influence of the instruction variant on the quality of the solution of the

programming problem?

These sub-questions lead to the next three hypotheses:

1. Learning to apply SRA-programming in a Lego robotics context when using the instruc-
tion method scaffolding leads to a more successful level of solving mathematical grid
diagrams.

2. Learning to apply SRA-programming in a Lego robotics context when using the instruc-
tion method scaffolding leads to a higher level of algorithmic skills.

Working on
20 programming tasks

Algoritmic
Thinking

Computational
Thinking

Quality Programming
Solution

Type of
Instructional Method

influences

produces
influences

influences

identifies
identifies

Self-Efficacy

impacts

Fig. 1 Schematic representation of the conceptual model

208 N. L. J. A. Fanchamps et al.

1 3

3. Using the instruction method scaffolding leads to a higher level of self-efficacy com-
pared to using the direct instruction method.

Method

This research should be seen as an explorative approach to gain more insight into what
a robotics programming environment can contribute to the development of mathematical
skill and self-efficacy. To this end, an exploratory study was conducted in which quantita-
tive data was obtained to examine the research question and the associated hypotheses. To
investigate the research questions and hypotheses we used a pretest–posttest design as dis-
played in Fig. 2. This includes (a) pre-measurement of mathematical skill and self-efficacy,
(b) a robotics-intervention in two instruction variants, and (c) a post-test measuring the
programming ability and quality, mathematical skill and self-efficacy.

Participants

The research was conducted among pupils from grade 5 and grade 61 (N = 62) of a pri-
mary school in the south of the Netherlands. An experimental group (n = 33) and a control
group (n = 29) were formed. From these two subgroups, 31 equal strong pairs are compiled
based on the average of both their individual mathematical score achieved on the Dutch
Cito tracking scores for numeracy and mathematical skill (Cito 1987). In this way there are
not very strong or weak subgroups so that this cannot obscure the results. Figure 3 displays
the division of participating groups.

Materials

Visually oriented programming environments such as Scratch and Lego Mindstorms are
very suitable for use in primary education (Korkmaz 2018). No complicated text based
code language needs to be learned and the user can drag and drop programmable blocks in
the right order (Weintrop and Wilensky 2015). Visual programming environments are also
ideally suited to control tangible objects such as robots (Sapounidis et al. 2015).

Working on
20 programming tasks

Working on
20 programming tasks

Grid Tasks

Grid Tasks 5 Challenges

5 Challenges

Training phase Post-assessment phasePre-assessment phase

Grid
Tasks

Self-efficacy
Questionnaire

Self-efficacy
Questionnaire

Self-efficacy
Questionnaire

Direct
Instruction

Scaffolding

Operationalisation

Runtime
of the robot

Quality of
SRA

solution

Amount of
SRA

usage

Fig. 2 Research design

1 In this publication we use the UK grade level system to indicate the research population. Grade 5 and 6 in
the UK corresponds with the Dutch “group 7 and 8”.

209The influence of SRA programming on algorithmic thinking and…

1 3

Robots operate by a program which manages a programmable logical controller by
means of using sensors and actuators (Sargent et al. 1996; Jonassen 2006; Lindh and
Holgersson 2007). Benitti (2012) as well as Krumholz (1998) claim that the use of robots
enhances learning. For instance, it provides opportunities to connect math, logical think-
ing and programming. Working with robots also offers hands-on experiences with immedi-
ate results giving the children both opportunities for creativity and a sense of achievement
(Jeschke et al. 2008).

To determine the degree of self-efficacy in a pre- and post-measurement (prior and
afterwards the robotic intervention), we used of the validated Dutch adaptation of the gen-
eral self-efficacy scale (Teeuw et al. 1994) to which we have added two supplementary
questions in order to be able to determine pupils’ grade (5/6) and gender (male or female).
Pupils completed this questionnaire individually. This self-efficacy questionnaire includes
10 items on a psychometric 4-point scale, ranging from ‘completely inaccurate’ to ‘com-
pletely accurate’, to indicate the extent to which the claim applies and as such is experi-
enced. To determine the scale reliability, we calculated Cronbach’s alpha. Noting that a
value for Cronbach’s alpha from 0.70 is considered an acceptable reliability factor (Santos
1999). As a characteristic, the developers of the this instrument indicate that Cronbach’s
alpha should range between α = 0.76 and α = 0.90 (Scholz et al. 2002; Schwarzer and Jeru-
salem 1995). We measured for Cronbach’s alpha α = 0.77 which indicates a high level of
internal consistency for our scale with this specific sample. From this we can conclude
that, despite the low value for N, the internal reliability of the adapted instrument used is
sufficiently high and performs as reported by the original authors. The measurement results
therefore can be used as such.

As a pre- and post-measurement of algorithmic skill, pupils individually solve six so-
called grid diagrams (for examples: see Fig. 4). These diagrams, ascending in complexity,
are based on the Pascal triangle (Barry 2006) where the number of shortest routes from A

Pupils
Grade 5 & Grade 6

Scaffolding Group
Grade 5

Scaffolding Group
Grade 6

Working in pairs

Working in pairs

Direct Instruction
Group Grade 5

Direct Instruction
Groep Grade 6

Working in pairs

Working in pairs

Fig. 3 Grouping of scaffolding group and direct instruction group

210 N. L. J. A. Fanchamps et al.

1 3

to B must be found. Solving these diagrams requires the application of a correct algorith-
mic approach in which grid diagram 1 is the easiest to solve and grid diagram 6 the most
difficult.

Solving a grid diagram results in the following scoring options: grid diagram solved
correctly (yes/no), algorithm applied (yes/no), algorithm constructed correctly (yes/no).
The yield of the challenge consists of four categories: The first category (runtime needed)
includes a fixed value, the second and third category (challenge solved, SRA applied) each
has two values (yes/no), the fourth category (quality SRA), has three values (“SRA not
applied”/“SRA multiple variations”/“SRA shortest possible”).

As an intervention pupils in the control group and experimental group each receive a
different instruction variant to learn SRA-programming Lego NXT Mindstorms robots.
The Lego programming environment is based on the operating principles and routines of
reasoning and decision making by programming visual blocks. These blocks represent spe-
cific activities such as sensing, reasoning, and acting via controllable variables, parameters,
logical operators, et cetera. By manipulating the variables and sequencing the blocks in a
specific order, pupils construct their program and conduct it. To demonstrate differences in
programming ability and understanding of SRA we set up a pre-defined problem space in
which pupils solved a Lego robotic programming challenge. This challenge, in which the
influence of the applied instruction variant occurred, consists of a pre-made robot equipped
with two different types of sensors mounted (push-button sensor and ultrasonic sensor) and
a table as the playing field on which the robot has to execute the tasks. A successful pro-
gramming solution and the fastest runtime out of three attempts is recorded. The runtime
factor is taken as a predictive value and illustrates the degree of quality and efficiency of
the constructed program.

The execution time needed for a computer program to complete its processing is an
important indicator about the efficiency and quality of the constructed computer program
(Korzilius 2000). In this study we follow the assumption that the less time a programmed
robot needs to perform commands successfully, the more efficient the constructed com-
puter program is (Ploeg 2015) which results in a higher level of quality (Brave et al. 2011).
Because, computer programs are based on algorithms, time efficiency also determines if
and how efficiently an algorithm is constructed.

Procedure

All 31 pairs from both instruction variants were given identical introductory instruc-
tions explaining step by step how to use the Lego programming environment. Thereafter,
each of the pairs conducted nine one-hour sessions to solve twenty programming tasks to

A

B
1

1

= 2

A

B

1 1 1

1 2 3
= 4

A
1 1

2 3

B

1

4

4

= 8

1

Fig. 4 Grid diagrams; three examples

211The influence of SRA programming on algorithmic thinking and…

1 3

demonstrate the solution devised. In the direct-instruction variant we offered pupils during
the nine-hour training sessions information and explanation on how to program a robot that
makes use of sensors. In the scaffolding variant we coached pupils during the nine-hour
trainings sessions by giving guidance adapted to pupils level of understanding on how to
program a robot that makes use of sensors. In both instruction variants, pupils can decide
for themselves whether to program without using sensors or programming with the fully
functional and most effective use of sensors. In the final challenge-assignment pupils can
show what they have learned from these programming tasks and what differences occur out
of the two instruction variants.

Results and data‑analysis

The main research question, “What outcomes concerning algorithmic thinking and self-
efficacy does SRA-programming in a Lego robotic context lead to when using a scaf-
folding approach or using a direct instructional approach?”, is answered by analysing the
means of the dichotomous variables. T test analysis is used to investigate sub-questions
and to confirm or reject hypotheses. The self-efficacy questionnaire, the measured results
to solve grid diagrams and the data derived from the Lego robotics challenge were entered
into SPSS for quantitative data analysis. The effect of the independent variables on the
dependent variables is investigated (see Fig. 3). Differences in values are determined by
comparing the means. Cross-tabs are used to make a shift visible between pre- and post-
measurement. A repeated measures analysis is used to determine the effect on self-efficacy.
In all statistical analysis is assumed a significance level of 5% (p = ≤ . 05).

The nature of the data meets the conditions for the assumption of normality and asserts
that the distribution of sample means (across independent samples) is normal. It has been
tested whether the assumptions of homogeneity of variances have been violated (p ≤ 0.05).
Degrees of freedom are calculated and the bootstrapping procedure has been applied to
re-estimate the standard error of the mean difference. The confidence interval was studied
to assess the difference between means and to determine whether the value “0” is in the
confidence interval. The value for the extent of the effect (Pearson’s r) has been calculated
(indicating that the effect size is low if the value of r varies around 0.1, medium if r varies
around 0.3, and large if r varies more than 0.5). The substantial effect of a standard devia-
tion difference between two groups (Cohen’s d) was also determined (it should be noted
that d = 0.2 can be considered a ‘small’ effect size, 0.5 stands for a ‘medium’ effect size
and 0.8 for a ‘large’ effect size) (Field 2013).

Mathematical problem solved correctly

A comparison of the total number of correctly resolved grid diagrams for the scaffolding
group increases from 99 (M = 0.51) to 103 (M = 0.55) and for the direct instruction group
increases from 88 (M = 0.50) to 96 (M = 0.52). Further examination of the data by means
of cross-tabs analysis shows that more complex grid diagrams are solved in both groups. It
is remarkable that in the pre-test no respondent correctly solves all six mathematical prob-
lems, while in the post-test 6 respondents do solve all six mathematical problems correctly.
Table 1 shows the data for solving mathematical problems correctly.

212 N. L. J. A. Fanchamps et al.

1 3

Mathematical problem algorithm applied

A comparison of the means shows that the percentage of algorithms applied in the scaf-
folding group increases from 58 (M = 0.29) to 136 (M = 0.68) and for the direct instruc-
tion group increases from 52 (M = 0.30) to 127 (M = 0.55). Further examination of the
data by means of cross-tabs analysis shows that both groups applied more algorithms
in the post-test and used an algorithm to find the solution to all six mathematical prob-
lems. Table 2 shows the data when an algorithm was used while solving mathematical
problems.

Mathematical problem algorithm correctly constructed

A comparison of the means shows that the percentage of correctly constructed algo-
rithms for the scaffolding group increases from 47 (M = 0.24) to 89 (M = 0.45) and
for the direct instruction group increases from 41 (M = 0.24) to 82 (M = 0.47). Further
examination of the data by means of cross-tab analysis shows that, comparing the pre-
test with the post-test, the number of correctly constructed algorithms increases. It is
noteworthy that both groups in the post-test not only constructed more correct algo-
rithms but also solved more complex mathematical problems. Table 3 shows the data for
the correct construction of an algorithm to solve the mathematical problem.

Table 1 Mathematical problem solved correctly

Scaff., Scaffolding group; Dir., direct instruction group. M, Average number of resolved out of total; Total,
Cumulative

Pre-test Post-test

Mathematical problem solved
correctly

Mathematical problem
solved correctly

Group n M Total 0 1 2 3 4 5 6 M Total 0 1 2 3 4 5 6
Scaff. 33 0.50 99 0 1 11 10 9 2 0 0.52 103 1 3 7 11 6 1 4
Dir. 29 0.51 88 0 4 4 10 9 2 0 0.55 96 0 3 1 17 3 2 2

Table 2 Mathematical problem algorithm applied

Scaff., Experimental group; Dir., Direct Instruction group; M, Average number of resolved out of total;
Total, Cumulative

Pre-test Post-test

Mathematical problem algo-
rithms applied

Mathematical problem
algorithms applied

Group n M Total 0 1 2 3 4 5 6 M Total 0 1 2 3 4 5 6
Scaff. 33 0.29 58 6 10 12 2 0 0 3 0.68 136 3 4 1 3 3 5 14
Dir. 29 0.30 52 6 13 2 4 1 0 3 0.55 127 0 2 3 5 1 8 10

213The influence of SRA programming on algorithmic thinking and…

1 3

Degree of algorithmic skill by programing according to the SRA‑cycle

Analysis of the dissolved grid diagrams and the number of applied and correctly con-
structed algorithms shows that, after the SRA robotics intervention was conducted,
more grid diagrams were correctly solved (an increase from 187 to 199), more algo-
rithms have been applied (increase from 110 to 263), and more correct algorithms have
been constructed (increase from 88 to 171).

Influence of the instruction variant on the quality of the problem solution
and the runtime required

In order to make visible the influence of the instruction variant used, the quality of the
solution to the programming problem and the runtime it takes the robot to complete the
programme was examined. Therefore, three two-tailed t-tests are used with as independent
variable the two instruction variants (direct instruction/scaffolding) and as the dependent
variables: (1) Was SRA used? (2) If so, to what extent was SRA applied? (3) The average
runtime required by the robot to execute the program. Table 4 shows the data for the influ-
ence of the instruction variant.

Quality of problem solution

A comparison of the means makes visible that the scaffolding group (M = 0.73, SD = 0.49)
shows a slightly higher quality level of the problem solution than the direct instruction
group (M = 0.59, SD = 0.45). Analysis of the t-test shows that there is no significant dif-
ference. From this it can be assumed that instruction through scaffolding, when learning

Table 3 Mathematical problem algorithm correctly constructed

Scaff., Experimental group; Dir., Direct instruction group; M, Average number of resolved out of total;
Total, Cumulative

Pre-test Post-test

Mathematical problem correct
algorithm

Mathematical problem
correct algorithm

Group n M Total 0 1 2 3 4 5 6 M Total 0 1 2 3 4 5 6
Scaff. 33 0.24 47 6 10 14 3 0 0 0 0.45 89 4 4 7 10 3 1 4
Dir. 29 0.24 41 7 12 4 4 1 1 0 0.47 82 0 4 7 13 1 3 1

Table 4 Influence of the
instruction variant used on the
quality of the problem solution
and necessary runtime

Scaff., Experimental group; Dir., direct instruction group; p = 0.05.
View based on the specified variables in the data analysis section

Quality SRA
(average)

Applied SRA
(average)

Necessary runt-
ime (average)

Group n M SD n M SD n M SD
Scaff. 33 0.73 0.49 33 0.45 0.26 33 29.41 12.59
Dir. 29 0.59 0.45 29 0.41 0.29 29 34.14 10.06

214 N. L. J. A. Fanchamps et al.

1 3

SRA-programming does not lead to a qualitatively higher problem solution level. Since
the value “0” is within the confidence interval, 95% CI [− 0.08, 0.35], this confirms the
assumption that scaffolding does not result in a significantly higher qualitative problem
solution level.

Amount of SRA

A comparison of the means makes visible that the scaffolding group (M = 0.45, SD = 0.26)
applies SRA more than the direct instruction group (M = 0.41, SD = 0.29). Analysis of the
t-test for the amount of SRA used shows that there is no significant difference. From this it
can be assumed that instruction through scaffolding does not lead to an increase of apply-
ing SRA in a problem solving based programming environment. Since the value “0” is
within the confidence interval, 95% CI [0.18, − 0.81], this confirms the assumption that
scaffolding does not significantly lead to more use of SRA.

Runtime of program

A Comparison of the means makes visible that the robot programmed by the scaffolding
group (M = 29.41, SD = 12.59) needs less runtime to execute the program than the robot
programmed by the direct instruction group (M = 34.14, SD = 10.06). T-test analysis on
the runtime the robot needs to execute the program shows that there is no significant dif-
ference. From this it can be assumed that instruction through scaffolding, when applying
SRA in a problem based programming environment when the programmed robot needs to
execute its task, does not decreases. Since the value “0” is within the confidence interval,
95% CI [− 10.81, 1.16], this confirms the assumption that the instruction variant scaffold-
ing does not provide a significantly more efficient program and was therefore not visible in
a faster execution runtime of the robot.

Degree of self‑efficacy by programming according to the SRA‑cycle

To determine the influence of SRA programming on self-efficacy, a paired t-test is used
to compare pre- and post-test measurement. The mean of self-efficacy in the pre-test
(M = 2.95, SD = 0.42) is lower than the mean in the post-test (M = 3.00, SD = 0.46). Analy-
sis of the paired samples t-test shows that there is no significant difference. Since the value
“0” is within the confidence interval, 95% CI [− 0.21, 0.01], this confirms the assumption
that SRA-programming does not provide a significantly higher level of self-efficacy.

Applying SRA using Lego Robotics through scaffolding related to the ability
of solving grid diagrams

To assess whether the use of SRA programming through scaffolding leads to a more suc-
cessful level of solving grid diagrams i.e. more problems solved a one-tailed t-test is used.
As an independent variable the instruction variant was used (scaffolding/direct instruction)
and as a dependent variable the number of correctly dissolved grid diagrams (difference
between pre- and post-test).

Analysis of the means makes visible (see: Table 1) that the scaffolding group, com-
paring the pre-test (M = 0.50, SD = 0.17) with the post-test (M = 0.52, SD = 0.25), shows a

215The influence of SRA programming on algorithmic thinking and…

1 3

slightly lower level of solving grid diagrams than the direct instruction group, which scored
on the pre-test (M = 0.51, SD = 0.19) and on the post-test (M = 0.55, SD = 0.22), Analysis of
the t-test shows that there is no significant difference between the two instruction groups.
From this it can be assumed that an instruction according to scaffolding does not lead to a
better resolution of grid diagrams in comparison with a direct instructional approach. Since
the value “0” is within the confidence interval, 95% CI [− 0.08, 0.15], this confirms the
assumption that scaffolding does not lead to solve more grid diagrams. The hypothesis that
learning to apply SRA-programming in a Lego robotics context when using the instruction
method scaffolding leads to a more successful level of solving mathematical grid diagrams
is rejected.

Applying SRA with Lego Robotics through scaffolding related to the level
of algorithmic skill

To assess whether the application of SRA-programming through scaffolding leads to
higher level of algorithmic skill i.e. more complex diagrams solved two one-way t-tests are
used. As an independent variable the two instruction variants are used and as a dependent
variable(s) the applied algorithms (difference between post-test and pre-test) and the cor-
rect construction of algorithms (difference between pre-test and post-test) are used.

Level of algorithmic skill by applying algorithms

Analysis of the means shows (see: Table 2) that the scaffolding group, in a comparison of
the pre-test (M = 0.29, SD = 0.27) with the post-test (M = 0.68, SD = 0.36), used more algo-
rithms than the direct instruction group which scored on the pre-test (M = 0.30, SD = 0.30)
and on the post-test (M = 0.55, SD = 0.28).

Analysis of the t-test shows that there is no significant difference between the two
instruction groups. From this it can be assumed that the used instruction variant scaffolding
did not deploy more algorithms resulting in a higher level of algorithmic skill compared to
the direct instruction group. Because the value “0” is within the confidence interval, 95%
CI [− 0.21, 0.11], it can’t be claimed that the instructional variant scaffolding ensures a bet-
ter solution of grid diagrams. The hypothesis cannot be ratified and is therefore rejected.

Level of algorithmic skill by correctly constructing algorithms

Analysis of the means shows (see: Table 3) that the scaffolding group, in a comparison of
the pre-test (M = 0.24, SD = 0.15) with the post-test (M = 0.45, SD = 0.29) constructs less
correct algorithms then the direct instruction group which scored on the pre-test (M = 0.24,
SD = 0.22) and on the post-test (M = 0.47, SD = 0.21).

Analysis of the t-test shows that there is no significant difference between the two
instruction groups. It can be deduced from this that the instruction variant scaffolding did
not result in a better level of constructing correct algorithms than in the direct instruction
group. Therefore, as a consequence no higher algorithmic skill was shown, i.e. no more
difficult grid diagrams were solved. Since the value “0” is within the confidence interval,
95% CI [0.11, − 0.14], this does not lead to the assumption that the instruction variant scaf-
folding ensures better solution of grid diagrams. The hypothesis based on the application
of algorithms cannot be ratified.

216 N. L. J. A. Fanchamps et al.

1 3

Instruction trough scaffolding related to the level of self‑efficacy compared
to instruction through direct instruction

To assess whether instruction via scaffolding leads to a higher level of self-efficacy than
through direct instruction a one-tailed t-test is used. As an independent variable the
instruction variant was used (scaffolding/direct instruction) and as a dependent variable
self-efficacy.

Analysis of the means makes visible that the scaffolding group (M = 3.09, SD = 0.48)
scores marginally better on self-efficacy than the direct instruction group (M = 3.00,
SD = 0.45). Analysis of the t-test shows that there is no significant difference between
the two instruction groups. From this it can be assumed that the used instruction vari-
ant did not result in a higher level of self-efficacy. Since the value “0” is within the
confidence interval, 95% CI [− 0.17, 0.30], this leads to the assumption that it can’t be
claimed that the instruction variant scaffolding leads to a higher level of self-efficacy.
The hypothesis is rejected.

Conclusions

An interpretation of the available data suggests that the robotic intervention, when using
SRA-programming, has an effect on the respondents’ mathematical skills. Comparing
the pre-test with the post-test shows that pupils who program Lego robots with a SRA-
approach apply more algorithms, construct more correct algorithms, and solve more dif-
ficult algorithms. Programming with the SRA-cycle seems to be the main cause of the
increase of applied and correctly constructed algorithms. It can be assumed that pro-
gramming with the SRA-cycle leads to a higher algorithmic skill and thus has a positive
effect on the respondents’ mathematical skills. The application and construction of algo-
rithms when solving mathematical problems offered as grid diagrams even shows values
that have more than doubled prior to the robotics intervention.

The hypothesis that learning to apply SRA-programming in a Lego robotics context
when using the instruction method scaffolding leads to a more successful level (number)
of solving mathematical grid diagrams can only be partially confirmed. The hypotheses
that learning to apply SRA-programming in a Lego robotics context when using the
instruction method scaffolding leads to a higher level of algorithmic skill (algorithm
applied/correct algorithm constructed) can only be partially confirmed.

The hypothesis that SRA-programming leads to a higher degree of self-efficacy can-
not be confirmed. Although in the literature a relationship has been found between pro-
gramming and self-efficacy, the findings in this research show only a slight impact. It is
not demonstrable that SRA-programming leads to a higher level of self-efficacy.

The hypothesis that using the instruction method scaffolding leads to a higher level of
self-efficacy compared to the direct instruction method is not demonstrable. The differ-
ence in the influence of the applied instruction variant direct instruction versus scaffold-
ing is not significant. However, there are clear indications (Table 4) that the instruction
variant scaffolding remarkably lowers the execution time the robot requires to complete
the challenge tasks.

217The influence of SRA programming on algorithmic thinking and…

1 3

Discussion

This research aims to find answers whether SRA-programming using programmable
robots in different types of instruction leads to an increase of algorithmic thinking and
provides a higher level of self-efficacy.

Based on indications in the data it can be assumed that applying the SRA-cycle,
when programming Lego robotics as an intervention, can create a higher level of algo-
rithmic skill. This is in line with claims made by Cejka et al. (2006), Highfield et al.
(2008), Kafai and Resnick (2012) and Silk et al. (2009) who state that solving ICT-
issues can have a transfer to mathematical thinking and reasoning.

Our results show that the instruction variant (direct instruction/scaffolding) influ-
ences the quality of the created solutions and the execution time of a programmed robot.
We also found some indications that the more open form (scaffolding) leads to improved
outcomes. This calls into question the assertions of Kirschner et al. (2006) who claim
that offering a fully directly guided instruction, compared to a more open form of guid-
ance, provides sufficient understanding to achieve impact and greater learning effi-
ciency. However, for the aspect of strategic and more effective learning, the indications
we found are more in line with (Hmelo-Silver et al. 2007) who state that in a mini-
mally guided instructional approach, cognitive load reduces and ensures that strategic
and more effective learning and time effectiveness occurs. In a planned follow-up study,
we expect to gain a better insight into the relevance of the indications that scaffolding
generates better yields.

The hypothesis, that using the instruction method scaffolding leads to a significantly
higher level of self-efficacy than using direct instruction, can’t be shown. Programming
with the SRA-cycle in a Lego robotics context, measuring self-efficacy comparing the pre-
test and post-test of respondents from both instruction groups, shows marginally differ-
ences. This is remarkable, because the expected yield was that respondents, who received a
minimally guided instruction by means of scaffolding in a more open setting, were given an
excellent opportunity to reach a higher level of self-efficacy than respondents who received
a strongly led instruction. This is not in line with the view of Bandura (1977) who states
that being able to use one’s own capacities in situations where the learner has more control
would lead to a higher degree of self-efficacy. Furthermore, various studies have estab-
lished that the short-term results of direct instruction and an instruction according to scaf-
folding are relatively similar (Kapur and Rummel 2012; Schmidt and Bjork 1992). How-
ever, the scaffolding approach usually leads to greater retention in the long term (Karaçalli
and Korur 2014; Kvam 2000). Therefore, it would be worth investigating which instruction
variant shows the most remaining returns over a longer period of time.

Apart from the stated research question, it is notable that, despite a focused instruc-
tion and a comprehensive exploration of parallel programming, respondents quickly fall
back on simpler sequential programming. It is remarkable that the programming experi-
ence gained earlier, by exploring and solving the twenty programming tasks offered in
the training and exercise sessions, is used superficially when programming the last five
challenge assignments.

This research contributes to the theory of computational thinking and ICT educa-
tion in primary schools. Robotic programming environments make pupils use computer
technology to examine and solve problems systematically and in a creative and inter-
active way with sufficient possibilities for differentiation. SRA-programming in itself
seems to be a not explicitly identified characteristic of computational thinking.

218 N. L. J. A. Fanchamps et al.

1 3

This research also contributes to the practical shaping of robotics education in class-
rooms. Despite the low level of significance, it can be concluded from the results that learn-
ing efficiency and the learning effect are present in both instructional variants. Therefore,
it can be said that one could also match on instruction needs of respondents because the
learning effect and learning return is primarily delivered by the intervention. This clears
the way for a tailored choice of teacher’s interventions which connect the principles of
education, inquiry-based learning and adaptive learning. It makes possible to use mixed
learning environments where pupils on the one hand can learn to program robots via a less
guided, self-managing way, and on the other hand can profit from a more guided approach.
However, the guided instructional approach has some limitations because the teacher
doesn’t always has time to guide pupils when needed. This pleads that pupils are as self-
sufficient as possible. This is in line with the assertions of Slangen (2016) who argues that,
when using robotics and programming, an exploratory free learning environment must be
created in which the teacher has a less steering and more accompanying role.

Limitations and follow up research

There are some considerations as to why our findings are below the required level of sig-
nificance. Reasons may be that the programming assignments were too difficult, that pupils
used the trial and error method to solve the grid diagrams or that there has been a develop-
ment among pupils over time as a result of regular education.

This research is conducted within a Lego robotics-context. This context is chosen in
order to activate SRA-thinking among primary school pupils. It can’t be said with certainty
that only SRA-programming using Lego robotics generates the best yields in research. To
objectively compare as possible, and to be able to generalize from the obtained research
results, it is desirable that the research is repeated with other ICT learning and program-
ming environments.

From this research it is clear that the instruction variant has no significant effect on the
learning outcomes. It would be worthwhile to investigate if and how teacher interventions
in the different instructional variants affect learning of pupils. Further would it be desirable
to investigate why pupils frequently recourse to sequential handling processes in program-
ming and why they make little use of parallel flows despite that they have received a com-
prehensive instruction on this particular point. It would also be desirable to investigate if
other ICT programming environments provide similar or perhaps higher learning revenue
then the Lego robotics environment.

In this research, there was a limitation on the available working time with respondents.
If more time had been available, this could have led to different results. It would also have
been interesting to find out whether retention levels would differ on the basis of the two
instruction variants used.

In this research the researcher was also the supportive teacher. It is important to take
into consideration that teachers should be well-equipped for supporting this type of learn-
ing (Breed 2003; Slangen et al. 2011a). It asks for specific guidance skills and teacher
competencies in the domain of ICT education and this closely follows the acquirement of
twenty-first century skills in the field of computational thinking.

Acknowledgements This work was conducted while the first author was supported by a grant from the
Dutch Organisation National Regieorgaan Praktijkgericht Onderzoek SIA (reference: NWO/Subsidie

219The influence of SRA programming on algorithmic thinking and…

1 3

KIEM.21V01.004). The authors would like to thank Heutink Netherlands for the donation of the required
sets Lego Mindstorms and their cooperation.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Ethical standards The Ethical research board (cETO) of the Open University of the Netherlands has assessed
the proposed study and concluded that this study is in line with the rules and regulations and the ethical codes
for research in Human Subjects (reference: U2019/01324/SVW).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

References

Aesaert, K., Braak, Jv, Nijlen, Dv, & Vanderlinde, R. (2015). Primary school pupils’ ICT competences:
Extensive model and scale development. Computers & Education, 81, 18.

Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review,
84(2), 25.

Barry, P. (2006). On integer-sequence-based constructions of generalized Pascal Triangles. Journal of Inte-
ger Sequences, 9.

Barr, D., Harrison, J., & Conery, L. (2011). Computational thinking: A digital age skill for everyone. Learn-
ing & Leading with Technology, 38(6), 20–23.

Basawapatna, A., Koh, K. H., Repenning, A., Webb, D. C., & Marshall, K. S. (2011). Recognizing compu-
tational thinking patterns. In Proceedings of the 42nd ACM technical symposium on computer science
education (pp. 245–250). ACM.

Benitti, F. B. V. (2012). Exploring the educational potential of robotics in schools: A systematic review.
Computers & Education, 58(3), 978–988.

Bers, M. U., Ponte, I., Juelich, C., Viera, A., & Schenker, J. (2002). Teachers as designers: Integrating robot-
ics in early childhood education. Information Technology in Childhood Education Annual, 2002(1),
123–145.

Blumenfeld, P. C., Soloway, E., Marx, R. W., Krajcik, J. S., Guzdial, M., & Palincsar, A. (1991). Motivat-
ing project-based learning: Sustaining the doing, supporting the learning. Educational Psychologist,
26(3–4), 369–398.

Brave, F., Baardman, E., & Moussault, A. (2011). Wegwijzer bij methoden voor leerprocessen. Zaltbommel:
Van Haren Publishing.

Breed, B. (2003). The reflective abilities of expert and novice learners in computer programming. Paper
presented at the British Educational Research Association Annual Conference, Heriot-Watt University,
Edinburgh, 11–13 September 2003.

Cejka, E., Rogers, C., & Portsmore, M. (2006). Kindergarten robotics: Using robotics to motivate math, sci-
ence, and engineering literacy in elementary school. International Journal of Engineering Education,
22(4), 711.

Cito. (1987). Leerlingvolgsysteem Primair Onderwijs. https ://www.cito.nl/onder wijs/prima ir-onder wijs.
Crasborn, F., & Hennissen, P. (2010). The skilled mentor. Mentor teachers’ use and acquisition of supervi-

sory skills. Eindhoven: Eindhoven School of Education.
Drijvers, P. (2015). Kernaspecten van wiskundig denken. Euclides, p. 6.
Drijvers, P., Kieran, C., Mariotti, M.-A., Ainley, J., Andresen, M., Chan, Y. C., et al. (2009). Integrating

technology into mathematics education: Theoretical perspectives. In Mathematics education and tech-
nology-rethinking the terrain (pp. 89–132). Berlin: Springer.

Field, A. (2013). Discovering statistics using IBM SPSS statistics. Beverly Hills: Sage.

http://creativecommons.org/licenses/by/4.0/
https://www.cito.nl/onderwijs/primair-onderwijs

220 N. L. J. A. Fanchamps et al.

1 3

Futschek, G., & Moschitz, J. (2011). Learning algorithmic thinking with tangible objects eases transition to
computer programming. In International conference on informatics in schools: Situation, evolution,
and perspectives (pp. 155–164). Springer.

Guzdial, M. (2008). Education paving the way for computational thinking. Communications of the ACM,
51(8), 25–27.

Hasan, B. (2003). The influence of specific computer experiences on computer self-efficacy beliefs. Com-
puters in Human Behavior, 19(4), 8. https ://doi.org/10.1016/S0747 -5632(02)00079 -1.

Highfield, K., Mulligan, J., & Hedberg, J. (2008). Early mathematics learning through exploration with pro-
grammable toys. In Proceedings of the joint meeting of PME (Vol. 32, pp. 169–176). Citeseer.

Hmelo-Silver, C. E., Duncan, R. G., & Chinn, C. A. (2007). Scaffolding and achievement in problem-based
and inquiry learning: A response to Kirschner, Sweller and Clark. Educational Psychologist, 42(2),
99–107.

Hogan, K., & Pressley, M. (1997). Scaffolding student learning. Cambridge, Massachusets: Brookline
Books.

Horn, M. S., Solovey, E. T., Crouser, R. J., & Jacob, R. J. (2009). Comparing the use of tangible and graphi-
cal programming languages for informal science education. In Proceedings of the SIGCHI conference
on human factors in computing systems, Boston, MA, USA (pp. 975–984). ACM.

Igbaria, M., & Iivari, J. (1995). The effects of self-efficacy on computer usage. Omega, 23(6), 587–605.
Jacobs, V. R., Lamb, L. L. C., & Philipp, R. A. (2010). Professional noticing of children’s mathematical

thinking. Journal for Research in Mathematics Education, 41(2), 33.
Jeschke, S., Kato, A., & Knipping, L. (2008). The engineers of tomorrow: Teaching robotics to pri-

mary school children. In Proceedings of SEFI annual conference 2008. Dansk Center for
Ingeniøruddannelse.

Jonassen, D. H. (2006). Modeling with technology: Mindtools for conceptual change. Upper Saddle River,
New Jersey: Pearson Merrill Prentice Hall.

Kafai, Y. B., & Resnick, M. (2012). Introduction. In Constructionism in practice (pp. 13–20). London:
Routledge.

Kapur, M., & Bielaczyc, K. (2012). Designing for productive failure. Journal of the Learning Sciences,
21(1), 45–83.

Kapur, M., & Rummel, N. (2012). Productive failure in learning from generation and invention activities.
Instructional Science, 40(4), 645–650.

Karaçalli, S., & Korur, F. (2014). The effects of project-based learning on students’ academic achievement,
attitude, and retention of knowledge: The subject of “electricity in our lives”. School Science and
Mathematics, 114(5), 224–235.

Kawalkar, A., & Vijapurkar, J. (2011). Scaffolding science talk: The role of teachers’ questions in the
inquiry classroom. International Journal of Science Education, 35(12), 43.

Kazakoff, E. R., Sullivan, A., & Bers, M. U. (2013). The effect of a classroom-based intensive robotics and
programming workshop on sequencing ability in early childhood. Early Childhood Education Journal,
41(4), 245–255.

Kennisnet. (2015). Computing-onderwijs in de praktijk - Wat kunnen we leren van de Britten? (p. 81).
Zoetermeer: Kennisnet.

King, S. O., Stein, M. K., & Schunn, C. (2012). Designing educative guides: Reconceptualizing teacher’s
role in teacherless cognitive tutor-based robotics instruction. American Educational Research Associa-
tion, 19.

Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not
work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-
based teaching. Educational Psychologist, 41(2), 14.

Kolovou, A., Heuvel-Panhuizen, M. V. d., Bakker, A., & Elia, I. (2008). An ICT environment to assess and
support students’ mathematical problem-solving performance in non-routine puzzle-like word prob-
lems. In Research in mathematics education (p. 15). Nicosia, Cyprus: University of Cyprus.

Kong, S. C. (2008). A curriculum framework for implementing information technology in school education
to foster information literacy. Computers & Education, 51(1), 129–141.

Korkmaz, Ö. (2018). The effect of scratch-and lego mindstorms Ev3-Based programming activities on
academic achievement, problem-solving skills and logical-mathematical thinking skills of students.
Malaysian Online Journal of Educational Sciences, 4(3), 73–88.

Korzilius, H. (2000). De kern van survey-onderzoek. Assen: Van Gorcum.
Krumholz, N. (1998). Techno-logic: A micro-world for constructivist science and technology learning.

Paper presented at the ICCE98, Beijing, China.

https://doi.org/10.1016/S0747-5632(02)00079-1

221The influence of SRA programming on algorithmic thinking and…

1 3

Kurland, D. M., Pea, R. D., Clement, C., & Mawby, R. (1986). A study of the development of programming
ability and thinking skills in high school students. Journal of Educational Computing Research, 2(4),
429–458.

Kvam, P. H. (2000). The effect of active learning methods on student retention in engineering statistics. The
American Statistician, 54(2), 136–140.

Leenders, Y., Naafs, F., & Oord, Ivd. (2010). Effectieve instructie. Leren lesgeven met het activerende,
directe instructiemodel. Amersfoort: CPS.

Lindh, J., & Holgersson, T. (2007). Does lego training stimulate pupils’ ability to solve logical problems?
Computers & Education, 49(4), 1097–1111.

Liu, E. Z. F., Lin, C. H., & Chang, C. S. (2010). Student satisfaction and self-efficacy in a cooperative robot-
ics course. Social Behavior and Personality, 38(8), 1135–1146.

Maas, P. (2015). CodeKlas. Waarom we kinderen zouden leren programmeren. Groningen:
BoekTweePuntNul.

Pea, R. D., & Kurland, D. M. (1984). On the cognitive effects of learning computer programming. New
Ideas in Psychology, 2(2), 137–168.

Pelgrum, W. J. (2001). Obstacles to the integration of ICT in education: Results from a worldwide edu-
cational assessment. Computers & Education, 37(2), 163–178.

Ploeg, V. d. (2015). Efficient abstractions for visualization and interaction. In U. v. Amsterdam (Ed.).
Amsterdam, Netherlands.

Ramalingam, V., LaBelle, D., & Wiedenbeck, S. (2004). Self-Efficacy and Mental Models in Learning to
Program. Paper presented at the Proceedings of the 9th annual SIGCSE conference on Innovation
and technology in computer science education, Leeds, UK.

Ramalingam, V., & Wiedenbeck, S. (1998). Development and validation of scores on a computer pro-
gramming self-efficacy scale and group analyses of novice programmer self-efficacy. Journal of
Educational Computing Research, 19(4), 14.

Santos, J. R. A. (1999). Cronbach’s alpha: A tool for assessing the reliability of scales. Journal of Exten-
sion, 37(2), 1–5.

Sapounidis, T., Demetriadis, S., & Stamelos, I. (2015). Evaluating children performance with graphical
and tangible robot programming tools. Personal and Ubiquitous Computing, 19(1), 225–237.

Sargent, R., Resnick, M., Martin, F., & Silverman, B. (1996). Building and learning with programmable
bricks. In Y. Kafai & M. Resnick (Eds.), Constructionism in practice; designing, thinking, and
learning in a digital world (pp. 161–173). Mahwah, New Jersey: Lawrence Erlbaum Associates,
Publishers.

Schmidt, R. A., & Bjork, R. A. (1992). New conceptualizations of practice: Common principles in three
paradigms suggest new concepts for training. Psychological Science, 3(4), 207–218.

Schoenfeld, A. H., & Sloane, A. H. (2016). Mathematical thinking and problem solving (Vol. 1). New
York: Routledge.

Scholz, U., Doña, B. G., Sud, S., & Schwarzer, R. (2002). Is general self-efficacy a universal construct?
Psychometric findings from 25 countries. European Journal of Psychological Assessment, 18(3),
242.

Schwarzer, R., & Jerusalem, M. (1995). Generalized Self-Efficacy scale. Measures in Health Psychol-
ogy: A User’s Portfolio. Causal and Control Beliefs, 1, 35–37.

Silk, E., Higashi, R., Shoop, R., & Schunn, C. (2010). Designing technology activities that teach math-
ematics. The Technology Teacher, 69(4), 21–27.

Silk, E., & Schunn, C. (2008). Using Robotics to Teach Mathematics. Paper presented at the American
Society for Engineering Education Annual Conference 2007, Pittsburgh, PA.

Silk, E., Schunn, C., & Shoop, R. (2009). Motivating efficiency & meaning in problem solving with
robotics. Carnegie Mellon Robotics Academy.

Slangen, L. (2016). Teaching robotics in primary school. Eindhoven: Eindhoven University of
Technology.

Slangen, L., Fanchamps, N., & Kommers, P. (2008). A case study about supporting the development of
thinking by means of ICT and concretisation tools. International Journal of Continuing Engineering
Education and Life-Long Learning, 18(3), 18.

Slangen, L., Keulen, H. v., & Gravemeijer, K. (2011a). Preparing teachers to teach robotics in primary
schools. In Professional development for primary teachers in science and technology (pp. 181–
198). Berlin: Springer.

Slangen, L., Keulen, H. v., & Gravemeijer, K. (2011b). What pupils can learn from working with robotic
direct manipulation environments. International Journal of Technology and Design Education,
21(4), 20.

222 N. L. J. A. Fanchamps et al.

1 3

Suárez, Á., Specht, M., Prinsen, F., Kalz, M., & Ternier, S. (2018). A review of the types of mobile activi-
ties in mobile inquiry-based learning. Computers & Education, 118, 38–55.

Tay, L. Y., Lim, C. P., Nair, S. S., & Lim, S. K. (2014). Online software applications for learning: Obser-
vations from an elementary school. Educational Media International, 51(2), 15.

Teeuw, B., Schwarzer, R., & Jerusalem, M. (1994). Dutch adaptation of the general self-efficacy scale.
Berlin.

Thijs, A., Fisser, P., & Hoeven, M. v. d. (2014). Digitale geletterdheid en 21e eeuwse vaardigheden in het
funderend onderwijs: Een conceptueel kader.

Toh, L. P. E., Causo, A., Tzuo, P.-W., Chen, I.-M., & Yeo, S. H. (2016). A review on the use of robots in
education and young children. Journal of Educational Technology & Society, 19(2), 148–163.

Veenman, S. (2001). Directe Instructie. (Vol. 1, pp. 26). Nijmegen, Netherlands: Katholieke Universiteit
Nijmegen.

Voogt, J., & Roblin, N. P. (2010). 21st century skills. Enschede: Discussienota.
Vosniadou, S., Ioannides, C., Dimitrakopoulou, A., & Papademetriou, E. (2001). Designing learn-

ing environments to promote conceptual change in science. Learning and Instruction, 11(4–5),
381–419.

Wang, D., Wang, T., & Liu, Z. (2014). A tangible programming tool for children to cultivate computational
thinking. The Scientific World Journal, 2014, 10.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., et al. (2016). Defining computa-
tional thinking for mathematics and science classrooms. Journal of Science Education and Technol-
ogy, 25(1), 127–147.

Weintrop, D., & Wilensky, U. (2015). To block or not to block, that is the question: students’ perceptions of
blocks-based programming. In Proceedings of the 14th international conference on interaction design
and children (pp. 199–208). ACM.

Wilensky, U. (1995). Making sense of probability through paradox and programming: A case study in a
connected mathematics framework. Journal of Mathematical Behavior, 14(2), 26.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 3.
Wong, L. L. (2014). Rethinking the sense-plan-act abstraction: A model attention and selection framework

for task-relevant estimation. In Workshops at the twenty-eighth AAAI conference on artificial intel-
ligence, Quebec, Canada.

Wyeth, P., Venz, M., & Wyeth, G. (2004) Scaffolding Children’s Robot Building and Programming Activi-
ties. In: Polani D., Browning B., Bonarini A., Yoshida K. (eds) RoboCup 2003: Robot Soccer World
Cup VII. RoboCup 2003. Lecture Notes in Computer Science, vol 3020/2004 (pp. 308–319). Springer,
Berlin, Heidelberg.

Yadav, A., Hong, H., & Stephenson, C. (2016). Computational thinking for all: Pedagogical approaches to
embedding 21st century problem solving in K-12 classrooms. TechTrends, 60, 4.

Zimmerman, B. J. (2000). Self-efficacy: An essential motive to learn. Contemporary Educational Psychol-
ogy, 25, 10.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	The influence of SRA programming on algorithmic thinking and self-efficacy using Lego robotics in two types of instruction
	Abstract
	Introduction
	Theoretical framework
	Research question, sub-questions and hypotheses
	Method
	Participants

	Materials
	Procedure

	Results and data-analysis
	Mathematical problem solved correctly
	Mathematical problem algorithm applied
	Mathematical problem algorithm correctly constructed
	Degree of algorithmic skill by programing according to the SRA-cycle
	Influence of the instruction variant on the quality of the problem solution and the runtime required
	Quality of problem solution
	Amount of SRA
	Runtime of program
	Degree of self-efficacy by programming according to the SRA-cycle
	Applying SRA using Lego Robotics through scaffolding related to the ability of solving grid diagrams
	Applying SRA with Lego Robotics through scaffolding related to the level of algorithmic skill
	Level of algorithmic skill by applying algorithms
	Level of algorithmic skill by correctly constructing algorithms
	Instruction trough scaffolding related to the level of self-efficacy compared to instruction through direct instruction

	Conclusions
	Discussion
	Limitations and follow up research
	Acknowledgements
	References

