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Abstract
This study investigates the development of algorithmic thinking as a part of computational 
thinking skills and self-efficacy of primary school pupils using programmable robots in dif-
ferent instruction variants. Computational thinking is defined in the context of twenty-first 
century skills and describes processes involved in (re)formulating a problem in a way that 
a computer can process it. Programming robots offers specific affordances as it can be used 
to develop programs following a Sense-Reason-Act (SRA) cycle. The literature provides 
evidence that programming robots has the potential to enhance algorithmic thinking as a 
component of computational thinking. Specifically there are indications that pupils who 
use SRA-programming learn algorithmic skills better and achieve a higher level of self-
efficacy in an open, scaffold learning environment than through direct instruction. In order 
to determine the influence of the instruction variant used, an experimental research design 
was made in which pupils solved algorithm-based mathematical problems (grid diagrams) 
in a preliminary measurement and their self-efficacy determined via a questionnaire. As an 
intervention, pupils learn to solve programming issues in pairs using “Lego NXT” robots 
and “Mindstorms” software in two instruction variants. The post-measurement consists 
of a Lego challenge, solving mathematical problems (grid diagrams), and a repeated self-
efficacy questionnaire. This research shows an increase of our measures on algorithmic 
thinking dependent on the amount of SRA usage (though not significant). Programming 
using the SRA-cycle can be considered as the cause of the measured effect. The instruction 
variant used during the robotic intervention seems to play only a marginal role.
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Introduction

The impact of information technology, robotics and programming on our modern lives is tre-
mendous. In order to be able to participate functionally in such a digital oriented society, it is 
necessary to become Information Communication Technology (ICT) literate (Kennisnet 2015; 
Maas 2015; Pelgrum 2001). For this reason, it is essential to allow young children to develop 
relevant ICT competencies (Aesaert et al. 2015). Research emphasizes the fact that primary 
education already has a responsibility to teach the required competences (Toh et al. 2016). 
Programming is one of these ICT-competencies and should be structurally embedded in pri-
mary education (Kazakoff et al. 2013).

Programming has been shown to have a positive effect on children’s algorithmic thinking 
(Futschek and Moschitz 2011) and can play a powerful role by making concealed mathemati-
cal assumptions explicit and concrete (Kolovou et al. 2008; Silk et al. 2010; Wilensky 1995). 
Translating problem solving into a software program can help pupils to develop a deeper 
understanding of the working principles of algorithms, which in turn helps solving mathemati-
cal problems better. (Thijs et al. 2014; Kolovou et al. 2008). Understanding algorithmic think-
ing contributes to the development of computational thinking in general (Wing 2006).

Robotic contexts turn out to be powerful environments to learn computational thinking 
(Benitti 2012; Tay et al. 2014), since they make programming concrete and tangible (Horn 
et al. 2009; Wang et al. 2014). More specifically, programmable robots offer excellent oppor-
tunities to comprehend algorithmic solution strategies (Kolovou et al. 2008; Silk et al. 2010). 
The so-called Sense-Reason-Act (SRA) programming approach is based on the understanding 
of variable solution strategies that can play an important role in the development of computa-
tional thinking (Slangen et al. 2011b). By making pupils aware of the difference between the 
SRA-approach and a linear programming approach, pupils learn to understand that SRA can 
be a more efficient approach to finding a solution to complex programming problems.

Tangible programmable robots offer a Direct Manipulation Environment (DME) (Jonas-
sen 2006) which makes the coherence between sensing (input), reasoning and acting (output) 
visible and understandable. Previous research shows that primary school pupils have difficul-
ties in using SRA based reasoning (Slangen et al. 2011b). Even when pupils can use SRA 
programming, it is reasonable this usage requires a certain degree of self-efficacy (tenacity, 
self-responsibility and self-determination) to accomplish a difficult task in a self-directed way.

This research examines the influence of SRA-programming on algorithmic thinking as a 
component of computational thinking and the impact on self-efficacy among primary school 
pupils. The focus is on to what extent this development depends on the nature of teacher sup-
port and to what extent there is an increase on the self-allocated degree of self-efficacy. There-
fore, it is investigated whether pupils with Lego Robotics NXT are able to construct a series 
of programming instructions in the correct order, with the result that a functioning algorithm 
is created.

Theoretical framework

In this research we are particularly interested in the relationship between learning to con-
figure robot control programs using a SRA-approach and the impact this has on algorith-
mic and computational thinking. We also want to know if the type of instruction used 
influences SRA-thinking and impacts the level of self-efficacy. From research we know 
that solving more advanced programming problems require more complex algorithmic 
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structures and only enables efficient problem solutions and programs if we go beyond lin-
ear programming (Slangen et al. 2011b; Wyeth et al. 2003). When programming following 
a SRA-approach users need to explicitly link the relationship between observations based 
on sensor use (sense), with a logic reasoning component which infers actions based on 
these observations (reason) and the process of acting based on the given inferences (act). 
Slangen (2016) examined the application of the SRA-concept in primary school practice 
using Lego Mindstorms robots and concluded that primary school pupils, although capable 
of programming robots, have considerable difficulties with understanding and applying the 
SRA-programming cycle. Mainly complex elements of programming like the ‘if-then-else’ 
and the ‘nested loop’ seemed to be difficult to understand. The ability to functionally apply 
the SRA-cycle in a robotics context requires pupils to apply logic reasoning in program-
ming environments (Kurland et al. 1986; Pea and Kurland 1984). It also requires system-
atic thinking for a correct choice of sensors and actuators to program a robot that can actu-
ally anticipate the physical environment (Slangen et al. 2011b). SRA programming applied 
through robotic environments, provides meaningful opportunities to incorporate compu-
tational thinking skills and mathematics. SRA-programming is based on an algorithmic, 
mathematical approach and can be used to reformulate robotic problems. Moreover solving 
mathematical problems demands specific, algorithmic thinking skills to solve challenging 
computing and mathematical issues (Guzdial 2008) and stimulates analytical competences 
(Basawapatna et al. 2011).

Robotic-contexts provide relevant, interesting and challenging opportunities for the 
development of algorithmic thinking (King et  al. 2012; Highfield et  al. 2008). Silk and 
Schunn (2008) analysed a curriculum which provides a synergetic context for robotics, 
engineering and mathematics. They showed by means of content analyses, cases stud-
ies, and comparative studies, that unravelling robotics-based problems contributes to the 
skill of algorithmic thinking, which includes logical reasoning, argumentation, induction 
and deduction (Jacobs et al. 2010; Drijvers 2015; Schoenfeld and Sloane 2016). This also 
implies that algorithmic thinking can be taught by means of well-designed robotic-based 
environments which offers pupils the opportunity to activate and concretize such skills.

Computational thinking can enrich mathematics and vice versa, the integration of 
mathematical contexts can improve mathematical learning (Weintrop et  al. 2016). Com-
putational thinking is the processes involved in formulating a problem and expressing its 
solution(s) in such a way that a computer can effectively solve the problem (Barr et  al. 
2011). It is an iterative process based on three stages, i.e. problem formulation, solution 
expression and solution execution & evaluation (Yadav et  al. 2016; Wong 2014; Wing 
2006). Computational thinking refers to skills such as problem decomposition, pattern rec-
ognition/data representation, generalization/abstraction, and algorithmisation (Voogt and 
Roblin 2010). Through decomposing a problem, identifying the variables, using data rep-
resentation and creating algorithms a generic solution results (Thijs et al. 2014). Robotic 
contexts provide the opportunity to apply components of computational thinking which 
facilitates the development of algorithmic thinking enabling the elucidation of underlying 
mathematical principles (Drijvers et al. 2009; Silk et al. 2010), i.e. understanding the core 
of an algorithm.

Teaching and learning how to program robotics depends on the instructional approach 
and is a mutual process between teachers and pupils (Bers et  al. 2002). It is likely that 
variations in the pedagogical approach, for example the variation in the extent to which 
the teacher gives guidance on process and content, leads to different outcomes (Suárez 
et  al. 2018). On the one hand we see guided instruction in which the initiative for set-
ting out the next steps in the learning process lies with the teacher rather than with the 
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learner. On the other hand we also notice pedagogical approaches in which pupils learn 
by themselves through solving authentic problems with negligible teacher support. This 
form is also known as Project-based learning (PBL). Project-based learning is a teaching 
method in which pupils gain knowledge and skills by working for an extended period of 
time to investigate and respond to an authentic, engaging and complex question, problem 
or challenge (Blumenfeld et al. 1991; Kong 2008). It goes without saying that good teach-
ers, depending on the pedagogical need of pupil-teacher interaction, can choose between 
a more guiding or coaching strategy. A teacher who understands the influence of the use 
of specific approaches in the teacher–pupil interaction is expected to make teaching more 
effective (Vosniadou et al. 2001). Therefore it is important that the teacher has a variety of 
coaching skills, intervention competences and dialog techniques at his disposal (Crasborn 
and Hennissen 2010).

Direct instruction can be defined as acts of the teacher with the aim to support the 
learning activities of pupils to structure those in a desired direction (Veenman 2001). The 
starting point for direct instruction is the assumption that there are moments in a teach-
ing process when knowledge, insights and skills are most effective, meaningful, functional, 
and targeted when taught in a direct guided way to pupils (Kirschner et al. 2006). Direct 
instruction is particularly appropriate when a well-structured set of knowledge, insights 
and skills must be mastered by all pupils (Leenders et al. 2010).

Scaffolding can be defined as an approach that lets pupils learn more independently 
whereby the guidance provided by the teacher is temporary adapted to the level of pupil’s 
understanding (Kapur and Bielaczyc 2012). It’s a method used by the teacher to help the 
pupils to retrieve existing knowledge and to stimulate them to reach higher levels of com-
prehension and skill acquisition (Kawalkar and Vijapurkar 2011). When using scaffold-
ing the teacher supports and guides pupils during the process when they are not capable 
by themselves or when the teacher notices that pupils are taking an entirely wrong direc-
tion and get stuck in the process (Hogan and Pressley 1997). Referring to the viewpoint 
of (Hmelo-Silver et  al. 2007) the process to learn can be best organized in such a way 
that pupils are able to perform and solve problems independently. The teacher must ensure 
that he’s not going to instruct however can use verbal scaffolding techniques whereby the 
thought process remains primarily by pupils.

It is important that the teacher is aware which impact the method of teaching used has 
on the learning outcomes of pupils (Slangen et  al. 2008). Slangen (2016) addresses the 
question of whether pupils, when they learn to program, learn best when they carry out all 
the actions and steps themselves or whether the learning outcome is more extensive when 
the teacher constantly intervenes and explains everything to the pupils. Therefore, in this 
study two different instruction methods are used to determine which instruction variant 
shows the most optimal yield: direct instruction or scaffolding.

It is not yet clear why one person, in an introduction course, learns to program eas-
ily while another person under the same conditions experiences major difficulties (Hasan 
2003). Despite instructions given by the teacher on how to program, learners often make 
completely autonomous decisions that deviate from the received instruction (Tay et  al. 
2014). It appears that the level of self-efficacy of the learner plays a decisive role in learn-
ing how to program (Igbaria and Iivari 1995). Bandura (1977) and Zimmerman (2000) 
describe self-efficacy as someone’s belief in their own ability to complete a task success-
fully. Working autonomously and independently decision making contributes to the level of 
self-efficacy and self-effectiveness (Ramalingam and Wiedenbeck 1998). Previous research 
shows that primary schools pupils’ self-efficacy for programming is influenced by previ-
ous programming experience and self-efficacy also increases as pupils progress through an 
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introductory programming course (Ramalingam et  al. 2004) and showed positive effects 
on pupils perceived self-efficacy when learning to program Lego robotics (Liu et al. 2010).

Building on the theoretical exploration above, we presume a correlation between the 
SRA-approach, the instruction variant used with an impact on self-efficacy, the quality 
of programming e.g. more generic the influence on computational thinking or more spe-
cifically on algorithmic thinking. Therefore our conceptual model in Fig.  1 provides an 
overview of relationships and interconnections between the independent and the dependent 
variables.

Research question, sub‑questions and hypotheses

Based on the literature study we focus on investigating to what extent there is a relationship 
between problem-solving robotic programming, self-efficacy, computational thinking and 
algorithmic thinking.

In this research, the aim is to clarify the main research question: “What outcomes con-
cerning algorithmic thinking and self-efficacy does SRA-programming in a Lego robotic 
context lead to when using a scaffolding approach or using a direct instructional approach?”

In addition to the main research question, the sub-questions are:

1. Can SRA-programming achieve a higher degree of algorithmic thinking?
2. Does SRA-programming lead to a higher degree of self-efficacy?
3. What is the influence of the instruction variant on the quality of the solution of the 

programming problem?

These sub-questions lead to the next three hypotheses:

1. Learning to apply SRA-programming in a Lego robotics context when using the instruc-
tion method scaffolding leads to a more successful level of solving mathematical grid 
diagrams.

2. Learning to apply SRA-programming in a Lego robotics context when using the instruc-
tion method scaffolding leads to a higher level of algorithmic skills.

Working on 
20 programming tasks

Algoritmic 
Thinking

Computational 
Thinking

Quality Programming
Solution

Type of 
Instructional Method

influences

produces
influences

influences

identifies
identifies

Self-Efficacy

impacts

Fig. 1  Schematic representation of the conceptual model
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3. Using the instruction method scaffolding leads to a higher level of self-efficacy com-
pared to using the direct instruction method.

Method

This research should be seen as an explorative approach to gain more insight into what 
a robotics programming environment can contribute to the development of mathematical 
skill and self-efficacy. To this end, an exploratory study was conducted in which quantita-
tive data was obtained to examine the research question and the associated hypotheses. To 
investigate the research questions and hypotheses we used a pretest–posttest design as dis-
played in Fig. 2. This includes (a) pre-measurement of mathematical skill and self-efficacy, 
(b) a robotics-intervention in two instruction variants, and (c) a post-test measuring the 
programming ability and quality, mathematical skill and self-efficacy.

Participants

The research was conducted among pupils from grade 5 and grade 61 (N = 62) of a pri-
mary school in the south of the Netherlands. An experimental group (n = 33) and a control 
group (n = 29) were formed. From these two subgroups, 31 equal strong pairs are compiled 
based on the average of both their individual mathematical score achieved on the Dutch 
Cito tracking scores for numeracy and mathematical skill (Cito 1987). In this way there are 
not very strong or weak subgroups so that this cannot obscure the results. Figure 3 displays 
the division of participating groups.

Materials

Visually oriented programming environments such as Scratch and Lego Mindstorms are 
very suitable for use in primary education (Korkmaz 2018). No complicated text based 
code language needs to be learned and the user can drag and drop programmable blocks in 
the right order (Weintrop and Wilensky 2015). Visual programming environments are also 
ideally suited to control tangible objects such as robots (Sapounidis et al. 2015).

Working on 
20 programming tasks

Working on 
20 programming tasks

Grid Tasks

Grid Tasks 5 Challenges

5 Challenges

Training phase Post-assessment phasePre-assessment phase

Grid 
Tasks

Self-efficacy
Questionnaire

Self-efficacy
Questionnaire

Self-efficacy
Questionnaire

Direct 
Instruction

Scaffolding

Operationalisation

Runtime
of the robot

Quality of 
SRA

solution

Amount of 
SRA

usage

Fig. 2  Research design

1 In this publication we use the UK grade level system to indicate the research population. Grade 5 and 6 in 
the UK corresponds with the Dutch “group 7 and 8”.
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Robots operate by a program which manages a programmable logical controller by 
means of using sensors and actuators (Sargent et  al. 1996; Jonassen  2006; Lindh and 
Holgersson 2007). Benitti (2012) as well as Krumholz (1998) claim that the use of robots 
enhances learning. For instance, it provides opportunities to connect math, logical think-
ing and programming. Working with robots also offers hands-on experiences with immedi-
ate results giving the children both opportunities for creativity and a sense of achievement 
(Jeschke et al. 2008).

To determine the degree of self-efficacy in a pre- and post-measurement (prior and 
afterwards the robotic intervention), we used of the validated Dutch adaptation of the gen-
eral self-efficacy scale (Teeuw et  al. 1994) to which we have added two supplementary 
questions in order to be able to determine pupils’ grade (5/6) and gender (male or female). 
Pupils completed this questionnaire individually. This self-efficacy questionnaire includes 
10 items on a psychometric 4-point scale, ranging from ‘completely inaccurate’ to ‘com-
pletely accurate’, to indicate the extent to which the claim applies and as such is experi-
enced. To determine the scale reliability, we calculated Cronbach’s alpha. Noting that a 
value for Cronbach’s alpha from 0.70 is considered an acceptable reliability factor (Santos 
1999). As a characteristic, the developers of the this instrument indicate that Cronbach’s 
alpha should range between α = 0.76 and α = 0.90 (Scholz et al. 2002; Schwarzer and Jeru-
salem 1995). We measured for Cronbach’s alpha α = 0.77 which indicates a high level of 
internal consistency for our scale with this specific sample. From this we can conclude 
that, despite the low value for N, the internal reliability of the adapted instrument used is 
sufficiently high and performs as reported by the original authors. The measurement results 
therefore can be used as such.

As a pre- and post-measurement of algorithmic skill, pupils individually solve six so-
called grid diagrams (for examples: see Fig. 4). These diagrams, ascending in complexity, 
are based on the Pascal triangle (Barry 2006) where the number of shortest routes from A 

Pupils 
Grade 5 & Grade 6

Scaffolding Group
Grade 5

Scaffolding Group
Grade 6

Working in pairs

Working in pairs

Direct Instruction
Group Grade 5

Direct Instruction
Groep Grade 6

Working in pairs

Working in pairs

Fig. 3  Grouping of scaffolding group and direct instruction group
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to B must be found. Solving these diagrams requires the application of a correct algorith-
mic approach in which grid diagram 1 is the easiest to solve and grid diagram 6 the most 
difficult.

Solving a grid diagram results in the following scoring options: grid diagram solved 
correctly (yes/no), algorithm applied (yes/no), algorithm constructed correctly (yes/no). 
The yield of the challenge consists of four categories: The first category (runtime needed) 
includes a fixed value, the second and third category (challenge solved, SRA applied) each 
has two values (yes/no), the fourth category (quality SRA), has three values (“SRA not 
applied”/“SRA multiple variations”/“SRA shortest possible”).

As an intervention pupils in the control group and experimental group each receive a 
different instruction variant to learn SRA-programming Lego NXT Mindstorms robots. 
The Lego programming environment is based on the operating principles and routines of 
reasoning and decision making by programming visual blocks. These blocks represent spe-
cific activities such as sensing, reasoning, and acting via controllable variables, parameters, 
logical operators, et cetera. By manipulating the variables and sequencing the blocks in a 
specific order, pupils construct their program and conduct it. To demonstrate differences in 
programming ability and understanding of SRA we set up a pre-defined problem space in 
which pupils solved a Lego robotic programming challenge. This challenge, in which the 
influence of the applied instruction variant occurred, consists of a pre-made robot equipped 
with two different types of sensors mounted (push-button sensor and ultrasonic sensor) and 
a table as the playing field on which the robot has to execute the tasks. A successful pro-
gramming solution and the fastest runtime out of three attempts is recorded. The runtime 
factor is taken as a predictive value and illustrates the degree of quality and efficiency of 
the constructed program.

The execution time needed for a computer program to complete its processing is an 
important indicator about the efficiency and quality of the constructed computer program 
(Korzilius 2000). In this study we follow the assumption that the less time a programmed 
robot needs to perform commands successfully, the more efficient the constructed com-
puter program is (Ploeg 2015) which results in a higher level of quality (Brave et al. 2011). 
Because, computer programs are based on algorithms, time efficiency also determines if 
and how efficiently an algorithm is constructed.

Procedure

All 31 pairs from both instruction variants were given identical introductory instruc-
tions explaining step by step how to use the Lego programming environment. Thereafter, 
each of the pairs conducted nine one-hour sessions to solve twenty programming tasks to 

A

B
1

1

= 2

A

B

1 1 1

1 2 3
= 4

A
1 1

2 3

B

1

4

4

= 8

1

Fig. 4  Grid diagrams; three examples
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demonstrate the solution devised. In the direct-instruction variant we offered pupils during 
the nine-hour training sessions information and explanation on how to program a robot that 
makes use of sensors. In the scaffolding variant we coached pupils during the nine-hour 
trainings sessions by giving guidance adapted to pupils level of understanding on how to 
program a robot that makes use of sensors. In both instruction variants, pupils can decide 
for themselves whether to program without using sensors or programming with the fully 
functional and most effective use of sensors. In the final challenge-assignment pupils can 
show what they have learned from these programming tasks and what differences occur out 
of the two instruction variants.

Results and data‑analysis

The main research question, “What outcomes concerning algorithmic thinking and self-
efficacy does SRA-programming in a Lego robotic context lead to when using a scaf-
folding approach or using a direct instructional approach?”, is answered by analysing the 
means of the dichotomous variables. T test analysis is used to investigate sub-questions 
and to confirm or reject hypotheses. The self-efficacy questionnaire, the measured results 
to solve grid diagrams and the data derived from the Lego robotics challenge were entered 
into SPSS for quantitative data analysis. The effect of the independent variables on the 
dependent variables is investigated (see Fig. 3). Differences in values are determined by 
comparing the means. Cross-tabs are used to make a shift visible between pre- and post-
measurement. A repeated measures analysis is used to determine the effect on self-efficacy. 
In all statistical analysis is assumed a significance level of 5% (p = ≤ . 05).

The nature of the data meets the conditions for the assumption of normality and asserts 
that the distribution of sample means (across independent samples) is normal. It has been 
tested whether the assumptions of homogeneity of variances have been violated (p ≤ 0.05). 
Degrees of freedom are calculated and the bootstrapping procedure has been applied to 
re-estimate the standard error of the mean difference. The confidence interval was studied 
to assess the difference between means and to determine whether the value “0” is in the 
confidence interval. The value for the extent of the effect (Pearson’s r) has been calculated 
(indicating that the effect size is low if the value of r varies around 0.1, medium if r varies 
around 0.3, and large if r varies more than 0.5). The substantial effect of a standard devia-
tion difference between two groups (Cohen’s d) was also determined (it should be noted 
that d = 0.2 can be considered a ‘small’ effect size, 0.5 stands for a ‘medium’ effect size 
and 0.8 for a ‘large’ effect size) (Field 2013).

Mathematical problem solved correctly

A comparison of the total number of correctly resolved grid diagrams for the scaffolding 
group increases from 99 (M = 0.51) to 103 (M = 0.55) and for the direct instruction group 
increases from 88 (M = 0.50) to 96 (M = 0.52). Further examination of the data by means 
of cross-tabs analysis shows that more complex grid diagrams are solved in both groups. It 
is remarkable that in the pre-test no respondent correctly solves all six mathematical prob-
lems, while in the post-test 6 respondents do solve all six mathematical problems correctly. 
Table 1 shows the data for solving mathematical problems correctly.
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Mathematical problem algorithm applied

A comparison of the means shows that the percentage of algorithms applied in the scaf-
folding group increases from 58 (M = 0.29) to 136 (M = 0.68) and for the direct instruc-
tion group increases from 52 (M = 0.30) to 127 (M = 0.55). Further examination of the 
data by means of cross-tabs analysis shows that both groups applied more algorithms 
in the post-test and used an algorithm to find the solution to all six mathematical prob-
lems. Table 2 shows the data when an algorithm was used while solving mathematical 
problems.

Mathematical problem algorithm correctly constructed

A comparison of the means shows that the percentage of correctly constructed algo-
rithms for the scaffolding group increases from 47 (M = 0.24) to 89 (M = 0.45) and 
for the direct instruction group increases from 41 (M = 0.24) to 82 (M = 0.47). Further 
examination of the data by means of cross-tab analysis shows that, comparing the pre-
test with the post-test, the number of correctly constructed algorithms increases. It is 
noteworthy that both groups in the post-test not only constructed more correct algo-
rithms but also solved more complex mathematical problems. Table 3 shows the data for 
the correct construction of an algorithm to solve the mathematical problem.

Table 1  Mathematical problem solved correctly

Scaff., Scaffolding group; Dir., direct instruction group. M, Average number of resolved out of total; Total, 
Cumulative

Pre-test Post-test

Mathematical problem solved 
correctly

Mathematical problem 
solved correctly

Group n M Total 0 1 2 3 4 5 6 M Total 0 1 2 3 4 5 6
Scaff. 33 0.50 99 0 1 11 10 9 2 0 0.52 103 1 3 7 11 6 1 4
Dir. 29 0.51 88 0 4 4 10 9 2 0 0.55 96 0 3 1 17 3 2 2

Table 2  Mathematical problem algorithm applied

Scaff., Experimental group; Dir., Direct Instruction group; M, Average number of resolved out of total; 
Total, Cumulative

Pre-test Post-test

Mathematical problem algo-
rithms applied

Mathematical problem 
algorithms applied

Group n M Total 0 1 2 3 4 5 6 M Total 0 1 2 3 4 5 6
Scaff. 33 0.29 58 6 10 12 2 0 0 3 0.68 136 3 4 1 3 3 5 14
Dir. 29 0.30 52 6 13 2 4 1 0 3 0.55 127 0 2 3 5 1 8 10
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Degree of algorithmic skill by programing according to the SRA‑cycle

Analysis of the dissolved grid diagrams and the number of applied and correctly con-
structed algorithms shows that, after the SRA robotics intervention was conducted, 
more grid diagrams were correctly solved (an increase from 187 to 199), more algo-
rithms have been applied (increase from 110 to 263), and more correct algorithms have 
been constructed (increase from 88 to 171).

Influence of the instruction variant on the quality of the problem solution 
and the runtime required

In order to make visible the influence of the instruction variant used, the quality of the 
solution to the programming problem and the runtime it takes the robot to complete the 
programme was examined. Therefore, three two-tailed t-tests are used with as independent 
variable the two instruction variants (direct instruction/scaffolding) and as the dependent 
variables: (1) Was SRA used? (2) If so, to what extent was SRA applied? (3) The average 
runtime required by the robot to execute the program. Table 4 shows the data for the influ-
ence of the instruction variant. 

Quality of problem solution

A comparison of the means makes visible that the scaffolding group (M = 0.73, SD = 0.49) 
shows a slightly higher quality level of the problem solution than the direct instruction 
group (M = 0.59, SD = 0.45). Analysis of the t-test shows that there is no significant dif-
ference. From this it can be assumed that instruction through scaffolding, when learning 

Table 3  Mathematical problem algorithm correctly constructed

Scaff., Experimental group; Dir., Direct instruction group; M, Average number of resolved out of total; 
Total, Cumulative

Pre-test Post-test

Mathematical problem correct 
algorithm

Mathematical problem 
correct algorithm

Group n M Total 0 1 2 3 4 5 6 M Total 0 1 2 3 4 5 6
Scaff. 33 0.24 47 6 10 14 3 0 0 0 0.45 89 4 4 7 10 3 1 4
Dir. 29 0.24 41 7 12 4 4 1 1 0 0.47 82 0 4 7 13 1 3 1

Table 4  Influence of the 
instruction variant used on the 
quality of the problem solution 
and necessary runtime

Scaff., Experimental group; Dir., direct instruction group; p = 0.05. 
View based on the specified variables in the data analysis section

Quality SRA 
(average)

Applied SRA 
(average)

Necessary runt-
ime (average)

Group n M SD n M SD n M SD
Scaff. 33 0.73 0.49 33 0.45 0.26 33 29.41 12.59
Dir. 29 0.59 0.45 29 0.41 0.29 29 34.14 10.06
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SRA-programming does not lead to a qualitatively higher problem solution level. Since 
the value “0” is within the confidence interval, 95% CI [− 0.08, 0.35], this confirms the 
assumption that scaffolding does not result in a significantly higher qualitative problem 
solution level.

Amount of SRA

A comparison of the means makes visible that the scaffolding group (M = 0.45, SD = 0.26) 
applies SRA more than the direct instruction group (M = 0.41, SD = 0.29). Analysis of the 
t-test for the amount of SRA used shows that there is no significant difference. From this it 
can be assumed that instruction through scaffolding does not lead to an increase of apply-
ing SRA in a problem solving based programming environment. Since the value “0” is 
within the confidence interval, 95% CI [0.18, − 0.81], this confirms the assumption that 
scaffolding does not significantly lead to more use of SRA.

Runtime of program

A Comparison of the means makes visible that the robot programmed by the scaffolding 
group (M = 29.41, SD = 12.59) needs less runtime to execute the program than the robot 
programmed by the direct instruction group (M = 34.14, SD = 10.06). T-test analysis on 
the runtime the robot needs to execute the program shows that there is no significant dif-
ference. From this it can be assumed that instruction through scaffolding, when applying 
SRA in a problem based programming environment when the programmed robot needs to 
execute its task, does not decreases. Since the value “0” is within the confidence interval, 
95% CI [− 10.81, 1.16], this confirms the assumption that the instruction variant scaffold-
ing does not provide a significantly more efficient program and was therefore not visible in 
a faster execution runtime of the robot.

Degree of self‑efficacy by programming according to the SRA‑cycle

To determine the influence of SRA programming on self-efficacy, a paired t-test is used 
to compare pre- and post-test measurement. The mean of self-efficacy in the pre-test 
(M = 2.95, SD = 0.42) is lower than the mean in the post-test (M = 3.00, SD = 0.46). Analy-
sis of the paired samples t-test shows that there is no significant difference. Since the value 
“0” is within the confidence interval, 95% CI [− 0.21, 0.01], this confirms the assumption 
that SRA-programming does not provide a significantly higher level of self-efficacy.

Applying SRA using Lego Robotics through scaffolding related to the ability 
of solving grid diagrams

To assess whether the use of SRA programming through scaffolding leads to a more suc-
cessful level of solving grid diagrams i.e. more problems solved a one-tailed t-test is used. 
As an independent variable the instruction variant was used (scaffolding/direct instruction) 
and as a dependent variable the number of correctly dissolved grid diagrams (difference 
between pre- and post-test).

Analysis of the means makes visible (see: Table  1) that the scaffolding group, com-
paring the pre-test (M = 0.50, SD = 0.17) with the post-test (M = 0.52, SD = 0.25), shows a 
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slightly lower level of solving grid diagrams than the direct instruction group, which scored 
on the pre-test (M = 0.51, SD = 0.19) and on the post-test (M = 0.55, SD = 0.22), Analysis of 
the t-test shows that there is no significant difference between the two instruction groups. 
From this it can be assumed that an instruction according to scaffolding does not lead to a 
better resolution of grid diagrams in comparison with a direct instructional approach. Since 
the value “0” is within the confidence interval, 95% CI [− 0.08, 0.15], this confirms the 
assumption that scaffolding does not lead to solve more grid diagrams. The hypothesis that 
learning to apply SRA-programming in a Lego robotics context when using the instruction 
method scaffolding leads to a more successful level of solving mathematical grid diagrams 
is rejected.

Applying SRA with Lego Robotics through scaffolding related to the level 
of algorithmic skill

To assess whether the application of SRA-programming through scaffolding leads to 
higher level of algorithmic skill i.e. more complex diagrams solved two one-way t-tests are 
used. As an independent variable the two instruction variants are used and as a dependent 
variable(s) the applied algorithms (difference between post-test and pre-test) and the cor-
rect construction of algorithms (difference between pre-test and post-test) are used.

Level of algorithmic skill by applying algorithms

Analysis of the means shows (see: Table 2) that the scaffolding group, in a comparison of 
the pre-test (M = 0.29, SD = 0.27) with the post-test (M = 0.68, SD = 0.36), used more algo-
rithms than the direct instruction group which scored on the pre-test (M = 0.30, SD = 0.30) 
and on the post-test (M = 0.55, SD = 0.28).

Analysis of the t-test shows that there is no significant difference between the two 
instruction groups. From this it can be assumed that the used instruction variant scaffolding 
did not deploy more algorithms resulting in a higher level of algorithmic skill compared to 
the direct instruction group. Because the value “0” is within the confidence interval, 95% 
CI [− 0.21, 0.11], it can’t be claimed that the instructional variant scaffolding ensures a bet-
ter solution of grid diagrams. The hypothesis cannot be ratified and is therefore rejected.

Level of algorithmic skill by correctly constructing algorithms

Analysis of the means shows (see: Table 3) that the scaffolding group, in a comparison of 
the pre-test (M = 0.24, SD = 0.15) with the post-test (M = 0.45, SD = 0.29) constructs less 
correct algorithms then the direct instruction group which scored on the pre-test (M = 0.24, 
SD = 0.22) and on the post-test (M = 0.47, SD = 0.21).

Analysis of the t-test shows that there is no significant difference between the two 
instruction groups. It can be deduced from this that the instruction variant scaffolding did 
not result in a better level of constructing correct algorithms than in the direct instruction 
group. Therefore, as a consequence no higher algorithmic skill was shown, i.e. no more 
difficult grid diagrams were solved. Since the value “0” is within the confidence interval, 
95% CI [0.11, − 0.14], this does not lead to the assumption that the instruction variant scaf-
folding ensures better solution of grid diagrams. The hypothesis based on the application 
of algorithms cannot be ratified.
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Instruction trough scaffolding related to the level of self‑efficacy compared 
to instruction through direct instruction

To assess whether instruction via scaffolding leads to a higher level of self-efficacy than 
through direct instruction a one-tailed t-test is used. As an independent variable the 
instruction variant was used (scaffolding/direct instruction) and as a dependent variable 
self-efficacy.

Analysis of the means makes visible that the scaffolding group (M = 3.09, SD = 0.48) 
scores marginally better on self-efficacy than the direct instruction group (M = 3.00, 
SD = 0.45). Analysis of the t-test shows that there is no significant difference between 
the two instruction groups. From this it can be assumed that the used instruction vari-
ant did not result in a higher level of self-efficacy. Since the value “0” is within the 
confidence interval, 95% CI [− 0.17, 0.30], this leads to the assumption that it can’t be 
claimed that the instruction variant scaffolding leads to a higher level of self-efficacy. 
The hypothesis is rejected.

Conclusions

An interpretation of the available data suggests that the robotic intervention, when using 
SRA-programming, has an effect on the respondents’ mathematical skills. Comparing 
the pre-test with the post-test shows that pupils who program Lego robots with a SRA-
approach apply more algorithms, construct more correct algorithms, and solve more dif-
ficult algorithms. Programming with the SRA-cycle seems to be the main cause of the 
increase of applied and correctly constructed algorithms. It can be assumed that pro-
gramming with the SRA-cycle leads to a higher algorithmic skill and thus has a positive 
effect on the respondents’ mathematical skills. The application and construction of algo-
rithms when solving mathematical problems offered as grid diagrams even shows values 
that have more than doubled prior to the robotics intervention.

The hypothesis that learning to apply SRA-programming in a Lego robotics context 
when using the instruction method scaffolding leads to a more successful level (number) 
of solving mathematical grid diagrams can only be partially confirmed. The hypotheses 
that learning to apply SRA-programming in a Lego robotics context when using the 
instruction method scaffolding leads to a higher level of algorithmic skill (algorithm 
applied/correct algorithm constructed) can only be partially confirmed.

The hypothesis that SRA-programming leads to a higher degree of self-efficacy can-
not be confirmed. Although in the literature a relationship has been found between pro-
gramming and self-efficacy, the findings in this research show only a slight impact. It is 
not demonstrable that SRA-programming leads to a higher level of self-efficacy.

The hypothesis that using the instruction method scaffolding leads to a higher level of 
self-efficacy compared to the direct instruction method is not demonstrable. The differ-
ence in the influence of the applied instruction variant direct instruction versus scaffold-
ing is not significant. However, there are clear indications (Table 4) that the instruction 
variant scaffolding remarkably lowers the execution time the robot requires to complete 
the challenge tasks.
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Discussion

This research aims to find answers whether SRA-programming using programmable 
robots in different types of instruction leads to an increase of algorithmic thinking and 
provides a higher level of self-efficacy.

Based on indications in the data it can be assumed that applying the SRA-cycle, 
when programming Lego robotics as an intervention, can create a higher level of algo-
rithmic skill. This is in line with claims made by Cejka et  al. (2006), Highfield et  al. 
(2008), Kafai and Resnick (2012) and Silk et  al. (2009) who state that solving ICT-
issues can have a transfer to mathematical thinking and reasoning.

Our results show that the instruction variant (direct instruction/scaffolding) influ-
ences the quality of the created solutions and the execution time of a programmed robot. 
We also found some indications that the more open form (scaffolding) leads to improved 
outcomes. This calls into question the assertions of Kirschner et al. (2006) who claim 
that offering a fully directly guided instruction, compared to a more open form of guid-
ance, provides sufficient understanding to achieve impact and greater learning effi-
ciency. However, for the aspect of strategic and more effective learning, the indications 
we found are more in line with (Hmelo-Silver et  al. 2007) who state that in a mini-
mally guided instructional approach, cognitive load reduces and ensures that strategic 
and more effective learning and time effectiveness occurs. In a planned follow-up study, 
we expect to gain a better insight into the relevance of the indications that scaffolding 
generates better yields.

The hypothesis, that using the instruction method scaffolding leads to a significantly 
higher level of self-efficacy than using direct instruction, can’t be shown. Programming 
with the SRA-cycle in a Lego robotics context, measuring self-efficacy comparing the pre-
test and post-test of respondents from both instruction groups, shows marginally differ-
ences. This is remarkable, because the expected yield was that respondents, who received a 
minimally guided instruction by means of scaffolding in a more open setting, were given an 
excellent opportunity to reach a higher level of self-efficacy than respondents who received 
a strongly led instruction. This is not in line with the view of Bandura (1977) who states 
that being able to use one’s own capacities in situations where the learner has more control 
would lead to a higher degree of self-efficacy. Furthermore, various studies have estab-
lished that the short-term results of direct instruction and an instruction according to scaf-
folding are relatively similar (Kapur and Rummel 2012; Schmidt and Bjork 1992). How-
ever, the scaffolding approach usually leads to greater retention in the long term (Karaçalli 
and Korur 2014; Kvam 2000). Therefore, it would be worth investigating which instruction 
variant shows the most remaining returns over a longer period of time.

Apart from the stated research question, it is notable that, despite a focused instruc-
tion and a comprehensive exploration of parallel programming, respondents quickly fall 
back on simpler sequential programming. It is remarkable that the programming experi-
ence gained earlier, by exploring and solving the twenty programming tasks offered in 
the training and exercise sessions, is used superficially when programming the last five 
challenge assignments.

This research contributes to the theory of computational thinking and ICT educa-
tion in primary schools. Robotic programming environments make pupils use computer 
technology to examine and solve problems systematically and in a creative and inter-
active way with sufficient possibilities for differentiation. SRA-programming in itself 
seems to be a not explicitly identified characteristic of computational thinking.
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This research also contributes to the practical shaping of robotics education in class-
rooms. Despite the low level of significance, it can be concluded from the results that learn-
ing efficiency and the learning effect are present in both instructional variants. Therefore, 
it can be said that one could also match on instruction needs of respondents because the 
learning effect and learning return is primarily delivered by the intervention. This clears 
the way for a tailored choice of teacher’s interventions which connect the principles of 
education, inquiry-based learning and adaptive learning. It makes possible to use mixed 
learning environments where pupils on the one hand can learn to program robots via a less 
guided, self-managing way, and on the other hand can profit from a more guided approach. 
However, the guided instructional approach has some limitations because the teacher 
doesn’t always has time to guide pupils when needed. This pleads that pupils are as self-
sufficient as possible. This is in line with the assertions of Slangen (2016) who argues that, 
when using robotics and programming, an exploratory free learning environment must be 
created in which the teacher has a less steering and more accompanying role.

Limitations and follow up research

There are some considerations as to why our findings are below the required level of sig-
nificance. Reasons may be that the programming assignments were too difficult, that pupils 
used the trial and error method to solve the grid diagrams or that there has been a develop-
ment among pupils over time as a result of regular education.

This research is conducted within a Lego robotics-context. This context is chosen in 
order to activate SRA-thinking among primary school pupils. It can’t be said with certainty 
that only SRA-programming using Lego robotics generates the best yields in research. To 
objectively compare as possible, and to be able to generalize from the obtained research 
results, it is desirable that the research is repeated with other ICT learning and program-
ming environments.

From this research it is clear that the instruction variant has no significant effect on the 
learning outcomes. It would be worthwhile to investigate if and how teacher interventions 
in the different instructional variants affect learning of pupils. Further would it be desirable 
to investigate why pupils frequently recourse to sequential handling processes in program-
ming and why they make little use of parallel flows despite that they have received a com-
prehensive instruction on this particular point. It would also be desirable to investigate if 
other ICT programming environments provide similar or perhaps higher learning revenue 
then the Lego robotics environment.

In this research, there was a limitation on the available working time with respondents. 
If more time had been available, this could have led to different results. It would also have 
been interesting to find out whether retention levels would differ on the basis of the two 
instruction variants used.

In this research the researcher was also the supportive teacher. It is important to take 
into consideration that teachers should be well-equipped for supporting this type of learn-
ing (Breed 2003; Slangen et  al. 2011a). It asks for specific guidance skills and teacher 
competencies in the domain of ICT education and this closely follows the acquirement of 
twenty-first century skills in the field of computational thinking.
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