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Large-Scale Flight Phase Identification from ADS-B
Data Using Machine Learning Methods

Junzi Sun, Joost Ellerbroek, Jacco Hoekstra
Control and Simulation, Faculty of Aerospace Engineering

Delft University of Technology
Delft, The Netherlands

Abstract—With the increasing availability of ADS-B transpon-
ders on commercial aircraft, as well as the rapidly growing
deployment of ground stations that provide public access to
their data, accessing open aircraft flight data is becoming easier
for researchers. Given the large number of operational aircraft,
significant amounts of flight data can be decoded from ADS-
B messages daily. These large amounts of traffic data can be
of benefit in a broad range of ATM investigations that rely
on operational data and statistics. This paper approaches the
challenge of identifying and categorizing these large amounts
of data, by proposing various machine learning and fuzzy logic
methods. The objective of this paper is to derive a set of methods
and reusable open source libraries for handling the large quantity
of aircraft flight data.

Keywords—machine learning, ATM data, big data, fuzzy logic,
BlueSky.

I. INTRODUCTION

Automatic Dependent Surveillance - Broadcast (ADS-B)
[1][2] is widely implemented in modern commercial air-
craft. It uses satellite navigation technology to acquire the
position information of the aircraft and broadcasts aircraft
tracking information using the 1090 MHz Mode-S transponder.
Information is broadcast unencrypted and can be received
and decoded by anyone with simple ground station set-ups.
Examples of common parameters transmitted through ADS-B
are aircraft position, velocity, and identification. Each message
can be identified by a 24 bit ICAO address that indicates the
source aircraft.

The goal of this paper is to investigate a set of machine
learning methods that can be applied to such large amounts of
aircraft data, filter noisy information, and extract the relevant
properties of a flight. This study is part of a larger project that
aims to build open aircraft performance models by applying
identification techniques on ADS-B data to estimate the re-
quired performance coefficients. The resulting models will be
integrated in the open-source ATM simulator BlueSky [3], [4].

One of the principal issues when handling these large
amounts of data is the fact that searching, aggregating, and pro-
cessing data becomes increasingly computationally expensive
as the data volume grows. Agile design of the database, there-
fore, becomes a necessity to facilitate these large amounts of

data. Together with machine learning algorithms, it is possible
to make calculations on a large scale. When analyzing these
data, there are also a number of uncertainties related to aircraft
flight information that need to be taken into account. These
uncertainties can either be induced by on-board equipment
variances or by communication interruptions, and they may
lead to errors in the final output of aircraft position and speed
data. Therefore, filtering and smoothing algorithms are also
proposed in this paper. They are designed to reduce the impact
of these uncertainties on the calculations.

As a first step, large volumes of data have to be extracted
into individual flights. These can be full or partial flight paths,
based on the completeness of the recorded samples. In the
current study, unsupervised clustering algorithms are proposed
to solve this problem. The DBSCAN and BIRCH methods
have been selected to handle large databases with an unknown
number of clusters. Due to the diversity of aircraft types,
airline procedures, and air traffic control procedures, aircraft
tend to have a large range of possible altitudes and speeds in
the different flight phases. In order to be able to estimate each
phase correctly, fuzzy logic is employed to explore the data
of continuous flights.

The remainder of this paper is structured as follows. In
section two, the concept of ATM big data is discussed.
Statistics from ADS-B data are shown along with the solutions
for storage and analysis. In sections three to five, we focus
on the fundamentals and implementations of machine learning
and fuzzy logic for the entire system. Experiments and results
are also shown in each separate section. Finally, section six
concludes the research of this paper and points out the future
related research of the authors.

II. ATM BIG DATA

The methods proposed in this paper will be applied to two
types of data sources. The first consists of our own ADS-B
ground station configuration, which provides a stream of raw
ADS-B messages with a coverage of about 400 KM. On aver-
age, this receiver provides 10 million ADS-B messages from
3,000 aircraft each day. These raw messages can be decoded
into two million entries of position data and five million entries



of velocity data. These two features are aggregated as a post-
process of the raw data. On a larger scale, online services such
as the flight tracking network FlightRadar24 can be accessed to
collect data from thousands of ground stations (approximately
5,000 through analysis of FlightRadar24 data stream), which
has the potential to exceed billions of raw messages per day.
Although a great portion of these data consist of duplicates,
the unique entries of data can exceed hundreds of millions
each day. The challenge of making use of those data falls into
the domain of big data. This paper proposes tailored machine
learning algorithms in an effort to handle such large quantities
of ATM big data.

Aircraft flight data are not distributed normally around
the globe, not even around a single ground station. ADS-
B signal reception requires “line-of-sight.” The signal of the
transponder is attenuated with increasing distance from the
receiver. Figure 1 shows a scatter plot of all positions within
24 hours, through a single antenna situated in Delft, The
Netherlands. It can be seen that the message density drops
with increasing distance from the ground station, which is
caused by loss of signal from the transponder. Also notice in
the southwest and northwest of the ground station, two rays of
uncovered area are presented. This is due to two tall structures
located close by, which block the passing signals from these
specific directions.

Fig. 1. ADS-B Positions (24h)

Contributors to the FlightRadar24 network are allowed to
make use of, as well as process and redistribute [5], a much
larger quantity of flight data. These data are gathered from
ADS-B receivers around the world. Global ADS-B data can

be processed and analyzed similar to local data, only on a
much larger scale. Figure 2 shows a global data color map
of ADS-B reports over a 24 hour period, where the densities
are normalized over a total of 63 million position reports. The
graph illustrates that the majority of the air traffic as received
by the network is concentrated in Europe, North America, and
South Asia.

Fig. 2. Global position reports density (24h)

The large amount of data requires the use of a dedicated
storage system. Several technologies are available, such as
HDF5, SQL, or NoSQL databases [6], [7]. In this paper, a
system will be used that best suits the data fields in Table I.

TABLE I
FEATURES OF ADS-B FLIGHT DATA

Field Type Unit
ICAO address string -

Aircraft model string -
Time stamp integer s

Latitude float deg
Longitude float deg

Altitude float ft
Heading float deg

Speed float knt

First, the raw stream of data is converted to JSON format
structures, aligned with the schema defined in Table I. Then
it is processed by the data storage engine. For the purpose
of this research, as well as for better accessibility, document-
oriented NoSQL databases are best suited for handling those
ATM big data. This type of databases have comprehensive
data aggregation methods and MapReduce operations, which
makes the processing of data fast and comprehensible. They
use common information exchange formats such as JSON to
store the raw information and can be scaled up with increasing
data storage needs. Another challenge faced by ATM big data
is that information can be incomplete, frequently due to lack
of inputs. One of the causes for this is the fact that position
and velocity are not updated simultaneously. The missing



information may lead to a partial data stream, which does
not contain all of the fields defined in Table I. A database
engine that is able to handle such unexpected schema-less
data frequently is therefore required. For this study, MongoDB
was selected. It is a well developed open-source architecture
that provides all of the above stated advantages and is also
frequently used by researchers and industries from different
domains [8].

III. MACHINE LEARNING AND DATA MINING

In order to extract continuous flights and further divide them
into segments correlated with flight phases, several parameters
(or features) need to be considered. The most significant
ones are ICAO address, time stamp, latitude, and speed.
Deterministic algorithms can be applied to sort data in different
dimensions based on these features. These do, however, pose
limitations in terms of efficiency, robustness, and scalability.
This section describes a set of machine learning clustering
methods that can be used to mitigate these limitations and to
efficiently handle large sets of multi-dimensional noisy data.

A. Pre-process

Before data is forwarded to these statistical clustering algo-
rithms, a few pre-processing steps are required. First, any non-
numerical data needs to be converted into numerical values. In
addition, different features need to be scaled to a reasonable
range and missing values need to be computed to complete
the dataset. These steps are respectively called data encoding,
scaling, and imputation.

Most machine learning algorithms require inputs to be
numbers, for example, while calculating Euclidean distance
between data points. Data encoding is a process designed to
translate text features into their numerical representations, such
as ICAO addresses and aircraft types. In this paper, an integer
encoder is used for the text features.

While looking at other numerical features, the range of data
that were used in this paper varies significantly. Table II shows
the reference ranges of each of the features (24 hour data).

TABLE II
REFERENCE RANGES

Feature Data range Unit
ICAO [0, ˜5000] -
Time [0, ˜100000] s

Latitude [-180, 180] deg
Longitude [-90, 90] deg

Altitude [0, 40000] ft
Heading [0, 360] deg

Speed [0, 500] knt

Large differences in values can lead to a large variation in
the relative weights of features while calculating Euclidean
distances [9]. A simple method to mitigate this is to scale fea-
tures of X = {x0, x1, · · · , xn} into a common range [0, smax],

where all values can be converted to X ′ = {x′0, x′1, · · · , x′n}
as:

x′i =
xi −min(X)

max(X)−min(X)
× smax

Some machining learning methods also require the data be
standardized. Each feature then should be scaled based on the
mean and standard deviation as follows:

x′i =
xi − x̄
δx

where x̄ and δx are the mean and standard deviation of the
data respectively.

B. Dimensionality analysis

In machine learning processes, the dimensionality of the
input features also plays a signification role. When dealing
with data with multiple (often hundreds of) dimensions, a
phenomenon called the Curse of Dimensionality occurs [10].
In higher dimensional data, objects appear to be sparse.
Even large differences in one feature bring little changes in
overall Euclidean distances, thus making identification and
classification less efficient.

From a statistical point view, the sparse data samples in
high dimensional data are close to the edge of the sample
[11]. Assume N data points, distributed uniformly in an n-
dimensional hypersphere centered at origin with a radius of 1.
The expected median distance from the origin to the closest
point is:

E[dmin] =
(

1− 0.51/N
)1/n

With n approaching infinity, the expected closest distance
dmin becomes 1 even with large data sample number N, where
it is almost the radius length of the hypersphere. This illustrates
that all the data are distributed at the edge of a hypersphere.

Nevertheless, in this paper, the effect of dimensionality can
be neglected due to the relatively small number of features
represented in the data.

C. Clustering

Clustering or cluster analysis is an unsupervised learning
process that groups data into subsets (clusters) based on the
difference of the features. Several well-known algorithms (K-
Means, DBSCAN, BIRCH, Mean-Shift, etc) are available in
the literature [12], each with their own advantages for solving
particular feature sizes and geometries.

The simplest clustering concept is the centroid-based
method. Another popular method is called K-Means [13],
which divides data samples into segments based on the Eu-
clidean distance of each sample to the centroid of a cluster.



Given a dataset {x1,x2, · · · ,xn}, with each sample a d-
dimensional vector, the approach of the K-Means algorithm
is to split all data into k(k < n) segments {S1, S2, · · · , Sk}.
A clustering solution can be found using a two step process
of centroid assignment, which is updated until the sum of all
distances within each cluster has been minimized:

arg min
S

k∑
i=1

∑
x∈Si

‖x− ci‖2

where, {c1, c2, · · · , ck}, are the centroids of all clusters.
K-Means is a direct algorithm and fairly computationally

efficient. The disadvantage of this method is the pre-defined
k number of clusters. ATM data very often has an undefined
number of segments due to the different flight frequencies and
operations, which requires the clustering method to be able
to adapt the number of clusters depending on the data itself;
at the same time, it should be able to handle a large number
of clusters. Two algorithms have been selected based on this
requirement, DBSCAN and BIRCH.

DBSCAN (density-based spatial clustering of applications
with noise) is a density-based clustering method which sep-
arates data into areas of high and low density. DBSCAN
uses two fundamental parameters: Eps and MinPts. Here,
Eps is the maximum distance between two data samples for
them to still be in the same neighborhood. MinPts is the
number of data samples in the neighborhood of a core point.
NEps(p) = {q ∈ D|dist(p, q) ≤ Eps} is defined as the
Eps-neighborhood of a point p. Clusters are formed when the
following conditions are satisfied: [14]

p ∈ NEps(q)

|NEps(q)| ≥MinPts

The additional advantage of DBSCAN compared to a
centroid-based method is the ability to generate clusters with
a required density. It eliminates noise data that is at a lower
density than the clusters. This aspect offers a considerable
advantage in processing ATM data, insomuch as datasets with
low data quality need to be excluded.

The second selected clustering algorithm is BIRCH (bal-
anced iterative reducing and clustering using hierarchies) [15].
This method incrementally constructs a Characteristic Feature
(CF) tree from the dataset with two user defined constraint
numbers: the threshold (T ) and the branching factor (B). An
arbitrary clustering algorithm is used to cluster the leaf nodes
of the CF tree. It can be considered as multi-level clustering,
where a scalable lower level reduces the complexity before the
higher-level clustering processing.

Given a multi-dimensional dataset with N data points, CF
is defined as CF = (N,LS, SS), where LS is the linear sum∑N

i xi and SS is the squared sum
∑n

i x
2
i . When two CF

trees (CF1 and CF2) are two disjointed clusters, the merging
of the two will produce a new CFM :

CFM = CF1 + CF2 = (N1 +N2, LS1 + LS2, SS1 + SS2)

Within the TF tree, leaf and non-leaf nodes are constrained
by the T and B values. A non-leaf node has at most B number
of CF entries. The number of leaf node CF entries satisfies the
threshold T . The entire CF tree is built dynamically as new
data objects are inserted into the CF. Each leaf node in the final
CF tree is a sub-cluster. After that, the high level clustering
will generate the final clusters from all leaf nodes based on
their CF values, using agglomerating hierarchical clustering.

The BIRCH method scans the entire dataset only once,
which results in improved performance on large datasets.
It also handles outliers better, compared to the previously
discussed K-Means method.

IV. FLIGHT EXTRACTION USING CLUSTERING
ALGORITHMS

To design and apply the clustering methods, a 24-hour flight
dataset is selected from the database. It contains around 12
million raw messages, from which 1.7 million entries of flight
data are decoded.

To simplify the features, each entry of data consists of
an aircraft location, velocity, identity, and time stamp. The
challenge is to cluster these scattered flight data into small
sets of continuous flight trajectories. The algorithms need to
be able to deal with large unknown numbers of clusters and
a reasonable quantity of outliers caused by the noisiness of
ADS-B data.

For illustrative purposes, only a smaller sample set is plotted
to show the results of clustering. The sample set includes 200
random aircraft with approximately 100,000 entries of data.
Both BIRCH and DBSAN methods are applied to the sample
with different configurations. The multi-dimensional data is
represented by two features in the graph, aircraft ID and the
time stamps of each data entry, displayed along the x and y
axis respectively.

Figure 3 shows the results of BIRCH clustering. Data in
the same clusters is linked and represented by the same color.
From top to bottom, performance of the method changes, while
the threshold value decreases from 100 to five. The smaller
the threshold of the CF tree, the smaller a leaf can be. This
will result in decreasing cluster size. In the top graph, it can
be seen that clusters are formed to contain data from different
aircraft, which is far from an optimal result. The middle graph
shows that the data are nicely clustered as desired with only a
few exceptions. The bottom configuration produces the finest
clusters, as well as a higher number of clusters. However, data
that should belong together in a single flight trajectory is split
into different clusters. Tuning the threshold value is required
to find the better balance.



Fig. 3. Clustering with BIRCH method

The clustering process with the DBSCAN method was
applied to the same dataset, in order to evaluate the flight
extraction performance. The result is illustrated in Figure
4. The changing parameters are EPS and MinPts, which
represent the maximum distance of data and minimum number
of samples in a single cluster. Increasing EPS leads to larger
average cluster size, while increasing MinPts eliminates
clusters with a small number of samples. The clustering
process can be optimized by tuning the combination of these
two variables.

Compared to BIRCH, DBSCAN can exclude some clusters
from the result by specifying the MinPts value. This gives
control over the final cluster quality for further processing.

Furthermore, both BIRCH and DBSCAN can be tuned
to work well with the ATM big data set. Because of their
temporal nature, input data can be separated into smaller
batches, thus offering the possibility to run the machine
learning process on regular workstations with limited memory
resources.

V. FLIGHT PHASE IDENTIFICATION USING FUZZY LOGIC

The outcome of the clusters provides us a set of continuous
flight data, representing either full or partial trajectories of
certain flights. The ability to segment data further into flight

Fig. 4. Clustering with DBSCAN method

phases is important to complete further research on building
aircraft performance models.

Previous clustering methods may still be used to create sub-
clusters based on the characteristics of time series data [16].
However, two problems arise when applying classic clustering
methods.

1) Each entry in a data set is relatively close to its neighbors,
based on Euclidean distance of time stamp, altitude, velocity,
and position. The clustering method is not able to produce
sub-clusters with a certain level of consistency.

2) Due to difference in aircraft types and the divergent flight
procedures, flight behavior may vary, which could lead to, for
example, aircraft climbing at different rates, flying at different
cruise altitudes, and traveling at different speeds, even within
the same phase.

These two problems can be solved with fuzzy logic being
applied on the time series data. Fuzzy logic, also known
as fuzzy sets theory [17], has been introduced to express
real-world objects or concepts where no precise definition of
criteria for membership exist. It uses membership functions to
define the degree of truth for different features. Logic operators
AND, OR, and NOT are defined as minimum, maximum, and
complement operators. Different output states are activated
by certain input operations. In this particular problem, three
inputs are used (i.e. altitude, rate of climb, and ground speed)



to determine the flight phase. In Figure 5, the membership
functions of the input and output are defined.

Fig. 5. Membership functions

The logic of the estimator can be described as follows:

HGround ∧ VLow ⇒ FPGround
HLow ∧ VMedium ∧RoC+ ⇒ FPClimb
HHigh ∧ VHigh ∧RoC0 ⇒ FPCruise

HLow ∧ VMedium ∧RoC− ⇒ FPDescend

where H , RoC, V , and FP refer to altitude, rate-of-climbing,
ground speed, and flight phase, respectively. The probabilities
of all four phases are computed for any input and the most
likely phase is considered as its state. However, in case of
a extremely low outcome probability, an unknown state is
marked. In reality, the data is likely to be corrupted in those
cases.

One issue that can influence the performance of the seg-
mentation is data noise, as the input data usually contains
noise. Features such as speed and rate-of-climb demonstrate a
large variation. For an estimator to be able to determine flight
phase more accurately, data is usually filtered (e.g., using a
SavitzkyGolay filter [18]) before being processed with fuzzy
logic. To reduce the steps necessary for segment identification,
the entire time series data are divided into multiple, one-minute
time windows of one-minute before the segmentation process
starts.

The entire segmentation process is presented in Figure
6. Continuous flight data is streamed as input, before it is
smoothed and sliced into multiple time windows. All time
windows are processed by the fuzzy logic module to identify
the exact flight phase. The output consists of a series of labels
stating the flight phase of each data entry.

Input, trajectory data

Smoothing, slicing

Process next
time window

Completed?

Output, flight phase labels

Calculate mean
H, Roc, V

Calculate
membership degree

Aggregate
membershipsDefuzzification

Flight phase state

(fuzzy logic)

no

yes

Fig. 6. Flight segmentation with fuzzy logic

Fig. 7. Fuzzy logic segmentation - example visualization

To validate the method, the output labels are fed in a
visualization module with distinct colors for different labels.
Example results are shown in Figure 7. Within each figure,
altitude and speed are plotted against each data entry time
stamp. The colors black, green, blue, and orange are the
labels for ground, climb, cruise, and descent accordingly.
The red color represents an un-identifiable state due to the
incorrectness of data in related time window. The segmentation
method shows promising results with the fuzzy logic state
estimator.

For those red data points, a simple heuristic method can
be used to determine their phase state based on the state of
the closest neighbor. Sets A and N represent data with and
without labels respectively. Each stateless data point can be
labeled as:



PhN (j) = PhA

[
arg min

i
‖t(j)− t(i)‖

]
where, t is the time stamp and Ph is the flight phase label.

With this, a continuous flight trajectory data can be divided
into designated flight phases as we required, thus achieving
the goal of this paper. The output data are also stored in
the database with original data to be prepared for upcoming
research.

VI. DISCUSSION

The two-step process of flight extraction and phase segmen-
tation convert unstructured flight data into clusters of useful
subsets of data and enables the further research based on large
sets of ATM big data.

An operational system relies on a solid data storage infras-
tructure. In this paper, MongoDB has been selected as the
backend storage system due to its portability and availabil-
ity. However, more comprehensive data designs such as the
Apache Hadoop [19] system can also be used to maintain a
large amount of real time data with distributed servers.

One limitation of the segmentation process is that the system
currently is not able to separate flight data into further detailed
flight phases, such as taxing, take-off, landing, and initial
climbing/descending. For these, studies need to be conducted
using more deterministic approaches and possibly aggregating
other data sources, which goes beyond the scope of this paper.

The output data are being used in different ATM research
applications, such as aircraft performance modeling, air traffic
analysis and simulation, airspace capacity studies, and contin-
uous descent approach. Both tools and data created in this
research have been made public with flexible open-source
licenses [20].

VII. CONCLUSIONS

In this paper, a machine learning approach to handle
ATM flight data is presented. Multiple levels of methods
are designed to gather, extract, cluster, and segment large
amounts of loosely scattered data into useful continuous flight
segments. The system can operate with a large amount of ATM
data, which contains an unknown number of flights, aircraft
types, locations, and flight patterns. The core methods are
unsupervised machine learning (clustering) and fuzzy logic,
each solving a different level of the identification problem.
The input data are usually noisy, which means that filters
sometimes need to be applied beforehand.

The result of this processing system shows good promise in
handling ATM flight data. It has been implemented and used
daily for us to process data from ADS-B receivers. Due to the
built-in arbitrary conditions, it produces robust date output.

In upcoming research, the segmented flight results will
be used as bases of data to build medium to low fidelity

open aircraft performance models for the open-source BlueSky
ATM simulator.
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