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Topological approach to measure the recoverability of optical networks 
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Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, the Netherlands   
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A B S T R A C T   

Optical networks are vulnerable to failures due to targeted attacks or large-scale disasters. The recoverability of 
optical networks refers to the ability of an optical network to return to a desired performance level after suffering 
topological perturbations such as link failures. This paper proposes a general topological approach and recov
erability indicators to measure the network recoverability for optical networks for two recovery scenarios: 1) 
only the links which are damaged in the failure process can be recovered and 2) links can be established between 
any pair of nodes that have no link between them after the failure process. We use the robustness envelopes of 
realizations and the histograms of two recoverability indicators to illustrate the impact of the random failure and 
recovery processes on the network performance. By applying the average two-terminal reliability and the 
network efficiency as robustness metrics, we employ the proposed approach to assess 20 real-world optical 
networks. Numerical results validate that the network recoverability is coupled to the network topology, the 
robustness metric and the recovery strategy. We further show that a greedy recovery strategy could provide a 
near-optimal recovery performance for the robustness metrics. We investigate the sensitivity of network 
recoverability and find that the sensitivity of the recoverability indicators varies according to different robustness 
metrics and scenarios. We also find that assortativity has the strongest correlation with both recoverability 
indicators.   

1. Introduction 

High reliability and robustness in optical network backbones play an 
important role in successfully provisioning high service availability of 
the Internet and communication systems [1]. In optical networks, 
disaster-based failures and damages to optical fiber cables can partially 
overload data delivery, resulting in unavailability of communication 
services [2]. The causes for such massive failures include: human errors, 
malicious attacks, large-scale disasters, and environmental challenges 
[3]. Calculating the performance of networks under such challenges can 
provide significant insight into the potential damage they can incur, as 
well as provide a foundation for creating more robust infrastructure 
networks. 

Network robustness is interpreted as a measure of the response of the 
network to perturbations, or challenges, imposed on the network [4], 
which has been studied extensively in recent years. Van Mieghem et al. 
[4] propose a framework for computing topological network robustness 
by considering both a network topology and a service for which the 
network is designed. In communication networks, Cholda et al. [5] 
survey various robustness frameworks and present a general framework 

classification, while Pasic et al. [6] present the FRADIR framework that 
incorporates reliable network design, disaster failure modeling and 
protection routing. A wide range of metrics based on the underlying 
topology have been proposed to measure network robustness [7], and 
further a structural robustness comparison of several telecommunica
tion networks under random nodal removal is presented in Ref. [8]. 
Long et al. [9] propose using the maximum variation of the Weighted 
Spectrum (WS) to measure the survivability of networks to geographic 
correlated failures. For optical networks applications, Zhu et al. [10] 
investigate the control plane robustness in software-defined optical 
networks under different link cut attack scenarios and find that control 
plane enhancements in terms of controller addition do not necessarily 
yield linear improvements in control plane robustness but require 
tailored control plane design strategies. Ferdousi et al. [11] propose a 
rapid data-evacuation strategy to move maximum amounts of data from 
disaster regions using survived resources under strict time constraints 
for optical cloud networks. Xie et al. [12] come up with a robust and 
time-efficient algorithm to address the emergency backup in 
inter-datacenter networks with progressive disasters. 

The work mentioned above focus on measuring and improving the 
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ability of networks to withstand failures and attacks. However, the re
covery process after failures is not considered and the investigation on 
the ability of a network to recover from failures is lacking. In a broad 
sense, network robustness is also related to the ability of a network to 
return to a desired performance level after suffering malicious attacks 
and random failures [13]. We define such network capability as network 
recoverability1 in this paper. As shown in Fig. 1, recovery measures are 
taken in order to recover the function or performance of the optical 
network after the failure process, either by restoring the damaged links 
or by building new links. The network performance during this period is 
related to many factors, such as topology, recovery strategy, link adding 
sequence, etc. Thus, we need an approach to measure the recoverability 
of optical networks. 

Several recovery mechanisms have been investigated under different 
circumstances [14], particularly in complex networks applications. For 
example, Majdandzic et al. [15] model cascading failures and sponta
neous recovery as a stochastic contiguous spreading process and show 
the occurrence of a phase switching phenomenon. Chaoqi et al. [16] 
construct a dynamic repair model and systematically analyze the 
energy-transfer relationships between nodes in the repair process of the 
failure network. Recovery strategies based on centrality metrics of 
network elements (e.g., nodes or links) are investigated in Refs. [13,17], 
which show that a centrality metric-based strategy may not exist to 
improve all the network performance aspects simultaneously. 

In optical networks applications, Alenazi et al. [18] propose a heu
ristic algorithm that optimises a network by adding links to achieve a 
higher network resilience by maximising the algebraic connectivity 
while decreasing the total cost via selecting cost-efficient links. Natalino 
et al. [19] introduce two heuristics to upgrade Content Delivery Net
works (CDNs) and increase content accessibility under targeted link 
cuts. Hong et al. [20] propose a recovery strategy to recover the 
boundary of the failed nodes in interdependent networks during 
cascading failures. A progressive recovery approach [21], that consists 
in choosing the right sequence of links to be restored after a disaster in 
communication networks, proposes to maximize the weighted sum of 
the total flow over the entire process of recovery [22], as well as to 
minimize the total cost of repair under link capacity constraints [23]. 

Although the above papers [14–23] have contributed to a deep un

derstanding of recovery processes in networks, a general framework or 
methodology for quantifying the recovery capability of a real-world 
optical network is still lacking. In this paper, we propose a topological 
approach and two recoverability indicators to quantify the network 
recoverability for two different recovery scenarios, we will denote as 
Scenario A and Scenario B. The link-based Scenario A assumes that only 
the links which are damaged in the failure process can be recovered. For 
the energy-based Scenario B links can be established between any pair of 
nodes that have no link between them, after the failure process. 

The proposed approach involves three concepts: the network topol
ogy, the robustness metric and the recovery strategy. For an optical 
network G, we apply the average two-terminal reliability ATTR and the 
network efficiency EG as the robustness metrics for case studies. The 
average two-terminal reliability ATTR is defined as the probability that 
the service between a randomly chosen node pair in the network is 
available, which also expresses the level of difficulty to disconnect parts 
of the network. The network efficiency EG gives an indication of the 
efficiency of information exchange on networks under shortest path 
routing [24]. Besides a random recovery strategy and some strategies 
based on topological properties, we also consider a greedy recovery 
strategy. In the greedy strategy, the damaged element (a node or a link) 
which improves the network performance most has the highest priority 
to be recovered. Our approach is tested on 20 real-world optical net
works, and we verify that the proposed recoverability indicators allow 
us to compare the performance of different recovery strategies and 
assess the recoverability of different networks. 

The rest of this paper is organized as follows: Section 2 introduces the 
topological approach for measuring the network recoverability for the 
two considered recovery scenarios. Section 3 presents the main concepts 
in the evaluation of network recoverability. The experimental results are 
exhibited in Section 4. Section 5 discusses the sensitivity of the network 
recoverability on different robustness metric thresholds. Section 6 ana
lyzes the correlation of topological metrics with recoverability in
dicators. Section 7 concludes the paper. 

2. Topological approach for measuring network recoverability 

In this section, we introduce an approach for measuring the network 
recoverability for real-world optical networks for two recovery 
scenarios. 

2.1. R-value and challenges 

We inherit the framework and some definitions proposed for 
network robustness [4,25] and extend the methodology for the network 
recoverability. A given network determined by a service and an under
lying topology is translated into a mathematical object, defined as the 
R-value, on which computations can be performed [4]. The R-value 
takes the service into account and is normalized to the interval [0,1]. 
Here, R = 1 reflects complete functionality in a network without fail
ures, and R = 0 corresponds to the complete lack of functionality for a 
sufficiently degraded network. 

An elementary challenge is an event that changes the network and 
thus changes the R-value. We assume that an elementary changes take 
place one by one, and thus do not coincide in time. Considering link- 
based failures and targeted link cuts as common threats to optical 
infrastructure networks, we confine an elementary challenge to a link 
removal in a failure process or a link addition in a recovery process. 
Since every perturbation has an associated R-value, any realization of 
such a failure process, followed by a recovery process, consists of a 
number M of elementary challenges and hence can be described by a 
sequence of R-values denoted {R[k]}1≤k≤M, where k is the sequence 
number of elementary challenges. 

Fig. 1. Failure and recovery in the DFN (German optical backboneX- 
WiN network). 

1 Sometimes also called network restoration. 
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2.2. Link-based Scenario A: recovery of any alternative link 

Let MG0(N,L) denote the robustness metric value of the original 
network G0(N,L), with N nodes and L links. Assume that during the 
failure-recovery process, the resulting graph has L* links and is denoted 
by G(N, L*). We define the R-value RG as the normalized value of the 
robustness metric MG(N,L*), which satisfies 

RG =
MG(N,L*)

MG0(N,L)
(1) 

Thus, the R-value RG0 of the original network G0(N, L) equals 1. 
We assume failures in the network only consist of link removals in 

the network, according to a fixed strategy, such as random failure or 
targeted link cuts, which usually degrade the robustness of the network. 
We assume that links are damaged (removed) one by one, until we 
obtain a graph Gf, whose R-value RGf first reaches or drops below a 
constant ρ, where ρ ∈ [0, 1] is a prescribed R-threshold for the robustness 
metric. Usually this threshold is chosen in such a way that while the R- 
value is still above it, the service quality remains acceptable [4]. The 
above process is called the failure process. The number of failure chal
lenges, i.e., the number of damaged links in the failure process, is 
denoted by Kf. For the same network G0, the smaller the value of Kf, the 
more effective the failure process is in degrading the R-value [4]. 

Then we launch the recovery process from the remaining network 
Gf(N,L-Kf). Scenario A assumes that the recovery links can be established 
between any two nodes in the complement of the graph after failures. 
The process of one realization is illustrated in Fig. 2a. Specifically, we 
recover the network by adding links, one by one, to the damaged 
network Gf by a recovery strategy until the normalized robustness metric 
RG first reaches or excesses RGr = 1. The network after the recovery 
process is denoted by Gr(N,L-Kf+Kr), where Kr is the number of recovery 
challenges (i.e. the number of links that are added during the recovery 
process). For a given damaged network Gf, the smaller the value of Kr, 
the more effective the recovery process is. Ideally, the recovery process 
increases the R-value of the current network exactly to 1. However, the 
R-value RGr of the resulting network Gr(N,L-Kf+Kr) is mostly larger than 
1, since the robustness metric value of the resulting network Gr(N,L- 
Kf+Kr) is slightly larger than that of the original network G0(N, L) in 
most cases. 

We define the Link Ratio ηL as the ratio of the number of failure 
challenges Kf and the recovery challenges Kr, i.e., 

ηL(G, ρ)=Kf

Kr
(2)  

which indicates the efficiency of the recovery process in one realization. 
A Link Ratio ηL(G, ρ) > 1 implies that the network can be recovered by 
less challenges than the number Kf of failure challenges. Otherwise, the 
network is more difficult to recover than to destroy. 

Scenario A can characterize the recovery process in a connection 
oriented network with logical connections [26], e.g., a virtual circuit for 
transporting data or a wireless backhaul network, where the links in a 
logical network represent the duplex channel between two devices. For 
example, after channels are interrupted because of signal fading or 
blocking in a mobile network, one should establish several connections 
or reconfigure several new channels to maintain the network’s overall 
performance. Besides, Scenario A can also apply to the situation where 
network operator has the capability to build connections between any 
node pairs in the network. In this case, the overhead cost of the recovery 
measures mainly depends on the total number of dispatched connec
tions, which corresponds to the number Kr of recovery challenges in 
Scenario A. 

2.3. Energy-based Scenario B: recovery of failed links 

The failure process in Scenario B is the same as in Scenario A. In the 
recovery process in Scenario B, we restore one by one, all the links which 
were removed during the failure process, until the network is restored to 
its original topology. Scenario B can be used to describe recovery pro
cesses in the physical communication networks, e.g., optical backbone 
networks. In such networks, the recovery measure for each connection, 
e.g., repairing fiber optic cables, usually requires a relatively long 
period. During the recovery process, the network still provides services, 
albeit with a degraded performance. Thus, for this scenario, the network 
recoverability is related to the network performance (or the robustness 
metric) throughout the recovery process. 

One realization of the failure and recovery process is illustrated in 
Fig. 2b. In Scenario B, the number of failure challenges and the number 
of recovery challenges are the same, i.e., Kf = Kr, and hence, ηL = 1 in 
Eq. (2). Therefore, we propose another recoverability indicator for 
Scenario B. The robustness energy S(G,ρ) of a network G is the sum of the 

R-values during the failure process, i.e. S(G,ρ) =
∑Kf

k=0
R[k], and expresses 

the robustness performance of the network under successive failures 
[25]. Thus, the energy of failure challenges is computed by Sf (G, ρ) =
∑Kf

k=0
(1 − R[k]), which indicates the cumulative degradation of the 

network performance during the failure process. During the recovery 

Fig. 2. Illustration of the failure process and the recovery process in an Erdös-Rényi (ER) random graph G0.1(100) with link density p = 0.1 and network size N = 100 
in one realization. The R-threshold is ρ = 0.8. 
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process, the energy of the recovery challenges Sr(G, ρ) =
∑Kf

k=0
(R[k] − ρ)

represents the impact of the recovery process on the network perfor
mance. For Scenario B we define the Energy Ratio, denoted by ηE, as the 
ratio between the energy of the recovery challenges Sr and the energy of 
the failure challenges Sf, in each realization for a given R-threshold ρ: 

ηE(G, ρ)= Sr

Sf
(3) 

An Energy Ratio ηE(G, ρ) > 1 implies the benefit of recovery mea
sures can compensate the loss of network performance by the failures, 
which indicates a high network recovery capability. Conversely, an 
Energy Ratio ηE(G, ρ) < 1 implies a low recoverability. 

2.4. Comparison via envelopes and the recoverability indicators 

As we discussed in Section 2.1, the impact of any realization of 
failure and subsequent recovery process on the network’s functionality 
can be expressed as a sequence of R-values {R[k]}, where k is the 
sequence number of elementary challenges. To investigate the recov
erability of networks, we need to know the number of challenges needed 
to make the original R-value (which is normalized to 1) decrease to a 
predefined R-threshold ρ in the failure process and also the number of 
challenges needed to increase the R-threshold ρ to the original R-value. 
This confines us to investigate the number of challenges K as a function 
of a specific R-value r, i.e., {K[r]}. Thus, each value in {K[r]} is the 
number of challenges that is needed to change R-value to a specific R- 
value r for each realization. Considering that it is impossible to list all 
values of r between the R-threshold ρ and the original R-value, we evenly 
sampled H = 1000 different r values in the interval [ρ, 1]. Thus, rj = ρ+
(j− 1)(1− ρ)

H− 1 where j is the jth value of r. The envelope is constructed using all 
sequences {K[r]} for r ∈ {r1, r2,…, rH}. The boundaries of the envelope 
are given by the extreme number of challenges K 

Kmin[r] ∈ {min(K[r1]),min(K[r2]),…,min(K[rH ])} (4)  

Kmax[r] ∈ {max(K[r1]),max(K[r2]),…,max(K[rH ])} (5)  

which gives the best- and worst-case values of the robustness metrics for 
a network after a given number of recovery challenges. The expected 
number of challenges K leading to the topological approach rj is 

Kavg[r] ∈ {E(K[r1]),E(K[r2]),…,E(K[rH ])} (6) 

Since K[r] defines a probability density function (pdf), we are 
interested in the percentiles of K[r] 

Km%[r] ∈ {Km%[r1],Km%[r2],…,Km%[rH ]} (7)  

where Km%[r] are the points at which the cumulative distribution of K[r] 
crosses m

100, namely Km%[r] = t ⇔ Pr[K[r] ≤ t] = m
100. 

We apply the envelopes to present the behavior of the failure and 
recovery processes on a network [4,25]. The envelope profiles the pdf of 
the random variables of the number of challenges K, which is the 
probability of a random variable to fall within a particular region. The 
area of the envelope can be regarded as the variation of the robustness 
impact of a certain series of challenges, which quantifies the uncertainty 
or the amount of risk due to perturbations. 

We propose two recoverability indicators, the Link Ratio ηL(G, ρ) and 
the Energy Ratio ηE(G, ρ), for different scenarios, respectively. Since a 
failure process and a recovery process could be random under the 
random strategy, the recoverability indicators are random variables. We 
compare the recoverability of different networks by the average recov
erability indicators for simplicity. For example, the average Link Ratio 
E[ηL(G1, ρ)]>E[ηL(G2, ρ)] for two different networks G1 and G2 implies 
that the network G1 usually has a better recoverability than G2 in Sce
nario A for a given R-threshold ρ. 

Besides the average recoverability indicators, we are also concerned 
about the variance of the recoverability indicators Var[η(G,ρ)]. A smaller 
variance of the recoverability indicators Var[η(G, ρ)] implies a narrower 
uncertainty of the recoverability indicators, thus a better recoverability. 

3. Robustness metrics and recovery strategies 

In this section, we introduce the factors which determine specific 
recovery process, namely robustness metrics, recovery strategies and 
network topologies. 

3.1. Robustness metrics 

We use two metrics: the average two-terminal reliability ATTR and 
the network efficiency EG, as the robustness metrics. These two metrics 
are closely related to service availability and data delivery on optical 
networks.  

1) Average two-terminal reliability ATTR. In optical networks, the 
average two-terminal reliability (ATTR) can assess the resilience and 
vulnerability of a fiber infrastructure [27,28]. The metric is defined 
as the fraction of pairs of nodes with a path between them 

ATTR(G)=

∑
i∕=j∈G1exists a path between (i,j)

(
N
2

) (8)  

The ATTR measures the reachability fraction of any pair of nodes, 
but ignores the performance of the information exchange in a 
network. ATTR equals 1 when the network is fully connected; 
otherwise ATTR is the sum of the number of node pairs in every 
connected component, divided by the total number of node pairs in 
the network. At failure scenarios, the higher the average two- 
terminal reliability, the higher the robustness [8].  

2) Network efficiency EG. We assume that the hopcount h(i,j), i.e., the 
number of links in the shortest path from node i to j, indicates the 
overhead of data delivery from end to end. Thus, the reciprocal of the 
hopcount 1/h(i,j) implies the amount of packages for one unit 
overhead, which can be interpreted as the efficiency of data delivery 
between two nodes in optical networks. If there is no path from i to j, 
h(i,j) = ∞ and 1/h(i,j) = 0. The efficiency of a given network is 
defined as the mean of the reciprocals of all the hopcounts h(i,j) in a 
network, i.e., 

EG =

∑
i∕=j∈G1

/
h(i, j)

(
N
2

) (9)  

see [24]. Network efficiency EG quantifies the efficiency of infor
mation exchange across the whole network under shortest path 
routing [29], such as the data transmission between controllers and 
switches in software-defined optical networks. Network efficiency 
monotonically decreases with successive link removals. 

3.2. Failure and recovery strategies 

For simplicity and generality, we consider a random failure strategy. 
The random failure strategy implies that the failures occur indepen
dently on links randomly and uniformly, which is consistent with the 
random failure stage in a product life cycle. The R-value R[k] for a 
determined number of failure challenges k is a random variable. We 
consider three different strategies for recovery measures, i.e., random 
recovery, metric-based recovery and greedy recovery: 

P. Sun et al.                                                                                                                                                                                                                                      
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1) Random recovery: The random recovery strategy refers to the 
strategy that the links are added randomly and uniformly, one by 
one, during the recovery process, which can describe a self-repairing 
process after failures or recovery measures without scheduling.  

2) Metric-based recovery: The metric-based strategy determines the 
sequence of adding links by the topological or spectral metrics of 
links. While there are many relevant metrics, such as closeness and 
the effective resistance [30,31], we use three metric-based recovery 
strategies. The selection criteria of the link between nodes i and j for 
each strategy are illustrated as follows:  
(a) The minimum product of degrees didj. For each challenge in a 

recovery process, we select and restore the link l*ij with the 
minimum didj. If there are multiple node pairs with the same 
minimum product of degrees, one of these pairs is randomly 
chosen.  

(b) The minimum product (x1)i(x1)j of the ith and jth components of 
the eigenvector x1 belonging to the largest adjacency eigenvalue 
[32]. For each challenge in a recovery process, we restore the 
link l*ij with the minimum (x1)i(x1)j.  

(c) The maximum absolute difference Δy = max(
⃒
⃒
⃒yi − yj

⃒
⃒
⃒), where 

⃒
⃒
⃒yi − yj

⃒
⃒
⃒ is the absolute difference between the ith and jth com

ponents of the Fiedler vector y [33]. For each challenge in a re
covery process, we restore the link l*ij with the maximum Δy.  

3) Greedy recovery: The greedy recovery strategy involves adding the 
link l*max that makes the R-value increase the most in each challenge, 

l*max = argmaxl∈Gc R(G+ l) − R(G) (10)  

where Gc is the complement of the current network G. The greedy 
strategy is a practical and intuitive recovery strategy, where the 
current optimal link for improving the performance of the network 
has the priority to be recovered.  

4) Worst case recovery: The worst case recovery strategy involves 
adding the link l*min that makes the R-value increase the least in each 
challenge, 

l*min = argminl∈Gc R(G+ l) − R(G) (11)  

where Gc is the complement of the current network G. This strategy is 
supposed to be an inefficient recovery strategy, where each time the 
link that contributes the least to the restoration of the network, is 
recovered. 

3.3. Optical networks 

As a case study we select 20 real-world optical communication net
works. This set of networks was selected from the Internet Topology Zoo 
[34], covering optical backbone networks located in different regions of 
the world, see Table 1. 

The topological properties of the 20 real-world optical networks are 
described in Table 1: the number of nodes N and links L, the average 
degree E[D], the spectral radius λ1, the algebraic connectivity μN− 1, the 
diameter ϕ and the assortativity ρD. As shown in Table 1, the average 
degree E[D] of the 20 optical networks is less than 3. Most of the 20 
optical networks have a small value of the algebraic connectivity μN− 1. 
Besides, 18 out of 20 optical networks have a negative assortativity ρD, 
which signifies a preference of high-degree nodes to connect to other 
low-degree nodes [35]. 

4. Results and discussion 

In this section, detailed results and analysis on the real-world optical 
networks via the proposed approach for assessing network recover
ability are presented. For some evaluation items, we only present results 
for a specific network, i.e., US_Signal. We set the R-threshold as ρ = 0.8 
in the following simulations. The approach translates easily to other 
networks or other robustness metrics. 

4.1. Envelope examples and comparison 

Each realization of processes consists of a failure process and a 
following recovery process. Fig. 3 exemplifies the envelopes [25] of the 
challenges in US_Signal network for two scenarios and two robustness 
metrics, ATTR and EG, respectively, under the random recovery strategy. 
The envelopes for the failure processes are similar in different scenarios 
while link-based Scenario A usually needs more challenges to recover 
the robustness metrics than energy-based Scenario B, if the random re
covery strategy is employed. The total number of challenges Kf + Kr 
could cover a wide range of values since the number of challenges Kf +

Kr is influenced by two random processes (i.e., failure and recovery). 
Fig. 3a and c also illustrate that the R-value of the average number of 

challenges R[Kavg] for the robustness metric ATTR does not change 
smoothly with the number of challenges, in both the failure process and 
the recovery process, because only when a new component appears 
during the failure process or a component disappears during the re
covery process, the ATTR value changes. Furthermore, R[Kavg] for ATTR 
decreases slowly during the initial stage of failure process but increases 

Table 1 
Topological properties of the 20 real-world optical networks.  

Networks Location N L E[D] λ1  μN− 1  ϕ  ρD  

Funet Finland 26 30 2.31 2.71 0.12 9 − 0.31 
Intellifiber US 73 95 2.60 3.55 0.03 15 − 0.03 
ValleyNet US 39 51 2.62 3.42 0.03 16 0.10 
IowaNet US, Iowa 33 41 2.48 2.95 0.11 9 − 0.32 
LambdaNet Germany 42 46 2.19 2.53 0.04 13 − 0.48 
Ntelos US, Virginia 47 58 2.47 3.01 0.04 17 − 0.002 
PionierL1 Poland 36 41 2.28 2.73 0.08 11 − 0.30 
RoEduNet Romania 48 52 2.17 2.95 0.04 13 − 0.32 
Shentel US 28 35 2.50 3.14 0.05 13 0.32 
US_Signal US 61 78 2.56 2.89 0.04 14 − 0.23 
Darkstrand US 28 31 2.21 2.34 0.07 11 − 0.25 
Interoute Europe 110 146 2.67 3.34 0.03 17 − 0.20 
Missouri US, Missouri 67 83 2.48 3.09 0.04 14 − 0.07 
NetworkUSA US 35 39 2.23 2.63 0.08 10 − 0.13 
Oteglobe Europe 83 99 2.39 3.39 0.04 14 − 0.22 
Palmetto US, Carolina 45 64 2.84 3.36 0.07 12 − 0.15 
Sunet Sweden 26 32 2.46 2.77 0.08 12 − 0.42 
Switch Switzerland 74 92 2.49 3.43 0.04 13 − 0.37 
Syringa US 74 74 2.00 2.91 0.01 31 − 0.35 
VtlWavenet Europe 88 92 2.09 2.32 0.01 31 − 0.12  
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fast during the initial recovery process. For the robustness metric EG, the 
function R[Kavg] is slightly concave, illustrated in Fig. 3b and d. We will 
show that the concavity of the function R[Kavg] could help to explain the 
behavior of the recoverability indicators. 

4.2. Comparison of recovery strategies 

The envelope computation can be applied to compare the perfor
mance of different recovery strategies for a specific realization of fail
ures. Fig. 4 shows different recovery strategies (e.g., random, minimum 
didj, minimum (x1)i(x1)j, maximum Δy, worst case and greedy) for one 
realization of failure processes under random failure strategy in the 
US_Signal network. The envelope of recovery processes by random re
covery for the average two-terminal reliability ATTR covers a larger 
surface than that of the network efficiency EG. This implies that the 
average two-terminal reliability ATTR in different realizations could 
deviate more under the random recovery and that the performance of 
random recovery is more difficult to guarantee. The average challenge 
sequence {Kavg} under the random recovery can be a standard to 

evaluate the performance of other recovery strategies. As shown in 
Fig. 4a and c, the Fiedler vector-based strategy is comparable to the 
degree-based recovery in Scenario A and the eigenvector-based strategy 
in Scenario B, which outperforms the average random recovery. 

Fig. 4 also shows that none of the metric-based strategies, with 
minimum degree product, minimum eigenvector centrality product or 
maximum absolute difference between Fiedler vector components, can 
always outperform others for both robustness metrics in both scenarios. 
Fig. 4a and c exemplify that though the degree-based recovery performs 
well in link-based Scenario A for ATTR, it does not effectively recover 
the network in energy-based Scenario B. The eigenvector-based strategy 
outperforms the average behavior of the random strategy in the initial 
stage of recovery processes but degrades for more recovery challenges in 
Scenario A. As is shown in Fig. 4b and d, these three metric-based re
covery strategies are close to and even worse than the average random 
recovery. 

Meanwhile, we notice that the greedy recovery usually upper bounds 
the random recovery envelopes. The R-value as a function of the number 
of challenges k under the greedy strategy is concave in the recovery 

Fig. 3. Envelopes of the challenges for two scenarios and two robustness metrics (i.e., the average two-terminal reliability ATTR and the network efficiency EG) in 
US_Signal network, by random recovery strategy. Each envelope is based on 104 realizations. 
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process, which demonstrates the diminishing returns property of the 
recovery measures. The greedy recovery provides the most effective way 
to recover the performance for both robustness metrics, ATTR and EG, 
when compared with other listed recovery strategies. The worst case 
recovery strategy is usually beneath the random recovery envelopes. 
Among all recovery strategies, the greedy/worst case strategy performs 
the best/worst. In link-based Scenario A, both for ATTR and EG, the 
greedy recovery and the worst case recovery loosely bound the random 
recovery envelop, because there are much realizations, while envelopes 
generated by simulation cannot cover all these realizations. The greedy 
recovery and the worst case recovery tightly bound the random recovery 
envelop because the number of realizations in energy-based Scenario B 
is limited. 

4.3. Overview of the Link Ratio and the Energy Ratio 

We employ the proposed approach and the recoverability indicators 
η (including the Link Ratio ηL and the Energy Ratio ηE) to evaluate the 20 
real-world optical networks. Fig. 5 shows the recoverability indicators 
under two different scenarios, two robustness metrics and two recovery 

strategies for the 20 considered networks by violin plots. Violin plots are 
similar to box plots, except that they show the probability density of the 
ratios η at different values, which presents more insights about the ratios 
η under random circumstances. Moreover, violin plots can be applied to 
compare the performance of any two different strategies, in this case the 
random and the greedy strategy. 

Fig. 5 shows that almost all histograms of the ratio η, regardless of the 
scenarios, the strategies and the metrics, exhibit heavy-tailed distribu
tions, while the greedy strategy presents a heavier tail when compared 
with random recovery strategy. Also, the ratio η has a wider range of 
values under the greedy strategy, which implies the greedy strategy has 
a higher probability to lead to a large ratio η, as well as a better recovery 
performance. 

For both robustness metrics in Scenario A, Real7 (PionierL1) and 
Real8 (RoEduNet) have an average Link Ratio E[ηL] < 1 for the random 
strategy, which implies a relatively low recovery capability. By contrast, 
Real10 (US_Signal), Real16 (Palmetto) and Real17 (Sunet) have a large 
average Link Ratio E[ηL] > 1, which clearly outperform other networks, 
both for the random strategy and the greedy strategy. 

The Energy Ratio ηE exhibits other behaviors than the Link Ratio ηL in 

Fig. 4. Comparisons of different recovery strategies for one realization of failures in US_Signal network. Two scenarios and two robustness metrics (i.e., the average 
two-terminal reliability ATTR and the network efficiency EG) are applied. Each envelope is based on 104 realizations. 
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Fig. 5. Violin plots of the Link Ratio ηL in Scenario A and the Energy Ratio ηE in Scenario B. The average ratios x̃ = E[η] and the standard deviations s = E[η] are 
presented on the top of each subplot. The blue surface and values represent the random recovery strategy, and the red surface and values represent the greedy 
recovery strategy. The average ratios are marked as triangle markers. Each histogram of η is based on 104 realizations. For convenience, we use Real1 to Real20 to 
represent the 20 optical networks in Table 1. 
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Scenario A. The average Energy Ratios E[ηE] for the robustness metric 
ATTR are much larger than 1 under the random strategy, which can be 
explained by the fact that the function R[Kavg] decreases slowly during 
the initial stage of the failure process but increases fast during the initial 
recovery process (illustrated in Section 4.1). Thus, the energy Sr is much 
larger than Sf, i.e., the average Energy Ratios E[ηE] is much larger than 1 
for ATTR. Since the function R[Kavg] is concave for the robustness metric 
EG and thus the energy Sf < Sr, the average Energy Ratios E[ηE] for 
different networks are slightly larger than 1. The average Energy Ratio 
E[ηE] in Scenario B under the greedy strategy is usually located in the tail 
of the distribution of the Link Ratio ηL under the random strategy, which 
demonstrates that the greedy strategy can increase the recoverability of 
networks significantly. 

4.4. Relation between Scenario A and Scenario B 

To compare the recoverability between different networks, we 
employ so-called Scenario A-Scenario B plots, which show the Energy 

Ratio vs. the Link Ratio, under a given recovery strategy. Scenario A- 
Scenario B plots are divided into 4 quadrants, by the reference lines ηL =

1 and ηE = 1, in order to easily assess the recoverability by the location 
of the average ratios E[ηL] and E[ηE]. Fig. 6 shows the average ratios E[η]
and the standard deviations 

̅̅̅̅̅̅̅̅̅̅̅̅̅
Var[η]

√
for the real-world networks in 

Scenario A-Scenario B plots. 
Fig. 6a and b show that when the R-value is the average two-terminal 

reliability ATTR, the two recoverability ratios corresponding to two 
different scenarios have a positive correlation, e.g., a higher Link Ratio 
ηL in Scenario A typically leads to a higher Energy Ratio ηE in Scenario B, 
both for random recovery and greedy recovery. 

Compared with Fig. 6a and b, c and d show that when adopting the 
network efficiency as the R-value, the two recoverability ratios have a 
weak correlation, e.g., a higher Link Ratio ηL in Scenario A typically does 
not lead to a higher Energy Ratio ηE in Scenario B both for random re
covery and greedy recovery. This implies that the R-value influences the 
correlation between Scenario A and Scenario B. 

Fig. 6. Scenario A-Scenario B plots of the Link Ratio ηL and the Energy Ratio ηE for two robustness metrics (i.e., the average two-terminal reliability ATTR and the 
network efficiency EG) based on 20 optical networks. The solid markers represent the average ratios E[η], and the crosses indicate the value ranges [E[η] −

̅̅̅̅̅̅̅̅̅̅̅̅̅
Var[η]

√
,

E[η] +
̅̅̅̅̅̅̅̅̅̅̅̅̅
Var[η]

√
]. 
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Fig. 6 shows that all the average Energy Ratios E[ηE] are located in the 
first and the second quadrant, which demonstrates a good recoverability 
of tested networks in Scenario B. However, for the random recovery, the 
average Link Ratios E[ηL] of some networks are in the second quadrant, 
which suggests these networks have low recoverability in Scenario A. 

Both the average Link Ratio E[ηL] and the Energy Ratio E[ηE] can be 
increased by applying the greedy strategy, but the performance can be 
different. For example, the average Link Ratio E[ηL] of network Real14 
(NetworkUSA) is smaller than that of network Real11(Darkstrand) 
under the random strategy but larger than that of network Real11 under 
the greedy strategy, which implies that the performance of a recovery 
strategy strongly depends on the network topology. 

5. Sensitivity analysis of network recoverability 

In previous sections, the R-threshold was fixed at the value ρ = 0.8. 
In this section we investigate the influence of different R-thresholds on 
the Link Ratio ηL and the Energy Ratio ηE. Figs. 7 and 8 show the impact 
of different R-thresholds on recoverability indicators η for 4 optical 
networks, for the average two-terminal reliability ATTR and the network 
efficiency EG, respectively. 

We conclude from Fig. 7 that when the R-value is ATTR the 
following: 1) a larger R-threshold ρ dramatically increases the average 

Energy Ratio E[ηE] in Scenario B, emphasizing the importance of diag
nosing and recovering the network in the early period. 2) The average 
Link Ratio E[ηL] in Scenario A increases slightly with a larger R-threshold 
(i.e., a lower damage level). Thus, the average Energy Ratio E[ηE] in 
Scenario B is more sensitive than the average Link Ratio E[ηL] in Scenario 
A. 3) The increase of the two recoverability ratios, especially for the 
average Energy Ratio E[ηE] in Scenario B, can be explained by the cur
vature of the function R[Kavg] in the random failure process. As illus
trated in Fig. 3a and c, the function R[Kavg] is approximatively concave 
when the average number of challenges is small (corresponding to a high 
R-threshold). As the number of challenges increases in order to degrade 
the R-value to a lower R-threshold, the function R[Kavg] gradually be
comes more convex, which is in line with the results obtained in Ref. [8]. 
Thus, the Energy Ratio ηE, which equals the energy of recovery chal
lenges Sr divided by the energy of failure challenges Sf, tends to become 
larger as the R-threshold increases. 

Fig. 8 shows that when the R-value is the network efficiency EG we 
can conclude the following: 1) the average Energy Ratio E[ηE] and the 
average Link Ratio E[ηL] are not always monotonically changing as the R- 
threshold increases. Specifically, for networks Darkstrand and Funet, the 
average Link Ratio E[ηL] for the greedy recovery is slightly decreasing 
with a higher R-threshold, while for networks Shentel and US_Signal, the 
average Link Ratio E[ηL] is increasing when the R-threshold increases 

Fig. 7. The impact of thresholds on recoverability indicators for the average two-terminal reliability ATTR in 4 optical networks.  
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from 0.5 to 0.8. Nevertheless, the average Energy Ratio E[ηE] first in
creases and then decreases with the increment of the R-threshold, both 
for random recovery and greedy recovery, which may imply an optimal 
R-threshold for Scenario B exists. 2) Compared with Fig. 7, the average 
Energy Ratio E[ηE] in Scenario B for network efficiency is less sensitive 
than that for ATTR. This reveals that the sensitivity of recoverability 
indicators largely depends on the choice of the R-value. 3) For both 
average two-terminal reliability ATTR and network efficiency EG, the 
greedy recovery a better performance than random recovery, for 
different R-thresholds. Thus, we propose to use the greedy recovery 
strategy. 

6. Correlation of metrics with recoverability indicators 

In this section, we explore the correlation between recoverability 
indicators in the random recovery scenario and 10 widely studied 
network metrics: the average degree E[D], the spectral radius λ1, the 
diameter ϕ, the algebraic connectivity μN− 1, the assortativity ρD, the 
average hopcount E[H], the clustering coefficient cG, the ratio μ1/ μN− 1, 
the effective graph resistance rG and the global efficiency E[1/H]. Re
sults are shown in Tables 2 and 3, which are based on 200 optical 
backbone communication networks in the specialized database [34]. 

We use the Spearman’s rank correlation coefficient ρs [35] to 

evaluate the correlation between the recoverability indicators and the 
10 network metrics. The Spearman’s rank correlation coefficient ρs is 
less restrictive than the Pearson’s correlation coefficient ρp since the 
latter only estimates the linear correlation between two variables. The 
Spearman’s rank correlation coefficient ρs measures the strength and 

Fig. 8. The impact of thresholds on recoverability indicators for network efficiency EG in 4 optical networks.  

Table 2 
The Spearman’s rank correlation coefficient ρs between 10 network metrics and 
the two recoverability indicators. The R-value considered here is the average 
two-terminal reliability ATTR. Results are based on 200 real-world optical 
networks.  

Metrics ρs for E[ηL] ρs for E[ηE]

Average degree E[D] 0.5119 0.4784 
Spectral radius λ1  − 0.4045 − 0.4223 
Diameter ϕ  0.1534 0.3239 
Algebraic connectivity μN− 1  0.1580 − 0.0168 
Assortativity ρD  0.5460 0.5912 
Average hopcount E[H] 0.0353 0.2326 
Clustering coefficient cG 0.3534 0.2616 
Ratio μ1/μN− 1  − 0.4783 − 0.2831 
Effective graph resistance rG − 0.5246 − 0.2766 
Global efficiency E[1/H] 0.1552 − 0.0764  
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direction of monotonic association between two variables X and Y, i.e., 

ρs(X,Y)= ρp(FX(X),FY(Y))=
Cov[FX(X),FY(Y)]

σFX (X)σFY (Y)
, (12)  

where FX(X) and FY(Y) are the probability distribution of the variable X 
and Y, respectively. ρp(FX(X), FY(Y)) is the Pearson’s correlation coeffi
cient between FX(X) and FY(Y). 

Table 2 illustrates the Spearman’s rank correlation coefficient ρs 
between the 10 network metrics and the two recoverability indicators, 
when the R-value is the average two-terminal reliability ATTR. As shown 
in Table 2, assortativity ρD has the strongest positive correlation with 
both the average Link Ratio E[ηL] and the average Energy Ratio E[ηE]. Out 
of the 200 optical networks, 175 networks have negative assortativity, 
which suggests that a negative assortativity value close to 0 corresponds 
to a large average Link Ratio E[ηL] and Energy Ratio E[ηE]. The average 
hopcount E[H] has the weakest correlation with the average Link Ratio 
E[ηL], while the algebraic connectivity μN− 1 has the weakest correlation 
with the average Energy Ratio E[ηE]. In addition, the effective graph 
resistance rG has a relatively strong negative correlation for the average 
Link Ratio E[ηL]. 

Table 3 illustrates the Spearman’s rank correlation coefficient ρs 
between the 10 network metrics and the two recoverability indicators, 
where the R-value is the network efficiency EG. Assortativity ρD still has 
the strongest positive correlation with both the average Link Ratio E[ηL]

and the average Energy Ratio E[ηE]. Since the assortativity ρD of most 
backbone networks (175 out of 200) is negative, this finding suggests 
that optical networks with an assortativity value closer to 0 has a higher 
recoverability for random recovery. The average degree E[D] also has a 
relatively strong correlation with the average Energy Ratio E[ηE], sug
gesting denser network may have a better recoverability. Furthermore, 
the effective graph resistance rG has the weakest correlation with the 
average Link Ratio E[ηL], while the algebraic connectivity μN− 1 still has 
the weakest correlation with the average Energy Ratio E[ηE]. 

7. Conclusion 

This paper proposes a topological approach for evaluating the 
network recoverability in two scenarios, the link-based Scenario A and 
the energy-based Scenario B. We assess the recoverability of 20 real- 
world optical networks for two robustness metrics: the average two- 
terminal reliability and the network efficiency. All the optical net
works have a healthy recovery capability in Scenario B under the 
random recovery strategy, i.e., the average Energy Ratio E[ηE] > 1, while 
two of the networks (PionierL1 and RoEduNet) suggest topological im
provements for the recoverability in Scenario A, i.e., the average Link 
Ratio E[ηL] < 1. The performance of the recoverability in Scenario B can 
be explained by the concavity of the R-value as a function of the number 
of challenges. There is also a strong correlation between the network 
recoverability and the recovery strategy. The greedy recovery strategy 

exhibits a good performance for the investigated robustness metrics and 
thus improves the network recoverability. The network efficiency is less 
sensitive to different R-value thresholds while the Energy Ratio E[ηE] for 
the average two-terminal reliability increases significantly with 
increasing thresholds in Scenario B. The assortativity has the strongest 
correlation with the average Link Ratio and the average Energy Ratio, 
when the robustness metric is either the average two-terminal reliability 
or the network efficiency. 
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