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Summary

Subject and main objective

During the lifetime of ships and offshore platforms, they can be subject to harsh
climate - wind, waves and currents. Currents can be wind-driven, induced by wave
breaking or originate from tides. They impose a mean load on marine structures. In
heavy storms, time-varying wave loads add to the current loads. Waves and structure
motions can become so large that solid amounts of sea water, called ’green water’,
flow over the deck of ships and platforms, threatening their safety and operability.
The development of our numerical method has focused on wave loads thus far, with
a particular interest in green water flow. This thesis intends to add current loading
to our simulations with waves.

In reality, the interaction between surface wave-current flow and numerous kinds
of man-made maritime structures is local but embedded in a domain with the size
of a sea. Detailed simulations of the vast domain are computationally unfeasible.
Therefore, artificial boundaries are introduced to truncate the large domain so as
to obtain a small domain around the structure of interest. These artificial bound-
aries can produce reflections which obscure the flow information from true reflectors.
To eliminate the reflections from artificial boundaries, this thesis proposes absorbing
boundary conditions (ABCs). The novelty is that ABCs for free surface waves in a
detailed numerical model with a resolved vertical direction are derived in the presence
of nonzero mean flow.

A ship at forward speed in waves can be simulated with the ship at zero forward
speed in both waves and a uniform current with the magnitude of the forward ve-
locity. An important insight of this thesis has been that with absorbing boundary
conditions for waves and currents also ships at forward speed can be simulated. This
thesis contains the first validated simulation of a ship at forward speed free to move
in heave and pitch through irregular waves in our method.

Numerical method

The used solver is based on ComFLOW, which is a Navier-Stokes solver (Duz (2015),
van der Heiden (2019), van der Plas (2017), Wellens (2012)). A finite volume dis-
cretization on Cartesian grids has been adopted for the derivation of the numerical
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method. The matrix of discrete convective terms is skew-symmetric and that of
diffusive terms is symmetric negative definite. Forward Euler time discretization is
applied, in which the pressure term is evaluated implicitly. Substitution of the dis-
crete momentum equation in the discrete continuity equation results in a pressure
Poisson equation. With the inclusion of the discrete absorbing boundary condition
with currents, additional terms are added to the Poisson equation, which is solved
iteratively by means of BiCGSTAB combined with an Incomplete Lower-Upper pre-
conditioner (ILU).

The free surface is advected by means of an improved Volume of Fluid algorithm,
consisting of a local height function that can reduce mass loss, flotsam and jetsam.
The local height function fluxes the fluid in the way of aggregating the fluid in a stencil
of three cells in each spatial direction. Geometries move through the fixed Cartesian
grid, with their position described in a cut-cell fashion by edge and volume apertures.
The object is then represented by the apertures, through which liquid cannot pass.
The object movements through the grid are enabled by tracking the apertures changes
over time. Prescribed movements are possible. It is also possible to determine the
body movements, which are subject to the forces exerted by the fluid on it, by solving
the equations of the body motion. The combined system of ships and fluid is solved
by a quasi-simultaneous coupling method which makes use of an interaction law.

Absorbing boundary conditions for waves on top of currents

Reflections of waves and currents from the domain boundaries can violate the field
solution inside the domain. Certain measures should be taken to prevent this distur-
bance. Damping zones are often used near domain boundaries to dissipate the wave
energy. They usually take up a large proportion of the total computational resources
in the simulations, while local absorbing boundary conditions can be more efficient,
see Duz (2015), Wellens (2012). In this thesis, a local absorbing boundary condition
for long-crested irregular waves on top of a current is derived and investigated.

The Sommerfeld conditions including the effect of currents in this work were inspired
by the factorization of the planar wave equation including currents. They absorb
plane waves in currents according to the direction in which the waves propagate with
currents. For a regular wave, its propagation direction is known and thus can be
used as a criterion for the design of the boundary condition. In the case of waves
from more than one direction, the maximum reflection coefficients are used for the
choice of the absorption direction. Multiplication of two absorption operators gives
the opportunity to account for multi-directional waves.

The absorbing boundary conditions in this work are obtained from an approximation
of the dispersion relation, which is accurate within a range of wave numbers. Second-
order vertical derivatives of the solution variables along the boundary estimate the
wave number in the dispersion relation. The discretized absorbing boundary condi-
tions can be combined with the discrete momentum equation inside the domain and
the pressure Poisson equation.
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Verification study

The first-order Sommerfeld condition (S-1), generating and absorbing boundary condi-
tion (GABC-1) and second-order absorbing boundary condition (ABC-2), all includ-
ing the effect of uniform currents, are verified by means of combined wave-current
simulations.

Firstly, with regular waves on top of currents, the performance of the boundary condi-
tions S-1 and GABC-1 are assessed. Six currents: three following and three opposing
ones, are accounted for. For each current, 25 monochromatic waves, varying from
small amplitude waves to mildly steep waves, are applied.

For each current, the simulated surface elevations for four waves, varying from small
amplitude waves to mildly steep waves at the inflow boundary are compared to the
input waves first. Subsequently, numerical surface elevations for the above four waves
at four positions in the domain, from near the inflow boundary to near the outflow
end, are shown. Lastly, the numerical reflection coefficients, defined as the ratio of
the reflected wave amplitude and the outgoing wave amplitude, are presented in com-
parison with theoretical values.

For all the following current velocities: U = 0.5 m/s, U = 1.0 m/s and U = 2.0 m/s,
and the opposing currents: U = −0.5 m/s and U = −1.0 m/s in the water depth of
10 m, the simulated reflection coefficients match well with the theory. However, for
a larger opposing current U = −2.0 m/s, the reflections for input waves with the kh
values larger than 2.4, are hardly observed due to excessive dissipation.

A JONSWAP wave spectrum, with the peak period of 6 s and significant wave height
of 2 m, is used to further test the boundary condition GABC-1. Two currents: one
following and one opposing, are imposed. In each test, the numerical input spectrum
was first compared with the theoretical spectrum, followed by the comparison of the
reflection coefficients for the entire spectrum. The simulated reflections in the case
of the following current are less than 3% in the entire spectrum. On the whole, they
are smaller than the theoretical results. In the presence of the opposing current, the
numerical reflection coefficients for shorter waves are larger than theory.

As the last example for the verification, a test of an oscillating sphere on top of cur-
rents is utilized to observe the performance of the second-order boundary condition
ABC-2 with currents. It is an interesting test because all directions between waves
and currents are contained in one simulation. This allows us to assess our bound-
ary condition in a three dimensional domain. The lengths of the waves radiated by
the vertically oscillating sphere in different directions, especially in the direction of
following currents, normal currents and opposing currents, are extracted from the
simulations and compared with the theory. The ratios of wave amplitudes at differ-
ent radii in these three directions are also compared to theoretical values. From the
observations, the boundary condition performs well on fine grids.
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Validation study

Experimental tests with a scale model of a Wigley hull at forward speed in both
regular and irregular waves were performed in the towing tank at Delft University of
Technology. The heave and pitch motions of the Wigley hull were measured with two
vertical position gauges, located half a meter away from the center of gravity of the
model. The other four DoF were kept restrained during the experiments.

In ComFLOW simulations, the same Wigley was used. The width and water depth of
the computational domain were specified as same as in the experiment. A grid study
was first carried out to obtain sufficient grid resolution for representing the waves at
the position where the ship was supposed to be, followed by a sensitivity study to
investigate how close the inflow and outflow boundaries can be placed around the
structure. For the cases of two regular waves, the positions of the inflow and out-
flow boundaries were positioned at 2.5 and 1.67 times of the ship’s length away from
the center of the hull, respectively. Input waves in the simulations were generated
with linear wave theory. For the cases of the Wigley hull moving in regular waves,
the generating and absorbing boundary conditions with currents derived in this work
were applied at both the inflow and outflow boundaries of the domain, while in the
test of irregular waves, absorbing boundary conditions with currents were used at the
outflow boundary. For all simulations, the resulting heave and pitch motions of the
hull agree well with the experiments.

Based on the validated wave and ship motions, an application of green water im-
pact on the deck of the Wigley hull in extreme waves was investigated. In these
simulations, the waves were obtained by scaling the amplitudes of the wave compo-
nents in the experiment by a factor of 6. Time histories of the surface elevations
at different locations on the deck were presented, as well as the pressure signals at
different positions. With the method being validated for milder waves, the applica-
tion demonstrated how the numerical method can be used as a first-principle-based
extrapolation to more extreme waves.

On the whole, the validation study in this work proved that the extended bound-
ary condition GABC-1 including the effect of currents can be applied efficiently in
the application of the structure at forward speed in long-crested waves.



Samenvatting

Onderwerp en doel en het onderzoek

Tijdens de levensduur van schepen en offshore constructies worden ze blootgesteld
aan ruwe weerscondities met wind, golven en stroming. Stroming kan door de wind
zijn aangedreven, door golfbreken worden veroorzaakt of het gevolg zijn van het
getij. Stromingen oefenen een gemiddelde belasting uit op constructies in de zee.
In zware stormen komen daar tijdsvari erende belastingen bij. De golven, en de be-
wegingen van de constructie kunnen zo hoog worden dat hoeveelheden water op het
dek terecht komen. Dit noemt men ”groen water” op het dek, en dit kan de veiligheid
en inzetbaarheid van het schip in gevaar brengen. De ontwikkeling van onze nu-
merieke methode heeft zich tot nu gericht op golfbelastingen, en dan in het bijzonder
groen-waterbelastingen. Met dit proefschrift willen we het mogelijk maken stroming
toe te voegen aan onze simulaties met golven.

Voor een constructie op zee is de interactie met golven en stroming weliswaar een
lokaal proces nabij de constructie, maar dit proces is afhankelijk van wat er in de
hele zee gebeurt omdat golven zich over grote afstanden verplaatsen. Het is niet mo-
gelijk om de hele zee te simuleren met het door ons gewenste detailniveau. Daarom
simuleren we in een domein dat net voldoende groot is om de constructie in te laten
passen. Zo’n rekendomein heeft domeinwanden of -randen en als we niets speciaals
doen bij deze randen, dan worden alle golven daar gereflecteerd alsof door een muur.
De golfreflectie van randen is niet zoals het in werkelijkheid is op zee en verstoort de
golfinteractie met de constructie zoals deze zou moeten zijn. Om dergelijke golfreflec-
tie te voorkomen, worden in dit proefschrift absorberende randvoorwaarden afgeleid.
De vernieuwende bijdrage is dat er nu absorberende randvoorwaarden zijn voor de
simulatie van golven in het vrije vloeistofoppervlak met een gedetailleerd numeriek
model in aanwezigheid van stroming met een snelheid die niet nul is. De verticale
richting wordt in dit model volledig opgelost.

Een ship met voorwaartse snelheid in golven kan worden gesimuleerd door het schip
stil te houden en een combinatie van golven en stroming op te leggen, met de grootte
van de stroomsnelheid gelijk aan de voorwaartse snelheid die we proberen te simuleren.
Een belangrijk inzicht dat tijdens het samenstellen van dit proefschrift ontstond was
dat de absorberende randvoorwaarden voor golven en stroming dus ook voor schepen
met voorwaartse snelheid kunnen worden gebruikt. Dit proefschrift bevat de eerste
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gevalideerde simulatie van een schip met voorwaartse snelheid in onregelmatige gol-
ven, waarbij het schip vrij kon dompen en stampen.

Numerieke methode

ComFLOW is een numerieke oplosmethode voor de Navier-Stokes-vergelijkingen. Er
wordt een eindige-volumediscretisatie van de vergelijkingen gebruikt op een vast,
cartesisch rooster. Een belangrijk kenmerk van de discretisatie is dat de matrix van de
discrete convectieve term scheefsymmetrisch is en dat de matrix van de diffusieve term
symmetrisch is en negatief-definiet, net zoals de termen in de continue modelvergeli-
jkingen. Euler Voorwaarts wordt gebruikt als tijddiscretisatie van de impulsvergeli-
jking, waarbij de druk impliciet wordt geëvalueerd. Wanneer de impulsvergelijking
wordt gesubstitueerd in de continüıteitsvergelijking, dan levert dat een Poissonvergeli-
jking op voor de druk. De absorberende randvoorwaarden voor golven en stroming
uit dit proefschrift worden gecombineerd met de Poissonvergelijking, die vervolgens
iteratief wordt opgelost met een BiCGSTAB-methode met ILU preconditioner.

Het vrij oppervlak wordt verplaatst met een verbeterd Volume-of-Fluid (iVOF) al-
goritme met lokale hoogtefunctie, die verlies van massa beperkt en “flotsam and
jetsam”, kleine hoeveelheden vloeistof die niet meer door het algoritme worden ver-
plaatst, helpt voorkomen. De lokale hoogtefunctie werkt doordat het fluxen van
vloeistof gëıntegreerd wordt in een lokaal volume van 3x3x3 cellen in 3D rond de cel
waarin de flux bepaald wordt. Objecten snijden door het rooster door rand- en vol-
umeapertures te administreren waar vloeistof doorheen kan fluxen en waar vloeistof
zich kan bevinden. Het object is dan gerepresenteerd door het complement van de
apertures, waar vloeistof niet doorheen kan. Verplaatsingen van het object door het
rooster worden mogelijk gemaakt door veranderingen van de apertures in de tijd bij
te houden. Voorgeschreven bewegingen zijn mogelijk, maar het is ook mogelijk om de
verplaatsing van het lichaam onderhevig te laten zijn aan de krachten die de vloeistof
erop uitoefent door een bewegingsvergelijking voor het lichaam op te lossen. Om de
bewegingsvergelijking van het object efficiënt samen met de vloeistofbeweging op te
lossen wordt een zogenoemde Interactiewet gebruikt.

Absorberende randvoorwaarde voor golven en stroming

Als gezegd zullen golfreflecties van domeinwanden de simulatie van golfinteractie met
een object in het rekendomein verstoren. Deze verstoringen moeten worden gemit-
igeerd. Vaak worden dempingszones of numerieke stranden gebruikt om golfenergie
te dissipiëren. Dempingszones moeten groot zijn en nemen een groot deel van de
rekenkracht in beslag die nodig is om de simulatie uit te voeren. Lokale randvoor-
waarden zijn gedefinieerd op de rand die dichter bij het object gekozen kan worden,
en gebruiken daardoor minder rekenkracht dan dempingszones. Absorberende rand-
voorwaarden voor golven en stroming in één simulatie bestaan nog niet en daarom
worden ze in dit proefschrift afgeleid en onderzocht.

De Sommerfeld randvoorwaarden voor golven waarin het effect van een gemiddelde
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stroming is meegenomen zijn gëınspireerd op het factoriseren van de golfvergelijking
in een vlak met stroming. Deze zijn absorberend voor golven in stroming in de richt-
ing waarin de golven lopen. Voor regelmatige golven is de richting bekend en kan
dus meegenomen worden bij het opstellen van de randvoorwaarde. In situaties met
meerdere golfcomponenten, die ieder een eigen richting hebben, kan de richting van
de component met de hoogste energie onderdeel zijn van de randvoorwaarde. Als de
randvoorwaarde wordt vermenigvuldigd met nog een randvoorwaardeoperator, dan
kunnen meer richtingen ingesteld worden zodat daarmee een bereik wordt opgespan-
nen waartussen de reflectiecoëfficiënt als functie van golfrichting laag is.

Om het bereik van de randvoorwaarde als functie van het golfgetal (of, equivalent, golf-
frequentie) te vergroten wordt de Sommerfeld randvoorwaarde gecombineerd met een
Padé benadering van de dispersierelatie in termen van het golfgetal. De termen met
het golfgetal worden vervangen door tweede afgeleiden van de oplossingsgrootheden
langs de rand, zodat de randvoorwaarde niet meer afhankelijk is van een specifieke in-
voerwaarde voor het golfgetal. De randvoorde is nauwkeurig voor die golfgetallen waar
ook de benadering van de dispersierelatie nauwkeurig is. Na discretisatie wordt de
absorberende randvoorwaarde gecombineerd met de impulsvergelijking en toegevoegd
aan het stelsel met de Poissonvergelijking.

Verificatiestudie

Verschillende varianten van de absorberende randvoorwaarde met stroming zijn op
werkzaamheid getest in sommen met daarin zowel golven als stroming. De variant
Sommerfeld noemen we S-1 en is met name geschikt voor regelmatige golven met 1
dominant golfgetal. De variant met de benadering van de dispersierelatie noemen
we GABC-1; deze is nauwkeurig voor een bereik aan golfgetallen, dus voor meerdere
golfcomponenten met een verdeling van energie zoals in een golfspectrum. Tot slot is
er nog de variant met de extra randvoorwaarde operator, die nauwkeurig is voor een
bereik aan golfrichtingen en golfgetallen. Deze noemen we ABC-2.

Eerst hebben we S-1 en GABC-1 getest in sommen met regelmatige golven en verschil-
lende stroomsnelheden. Er zijn 6 waarden voor de uniforme stroomsnelheid gebruikt,
drie met de stroming in de richting van de golven, drie met tegenstroming. Bij iedere
stromingssituatie zijn 25 sommen gedaan met evenzoveel verschillende golfgetallen
om een goed beeld te krijgen van het volledige bereik. De steilheid was mild, om
niet-lineair gedrag van de regelmatige golven te beperken. In totaal zijn er in deze
test 150 sommen gedaan.

De gesimuleerde oppervlakteuitwijkingen in de test met regelmatige golven zijn vergeleken
met wat ze theoretisch zouden moeten zijn. Vervolgens zijn de oppervlakteuitwijkin-
gen op 4 locaties, dichtbij de inkomende rand en de uitgaande rand, gebruikt om
de amplitudes van de inkomende en gereflecteerde te bepalen. De verhouding van
gereflecteerde amplitude en inkomende amplitude definieert de reflectiecoëfficiënt. De
reflectiecoëfficiënt uit elk van de simulaties is bepaald en vergeleken met de theoretis-
che reflectie.
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Voor alle stroomsnelheden, behalve U = -2.0 m/s, komen de reflectiecoëfficiënten
in de regelmatige golfsimulaties goed overeen met theorie. Voor de situatie U = -2.0
m/s, voor waarden van het dimensieloze golfgetal kh groter dan 2.4, was het nauweli-
jks mogelijk om de reflectiecoëfficiënt te bepalen omdat er overdreven veel dissipatie
van de inkomende golf was. Het is nog niet duidelijk hoe dit veroorzaakt wordt en
dat moet worden onderzocht.

Voor een volgende test van de randvoorwaarde GABC-1 is een JONSWAP-golfspectrum
met piekperiode 6 s en significante golfhoogte 2 m gesimuleerd. In een simulatie was
een onderliggende stroming van 0.5 m/s met de golven mee gedefinieerd; in een andere
simulatie een tegenstroming van -0.5 m/s. Voor elke test is eerst het in de simulatie
verkregen golfspectrum vergeleken met het theoretisch golfspectrum. Vervolgens is
het reflectiespectrum bepaald dat door de randvoorwaarde veroorzaakt wordt. De
reflectiecoëfficiënt voor alle waarden van kh is verkregen door het gereflecteerd golf-
spectrum te delen door het inkomend golfspectrum en de wortel van de uitkomst te
bepalen. De gesimuleerde reflectiecoëfficiënt is iets lager dan de theoretische reflec-
tiecoëfficiënt.

Als laatste verificatie is een test uitgevoerd met een dompende boei in een stroming
om te onderzoeken hoe goed de ABC-2 met stroming werkt. Deze test is interessant
omdat alle hoeken tussen stroming en golven tegelijkertijd in dezelfde simulatie aan-
wezig zijn, en goed het effect van de hoek van de golfrichting met de domeinrand kan
worden onderzocht. De golflengte van de geradieerde golf is in elke richting anders. De
golflengtes in de verschillende richtingen zijn bepaald en vergeleken met de theoretis-
che waardes. Ook is de verhouding van de amplitudes als functie van de afstand tot
de boei bepaald. Golflengte en -amplitude komen goed overeen met theorie, waaruit
blijkt dat de randvoorwaarde ABC-2 het goed doet.

Validatiestudie

Experimenten zijn uitgevoerd in de kleine sleeptank in Delft voor een schaalmodel
van de Wigley rompvorm met voorwaartse snelheid in regelmatige en onregelmatige
golven. De golven zijn gegenereerd met een roterend golfschot aan een kant van de
tank. Aan de andere kant was een parabolisch strand gëınstalleerd om golfreflectie te
reduceren. Het schaalmodel, met een lengte van 3.0 m, lag initieel ver bij het golf-
schot vandaan. Na aanvang van de metingen werd het model door kopgolven gesleept.
Het dompen en stampen van de Wigley zijn gemeten met twee, in verticale richting
gëınstalleerde potmeters op 0.5 m afstand aan weerszijde van het zwaartepunt. Be-
wegingen van het model in andere vrijheidsgraden werden tegengehouden.

Met ComFLOW zijn simulaties uitgevoerd met hetzelfde model. De breedte en diepte
van het rekendomein kwamen overeen met de breedte en diepte van de sleeptank.
Eerst is onderzocht met een roosterverfijningsstudie welk rooster geschikt zou zijn
om de golven te representeren. Daarna is een gevoeligheidsstudie gedaan om te on-
derzoeken hoe dicht de domeinranden in longitudinale richting (x-richting) bij het



xv

model geplaatst konden worden. Uiteindelijk is gekozen om de inkomende golfrand
op 1.7 keer de scheepslengte, en de uitgaande golfrand op 2.5 keer de scheepslengte
bij de voor- en achterkant van het schip vandaan te leggen. De inkomende golven zijn
gegenereerd door gebruik te maken van lineaire golftheorie. Voor de regelmatige golf-
simulaties is de S-1 randvoorwaarde gebruikt. Voor de simulaties met onregelmatige
golven is de GABC-1 randvoorwaarde gebruikt. De simulaties voor de Wigley komen
goed overeen met de experimenten.

Met het gevalideerde rooster is een toepassing van groenwater met ComFLOW-
simulaties onderzocht. De golven in deze simulaties zijn verkregen door de ampli-
tudes van de golfcomponenten in het experiment te schalen met een factor 6. Als
uitvoer van de simulaties zijn waterstanden op het dek en de drukken op een con-
structie aan dek gegenereerd en gevisualiseerd. Deze toepassing is een voorbeeld van
hoe de numerieke methode gebruikt kan worden om, vanuit een gevalideerde situatie,
de modelvergelijkingen voor massa en impuls te gebruiken voor een extrapolatie naar
de meer extreme situaties waar ComFLOW voor gemaakt is.

Met de validatie en de toepassing voor groenwater kan gesteld worden dat de GABC-1
absorberende randvoorwaarde, inclusief het effect van stroming, goed toegepast kan
worden in simulaties van schepen met voorwaartse snelheid en golven.

De voornaamste conclusie van het hele proefschrift is dat de afgeleide en gëımplementeerde
absorberende randvoorwaarden voor golven in combinatie met stroming overeenkomen
met de theorie en dat daar praktische simulaties efficiënt mee kunnen worden uitgevo-
erd.
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Chapter 1

Introduction

Ships and offshore structures play important roles in the exploration, extraction and
production of oil and gas under the seabed. Offshore platforms can be fixed to the
ocean bottom in shallow water, such as jack up rings and concrete gravity platforms.
In deep water, floating systems are required. For example, a tension-leg platform
is moored through tethers or tendons. The semi-submersible unit is another type
of floating production system, which is usually moored by anchors with ropes and
chains, or is dynamically positioned using rotating thrusters.

During the lifetime of ships and offshore platforms, they can be subject to harsh
climate - wind, waves and currents. In heavy storms, waves and structure motions
can become so large that solid amounts of sea water, called ’green water’, flow over
the deck of ships and platforms, threatening their safety and operability. Waves and
currents can also exert loads on the mooring system and thus induce vortex shedding.
Modelling of wave loads on structures at sea is incomplete without currents and thus
the combination of currents and waves is an important aspect of simulating a real-
istic loading environment. Prediction of nonlinear forces exerted on the structures
demands that we consider the combination of waves and currents.

Computational fluid dynamics (CFD) has become more and more popular for re-
searchers to evaluate the performance of wave-current-structure interaction, with the
rapid development of high-performance computer hardwares. However, numerical
wave simulations become unrealistic if one does not make sure to prevent wave re-
flections from the computational domain boundaries. Damping zones are usually em-
ployed to dissipate wave energy, but this method requires large extra domain lengths
and thus extra computational efforts. As an alternative, an absorbing boundary con-
dition (ABC) is another way to prevent wave reflections, which forms the foundation
of this thesis.

This study fits within the framework of ComFLOW, which is a Navier-Stokes solver.
It can deal with breaking waves, green water on deck and wave-in-deck situations.
It has a long tradition dating back to 1995 and has been in continuous development
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from that moment until today, see Gerrits (2001), Fekken (2004), Kleefsman (2005),
Wemmenhove (2008), Wellens (2012), Duz (2015), van der Plas (2017) and van der
Heiden (2019).

Before this thesis, one could do either current simulations with ComFLOW, or wave
simulations, but not the combination. However, in reality waves and currents, for
instance those induced by tides, are always present together. Therefore, working on
absorbing boundary conditions for combined wave-current simulations is a next step
towards representing realistic wave and current conditions.

The main research topic of this thesis is the subject of the absorbing boundary con-
ditions for the numerical simulation of combined wave-current flows in truncated
domains for maritime applications. In this introductory chapter, the analytical, ex-
perimental and numerical contexts of the wave-current flows are presented.

1.1 Analytical study of wave-current interaction

An early analytical study of wave-current interaction was performed by Peregrine
and Jonsson (1983), in which a variety of aspects have been elaborated, including
how to account for the Doppler effect in the wave dispersion equation when currents
are present, refraction of waves by currents through the concept of wave action, wave
dissipation with the introduction of currents and wave breaking with the influence of
currents. The Doppler effect in the wave dispersion relation is going to be important
for absorbing boundary conditions in this work.

One of the interesting phenomena is wave blockage by opposing currents, where the
wave group velocity is smaller than the current speed. Wave blockage can occur in
regions such as estuaries. The opposing currents yield an increase in the wave steep-
ness, which may result in wave breaking. Since the wave field is changed drastically
over the blocking region, it is significant to know under which conditions wave block-
age will take place for coastal engineers. For more information on wave blockage, see
Chawla and Kirby (1998), Suastika (2004) and Onorato et al. (2011).

In addition, the tidal turbine is a favourable invention to covert the kinematic en-
ergy of tidal currents into electrical energy. Currents can be significantly changed by
the waves, which will influence the performance of tidal turbines, see Henriques et al.
(2014).

Since the uniform currents in this thesis have been fully sent into the computational
domain initially, we will not study the processes of wave blockage. Numerical simula-
tions of regular and long-crested irregular waves in the presence of opposing uniform
currents in truncated domains will be investigated, to verify our boundary conditions
at the inflow and outflow boundaries.

From the author’s knowledge, boundary conditions to infinity in the analytical study
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of wave-current flows are scarcely found in the literature. Since the present work does
not focus on the mechanism of how waves and currents influence each other, we refer
the readers to Lane et al. (2006) and Soulsby et al. (1993) for more insights.

1.2 Experimental study of wave-current interaction

There also exist experiments to investigate wave-current flows such as by Fernando
et al. (2014), Liu et al. (1992) and Swan et al. (2001). One difficulty in the ex-
periments is to obtain the desired current profile (uniform or sheared) by means of
pumps. Detailed measures in this literature are described below. They can basically
be categorised into two types: passive and active ones.

In a passive absorber, if there is effective absorption, reflections can be close to zero.
A beach is one of often-used passive absorbers to dissipate wave energy. For example,
a series of experiments have been performed by Liu et al. (1992), from direct obser-
vation of particles orbits using Particle Image Velocimetry (PIV) measurements, to
obtain the proper beach configuration.

Polyether foam can also be employed in the wave-current flume to damp the wave
motion. In the work of Swan et al. (2001), the front end of the foam has been cut to
form a vertical wedge with an angle of 30◦. The largest reflection coefficient within
the flume is measured to be less than 1% using this method of passive absorption.

Others, for example Fernando et al. (2014), use plywood walls coated with resins
to minimize the propagating wave resistance from the side walls. Besides, three lay-
ers of sandbags are randomly placed along the side walls to dissipate diffracted waves.
A porous slope made of crushed stones is adopted to absorb waves at the outflow end
of the basin. The reflection coefficient from the slope is controlled to be less than 6%.

In an experimental context, active absorption refers to the use of a wavemaker as
a moving boundary, in response to measurements of the surface elevation on the wave
board, to absorb waves impinging on it. It has been clearly stated by Wellens (2012)
that the accuracy obtained from active wave absorption is limited due to three main
reasons. First of all, the measurements of the surface elevation are influenced by the
motion of the wave board. Besides, evanescent wave modes near the board can disturb
measurements of the outgoing waves. The third reason is that long waves require a
long stroke, but the wave board has a limited stroke.

The advantages of employing an active absorption system in a physical wave basin
or flume can be found in the introduction of the software AUKEPC (see online) in
Deltares. Moreover, Hemming and Klopman (1985) reviewed the design requirements
for the active system.
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1.3 Numerical study of wave-current interaction

Numerical simulations play an important role in the study of wave-current interaction.
Similar to the experimental study, we will focus on how wave reflection is prevented
in the numerical simulations. The study of combined wave-current flow can find its
application in the area of ships at forward speed in waves, because one can keep the
domain boundaries close to the structures.

1.3.1 Prevention of wave reflection

A damping zone is most frequently used to dissipate wave energy in numerical simu-
lations. Different damping schemes are adopted in the literature.

Passive wave absorption For example, a gradually coarsen grid and an increas-
ing viscosity distribution have been employed by Teles et al. (2013) at the outflow
end of the computational domain, which results in a damping area of six wave lengths.

Another method is to modify the horizontal velocity in the wave making region and
outflow end of the domain with a dissipative coefficients, see Li and Lin (2015), for
the purpose of absorbing wave re-reflection from the input boundary and reflection
from the end wall. Some research such as Zhang et al. (2014) employs a damping
scheme on the vertical velocity at the in/outflow boundaries to avoid the reflection of
incident waves and inteference of inflow currents. In Park et al. (2001), an artificial
damping acting on both the horizontal and vertical velocities are added to the mo-
mentum equation.

In Wellens (2012), a pressure damping zone, in which an additional pressure pro-
portional to the vertical velocity at the free surface, is mentioned.

Analogous to a beach in the experimental basin, the vertical velocity and pressure
damping zones are more efficient for short wave components than for long wave com-
ponents, because the dissipation is proportional to the vertical velocity. The vertical
velocities in long waves are small, and thus long dissipation zones are required to
sufficiently prevent reflection.

Another often-used approach to dissipate waves is the use of relaxation zones. This
method has been employed by Park et al. (1999) and Choi and Yoon (2009), in which
momentum source terms are incorporated in the governing equations to dissipate
waves. Peric and Abdel-Maksoud (2015) discussed momentum source terms based on
linear and quadratic damping functions systematically. This paper investigated how
the damping functions work, on which factors the damping quality depends and how
reliable wave damping can be set up case-independently.

Boundary Element Method (BEM) is also used to investigate wave-current simu-
lations. For example, Koo and Kim (2007) applied a φ − n and η- type damping on
the free surface in front of the wave maker and end wall to prevent wave reflection.
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Active wave absorption The above mentioned approaches belong to passive ab-
sorbers. Active wave absorption can also be found in the wave-current simulations.
In Higuera et al. (2013) and Paolo et al. (2018), based on the shallow water theory
in the 2D case where the velocity along the vertical direction is constant, the relation
uh = cη can be derived. Here h and η are required to be measured. u is the horizontal
velocity, which is the variable to solve for. c denotes the wave phase speed and is esti-
mated as

√
gh. In order to cancel out reflected waves, the boundary must generate a

velocity equal to the incident one but in the opposite direction. Therefore, the active
wave absorption designed for the surface elevation of the reflected wave ηrefl can be
expressed as u = −

√
g
hηrefl. This is the correction value that is specified to a velocity

which is normal to the boundary. The reflected wave elevation ηrefl is determined
from subtracting the measured elevation at the wavemaker from the target one. This
approach is a static boundary and only for shallow water.

Later, Higuera et al. (2015) extended this active wave absorption to a moving bound-
ary in shallow water, where the equation u = −

√
g
hηrefl is expressed in differential

form: dX
dt = −

√
g
hηrefl. The correction displacement of the paddle can then be rep-

resented in terms of an integral from the start of the test to the current time. Further
on, the active wave absorption method was developed to consider any water depth by
applying the wave celerity c and horizontal velocity u in a different way. More details
can be found in the work of Higuera (2020).

PML and external method An alternative to damping zones can be Perfectly
Matched Layers (PMLs), see Berenger (1994). Unlike the above mentioned methods,
the PML requires an additional set of equations to be solved. Moreover, it is possible
to impose wave kinematics from external methods on the downstream side of the
computational domain. More details can be found in Wellens (2012).

As can be seen in these applications, the interaction between surface wave-current
flow and maritime structures is local but takes place in a vast domain. For improved
computational efficiency, artificial boundaries are introduced to truncate the large
domain so as to obtain a small domain around the object of interest. These artificial
boundaries can produce reflections that give unrealistic results inside the compu-
tational domain. To get rid of the reflections from artificial boundaries, absorbing
boundary conditions (ABCs) are desired, see Wellens and Borsboom (2020).

Absorbing boundary conditions (ABCs) While prescribing absorbing bound-
ary conditions for maritime applications, one has basically two main objectives. The
first is to let the outflow arriving at the boundary go without reflection, in a way that
is compatible with the mathematical and numerical methods inside the domain. The
second is to provide some additional knowledge on inflow.

In contrast to active wave absorption which responds to the reflected waves with a
control system, the method of ABCs acts as a type of passive operation to the waves
impinging on the boundaries. ABCs can be categorized into two types: global and
local ABCs. It has been discussed in Wellens (2012) that global absorbing boundary
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conditions are computationally undesirable, due to the requirement of storage of all
previous time steps and processing of all grid points at each time step. In addition,
it is also not clear how to add currents in the global ABCs. Therefore, attention
will be paid to local ABCs. The different perspectives to derive absorbing boundary
conditions are reviewed at the start of Chapter 3. No ABCs with currents have been
found that can readily be incorporated into the numerical model ComFLOW.

Here we highlight the requirements for the design of an ABC including uniform cur-
rents to be implemented in ComFLOW. Firstly, the computational cost to prevent
wave reflection in the presence of currents should be marginal compared to the re-
sources devoted to solve the solution field. Secondly, it should be feasible to locate
the domain boundaries close to the geometries of interest, which can save a lot of
computer memories than using damping zones. Thirdly, the stability of the equations
inside the domain should not be influenced by the ABC including uniform currents.

1.3.2 Advancing ships in head waves

A ship at constant speed in head waves can be simulated with the ship at zero forward
speed in both waves and a uniform current in the opposite direction of the ship. An
important insight of this thesis has been that with absorbing boundary conditions for
waves and currents also ships at a forward speed could be simulated. The experimen-
tal study in this thesis is on a Wigley hull moving at a forward speed in head waves
in the towing tank and is used to validate the simulation results.

Some research, for example by Journee (2007), Karim and Naz (2017) and Sherbin
and Kings (2018), focuses on the resistance analysis of a Wigley hull in waves, while
other efforts are devoted to the motions of a Wigley hull at forward speed in waves.
For instance, Dumitru (2016) pays attention to the simultaneous resonance case where
the external excitation period is near the pitch period. Sato et al. (1999) employs a
finite volume method, in the framework of a boundary-fitted grid system, together
with the marker-density-function to predict the motions of Wigley hull. A numerical
prediction of the motion response of a Wigley hull in long-crested irregular waves is
presented by means of the URANS-VOF method. More interesting for our applica-
tions is the green water problem on the deck of the Wigley hull, which can take place
with a sufficiently large wave, see Chen et al. (2020),

1.4 This research

The work involved in this thesis adds to the CFD program ComFLOW. The approach
in ComFLOW solves the Navier-Stokes equations which describe the conservation of
mass and momentum. The finite volume method on a fixed Cartesian grid is adopted
to discretize the governing equations. The structure geometry is described by means
of the cut-cell method. For the convection of the free surface, a Volume-of-Fluid
(VoF) method improved by a local height function is applied, which ensures the mass
conservation.
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The project ComFLOW started in the application of liquid sloshing in satellites in
zero-gravity circumstances, see Gerrits (2001), and moved to wave motion and hydro-
dynamic wave loading on offshore structures such as in the work of Fekken (2004) and
Kleefsman (2005). The research with maritime and offshore applications was later
organized as a joint industry project, headed by the Maritime Research Institute in
the Netherlands (MARIN).

Funded by the Dutch technology foundation STW, two PhD students have been em-
ployed to work on different aspects of the numerical method. One at the university of
Groningen is to develop an efficient numerical scheme for interactively moving bodies.
The other at Delft University of Technology works on the hydroelastic response. The
third one is funded by China Scholarship Council and her work is presented in this
thesis.

1.5 Outline

In Chapter 2, the mathematical model that describes the fluid flow is introduced, as
well as the discretization of the analytical equations in the numerical modeling. The
governing equations are concerned with the conservation of mass, the conservation of
momentum and the evolution of the free surface over time.

A detailed discussion on the absorbing boundary conditions (ABCs) accounting for
both waves and currents is presented in Chapter 3. Reflection coefficients are chosen
to verify the boundary condition. Therefore, theoretical reflection coefficients are de-
rived in an appendix to act as a reference.

The verification results of the ABC with current are included in Chapter 4. The
generating and absorbing boundary condition for long-crested dispersive waves with
current in this thesis is both accurate for sea states often found in marine environ-
ments, and practical to implement in ComFLOW.

Simulation results, validated by experiments, are shown in Chapter 5. The simu-
lations consider a Wigley hull at forward speed in both regular and irregular waves
in shallow water. In the experiment, measurements are taken of pitch and heave mo-
tions at the center of gravity (CoG) of the ship; the measurements are compared to
numerical results at the same locations. In addition, an application of green water
impact on the deck of the Wigley hull is demonstrated.

Lastly, to conclude the discussion, observations regarding the approaches and results
obtained from the application to ships at forward speed in waves are summarized in
Chapter 6, along with several statements with recommendations for future research.





Chapter 2

Mathematical and numerical
modeling

In this chapter, the mathematical and numerical models that describe fluid flow are
presented. The governing equations followed by boundary conditions imposed at
solid boundaries, free surface, inflow and outflow boundaries are described in the
first section. In subsequent sections, a finite volume discretization of the Navier-
Stokes equations on a staggered grid and time integration of the resulting discrete
system of equations are provided, as well as a brief introduction of the advection
and reconstruction of the free surface and the discrete boundary condition at the free
surface.

2.1 Mathematical modeling

A homogeneous continuum assumption is used for the fluid flow model. The Navier-
Stokes equations, derived from the conservation laws of mass and momentum, are
adopted to describe fluid flow in an arbitrary and fixed control volume Ω with bound-
ary Γ, see Fig. 2.1. A right-handed Cartesian coordinate system is adopted and the
axes are indicated by x = (x, y, z).

2.1.1 Governing equations

The governing equations, which are continuity and momentum equations, are formu-
lated in an integral way in this section, revealing its conservation character.

Continuity equation

The continuity equation, indicating that the rate of change of mass in a given con-
trol volume is equal to the net flow of mass into the same control volume across its
boundaries, is stated as follows:

9
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∫
Ω

∂ρ

∂t
dΩ +

∫
Γ

ρu · n dΓ = 0, (2.1)

where ρ is the density of the fluid, u = (u, v, w) represents the flow velocity in three
directions, and n denotes the normal vector pointing outwards of the control volume.

Figure 2.1: Arbitrary volume Ω with boundary Γ in a right-handed system

Momentum equation

The momentum equation in a similar control volume, derived from Newton’s sec-
ond law, states that the rate of increase of momentum of the volume equals the sum
of the forces acting on the same volume. It is given as follows:

∫
Ω

∂ρu

∂t
dΩ +

∫
Γ

ρuu · n dΓ +

∫
Γ

pn dΓ

−
∫

Γ

(µ(∇u +∇uT )− 2/3µ(∇ · u)I) · n dΓ−
∫

Ω

ρf dΩ = 0. (2.2)

Here the pressure is described by p and the dynamic viscosity is denoted by µ. I is
the unit tensor. The viscosity varies with temperature and less with ambient pres-
sure, but this dependency can be ignored in our applications. Thus, the viscosity is
regarded as constant in the remainder of this research.

The external force f is a body force acting on the fluid such as gravity:

f = (0, 0,−g)T , (2.3)

in which g is the gravitational acceleration.

In this work one-phase flow (water only) is considered, therefore, the continuity equa-
tion (2.1) and momentum equation (2.2) can be simplified. Since water is treated as
incompressible with constant density, we have ∂ρ/∂t = 0.
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Substituting the above relation in Eq. (2.1) and (2.2), the continuity and momentum
equation reduce to, respectively:

∫
Γ

u · n dΓ = 0 (2.4)∫
Ω

∂u

∂t
dΩ +

∫
Γ

uu · n dΓ +
1

ρ

∫
Γ

pn dΓ− ν
∫

Γ

n · ∇u dΓ−
∫

Ω

f dΩ = 0, (2.5)

where ν is the kinematic viscosity ν = µ/ρ. Because of incompressibility, it is not
required to solve a conservation law for energy in an additional equation.

Free surface equation

In our application, the interface between water and air is of great interest. This
interface is known as free surface. As the flow is considered incompressible, the evo-
lution of the free surface, S(x, t) = 0, in space and time satisfies:

∂S

∂t
+∇ · (uS) = 0. (2.6)

2.1.2 Boundary conditions

To obtain a solution to the system of partial differential equations describing fluid
flow, as shown in the previous section, boundary conditions are necessary. Now the
boundary conditions, imposed on various boundaries that may be encountered in a
domain, are explained.

Solid boundary

At solid boundaries, no-slip or free-slip conditions can be chosen. In the simulations
presented in this thesis, a free-slip condition has been adopted at the outer domain
walls, as it allows us to use a coarser computational grid near the outer walls. Along
the surface of the (moving) objects a no-slip condition u = ub has been chosen, where
ub is the velocity of the object. To resolve the resulting viscous boundary layer, the
grid has been locally refined. For more details about the local grid refinement, please
refer to van der Plas (2017).

Free surface

At the free surface, the normal and tangential forces are balanced and this is im-
posed by the following conditions:

µ(
∂un
∂τ

+
∂uτ
∂n

) = 0 (2.7)

−p+ 2µ
∂un
∂n

= −p0 + σκ, (2.8)
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Here the indices n and τ denote the normal and tangential direction, respectively.
The curvature of the free surface and surface tension are represented by κ and σ,
respectively, while p0 is the atmospheric pressure.

Inflow and outflow boundaries

The conditions applied at the inflow and outflow boundaries have already been de-
veloped in the ComFLOW project. They allow (only) waves to move into and out of
the computational domain simultaneously, which are called Generating and Absorb-
ing Boundary Conditions (GABC). These form the basis of this research. Here the
GABC will be briefly introduced, and the readers are referred to Wellens (2012), Duz
(2015) and Wellens and Borsboom (2020) for detailed implementation of the GABC
in ComFLOW. The GABC extended for both waves and currents, which is the main
topic of this research, will be derived in Chapter 3.

Since we are looking at the waves and the waves are well described by potential
theory, the inflow and outflow boundary conditions in this thesis are derived from
potential theory. The potential theory for waves is introduced as follows.

Potential theory In this work, a constant and uniform current U, independent of
position and time and propagating in the x-direction, is added into potential flow. The
concept of irrotationality allows for the introduction of a potential function φ, whose
spatial derivative yields the velocity in the direction of the derivative. Superimposing
undisturbed waves and currents, the following relation holds for the potential:

∇φ = ∇(φw + U · x) = uw + U = u, (2.9)

where φw and uw are the potential and velocity attributed to waves.

Many flow types may be considered as irrotational and the use of the potential leads
to a reduced set of equations that in some instances can be solved analytically for
these flow types. With the potential the continuity equation becomes:

∇2φ = 0. (2.10)

After substitution of the relation (2.9) into the momentum equation (2.2) and integra-
tion along the domain boundary, the momentum equation (2.2) becomes the unsteady
Bernoulli equation:

∂φ

∂t
+

1

2
| ∇φ |2 +

p

ρ
− F = C, (2.11)

in which F is the external force potential −gh at the free surface and C is an inte-
gration constant.

Absorbing boundary conditions In this discussion, it will be highlighted what is
considered to be important for the design of an absorbing boundary condition (ABC)
in ComFLOW. It has been clearly stated in the work of Wellens (2012):
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� The stability of the system of equations inside the domain should not be affected
by the ABC.

� The reflection caused by the ABC should not exceed 5 %. In practical simu-
lations, five percent reflection for wave components within the frequency band
where most of the wave energy resides in the spectrum is an acceptable level of
accuracy.

� The boundaries where the ABC is defined, are to be truly open boundaries, i.e.
transparent to incoming and outgoing waves simultaneously.

� The ABC has to absorb ship generated waves at the domain boundaries.

� The computational resources to prevent reflection should be marginal compared
to the computational effort to determine the solution itself.

� The ABC needs to be formulated on a rectangular, Cartesian grid domain.

In Chapter 3 we will work out these requirements in more detail.

Figure 2.2: Illustration of the local grid refinement in the simulation setup. For
visualization purposes the grid is depicted at a one time coarser resolution

2.2 Computational domain and grid

In ComFLOW the governing equations, including the continuity and momentum equa-
tions, for fluid flow are discretized on finite control volumes in the computational
domain. The domain Ω is rectangular. It is covered with a Cartesian grid, that is
fixed and structured. A hierarchical grid refinement procedure is implemented in the
program, in which grid cells are split in a set of smaller grid cells upon satisfying
a certain refinement criterion. The goal of local grid refinement is to concentrate
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grid nodes in those areas of the solution domain that are under-resolved in order to
increase the accuracy of the solution with as little effort as possible. Local grid re-
finement provides an efficient tool to capture more details around boundaries where
the solution has large gradients. Fig. 2.2 illustrates a setup of local grid refinement
in the simulation of a Wigley hull at forward speed in head waves, where local grid
refinement is applied around the hull. The reader is referred to van der Plas (2017)
for more details on local grid refinement.

The flow variables u = (u, v, w) and p are positioned in a grid cell using a stag-
gered grid arrangement. The velocity components are located at the face centers of
the grid cell while the pressure is defined at the center of the grid cell. The staggered
arrangement gets rid of an irregular checker-board pressure field that can be observed
in collocated grids, in which the velocities are defined at the same positions as the
scalar variables such as pressure.

A cut-cell approach, see Droge and Verstappen (2005), is adopted to represent imper-
meable structures within the domain, where the geometry intersects with the grid.
The intersection produces cells that are filled with both fluid and geometry simul-
taneously. In comparison with the staircase description of a geometry, the cut-cell
method is more accurate. In addition, it has the same flexibility as the boundary-
fitted unstructured grid. To explain the framework clearly, a typical cut-cell is shown
in Fig. 2.4. Part of the cut-cell is filled with water and the other part is occupied by
a section of the structure.

Figure 2.3: Labels identifying Empty cells, Surface cells, Fluid cells and Boundary
cells

The volume aperture F b represents the proportion of the cell volume ∆x∆z that is
open to flow. This implies that the volume aperture taken by the object is (1− F b).
Where the structure cuts through a cell face, the edge apertures Ax, Az (and Ay in
3D) are measures of the portion of the cell faces open to flow.

Based on the structure and the fluid configuration, the similar cells that call for
similar processing are identified through a labelling system. It is visualized in Fig.
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2.3. Cells are labelled in a distinct order. First, Empty cells that contain no fluid are
identified. Subsequently, the non-empty cells bordering the Empty cells are labeled
as Surface cells, which are thought to contain the free surface. Lastly, the remaining
cells are selected as Fluid cells which are neighbours to Surface and Fluid cells. The
ones that are completely occupied by the structure are labelled as Boundary cells.
The cell labelling process is carried out at each time step to update the labels across
the domain.

Figure 2.4: Representation of a cut-cell containing both the fluid and the structure.
It is also a control volume for the continuity equation.

2.3 Continuity equation

In this section, the continuity equation, as well as momentum equations later, will
only be discussed in 2D for clarity. In the control volume for the continuity equation,
see Fig. 2.4, the velocities are moved to the center of the part of the cell face open to
flow. The mass flux over the western cell face is Fw = uwA

x
w∆z. The same applies

to the eastern, northern and southern faces. By summing all flux contributions, the
continuity equation is discretized as follows:

(ueA
x
e − uwAxw − ub(1−Axw))∆z + (wnA

z
n − wsAzs − wb(1−Azs))∆x = 0. (2.12)

where ub and wb are the velocities of the moving object in x-and z-direction, respec-
tively.
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2.4 Momentum equation

The momentum equation for the incompressible flow is re-stated as follows:

∫
Ω

∂u

∂t
dΩ +

∮
Γ

u(u · n)dΓ− ν
∮

Γ

n · ∇udΓ +
1

ρ

∮
Γ

pndΓ−
∫

Ω

fdΩ = 0. (2.13)

To discretize the time derivative term in space on a staggered control volume, see Fig,
2.5, the midpoint rule is applied:∫

Ω

∂u

∂t
dΩ =

∂uc
∂t

F bw∆xw + F be∆xe
2

∆z. (2.14)

Figure 2.5: Control volume for the convective term

2.4.1 Convection

The convective term in the x-direction is:∮
Γ

u(u · n)dΓ. (2.15)

Note the distinction between the convected quantity u and the convecting mass flux
(u · n)dΓ.

For the discretization of the convection term, fluxes over the faces of the control
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volume in Fig. 2.5 have to be calculated. For the convecting mass flux at the western
face of the control volume:

Fmw =
1

2
(ucA

x
c + uwA

x
w)∆z. (2.16)

Taking the convected quantity u at the western face into account, the convective flux
over the western face of the control volume is obtained:

Fcw =
1

2
Fmw (uw + uc) +

1

2
α|Fmw |(uw − uc). (2.17)

When α = 0 a second-order central discretization is obtained, which is energy preserv-
ing, see Verstappen and Veldman (2003). When α = 1 a first-order upwind scheme is
applied by means of Eq. (2.17).

For brevity, the convective mass flux over the eastern, northern and southern faces of
the control volume will not be given in detail.

2.4.2 Diffusion

The discretization of the diffusion term is based on the work of van der Heiden (2019).
The diffusion term in the horizontal direction of the control volume of Fig. 2.5 is:

−ν
∮

Γ

n · ∇udS. (2.18)

The viscous stresses are discretised at the faces of the control volume.

In cut-cells the discretization of the diffusive term is not trivial, since boundary con-
ditions should be imposed at a position that is immersed in the grid cells.

In the 2-D situation, a boundary immersed in the cell is represented by a straight
line segment which is determined by the cell face apertures. The immersed boundary
makes the control volume not necessarily rectangular. Some typical deformation are
shown in Fig. 2.6 . As can be observed, the control volume extends over two cells.

2.4.3 viscous normal stress

The finite volume discretization of the diffusion term requires the evaluation of the
boundary integral at the right-hand side of Eq. (2.18).

Considering the situation on the right of Fig. 2.6 and applying Gauss’ divergence
theorem: ∫

Ω

∇ · udΩ =

∮
Γ

n · udS, (2.19)

to the western continuity cell Ωw yields the equality (compare (2.12)):
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Figure 2.6: Two typical examples of the momentum control volume in 2-D cut cells
.

(
∂u

∂x

∣∣∣
w

+
∂w

∂z

∣∣∣
w

)
|Ωw| = [Axcuc −Axwuw +Axnwwnw

+(Axw −Axc )ub −Aznwwb] ∆z. (2.20)

Then the discretization of the viscous normal stress ∂u
∂x can be obtained from the

above equation as:

∂u

∂x

∣∣∣
w

=
Axcuc −Axwuw + (Axw −Axc )ub

|Ωw|/∆zc
. (2.21)

The viscous normal stress contribution of the western and eastern cell faces to the
diffusion term in (2.18) can be calculated similar to the face integral for the pressure
balance (2.26). For convenience, we will explain this procedure in detail in the next
subsection, where it leads to the discretization of the pressure gradient (2.27). Here
we merely give the result as:∮

Γ

nx
∂u

∂x
dS = Axc

(
∂u

∂x

∣∣∣
e
− ∂u

∂x

∣∣∣
w

)
∆zc. (2.22)

2.4.4 Shear stress

The shear stress contribution at the right-hand side of Eq. (2.18) is described as:∮
Γ

nz
∂u

∂z
dS =

∂u

∂z

∣∣∣
n
∆Sn −

∂u

∂z

∣∣∣
s
∆Ss. (2.23)

The shear stresses are calculated at 1) the northern boundary where the shear stress
position coincides with a vertex of the grid cell, 2) the southern boundary where the
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control volume coincides with the immersed boundary. These are the only two possi-
bilities that can occur in a 2-D case.

The gradient at the northern face is evaluated as:

∂u

∂z

∣∣∣
n

=
un − uc

1
2 (Axc∆zc +Axn∆zn)

. (2.24)

The velocity gradient at the southern face is evaluated as:

∂u

∂z

∣∣∣
s

=
uc − ub
1
2A

x
c∆zc

. (2.25)

Additionally, the discretization of the shear stress requires a choice for ∆Sn (the
integration area in the northern part of the control volume) and ∆Ss (the southern
part of the control volume). The northern shear stress is integrated over ∆Sn =
1
2 (Aznw∆xw +Azne∆xe). The southern integration area ∆Ss = 1

2 (Azsw∆xw +Azse∆xe)
requires integration over the immersed boundary of the control volume. More details
have been discussed in Droge and Verstappen (2005) and van der Heiden (2019).

Figure 2.7: Control volume for the pressure term. pn is the pressure acting on the
segments 2, 7 and 8, and ps is exerting on the segment 3 and 4

2.4.5 Pressure

The pressure term in the z-direction needs to be summed over the faces of the control
volume in Fig. 2.7 as follows:∮

Γ

pnzdΓ =
∑
j

∮
j

pjnzjdΓ, (2.26)

in which −1/ρ is ignored and nz is the outward pointing normal of the north and
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south boundary of the control volume.

The pressure is assumed to be constant within a cell, p = ps holds for the faces
3, 4 and 5 while p = pn holds for 1, 2, 6, 7 and 8. It is observed that the faces 1, 5
and 6 do not give contribution to the integral since ny = 0 over them. Moreover, the
faces 2 and 8 cancel each other because they have the same pressure value but their
contributions ny dΓ = dx have opposite signs. Therefore, only the contributions of
the faces 3, 4 and 7 remain as follows:

∮
Γ

pnzdΓ =

∮
7

pnzdΓ +

∮
3+4

pnzdΓ =

∮
7

pdx+

∮
3+4

pdx = (pn − ps)Azc∆x, (2.27)

which depends on the open part of the central face of the control volume. The exact
position of the geometry does not have effects here.

The gravity term, which is the only external force in our applications, can be dis-
cretized similarly to the pressure. By means of Gauss’ theorem the volume integral
of the gravity term,

∫
Ω
−gdΩ, can be transformed to a surface integral along the

boundary of the control volume in Fig. 2.7:∫
Ω

−gdΩ =

∫
Ω

∇(−gz)dΩ =

∮
Γ

−gznxdΓ. (2.28)

Similar to (2.27), the integral of the gravity term over all the faces of the volume is
written eventually as:∮

Γ

−gznxdΓ ≈ −gAzc∆x(zn − zs) = −gAzc∆x∆z, (2.29)

where zn and zs represent the center positions of the northern and southern cells in
the z-direction.

2.5 Time Integration

The fluxes discussed above, including mass, convective, diffusion, pressure and gravity
fluxes, can be formulated as matrix coefficients multiplied by vectors containing the
discrete solution variables.

For the discrete continuity equation, the divergence matrix M can be described as:

Muh = 0, (2.30)

in which uh contains the discrete velocities.

For the terms in the discrete momentum equation, a convective matrix C, a diffu-
sive matrix D and a gradient matrix G are defined. The discrete momentum equation
can further be rewritten as:
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V ∂uh
∂t

= −C(uh)uh + νDuh −
1

ρ
Gph + fh, (2.31)

in which V is a diagonal matrix containing the control volume size, the notation C(uh)
shows that it is a nonlinear term, the vector ph contains the discrete pressure and fh
accounts for the discrete gravity. For the purpose of energy preservation, the pressure
forces should not contribute to the energy balance. Therefore, the discrete pressure
gradient G has to be related to the discrete mass equation, i.e. G = −MT .

The temporal discretization is accomplished by means of explicit forward Euler in
time. The velocities in the convective and diffusive terms are chosen at the old time
level tn, while in the continuity equation the velocities are selected at the new time
level tn+1 to make sure that the velocity field at this level is divergence free. Corre-
spondingly, the pressure has to be calculated at the new time level as well, due to the
incompressibility of fluid.

Adding the superscripts indicating the time level to the solution variables and em-
ploying the relation G = −MT , the equations are written as:

Mun+1
h = 0 (2.32)

V
un+1
h − unh

∆t
= −C(unh)unh + νDunh −

1

ρ
MTpn+1

h + fnh . (2.33)

An auxiliary vector ũh, containing the contributions of convection, diffusion and grav-
ity at the old time level, is introduced:

ũnh = unh − (C(unh)unh − νDunh − fnh ). (2.34)

With this auxiliary velocity ũh, the discrete momentum equation (2.33) becomes:

un+1
h = ũnh −∆tV−1 1

ρ
MTpn+1

h . (2.35)

Substitution of the momentum equation into the continuity equation and rearranging
terms result in a discrete Poisson equation for the pressure:

MV−1MT pn+1
h =

ρ

∆t
Mũnh. (2.36)

The pressure at the new time level pn+1
h in the above equation can be solved with a

linear solver. A Bi-CGSTAB solver with an incomplete LU preconditioner has been
adopted in this work. The solution pn+1

h in the system (2.36) is used to calculate the
velocities un+1

h from Eq. (2.35).



22 CHAPTER 2. MATHEMATICAL AND NUMERICAL MODELING

2.6 Stability

The evolution of the kinetic energy is employed to investigate the stability of spatial
discretization, see Verstappen and Veldman (2003). More details have also been dis-
cussed in Fekken (2004) and Kleefsman (2005).

The convective time integration stability for first-order upwind discretization on uncut
cells is satisfied by the CFL criterion, see Droge and Verstappen (2005):∣∣ u

∆x
+

v

∆y
+

w

∆z

∣∣∆t ≤ 1. (2.37)

The CFL condition should also be guaranteed in the propagation of waves, in which
the velocity is wave celerity.

The diffusive criterion on uncut cells can be met through:

2ν

(
1

∆x2
+

1

∆y2
+

1

∆z2

)
∆t ≤ 1. (2.38)

For all stability conditions mentioned above, the time step is automatically adjusted
to meet them in ComFLOW.

2.7 Interaction with a moving body

The interaction with a moving object is based on the work of Veldman et al. (2017,
2018). In our applications a Wigley hull is advancing in head waves. Its dynamics
have to be determined interactively with the wave dynamics. Therefore, coupling
conditions are required at their common interface (see Fig. 2.8), including the accel-
eration of the solid body u̇b and the integrated pressure force fΓ acting on the object.
Here the viscous stresses are neglected. The coupling conditions are formulated as:

u = ub and fΓ =

∫
Γ

pnb dΓ ≡ Bp, (2.39)

where B is a non-sparse matrix corresponding with the pressure integration over the
body.
The equations of fluid flow can be formulated in an abstract and simplified way as:

fΓ = −Mau̇b. (2.40)

Here Ma represents the so-called added mass operator, which describes the fluid re-
sponse to the acceleration of the structure. The term fΓ also contains a gravitational
force, but it is omitted for simplicity of presentation.

The dynamics of the structure are described as:

Mbu̇b = fΓ, (2.41)

in which Mb is the mass operator formed from a 6-DOF model.
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Quasi-simultaneous coupling In this work, the equations of fluid flow (2.40) and
the dynamics of the structure (2.41) are coupled in a quasi-simultaneous way, see
Veldman (1981, 2009). In this approach, the dynamics of the solid body is approxi-
mated and then solved simultaneously with the equations of fluid flow. In particular,

an approximation M̃−1
b of the inverse of the structural mass operator in Eq. (2.41)

is introduced, which is called interaction law. In the iterative process this interaction
law is employed as:

u̇newb − M̃−1
b fnewΓ = M−1

b foldΓ − M̃−1
b foldΓ Interaction law (2.42)

fnewΓ +Mau̇
new
b = 0. fluid (2.43)

In our implementation, the superscripts ·old and ·new correspond with the old time
level n and new time level n + 1, but they can also relate to (sub)iterations within
one time step.

The case M̃−1
b = 0 corresponds to the usual weak coupling process, which can be

written as:

fnewΓ = −MaM
−1
b foldΓ . (2.44)

From the mathematical perspective, these iterations converge if and only if the spec-
tral radius of the iteration matrix ρ(MaM

−1
b ) < 1. Physically, this means that the

solid body should be heavy enough compared to the fluid added mass. If it is not,
underrelaxation can help to achieve convergence, but this will require additional and
costly (sub)iterations.

In the quasi-simultaneous approach iterative process (2.42) and (2.43) can be con-
densed to:

(I +MaM̃
−1
b )fnewΓ = −Ma(Mb − M̃−1

b )foldΓ , (2.45)

Figure 2.8: Information exchange over the common interface Γ between fluid and
solid body in a partitioned way
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where I is the unit operator. In comparison with Eq. (2.44), the addition of the

approximate structure operator M̃−1
b makes the left-hand side ’larger’ and the right-

hand side ’smaller’, thus improving the convergence. If the interaction law is chosen
equal to the full structure operator M−1

b , the right-hand sides in Eq. (2.42) and (2.45)
vanish which makes the coupling process immediate.

Implementation Realizing that fΓ = Bp, the interaction law (2.42) is a relation
between the pressure p and the velocity ub over the structure surface. This relation
can be substituted into the boundary condition u = ub, which enters the divergence
expressionMu in Eq. (2.30). ThisM is the divergence operator from the continuity
equation, while the other M ’s in this section are mass matrices. It ends up with
the pressure Poisson equation (2.36) and thus forms a boundary condition for the
pressure. It can be shown that the Poisson equation keeps its favourable numerical
properties such that its iterative solution can proceed as before. More details are
given in Veldman et al. (2017, 2018).

2.8 Free surface

After the velocity and pressure field are calculated, the free surface will be displaced
by the Volume of Fluid (VoF) method. The VoF function is a discrete function with
values between 0 and 1 in each cell, indicating the fraction of the cell which is open to
fluid. The displacement of the free surface at each time step is performed according
to Eq. (2.6).

The VoF method was originally introduced by Hirt and Nichols (1981). The most
well-known drawback of the VoF method is the problem of flotsam and jetsam that
are small droplets of fluid disconnecting from the free surface. Another disadvantage
is that mass is not exactly conserved in the domain although in theory VoF is mass
conserving (in contrast to the level set method). Due to rounding off the VoF values
at the end of the displacement, water can be gained or lost. One way to prevent these
problems is the use of a local height function. More detailed information has been
given in Fekken (2004), Wellens (2012) and Duz (2015).

The original VoF method does not resolve the free surface explicitly. However, the
exact position of the free surface is important in our application and thus an appro-
priate reconstruction of the free surface is necessary. In ComFLOW, the piecewise
linear interface calculation (PLIC) approach is employed, such as in Fekken (2004)
and Duz (2015), in which the free surface orientation is not necessarily grid aligned.
It is a much better approximation of the free surface than the simple line interface
calculation (SLIC) method where the free surface is kept grid aligned, which leads to
the problem of flotsam and jetsam, see Kleefsman (2005) and Wellens (2012).
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2.8.1 Boundary conditions at the free surface

As shown above, governing equations for the fluid flow are discretized by means of nu-
merical approaches implemented in ComFLOW. To complete the stencil, conditions
at the boundaries of the domain need to be discretized as well.

In the applications presented in this thesis, the free slip condition is adopted at do-
main walls. At the (moving) boundaries of the structures, the no-slip condition, i.e.
u = ub, is applied. Therefore, velocities at faces between Boundary and Fluid cells
(FB) are set equal to the velocity of the object. Discretization of inflow and outflow
boundary conditions are discussed in detail in Chapter 3. Here a brief introduction
of the numerical boundary conditions for velocities and pressures at the free surface
is presented.

Figure 2.9: Calculation of EE velocity at the free surface

Figure 2.10: Calculation of the pressure for Surface cells at the free surface
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2.8.2 Discrete velocities at the free surface

As shown in Fig. 2.3, the velocities which are solved in the momentum equations are
located at the cell faces between two neighbouring cells, containing two Fluid cells
(FF), Fluid and Surface cells (FS), and two Surface cells (SS). Boundary conditions,
which are velocities between neighbouring Surface and Empty cells (SE) and two
Empty cells (EE) are required for the calculation of SS velocities.

SE velocities are obtained by constant or linear extrapolation from the velocities
inside the fluid. The comparison between these two extrapolation is investigated in
detail by Fekken (2004), Kleefsman (2005) and Wellens (2012).

EE velocities are calculated according to the balance of normal and tangential stress
at the free surface, as shown in Eq. (2.8). When the orientation of the free surface is
(almost) horizontal, SS and EE velocities are in x-direction and SE velocities are in
z-direction, see Fig. 2.9. The condition is adopted as follows:

∂u

∂z
+
∂w

∂x
= 0. (2.46)

A central difference scheme is used to discretize the above condition as:

uEE = uSS −
∆zS + ∆zE
∆xw + ∆xe

(we − ww). (2.47)

2.8.3 Discrete pressures at the free surface

The pressure in Surface cells is required as the boundary condition and can be obtained
by interpolation of the pressure at the free surface and the pressure in a neighbouring
Fluid cell. The pressure at the free surface is determined from the boundary con-
dition shown in Eq. (2.10), which represents the continuity of normal stress at the
free surface. In our applications, the surface tension and viscosity in the boundary
condition (2.10) can be neglected, which results in the pressure at the exact position
of the free surface pfs equalling the atmospheric pressure p0.

The pressure in Surface cells pS is now calculated from pfs and the pressure in a
neighbouring Fluid cell pF . If the free surface is mainly horizontal, shown as in
Fig. 2.10, the Fluid cell below the Surface cell is adopted for the interpolation. The
pressure at the center of the Surface cell is calculated as:

pS = βpfs + (1− β)pF , (2.48)

in which β = (∆zF + ∆zS)/(∆zF + F sS∆zS). If no Fluid cells exist adjacent to the
Surface cell, the pressure in the Surface cell is prescribed as the atmospheric pressure,
corrected with a hydrostatic pressure contribution based on the local height of the
fluid.



Chapter 3

ABCs with uniform current

In this chapter, the first-order generating and absorbing boundary condition and the
second-order absorbing boundary condition for waves are derived. They are extended
to include the effect of uniform current. This is the main objective of the thesis.
Subsequently, the discretization of the boundary conditions and implementation in
the program ComFLOW are presented.

3.1 Absorbing boundary conditions

The prevention of wave reflection at the domain boundaries is vital to keep the flow
field inside the domain from being disturbed. Damping zones have often been adopted
to dissipate wave energy in numerical simulations. They are effective for short wave
components, while for long wave components quite a length, usually more than two
wave lengths, is required. For long-crested wave simulations, it may still be acceptable
in the 2D domain, however, it can become infeasible in the 3D case with the computer
memory at one’s disposal.

Absorbing boundary conditions (ABCs), also known as non-reflecting boundary con-
ditions, are another type of technique to prevent wave reflection. ABCs can be cat-
egorised into two types: global and local ABCs. The discrete global ABC operator
necessitates the storage of all previous time steps, as well as the processing of all
spatial grid points at each time step, which makes it generally accurate but computa-
tionally expensive and difficult to carry out, see Tsynkov (1998) and Wellens (2012).
On the contrary, local ABCs, which are local in time, are less accurate but more
economical and effortless to implement. The ABC studied in this work belongs to the
local type.

Fourier transform of the planar wave equation can be used to derive the local ABC,
see Engquist and Majda (1977). This procedure has also been summarized by Wellens
(2012). The first-order approximation of the dispersion relation yields the first-order
ABC, and the higher-order approximation gives higher derivatives in the ABC with
which waves propagating at different directions are accurately absorbed, see Higdon

27
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(1986).

To account for the dispersive properties of waves, the higher-order ABC mentioned
above is one of the approaches, because it contains a couple of phase speeds that
together span a range. An alternative is the use of a low-order boundary condition
in combination with an estimate of the actual celerity at the boundary, see Orlanski
(1976). A dynamic approximation of the phase speed obtained from the solution itself
is employed:

c = − ∂φ/∂t
∂φ/∂x

. (3.1)

When the denominator in the above relation becomes zero, the value of c can get
infinitely large and thus lead to an unstable solution field. This approach should not
be adopted.

Blayo and Debreu (2005) consider open boundary conditions from the point of view
of characteristic variables . This approach separates the incoming and outgoing flow
quantities. The method of characteristic variables is also employed by Verboom and
Slob (1984).

Other researchers derive absorbing boundary conditions by factoring the wave equa-
tion into components which represent the incoming and outgoing wave fields. The
components that prescribe the incoming wave field are then used to design the ab-
sorbing boundary condition. This strategy was used by Lindman (1975) for the 2-D
acoustic equation and by Engquist and Majda (1977) for the acoustic and elastic wave
equations. Clayton and Engquist (1980) later extended these results to the one-way
wave equation for migration.

Keys (1985) decomposed the wave equation in a somewhat different way from the
previous factorization. His decomposition leads to local absorbing boundary condi-
tions obtained directly from the outgoing components of the wave field. It is not
necessary to approximate the outgoing components of the wave field, as is the case
with the usual decomposition of the wave equation. As the derivation of the ABC in
this thesis has been inspired by this approach, it will be discussed in the next section.

The approach to deal with the wave dispersion in this thesis will be presented in
Section 3.4.

3.2 Factorization of the wave equation

The planar wave equation is factorized into the individual components representing
incoming and outgoing waves respectively, see Keys (1985). The outgoing wave com-
ponent is adopted to design an absorbing boundary condition.

We will study waves with a two-dimensional wave number vector k = (kx, ky), whose
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length is denoted by k ≡ |k| =
√
k2
x + k2

y. The wave number components kx and ky

can be complex valued to distinguish between propagating and evanescent/spurious
waves. This means that its length |k| can also be a complex number. The unit vector
in the wave direction k is represented by ek.

With the unit vector ek, the planar wave equation can be factorized as follows:

∇2φ− 1

c2
∂2φ

∂t2
=

(
∇+

ek
c

∂

∂t

)(
∇− ek

c

∂

∂t

)
φ = 0. (3.2)

A plane wave propagating in the direction ek with velocity c has the form φ =
φ(x ·ek−ct). Applying the first factor in Eq. (3.2) to the plane wave φ = φ(x ·ek−ct)
results in: (

∇+
ek
c

∂

∂t

)
φ = 0. (3.3)

This means that the factor∇+(ek/c)(∂/∂t) is able to identify plane waves traveling in
the direction ek. Similarly, the second factor in Eq. (3.2) corresponds to those waves
propagating in the opposite direction −ek. If outgoing waves are propagating in the
direction ek, the operator ∇ + (ek/c)(∂/∂t) can be used to design a boundary con-
dition which absorbs these waves without reflection under potential flow assumptions.

In this type of boundary condition, the wave propagation direction ek is used as
a criterion to absorb plane waves. In this thesis, ek is a fixed parameter for the
entire domain boundary. The generating function is added to the right-hand side of
the boundary condition, which considers the incoming wave. It is called the generat-
ing and absorbing boundary condition in this work. For multi-directional waves, the
second-order boundary condition is adopted by concatenating two of these absorption
operators.

3.3 Outflow boundary condition

The derivation of the outflow boundary condition for waves with current on the basis
of linear potential wave theory will be given in this section. The wave equation with
uniform current is derived first, followed by different paths to reach the final choice
of the boundary condition.

3.3.1 Wave equation with uniform current

A constant current U, independent of position and time and propagating in the
horizontal plane, is considered in potential flow. First split off the current component
from the potential φ, i.e.

φ = U · x + φw, (3.4)
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where φw is the velocity potential due to waves and the term U · x represents the
potential due to the current.

Boundary conditions

At the free surface z = η(x, y, t), the kinematic condition reads:

w =
dη

dt
=
∂η

∂t
+
∂η

∂x

dx

dt
+
∂η

∂y

dy

dt
, (3.5)

indicating that the velocity of the surface elevation equals the vertical component of
the velocity for the fluid particle at the same location. Here the variable η describes
the position of the free surface, with the origin of the coordinate system positioned
at the equilibrium of the free surface and the vertical axis in z-direction pointing
upwards.

For the velocity potential φ, its spatial derivatives result in velocities in respective
directions:

dx

dt
= u = (uw + U) =

∂φ

∂x
,

dy

dt
= v =

∂φ

∂y
, w =

∂φ

∂z
. (3.6)

Here uw is the velocity of the fluid particle only due to waves.

Substitution of the above relations into the kinematic condition (3.5) and rearrange-
ment of it yields:

∂η

∂t
+
∂φ

∂x

∂η

∂x
+
∂φ

∂y

∂η

∂y
− ∂φ

∂z
= 0
∣∣∣
z=η

. (3.7)

The dynamic boundary condition at the free surface obtained from the Bernoulli
equation was given in (2.11). It is rewritten here as:

gη +
∂φ

∂t
+

1

2
|∇φ|2 = C

∣∣∣
z=η

, (3.8)

in which C is a constant.

Additionally, the boundary condition at the horizontal bottom follows the condition
of impermeability:

w =
∂φ

∂z
= 0
∣∣∣
z=−h

. (3.9)

Solution of the wave potential

Here a linear long-crested wave is taken into account, therefore, the wave propagating
in the k-direction follows the form as:
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φw = f(z) cos(k · x− ωt). (3.10)

Substituting the above relation into the Laplace equation as shown in Eq. (2.10)
results in:

d2f

dz2
cos(k · x− ωt)− |k|2f cos(k · x− ωt) = 0 ⇔ d2f

dz2
− |k|2f = 0. (3.11)

Applying the method of separation of variables in Eq. (3.11) , the velocity potential
of wave (only) φw can be obtained as:

φw =
1

2

Ag

ω cosh(|k|h)
[e|k|(z+h) + e−|k|(z+h)] cos(k · x− ωt)

=
Ag

ω cosh(|k|h)
cosh |k|(z + h) cos(k · x− ωt), (3.12)

in which A is the wave amplitude.

Dispersion relation for linear waves and uniform currents

Substitution of the velocity potential due to both waves and currents as in (3.4) into
the kinematic and dynamic boundary conditions at the free surface as in (3.7) and
(3.8) results in:

∂ηw
∂t

+

(
Ux +

∂φw
∂x

)
∂ηw
∂x

+

(
Uy +

∂φ

∂y

)
∂ηw
∂y
− ∂φw

∂z
= 0
∣∣∣
z=η

,

gηw +
∂φw
∂t

+
1

2
|∇φw + U|2 = C

∣∣∣
z=η

. (3.13)

By choosing the constant C = 1
2U

2 and ignoring the second-order terms, we obtain
the following relations:

∂ηw
∂t

+ U · ∇ηw =
∂φw
∂z

∣∣∣
z=η

, (3.14)

∂φw
∂t

+ U · ∇φw + gηw = 0
∣∣∣
z=η

. (3.15)

Using the latter condition (3.15), which is a linearized Bernoulli equation, to eliminate
the surface displacement ηw from the kinematic condition (3.14) gives the following
formula (after multiplication with g):(

∂

∂t
+ U · ∇

)2

φw = −g ∂φw
∂z

∣∣∣
z=η

. (3.16)

Next focus on the right-hand side of this equation. Specific waves of the form φ =
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ei(k·x−ωt) cosh(|k|z) are considered. For small amplitude waves, the relations at the
exact position z = η are approximately satisfied at the mean free surface z = 0:

g
∂φw
∂z

∣∣∣
z=0

= −c2k0∇ · ∇φw|z=0, c2k0 ≡ g (tanh |k|h)/|k|. (3.17)

The notation ck0 is the propagation speed without current (hence the 0). In the
presence of a current, the difference between the propagating wave and the reflected
wave is no longer a minus-sign in c, as we will see next.

Substitution of the above relation into Eq. (3.16) gives the equation for both waves
and currents at the free surface:(

∂

∂t
+ U · ∇

)2

φw = c2k0∇ · ∇φw. (3.18)

Finally, substituting waves of the form φw(k·x−ωt) into (3.18) leads to the dispersion
relation:

ω± −U · k = ±ck0|k|. (3.19)

Solution of the dispersion relation for linear propagating waves in a fol-
lowing and an opposing current

In this part, we discuss the dispersion relation for linear propagating waves and thus
the wave number k is real. The exposition is based on the work of Peregrine (1976)
and Peregrine and Jonsson (1983).

For a given intrinsic wave frequency σ(k)(= ck0|k|) and water depth h, the solutions
of the dispersion relation Eq. (3.19) vary with the angle between waves and currents.
Here the parallel cases, i.e., waves propagate with a following or an opposing current,
are of most interest. Therefore, the solutions are displayed graphically in Fig. 3.1,
by plotting the left-hand side ω − U · k and the right-hand side ±ck0|k|, which is
±σ(k) in the figure, of the dispersion Eq. (3.19). In Fig. 3.1, the positive direction
of the horizontal axis is chosen as the direction of wave propagation and then a fol-
lowing current (U ·k > 0) is positive while an opposing current is negative (U ·k < 0).

The dashed line parallel to the k-axis in the figure represents the solution for the
wave-only (no current) case. Only one solution, marked by point E, is found. For
the case with a parallel current, two lines of ω −U · k, corresponding to a following
and an opposing current, are plotted in the figure. Four possible solutions are marked
by points A, B, C and D, in which points C and D describe the case of waves in
a following current, while points A and B correspond to waves in an opposing current.

In maritime engineering, solutions A and C are the ones of most interest. As can
be seen from the figure, a following current increases wave length and an opposing
current decreases the wave length, under the condition that wave frequency and water
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depth, i.e. ck0, are the same.

Solutions B and D, which do not exist if there is no current, correspond to shorter
waves than A and C. Solution B corresponds to waves propagating against the cur-
rent, but their energy is transported in the direction of the current. Solution D
corresponds to waves propagating in the direction of current and the wave energy is
swept downstream by the current.

For a sufficiently large current, the solutions A and B may coincide and this has
been described in Peregrine (1976):

cg + U · ek = 0, (3.20)

where cg = dω
dk is the group velocity of the wave, which describes the propagation

velocity of the wave energy. Let θ be the angle between waves and currents, i.e.
between ek and U . In the case of waves in an opposing current, θ = 180◦. In
this situation the wave energy cannot be transported and the phenomenon of wave
blocking is observed. If cg + U · ek < 0, the solutions A and B do not exist which
represents that the waves are blocked by the opposing current.

Figure 3.1: Solution of the dispersion relation for linear waves on top of uniform
current. The figure is from the work of Peregrine and Jonsson (1983)

.

3.3.2 Derivation of the ABC

To derive a Sommerfeld-like boundary condition, it is observed that waves of the form
φw(k · x− ωt) satisfy:
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(
k
∂

∂t
+ ω∇

)
φw = 0. (3.21)

Substitution of the dispersion relation (3.19) into the above relation (3.21) leads to a
boundary condition of the form as below:

(
k
∂

∂t
+ (U · k± ω0)∇

)
φw = 0 ⇐⇒

(
ek

∂

∂t
+ (Uk ± ck0)∇

)
φw = 0. (3.22)

Note that this condition concerns a vector, hence it has three components. By dot-
multiplying it with a normal vector n, it results in the following condition, which is
the basis for the later derivations.(

(n · ek)
∂

∂t
+ (Uk ± ck0)

∂

∂n

)
φw = 0. (3.23)

In Section 3.5 we will study the stability and well-posedness of this boundary condi-
tion.

Alternative Another option would be to multiply Eq. (3.22) by ek, after which it
becomes: (

∂

∂t
+ (Uk ± ck0)ek · ∇

)
φw = 0. (3.24)

The essential difference with (3.23) is that it includes a tangential derivative along
the boundary. Without current, Romate (1992) has studied both formulations. In
his paper, they correspond with BC2 and BC1, respectively. He argues that (3.23) is
well-posed (except for waves parallel to the boundary), whereas the alternative (3.24)
is weakly ill-posed for all wave directions. Therefore, we will stick to (3.23).

3.4 ABC with uniform current

In this section, the extension of the absorbing boundary conditions for waves to include
the effect of uniform current is discussed, which is the main topic of this research.

3.4.1 Pade approximation of the dispersion relation

The first-order boundary condition (3.23) is perfectly absorbing for a single com-
ponent, but in reality waves are often composed of the superposition of a number
of components. Each individual component has its own frequency, amplitude, wave
number and phase. We first want to estimate the wave number of the wave that is
passing the boundary at that location and at that time instant. Then the celerity
belonging to this wave number needs to be used in the ABC. In particular, it is better
to do this in an implicit way because of stability arguments. As the wave number
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features as an argument in the dispersion relation, this requires some form of lineari-
sation, e.g. Newton-like, which does not look attractive.

As an alternative, the better we approximate the dispersion relation, the less reflec-
tion we obtain. Now we introduce a rational polynomial in kh, discussed by Wellens

(2012), where k =|k| =
√
k2
x + k2

y, to approximate the dispersion relation:

ck0 =
√
gh

√
tanh(kh)

kh
≈
√
gh
a0 + a1(kh)2

1 + b1(kh)2
. (3.25)

The coefficients a0, a1 and b1 can be chosen such that different kh-ranges of the
dispersion relation are approximated well.

3.4.2 Relating the wave number and the potential

Now a further improvement is introduced into the design of the boundary condition.
The wave number k can be found by taking derivatives of the solution in space. In
linear theory, the solution to the system of equation is given by the wave potential.

Propagating wave components satisfy the following relation for the potential:

φw =
Ag

ω

coshk(z + h)

coshkh
ei(k·x−ωt). (3.26)

By taking the second-order derivative in z-direction, we obtain an expression, which
is k2 times the potential:

∂2φw
∂z2

= k2φw. (3.27)

ABC-1 with current Substitution of the approximate dispersion relation (3.25)
into the first-order Sommerfeld-like condition (3.23) leads to the following equation:

[
(n · ek)

∂

∂t
+

(
Uk +

√
gh
a0 + a1(kh)2

1 + b1(kh)2

)
∂

∂n

]
φw

= (n · ek)
(
1 + b1h

2k2
) ∂φw
∂t

+
((

1 + b1h
2k2
)
Uk +

√
gh
(
a0 + a1h

2k2
)) ∂φw

∂n

= (n · ek)

(
∂φw
∂t

+ b1h
2 ∂(k2φw)

∂t

)
+

(
∂φw
∂n

+ b1h
2 ∂(k2φw)

∂n

)
Uk

+
√
gh

(
a0
∂φw
∂n

+ a1h
2 ∂(k2φw)

∂n

)
= 0. (3.28)

Substitution of the relation (3.27) into the equation (3.28) yields the first-order con-
dition ABC-1:
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(n · ek)

(
∂φw
∂t

+ b1h
2 ∂(∂2φw/∂z

2)

∂t

)
+

(
∂φw
∂n

+ b1h
2 ∂(∂2φw/∂z

2)

∂n

)
Uk

+

(√
gha0

∂φw
∂n

+ a1h
2 ∂(∂2φw/∂z

2)

∂n

)
= (n · ek)

(
∂φw
∂t

+ b1h
2∂2/∂z2 ∂φw

∂t

)
+

(
∂φw
∂n

+ b1h
2∂2/∂z2 ∂φw

∂n

)
Uk

+

(√
gha0

∂φw
∂n

+ a1h
2∂2/∂z2 ∂φw

∂n

)
=

[
(n · ek)

(
1 + b1h

2 ∂
2

∂z2

)
∂

∂t
+((

1 + b1h
2 ∂

2

∂z2

)
Uk +

√
gh

(
a0 + a1h

2 ∂
2

∂z2

))
∂

∂n

]
φw = 0. (3.29)

GABC-1 with current At the inflow boundary, incoming waves need to be spec-
ified while preventing re-reflection of outgoing waves simultaneously. A non-zero
right-hand side consisting of the same combination of operators applied to the incom-
ing wave potential is prescribed following Perkins et al. (1997), which leads to the
first-order generating and absorbing boundary condition (GABC-1) with current as
follows:

[
(n · ek)

∂

∂t
+

(
Uk +

√
gh
a0 + a1h

2∂2/∂z2

1 + b1h2∂2/∂z2

)
∂

∂n

]
φw

=

[
(n · ek)

∂

∂t
+

(
Uk +

√
gh
a0 + a1h

2∂2/∂z2

1 + b1h2∂2/∂z2

)
∂

∂n

]
φin. (3.30)

Here φin denotes the incoming wave potential. Now a truly open boundary condi-
tion GABC-1 with current for long- crested dispersive waves and uniform current is
obtained.

ABC-2 with current Before going to the second-order absorbing boundary con-
dition (ABC-2), the Sommerfeld-like boundary condition should be given. It follows
the idea of Higdon (1986). Two wave directions and celerities are chosen to absorb
two wave components, which results in the second-order boundary condition:

2∏
i=1

(
(n · eki)

∂

∂t
+ (Uk + cki)

∂

∂n

)
φw = 0. (3.31)

The condition (3.31) is satisfied exactly by any plane wave φw travelling out of the
domain at the directions ek1 and ek2 with the phase speeds ck1 and ck2, respectively.
The expansion of the condition (3.32) results in:
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(
(n · ek1)

∂

∂t
+ (Uk + ck1)

∂

∂n

)(
(n · ek2)

∂

∂t
+ (Uk + ck2)

∂

∂n

)
φw = 0. (3.32)

To obtain the dispersive boundary condition in second order, only one of the operators
in the condition (3.32) can include the approximation (3.25) for the dispersion relation.
Otherwise, the product of two approximations would yield a fourth-order derivative
in z-direction, which yields difficulties in the discretization at the boundaries. Con-
sequently, substitution of the relation (3.25) and (3.27) in one of the operators in the
condition (3.32) gives the ABC-2 as follows:

[
(n · ek1)

∂

∂t
+ (Uk + ck1)

∂

∂n

]
·[

(n · ek2)
∂φw
∂t

+

(
Uk +

√
gh
a0 + a1h

2∂2/∂z2

1 + b1h2∂2/∂z2

)
∂φw
∂n

]
= 0. (3.33)

Unlike the boundary condition GABC-1 in (3.30), we can not simply prescribe an
incoming wave potential to the right-hand side of the condition ABC-2 in (3.33), due
to the existence of second derivatives of the wave potential. The second derivatives
of the wave potential are the derivatives of the velocity and pressure, which are not
known at the inflow boundary. Since there are not proper approaches yet to add the
generating functionality to the condition ABC-2, we will not discuss the condition
GABC-2.

3.4.3 Boundary conditions in terms of primitive variables

The GABC-1 and ABC-2 with current in the boundary condition (3.30) and (3.33)
are utilized as boundary conditions for outgoing waves and currents in ComFLOW
that solves for velocities and pressures. The solution variables are staggered within a
cell. The domain boundary is chosen such that it coincides with the position of the
horizontal velocity ub. It is essential that the velocity and pressure in this boundary
condition are defined at the same position. Any other configuration would lead to
phase differences between solution variables at the boundary and additional spurious
reflection.

In potential theory, the velocity in n-direction is defined to be the derivative of the
potential in that direction:

∂φw
∂n

= uw · n = (ub −U) · n. (3.34)

The subscript w describes the velocity only due to waves. The subscript b here indi-
cates the total velocity, defined exactly on the domain boundary, attributed to both
waves and current.

To obtain the expression for the pressure, the linearized Bernoulli equation is used:
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∂φw
∂t

= −pb
ρ
− gz − uw ·U. (3.35)

Again the subscript b implies that the pressure is specified at the domain boundary.

S-1 with current Substituting (3.34) and (3.35) into (3.23) produces:

(n · ek)

(
−gz − pb

ρ
− uw ·U

)
+ (Uk + ck0)(uw · n) = 0. (3.36)

Since the following relation holds:

Ukuw · n = (U · ek)(n · ∇)φw = (U · ek)(n · k)φ
′

w

= (n · ek)(U · k)φ
′

w = (n · ek)(U · ∇)φw

= (n · ek)(uw ·U). (3.37)

The S-1 with current becomes:

(n · ek)

(
−gz − pb

ρ

)
+ ck0[(uw −U) · n] = 0. (3.38)

GABC-1 with current In the same way as above, substitution of the relations
(3.34) and (3.35) into (??) yields:

(n · ek)

(
1 + b1h

2 ∂
2

∂z2

)(
−gz − pb

ρ
− uw ·U

)
+

[
Uk

(
1 + b1h

2 ∂
2

∂z2

)
+
√
gh

(
a0 + a1h

2 ∂
2

∂z2

)]
(uw · n) = 0. (3.39)

Using the relation (3.37), the GABC-1 with current (3.39) can be written as follows:

(n · ek)

(
1 + b1h

2 ∂
2

∂z2

)(
−gz − pb

ρ

)
+
√
gh

(
a0 + a1h

2 ∂
2

∂z2

)
[(ub −U) · n] = 0. (3.40)

ABC-2 with current In the same manner, the ABC-2 with current can be ex-
pressed in terms of the velocity and pressure as follows:
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[
(n · ek1)

∂

∂t
+ (Uk + ck1)

∂

∂n

]
·[

(n · ek2)

(
1 + b1h

2 ∂
2

∂z2

)(
−gz − pb

ρ

)
+
√
gh

(
a0 + a1h

2 ∂
2

∂z2

)
[(ub −U) · n]

]
= 0.

(3.41)

3.5 Stability

It is imperative to analyze the stability of the above absorbing boundary condition
for combined wave-current flow before implementing it in the program. The stability
of the first-order ABC only for waves has been investigated by means of the reflection
coefficients in Wellens (2012), followed by Duz (2015) who shows that the criteria
stated in Wellens (2012) can safely be used in the second-order ABC. In this work, a
uniform current is added into the ABC, thus the stability of this boundary condition
is required to be analyzed as well.

Following again the footsteps of the work in Wellens (2012), we study the stabil-
ity of the boundary condition including the effect of current via reflection coefficients.
The reflection coefficient |R| = Arefl/Aout, in which Arefl and Aout represent the
wave amplitude of the outgoing and reflected waves, respectively. It is required that
the reflection coefficient |R| ≤ 1.

The analytical reflection coefficients for progressive, evanescent and spurious waves
are derived in Appendix A. Here we only show the results as follows:

R = −
(
kout
ω
− 1

cbc + U

)/(
krefl
ω
− 1

cbc + U

)
(3.42)

in which cbc is the approximate celerity in the boundary condition. kout and krefl
are the wave numbers of the outgoing and reflected wave components respectively,
with kout ≥ 0 and krefl ≤ 0. They can be computed from the dispersion relation
in Appendix A. It holds that krefl 6= −kout due to the Doppler effect of the current
on the dispersion relation. Recall that for right-going progressive and spurious waves
kout/ω is real and positive.

The stability of the boundary condition is satisfied by adjusting the parameters a0, a1
and b1 in the approximate dispersion relation. This can be analyzed by observing the
different solution modes to the wave equation: propagating, evanescent and spurious
wave modes.
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3.5.1 Dispersion relation of progressive, evanescent and spu-
rious waves

The intrinsic wave frequency σ satisfies a dispersion relation which links it to the
wave number ω = σ(k) + kUk:

(ω − kUk)2 = σ2 ≡ gk tanh(kh); c = c0 + Uk with c0 ≡ σ/k. (3.43)

In case the magnitude of the wave number is imaginary, i.e. k = ikI with kI real, the
dispersion relation (3.43) can be rewritten as (note tanh(iθ) = i tan θ):

ω = σ + kUk with σ2 = −gkI tan(kIh); c = c0 + Uk with c20 = −σ
2

k2
I

. (3.44)

Progressive waves For progressive surface waves k is real. The dispersion re-
lation (3.43) shows that ω = σ + kUk is also real, as well as the phase velocity
c = c0 +Uk = σ/k+Uk. Their signs depend on the magnitude of the current compo-
nent Uk.

Spurious waves For spurious waves the imaginary wave number satisfies 0 + nπ <
|kI |h < π/2+nπ (n = 0, 1, · · · ). In this case, kI tan(kIh) is positive, hence the disper-
sion relation (3.44) shows that σ2 < 0 and the intrinsic frequency becomes imaginary:
say σ = iσI with σI real. The absolute frequency ω = σ + kUk is purely imaginary
and the phase velocity c = ω/k is real.

Evanescent waves For evanescent waves, k is purely imaginary, k = ikI , with
π/2 + nπ ≤ |kI |h < π + nπ (n = 0, 1, · · · ). In this case kI tan(kIh) is negative,
hence the intrinsic frequency σ is real as σ2 > 0, whereas c0 is purely imaginary.
However, the absolute frequency ω = σ + kUk = σ + ikIUk is complex, and so is the
phase velocity c = c0 + Uk.

Table 3.1 gives an overview whether the frequency and phase velocity are real or
complex, depending on the wave number.

frequency ω phase velocity c
wave wave number k intrinsic σ σ + kUk intrinsic c0 c0 + Uk
progressive real real real real real
spurious imaginary imaginary imaginary real real
evanescent imaginary real complex imaginary complex

Table 3.1: Signature of the wave properties for the various types of waves.

3.5.2 Padé approximation of the dispersion relation

The GABC makes use of a Padé approximation for the dispersion relation. The
approximate phase speed is defined as:
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ca =
√
gh

a0 + a1(kh)2

1 + b1(kh)2
. (3.45)

In case k2 ≥ 0 the wave number is real, i.e. we deal with progressive waves. As all
coefficients in (3.45) are non-negative, the approximate phase velocity ca is positive.

However, when k2 < 0, i.e. we are dealing with evanescent and spurious waves, the
situation differs. For convenience let k = ikI with kI real-valued. Then the wave
speed can be written as:

ca =
√
gh

a0 − a1(kIh)2

1− b1(kIh)2
. (3.46)

Both numerator and denominator can (and will) switch sign, and they will not do so
at the same kI . Hence ca will be negative for a certain interval of kI values. We will
choose cbc = ca for the later analysis.

Without current When the current is absent, i.e. U = 0, the expressions for
the reflected wave simplify to:

krefl = −kout and crefl = −cout. (3.47)

In this situation, the reflection coefficient turns into :

R =
kout/ω − 1/cbc
kout/ω + 1/cbc

. (3.48)

For progressive outgoing waves both kout/ω and cbc are real and positive, and |R| ≤ 1
follows immediately. According to Table 3.1, also for outgoing spurious waves the
quotient kout/ω is real and positive. We only have to prevent that cbc becomes nega-
tive, as then |R| might grow beyond unity. This condition now leads to requirements
for the coefficients a0, a1 and b1: the zeros of numerator and denominator must lie in
the evanescent range. This was achieved in Wellens (2012) and Duz (2015):

a0

π2
< a1 <

4a0

π2
and a1 < b1 <

4

π2
. (3.49)

Without current, in the evanescent region the numerator and denominator of the ex-
pression for R are each others complex conjugate, independent of the sign of cbc. In
this case, the sign of cbc can do no harm, since the wave number kout is purely imagi-
nary (see Table 3.1). Hence, without current |R| = 1 is guaranteed in the evanescent
region. Therefore, the parameters a0, a1 and b1 are always chosen according to the
conditions (3.49).

With current When there is current, U > 0, the proofs for |R| ≤ 1 are getting
more complicated. For progressive and spurious waves it has been proven in Ap-
pendix B, see (B.9), that 0 ≤ kout/ω ≤ −krefl/ω. With cbc ≥ 0, it is not difficult to
see that for these wave always |R| ≤ 1.
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However, for evanescent waves the frequency ω becomes complex (see Table 3.1).
Also the relations (3.47) for krefl and crefl do not hold any more. Hence the argu-
ment of complex conjugacy for R is no longer valid. An analytical analysis is quite
cumbersome, but a numerical analysis is feasible. With the values for krefl from Ap-
pendix B, the reflection coefficient can be computed from (3.42). It turns out (not
shown here) that for cbc + U < 0 the reflection coefficient can become larger than
unity. This means that boundary condition GABC does allow reflection coefficients
above unity for evanescent waves in the range where cbc + U is negative. In practice,
this has never led to numerical instabilities.

Remark Another way to study stability/well-posedness is by means of a normal-
mode analysis as promoted by Kreiss (1970) and Higdon (1986). This approach is
closely related to, but somewhat weaker than, the above study of the reflection coef-
ficient. It only requires |R| to be finite, possibly larger than unity (see Sections 3 and
7 of Higdon (1986)). Romate (1992) has carried out a normal-mode analysis for the
boundary condition GABC in a situation without current. His analysis can be gen-
eralized to include a current in positive x-direction. The result is that the condition
GABC is well-posed, i.e. stable, for all waves that are not parallel to the boudnary.

Note that the reflection coefficient of the first-order Sommerfeld condition in a 2D
domain is derived in Appendix B. An assumption that krefly = kouty has been made,

in which krefly and kouty are the wave numbers of the reflected and outgoing wave
modes in y-direction, respectively. It is open for discussion whether that assumption
is correct or not.

3.6 Discretization of the boundary conditions

This section presents the discretization of the boundary conditions ABC-1 in Eq.
(3.40) and ABC-2 in Eq. (3.41) with current in ComFLOW. We choose n = ex in
these two equations and present the boundary conditions in this situation. The dis-
cretization of the boundary conditions S-1 and S-2 with current will not be given here,
since they can simply be obtained from the discretization of the ABC-1 and ABC-2
by ignoring the Pade approximation of the dispersion relation.

An ABC contains a combination of pressure and velocity and we want to apply it
at the in/outflow boundary of the domain. At the boundary, the velocity is defined,
but the pressure is defined half a mesh size away.

Discretisation of ABC-1 Adding the spatial and temporal level to the variables
pb and ub in the boundary condition (3.40):
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(ex · ek)

(
1 + b1h

2 ∂
2

∂z2

)(
−gz −

pn+1
b,k

ρ

)

+
√
gh

(
a0 + a1h

2 ∂
2

∂z2

)
[(un+1

b,k −U) · ex] = 0. (3.50)

The pressure at the boundary pn+1
b,k is obtained from linear interpolation between the

pressure on either side of the boundary:

pn+1
b,k =

1

2
(pi,k + pi+1,k)n+1. (3.51)

in which the locations of the pressures near the boundary pb,k, pi,k and pi+1,k are
shown in Fig. 3.2. The superscript n + 1 denotes the time level that the pressure
variables are defined at.

It is essential that the velocity and the pressure at the boundary are defined at the
same point in time. The pressures and velocities at the boundary are determined at
time tn+1.

Here we discuss the discrete ABC-1 in the xz-plane, therefore, the x-component of
the term (un+1

b,k −U) · n is written as un+1
b,k − Ux.

Figure 3.2: Pressure at the domain boundary is calculated from the linear interpola-
tion of the pressure on either side of the boundary
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The horizontal velocity at the new time level un+1
b,k can be eliminated by means of

the momentum equation at the boundary:

un+1
b,k = un+1

i,k = ũi,k −
1

ρ

∆t

∆xi+1,k
(pi+1,k − pi,k)n+1. (3.52)

Note that ũ, given in Eq. (2.34) in Section 2.5, contains convective and diffusive terms.

For the approximation of the second-order derivation in the z-direction, the following
operator, designed for a stretched grid, which has been used in Wellens (2012) and
Duz (2015), is employed:

Q =

Q1

Q2

Q3

 =
1

1
2∆zi,k∆zi,k+1(∆zi,k + ∆zi,k+1)

 ∆zi,k
−∆zi,k −∆zi,k+1

∆zi,k+1

 . (3.53)

Here ∆zi,k = zi,k − zi,k−1 and ∆zi,k+1 = zi,k+1 − zi,k. zi,k−1, zi,k and zi,k+1 are the
center locations of the pressure variables pi,k−1, pi,k and pi,k+1 in Fig. 3.2, respec-
tively. The operator Q is a grid vector that operates on the vectors p and ũ as will
be used later.

Substituting the expressions (3.51) through (3.53) into the equation (3.50) yields:

(ex · ek)

(
1 + b1h

2 ∂
2

∂z2

)
(−gz − 1

2
(pi,k + pi+1,k)n+1)

+
√
gh

(
a0 + a1h

2 ∂
2

∂z2

)(
ũi,k −

1

ρ

∆t

∆xi+1,k
(pi+1,k − pi,k)n+1 − Ux

)
= 0. (3.54)

Now the following notations are introduced:

ϕ =
√
gha0, χ =

√
gha1h

2, ψ = (ex · ek)b1h
2 and τ =

1

ρ

∆t

∆x
,

pi =

pi,k−1

pi,k
pi,k+1

 , ui =

ũi,k−1

ũi,k
ũi,k+1

 . (3.55)

By convention, we leave the terms of unknown variables on the left-hand side and
known variables on the right-hand side of the equation. The second-order derivatives

in z-direction of the variables gz and Ux, i.e. ∂2

∂z2 (gz) and ∂2

∂z2Ux, are zeros. Applying
the grid vector in (3.53) and the notations in (3.55) to Eq. (3.54), a discrete equation
for the absorbing boundary conditions is obtained:

[Bzl Bc Bzr]pi + [Brl Brc Brr]pi+1 = [Ezl Ec Ezr]ũi + (n · ek)gz + ϕUx.(3.56)
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The matrix coefficients in C and E are defined to be:

Bzl = (−χτ +
1

2
ψ)Q1, Bc = −ϕτ +

1

2
(n · ek)− (χτ − 1

2
ψ)Q2, Bzr = (−χτ +

1

2
ψ)Q3,

Brl = (χτ +
1

2
ψ)Q1, Brc = ϕτ +

1

2
(n · ek) + (χτ +

1

2
ψ)Q2, Brr = (χτ +

1

2
ψ)Q3,

Ezl = χQ1, Ec = ϕ− χQ2, Ezr = χQ3. (3.57)

Equation (3.56) is an equation for the pressure variable pi+1,k in a mirror cell outside
the domain. The pressure at the new time level tn+1 is located on the left-hand side,
while on the right-hand side horizontal velocities including convective and diffusive
terms at the old time level tn are placed.

The grid stencil of the discrete ABC-1 in (3.56) is quite similar to that of the pres-
sure Poisson equation (2.36) derived in Section 2.4 and can hence easily be combined
with the field equations inside the domain. However, the matrix on the left-hand
side includes the additional coefficients of the ABC-1, which is neither symmetric nor
diagonally dominant, see the stencil in Fig. 3.2. This is different from the matrix in
a normal Poisson solver stencil.

Discretization of ABC-2 Analogous to the discretization for the boundary con-
dition GABC-1, the same steps are followed to discretize the ABC-2 in Eq. (3.41).

The temporal and spatial derivatives in the x-direction of the variables gz and Ux,
i.e. ∂

∂t (gz),
∂
∂t (Ux), ∂

∂x (gz) and ∂
∂x (Ux), are zeros. Therefore, the right-hand side will

be zero and the left-hand side with the unknown variables remains as follows:

[
(ex · ek1)

∂

∂t
+ (Ux + ck1)

∂

∂x

]
·[

−1

ρ
(ex · ek2)pn+1

b,k −
1

ρ
(ex · ek2)b1h

2
∂2pn+1

b,k

∂z2
+
√
ghaou

n+1
b,k +

√
gha1h

2
∂2un+1

b,k

∂z2

]
= 0.

(3.58)

It can be observed from the above equation that the derivatives of the pressure with
respect to time and space are required. They are given as follows:

∂pn+1
b,k

∂t
=
pn+1
b,k − pnb,k

∆t
,

∂pb,k
∂x

=
pn+1
i+1,k − p

n+1
i,k

∆xi
, (3.59)

in which pb at the time level n and n+1 are obtained using the linear interpolation of
the pressure values on either side of the boundary as in the relation (3.51) for ABC-1.
Therefore, the term ∂pb,k/∂t can be further expressed as:
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Figure 3.3: No second derivatives of the solution variables are implemented at the
free surface

∂pn+1
b,k

∂t
=

1

2

pn+1
i+1,k + pn+1

i,k − pni+1,k − pni,k
∆t

. (3.60)

Likewise, the derivatives of the velocity component with respect to time and space
are expressed as:

∂un+1
b,k

∂t
=
un+1
i,k − uni,k

∆t
,

∂un+1
b,k

∂x
=
un+1
i,k − u

n+1
i−1,k

∆xi
, (3.61)

where ∆xi = xi − xi−1, see Fig. 3.2.

In order to make a compact stencil for the pressure, the following notations are in-
troduced:

γ = − 1

2ρ
(ex · ek1)(ex · ek2)

1

∆t
, ε = −1

ρ
(ex · ek2)(Ux + c1)

1

∆xi,k
,

λ = −(ex · ek1)
1

∆xi+1,k
, κ = −(Ux + c1)

1

∆xi,k

∆t

∆xi+1,k
,

pn+1
i,k =

pn+1
i,k−1

pn+1
i,k

pn+1
i,k+1

 , pni,k =

pni,k−1

pni,k
pni,k+1

 , ũi,k =

ũi,k−1

ũi,k
ũi,k+1

 , ui,k =

ui,k−1

ui,k
ui,k+1

 .
(3.62)
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Figure 3.4: The solution variables below the bottom are determined from the constant
extrapolation of the solution variables above the bottom

Upon substitution of the expressions from (3.59) to (3.62) into the equation (3.58) and
applying the notations given in (3.62), a discrete equation for the absorbing boundary
conditions is obtained:

(Krl Krc Krr)pn+1
i+1,k + (Kzl Kc Kzr)pn+1

i,k + (Kll Klc Klr)pn+1
i−1,k

= (Nzl Nc Nzr)ûi,k + (Nll Nlc Nlr)ûi−1,k + (Ozl Oc Ozr)uni,k
+ (Rzl Rc Rzr)pni,k + (Rrl Rrc Rrr)pni+1,k. (3.63)

The matrix coefficients in K depend on the variables γ, ε, λ, κ, ϕ, ψ and χ. The coeffi-
cients in N are combinations of the variables λ, κ, ϕ, χ and τ . O contains λ, ϕ and χ.
R is only related to the variable λ. Detailed expressions for these matrix coefficients
are given in Appendix C.

Discretization of ABCs at the free surface and the bottom

The second derivatives of the pressures and velocities in the vertical direction from
three horizontal layers are required, as can be observed in the pressure Poisson equa-
tions (3.56) and (3.63). However, no solution variables are calculated above the free
surface in one-phase flow simulations and thus only the solutions below the free sur-
face are available, see Fig. 3.3. The second derivatives of the velocities and pressures,
which use only one-sided information, may result in unstable simulations. Therefore,
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in the Surface cells the Sommerfeld condition (3.23) or (3.32), with a prescribed co-
efficient ck, is implemented at the cost of accuracy.

Similarly in Fig. 3.4, no solution variables are determined below the bottom of the
computational domain. Therefore, constant extrapolation is applied to the velocity
below the bottom, i.e. ub,k−1 = ub,k. For the pressure below the bottom hydrostatic
pressure is assumed, which results in pb,k−1 = pb,k + gzb,k−1.



Chapter 4

Verification Results

In this chapter, the absorbing boundary conditions incorporating uniform currents
that were derived in Chapter 3 are verified through comparison with analytical so-
lutions. Firstly, the first-order Sommerfeld-inspired condition (S-1) in Eq. (3.38) in-
cluding uniform current is tested through a series of numerical simulations of regular
waves on top of various currents. Secondly, the first-order generating and absorb-
ing boundary condition (GABC-1) with current in Eq. (3.40) is verified by means
of regular and irregular waves in the presence of different current velocities. Both
following currents, which propagate in the same direction of waves, and opposing
currents, which propagate in the opposite direction of waves, are considered. Lastly,
the second-order absorbing boundary condition (ABC-2) in Eq. (3.41) with current
is investigated via a sphere oscillating in a uniform current. The oscillating sphere
produces waves radiating outward in all directions such that following, opposing and
normal currents are all contained in one simulation.

4.1 Tests: Regular waves on currents

In this section, the first-order Sommerfeld-inspired condition (S-1) and the generat-
ing and absorbing boundary conditions (GABC-1) in the presence of uniform currents
are verified through numerical simulations of regular waves on currents in truncated
domains. The condition S-1 with current in Eq. (3.38) is only perfectly absorbing for
a single wave component, while the GABC-1 in Eq. (3.40) can deal with dispersive
properties of waves.

Since there is only one phase velocity for a regular wave, the second-order Sommerfeld-
inspired condition (S-2) and the absorbing boundary condition (ABC-2), which both
contain two celerities, are beyond the necessity for preventing reflections and thus are
verified later.

49
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4.1.1 S-1 with current

First, the condition S-1 with uniform current, containing a fixed celerity ck, is studied
in a two dimensional domain. It is applied on the domain boundaries of 25 simula-
tions, in which 25 regular waves with different wave numbers are investigated. For
each case, six currents, including three following and three opposing ones, have been
studied while keeping the water depth constant. Since the condition S-1 with current
performs best for one kh value which it has been tuned for, numerical reflections can
be expected for the other 24 wave components which are away from that kh value.
Here k and h denote the wave number and water depth, respectively. The performance
of the condition S-1 with current for different wave components can be assessed in
comparison with the theoretical reflection.

Figure 4.1: Sketch of a computational domain. Ω denotes the domain area and U
represents the current.

Setup of the simulations

The simulations start from uniform current. The surface and velocity signals of reg-
ular waves at the inflow boundary are ramped up over two wave periods to minimize
initialization errors. The sketch of a computational domain is depicted in Fig. 4.1.

The water depth h is chosen as 10 m for all simulations. 25 values for the kh of regular
waves vary from 0.2 to 5.0 evenly. We will see later that this range of kh values is
what the condition GABC-1 with current is designed accurately for. For convenience,
here we use the same range of kh values to test the condition S-1 with current. This
indicates that their wavelengths span in the range of [12.57 m, 314.16 m]. Considering
the range of current velocities in this work, the corresponding wave periods are from
2.55 s to 40 s. A height of Hw = 1.0 m is specified to all waves. In this way, waves,
spanned from linear ones to mildly steep ones in waters from being quite shallow to
being deep, are considered.

Three following currents with speeds U = 0.5 m/s, 1.0 m/s, 2.0 m/s and three op-
posing currents U = −0.5 m/s,−1.0 m/s,−2.0 m/s, which are commonly observed
in reality, are investigated. The domain length Ld is selected to be 1.5 times of the
wavelength Lw and thus 25 domain lengths for each current speed are specified. In
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(a) kh = 0.6 (b) kh = 1.6

(c) kh = 3.0 (d) kh = 4.2

Figure 4.2: Comparison between simulated and theoretical surface elevation at inflow
boundary for different waves in a following current: U = 1.0 m/s

total, 150 simulations have been performed to assess the condition S-1 with current.
The simulation duration is always 6 times of Ld /cg, therefore, the duration is dif-
ferent for each simulation and the wave energy (group velocity cg) travels 6 domain
lengths in this duration.

The grid resolution dx in horizontal direction is chosen to be 0.25 m in each sim-
ulation, with which at least 60 cells per wave length is guaranteed. The vertical grid
size dz is fixed and also specified as 0.25 m. The time step dt changes with the wave
period Tw in each simulation. It is specified as Tw / 100 initially and is adjusted au-
tomatically to satisfy the CFL criterion. The reader is referred to Kleefsman (2005)
for more information. The parameter ck in the condition S-1 including current is de-
signed to perform best for k = 0.16, with a corresponding wave length λ = 39.25 m.
Using these settings, the number of cells in the 25 cases ranges from 3620 to 90480
and the run time takes from 7 minutes to three hours.

Surface elevations for regular waves in currents

Before comparing the numerical reflection coefficients with the analytical solutions
for regular waves in currents, their surface elevations calculated from ComFLOW are
compared with the theoretical results.

ηw =
A′(ω − k ·U)

g
cos(|k|h) cos(k · x− ωt). (4.1)

In the previous chapter, we derived the linearized kinematics boundary condition at
the free surface for waves in current, which reads:
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(a) kh = 0.6 (b) kh = 1.6

(c) kh = 3.0 (d) kh = 4.2

Figure 4.3: Comparison between simulated and theoretical surface elevation at inflow
boundary for different waves in an opposing current: U = −1.0 m/s

∂ηw
∂t

+ U · ∇ηw =
∂φw
∂z
|z=η . (4.2)

The velocity potential due to waves (only) φw = A′cosh|k|(z + h) sin(k · x − ωt).

Setting A′(ω−k·U)
g cos(|k|h) = a where a is the amplitude of waves in current, then

the analytical surface elevation for waves in current is described as:

ηw = a cos(k · x− ωt). (4.3)

Here numerical surface elevations for four waves with the kh values of 0.6, 1.6, 3.0 and
4.2, representing different wave steepness, on top of two currents U = 1.0 m/s and
−1.0 m/s are presented, in comparison with the analytical results. As illustrated in
Fig. 4.2 and 4.3, the dis-match in the first two wave periods of all figures is because
that the input wave is sent into the computational domain gradually with a ramp
function over two wave periods.

For the cases of kh = 0.6 and 1.6, in the presence of both a following current
U = 1.0 m/s and an opposing current U = −1.0 m/s, the numerical input waves
agree well with the analytical solutions, which are illustrated in Fig. 4.2a, 4.2b, 4.3a
and 4.3b. For steeper waves such as in Fig. 4.2c and 4.2d, 4.3c and 4.3d, there is a
slight offset above the equilibrium position η = 0.

With the verified input waves for all cases, we demonstrate the time evolution of
these waves at different positions in the domain. Time series of waves with the same
kh values in different currents are shown from Fig. 4.4 to 4.7. Since there is phase
lag at different positions, the results inside the domain and at the outflow boundary
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(a) kh = 0.6, U = 1.0 m/s (b) kh = 0.6, U = −1.0 m/s

Figure 4.4: Numerical surface elevations of the wave kh = 0.6 at different positions
in two currents: U = 1.0 m/s (left), U = −1.0 m/s (right). Lw is the wavelength and
Ld = 1.5 Lw is the domain length

.

(a) kh = 1.6, U = 1.0 m/s (b) kh = 1.6, U = −1.0 m/s

Figure 4.5: Numerical surface elevations of the wave kh = 1.6 at different positions
in two currents: U = 1.0 m/s (left), U = −1.0 m/s (right)

are shifted to coincide with those at the inflow boundary for comparison.

As can be observed for all waves of different lengths, the start-up interval becomes
longer when the monitoring point moves from the inflow boundary x = 0 further to
the outflow boundary x = Ld = 1.5 Lw. Since the input waves are linearly ramped up
in two wave periods into the domain, the wave at x = 0 is fully developed after two
wave periods, which are depicted by solid blue lines. Compared to the wave signal at
x = 0, there is a delay of 0.5, 1.0 and 1.5 times of the wave periods for the waves to
be fully developed at the position x = 0.5 Lw, x = Lw and x = 1.5 Lw, which are
given in dashed blue lines, solid magenta lines and dashed magenta lines, respectively.

The wave heights decrease gradually from the inflow boundary to the outflow bound-
ary due to numerical damping. In particular, numerical damping is clearly observed
in the case of opposing current. The wave amplitude at the outflow end is 10%
smaller than that at the inflow boundary for the wave kh = 3.0. For the steeper wave
kh = 4.2, the damping of the amplitude is 12%.

The main reason is that the combination of a mean opposing current, waves and
a first-order upwind discretisation yields a numerical scheme with a large amount of
dissipation. The thesis focuses on the boundary conditions and does not investigate
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(a) kh = 3.0, U = 1.0 m/s (b) kh = 3.0, U = −1.0 m/s

Figure 4.6: Numerical surface elevations of the wave kh = 3.0 at different positions
in two currents: U = 1.0 m/s (left), U = −1.0 m/s (right)

(a) kh = 4.2, U = 1.0 m/s (b) kh = 4.2, U = −1.0 m/s

Figure 4.7: Numerical surface elevations of the wave kh = 4.2 at different positions
in two currents: U = 1.0 m/s (left), U = −1.0 m/s (right)

this issue.

Theoretical reflections

The boundary condition S-1 with current is verified by comparing the numerical re-
flection coefficients in the wave and current simulations with corresponding theoretical
ones. The theoretical reflection coefficient for regular waves on uniform current in a
one dimensional domain is derived in Appendix A as:

R = −
(
kout
ω
− 1

cbc + U

)/(
krefl
ω
− 1

cbc + U

)
(4.4)

Here, cbc is the coefficient specified as an input for the condition S-1. kout and krefl
represent the wave numbers of the outgoing and reflected waves, respectively. Given
a certain wave frequency ω, the wave number of reflected wave krefl is determined by
solving the dispersion relation using Newton’s method.

Numerical reflections

To obtain the numerical reflection coefficient, the outgoing and reflected waves should
be distinguished at their respective wave numbers from the wave signals in the do-
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Figure 4.8: Comparison between simulated and theoretical reflection coefficients for
regular waves on following current: U = 0.5 m/s

Figure 4.9: Comparison between simulated and theoretical reflection coefficients for
regular waves on following current: U = 1.0 m/s

Figure 4.10: Comparison between simulated and theoretical reflection coefficients for
regular waves on following current: U = 2.0 m/s

main. The time history of the surface elevation at all grid points in the computa-
tional domain is adopted to perform Fourier analysis in both space and time. The
2-D fast Fourier transform function fft2 in Matlab is used to operate on the sur-
face elevations, which results in the wave amplitudes at a series of wave numbers.
The wave numbers decomposed from the Fourier transform are located in the range
−2π[−Nx/2 : Nx/2− 1]/(Nx∆x), in which Nx is the grid number in x- direction and
∆x is the grid size. The numbers of time instances and time steps are denoted by Nt
and ∆t, respectively.
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It can be observed that the wave signals are decomposed into two parts: one with
positive wave numbers and the other with negative wave numbers. The part with
negative wave numbers corresponds to reflected waves. The wave amplitudes at their
respective wave numbers can be obtained and the ratio of these two values is the
numerical reflection coefficient. This method is suitable for regular waves.

Note that for irregular waves there are some other widely-used methods to sepa-
rate incident and reflected waves. For example, a 2-point method was proposed by
Goda and Suzuki (1976). Here a simultaneous recordings of wave profiles is made at
two adjacent locations on a line parallel to the direction of wave propagation. Since
the 2-point method has limitations, Mansard and Funke (1980) proposed a 3-point
approach, which uses a least square analysis for decomposing the measured spectra
into incident and reflected spectra with greater accuracy and range.

Results of reflection coefficients for regular waves in currents

To measure the accuracy of the boundary condition S-1 with a current, the numerical
reflection coefficients obtained from the above 150 test cases are compared with the
theoretical ones.

It is observed from Fig. 4.8, for the current velocity U = 0.5 m/s, that the simu-
lated reflections agree well with theory for all kh values. The condition S-1 including
current is designed to perform best for kh = 1.6. Correspondingly, the minimum nu-
merical reflection is close to zero for the same kh. Away from that kh, the reflections
increase in both simulations and theory.

Fig. 4.9 presents the results for a larger current U = 1.0 m/s. The numerical
reflection coefficients are slightly off the analytical solutions. However, they share the
mean trend. The reflected waves do not exist for kh values larger than 4.2, because
the group velocities of these waves become smaller than the current speed and thus
the reflected waves are blocked by the current.

The reflection coefficients for the case U = 2.0 m/s are presented in Fig. 4.10.
For the kh values smaller than 1.4, the numerical results agree well with their corre-
sponding theoretical values. There is no reflection for the kh values larger than 1.4,
because these reflected wave modes have been blocked by the current and cannot exist.

The numerical reflection coefficients for regular waves on top of opposing currents are
also compared with the theoretical values. The results for the current U = − 0.5 m/s
and U = − 1.0 m/s are shown in Fig. 4.11 and 4.12. The simulated reflections show
similar tendency and are in good agreement with theory.

With an increasing opposing current U = − 2.0m/s, the reflections for the waves of kh
values larger than 2.4 are hardly obtained, see Fig. 4.13 due to excessive dissipation.



4.1. TESTS: REGULAR WAVES ON CURRENTS 57

Figure 4.11: Comparison between simulated and theoretical reflection coefficients for
regular waves on opposing current: U = −0.5 m/s

Figure 4.12: Comparison between simulated and theoretical reflection coefficients for
regular waves on opposing current: U = −1.0 m/s

Figure 4.13: Comparison between simulated and theoretical reflection coefficients for
regular waves on opposing current: U = −2.0 m/s

4.1.2 GABC-1 with current

In the above tests, the boundary condition S-1 with current can only be perfect for one
certain wave component and current. However, a wave in reality is often composed
by the superposition of a number of components. Each individual component has its
own wave number. To account for the dispersive properties of waves, the parameter
c in the Sommerfeld-inspired condition needs to be approximated, which results in
GABC-1. The condition GABC-1 is designed to be accurate over a range of kh values.
A better approximation of the dispersion relation leads to a lower reflection. In this
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section, the boundary condition GABC-1 including current is verified by means of the
test cases of 25 regular waves, each combined with six different currents.

Figure 4.14: Approximation of the dispersion relation

Setup of the simulations

The parameters specified for waves and currents are exactly the same as in the test
of the condition S-1 with current. The wave has a height of Hw = 1.0 m and the
water depth h is 10 m for all simulations. Three following currents with speeds U=
0.5, 1.0, 2.0 m/s and three opposing currents −0.5,−1.0, −2.0 m/s are accounted for.
25 values for kh of the monochromatic waves vary from 0.2 to 5 evenly. The domain
length Ld is selected to be one and a half wavelength Lw and thus 25 domains are
specified. The simulation duration is always 6 times of Ld /cg, therefore, the dura-
tion is different for each simulation and the wave energy (group velocity cg) travels 6
domain lengths in this duration.

The only difference from the test of the condition S-1 is that the condition GABC-1
is applied at the domain boundaries. In this study, the coefficients in the boundary
condition GABC-1 are chosen such that the dispersion relation of the waves with
the kh in the range 〈0, 6) are approximated well. With a0 = 1.04, a1 = 0.106, and
b1 = 0.289, the approximate dispersion relation is illustrated in Fig. 4.14.

Surface elevations for regular waves in currents

In the same fashion as for the condition S-1 with current, the numerical surface el-
evations at the inflow boundary for four waves are compared to analytical solutions
for a following current U = 1.0 m/s and an opposing current U = − 1.0 m/s, see Fig.
4.15 and 4.16. The good agreement implies that the waves are sent into the domain
correctly. For these two current velocities, time series of waves with the same kh
values at different positions in the domain are shown from Fig. 4.17 to 4.20. Similar
to the results for the condition S-1 with current, the numerical damping in the wave
amplitude occurs. As shown in Fig. 4.19b and 4.20b, for the steep waves kh = 3.0
and kh = 4.2 in the opposing current U = −1.0 m/s, the numerical damping at the
outflow end is 9.5% and 12.5% respectively.
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(a) kh = 0.6 (b) kh = 1.6

(c) kh = 3.0 (d) kh = 4.2

Figure 4.15: Comparison between simulated and theoretical surface elevation at inflow
boundary for different waves in current: U = 1.0 m/s

(a) kh = 0.6 (b) kh = 1.6

(c) kh = 3.0 (d) kh = 4.2

Figure 4.16: Comparison between simulated and theoretical surface elevation at inflow
boundary for different waves in current: U = −1.0 m/s
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(a) kh = 0.6, U = 1.0 m/s (b) kh = 0.6, U = −1.0 m/s

Figure 4.17: Numerical surface elevations of the wave kh = 0.6 at different positions
in two currents: U = 0.5 m/s (left), U = 1.0 m/s (right). Lw is the wavelength and
Ld = 1.5 Lw is the domain length

.

(a) kh = 1.6, U = 1.0 m/s (b) kh = 1.6, U = −1.0 m/s

Figure 4.18: Numerical surface elevations of the wave kh = 1.6 at different positions
in two currents: U = 1.0 m/s (left), U = −1.0 m/s (right)

The nonlinearity of the surface elevations is clearly observed. In this thesis, the
FFT approach is adopted to separate incident and reflected waves for these cases.
A nonlinear method was proposed by Andersen et al. (2017), in which the nonlin-
ear wave celerity was used to overcome the amplitude dispersive effect of nonlinear
waves. This nonlinear approach separates the superharmonics into bound/free and
incident/reflected components.

Results of reflection coefficients for regular waves in currents

To measure the accuracy of the GABC-1 with current, the numerical reflection co-
efficients obtained from the above 150 test cases are compared with the theoretical
ones. They are presented from Fig. 4.21 to 4.26, which correspond to the following
currents U = 0.5, 1.0, 2.0 m/s and the opposing currents U = −0.5,−1.0,−2.0 m/s
respectively. All the simulated reflection coefficients are lower than 6%, which are
much smaller than those obtained from the condition S-1 including current for the
corresponding same six currents, see Fig. 4.8 to 4.13. More detailed observations for
the results obtained from the condition GABC-1 including current are given as below.

It is observed from Fig. 4.21, for the current U = 0.5 m/s, that the simulated reflec-
tions are somewhat larger than analytical values but lower than 6%. This indicates
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(a) kh = 3.0, U = 1.0 m/s (b) kh = 3.0, U = −1.0 m/s

Figure 4.19: Numerical surface elevations of the wave kh = 3.0 at different positions
in two currents: U = 1.0 m/s (left), U = −1.0 m/s (right)

(a) kh = 4.2, U = 1.0 m/s (b) kh = 4.2, U = −1.0 m/s

Figure 4.20: Numerical surface elevations of the wave kh = 4.2 at different positions
in two currents: U = 1.0 m/s (left), U = −1.0 m/s (right)

that the reflected waves with the kh values between 0 and 5 in the current U = 0.5 m/s
are absorbed well with our boundary condition.

Similar results are obtained for the current speed U = 1.0 m/s, see Fig. 4.22. There
is no reflection for the kh values that are larger than 4.2, because the reflected waves
have been blocked by the current.

The reflection coefficients for the case U = 2.0 m/s are presented in Fig. 4.23. The
reflected waves do not ever exist for kh values larger than 1.4, because the group
velocities of these waves become smaller than the current speed and thus the reflected
waves are blocked by the currents. For the waves of kh smaller than 1.4, the numerical
reflections are less than 4%.

The numerical reflection coefficients for regular waves on top of opposing currents are
also compared with the theoretical values. The result for the current U = − 0.5 m/s
is shown in Fig. 4.24. On the whole, the simulated reflections are larger than their
theoretical counterparts, but for all the kh are less than 5 %. Given a stronger op-
posing current U = −1.0 m/s, the simulated reflections show similar tendency and
are in good agreement with theory, see Fig. 4.25.

However, with an increasing opposing current U = −2.0 m/s, the reflections in Fig.
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4.26 for the waves of the kh values larger than 2.4 are difficult to obtain due to ex-
cessive dissipation. Four kh values, representing different wave steepness, have been
chosen to show these dissipation, see Fig. 4.27. The envelopes in the figure are deter-
mined from the maximum surface elevations during the simulation at each position.

Figure 4.21: Comparison between simulated and theoretical reflection coefficients for
regular waves on following current: U = 0.5 m/s

Figure 4.22: Comparison between simulated and theoretical reflection coefficients for
regular waves on following current: U = 1.0 m/s

Figure 4.23: Comparison between simulated and theoretical reflection coefficients for
regular waves on following current: U = 2.0 m/s

As can be observed when the kh increases the wave dissipation gets larger. For
example, in the case of a very short wave with kh = 4.0, more than 70% of the
wave amplitudes are dissipated. It is not clear about the causes of this excessive
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dissipation in the case of opposing current U = −2.0 m/s and requires further study
in the future. As a preliminary investigation, we plot the dissipation for the same
four kh with following current U = 2.0 m/s in Fig. 4.28. In this case, the dissipation
is acceptable.

Figure 4.24: Comparison between simulated and theoretical reflection coefficients for
regular waves on opposing current: U = − 0.5 m/s

Figure 4.25: Comparison between simulated and theoretical reflection coefficients for
regular waves on opposing current: U = − 1.0 m/s

Figure 4.26: Comparison between simulated and theoretical reflection coefficients for
regular waves on opposing current: U = − 2.0 m/s
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(a) kh = 0.4 (b) kh = 0.8

(c) kh = 3.6 (d) kh = 4.0

Figure 4.27: Dissipation for four kh in the opposing current: U = −2.0 m/s

4.2 Tests: irregular waves on currents

To further test the boundary condition GABC-1 with current, which is mainly de-
signed for simulations of long-crested irregular waves on top of uniform current in
truncated domains, tests of irregular waves in combination with following and oppos-
ing currents will be performed in a 2D computational domain.

The performance of the boundary condition is measured by means of the reflection
coefficients. A JONSWAP wave spectrum, see Table 4.1, on top of a current simu-
lation, with GABC-1 at both inflow and outflow end of the domain, is adopted to
obtain the numerical reflection coefficients, which are compared with the theoretical
counterparts.

Setup of the simulations

Four simulations have been performed, in which the above JONSWAP spectrum,
which is a narrow-banded spectrum, travels on top of a following current: 1.0 m/s
and an opposing current: −0.5 m/s, respectively. For each current, two simulations
in a small domain of the length 400 m and a large domain of the length 10000 m are
carried out. The finest grid size in both x and z- directions is 0.5 m. The duration of
the simulations is specified as 1200 s for the accuracy of the Fourier transform. For
the shortest incident wave period that has energy, 200 time steps per period are ap-
plied. For the smallest incident wavelength that has energy, 12 cells per wavelength
are adopted. For those wave components the effect of numerical dispersion is not
negligible. It is a compromise to obtain a reference solution without reflection in the
large domain within a reasonable amount of time. The simulation took 36 hours in
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(a) kh = 0.4 (b) kh = 0.8

(c) kh = 3.6 (d) kh = 4.0

Figure 4.28: Dissipation for four kh in the following current: U = 2.0 m/s

the large domain and 25 minutes in the short domain to finish.

The simulations start from uniform current, i.e. there is a current in the whole
domain and no waves at t = 0. Waves are imposed at the inflow side of the domain
using linear wave potential theory. The surface elevation and velocities at the inflow
boundary are gradually built up by means of linear ramp function over an interval of
two significant wave periods.

The coefficients of the GABC-1 are given in Table 4.2. They are tuned in such a
way that the reflection coefficients over the range of kh ∈ (0, 6] are less than 2%.
The coefficient in the Sommerfeld condition applied at the surface cells, which is the
phase velocity of the outgoing wave, is tuned according to the peak component in the
spectrum.

Table 4.1: JONSWAP spectrum

Numerical reflections

Here the procedure to extract the numerical reflection coefficients is different from
what was used for regular waves, because the wave components in irregular waves
propagate with different celerities and thus reach the domain boundaries at different
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time instances. Another method proposed in Wellens (2012) is adopted. First, a wave
simulation is performed in a large domain, which is large enough that during the
entire duration reflected waves cannot reach the measurement location. The required
domain length is determined from the phase velocity of the fastest propagating wave
components and the duration of the simulation: Ld =

√
ghtmax. Here h is the water

depth.

Table 4.2: Coefficients of ABC

In the meantime, another simulation is carried out in a small domain. This simula-
tion is same as the previous one in the large domain in every aspect, except for the
domain length and the boundary condition applied at the outflow end of the domain.
Measurements of the surface elevation in the small domain, taken at exactly the same
positions, are compared to measurements in the large domain. Their difference can
only be attributed to the boundary condition since everything else is same. The large
domain and small domain, with the measurement location in the middle of the small
domain, are illustrated in Fig. 4.29.

Figure 4.29: Large and small domains used to obtain reflected signals in the middle
of the small domain

Results for following current

Subtraction of the wave signal at the measurement location in the large domain from
the wave signal in the small domain where the boundary condition GABC-1 is applied
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results in a reflection signal. Subsequently, the wave signal in the large domain and
the reflection signal are decomposed into their Fourier components, which are used to
calculate the spectra and reflection coefficients. Note that this method disregards any
nonlinearities such as wave-wave interactions. The resulting input spectrum, reflected
spectrum and reflection coefficients will be compared with theory, see Fig. 4.30.

Figure 4.30: Input wave spectrum (top-left), Approximated dispersion relation (top-
right), Reflected wave spectrum (bottom-left) and Reflection coefficients (bottom-
right) obtained from the simulation in comparison with theory: U = 1.0 m/s

First, the input spectrum obtained from the numerical simulation is given in the top-
left figure, which shows reasonable agreement with the theoretical one. The reflected
wave spectrum is shown in the bottom-left figure. A shift of the wave number of the
reflected waves is visible due to the Doppler effect of the opposing current on the
reflected waves. The kh-axis is different from that in the other three figures, since
the reflected modes have shorter wavelengths compared to the outgoing modes in the
presence of the following current.

The reflection coefficients in comparison with theory are illustrated in the bottom-
right figure. The simulated reflections for the shorter waves are smaller than theory.
This may be attributed to wave nonlinearity and insufficient grid resolution for these
shorter waves. There is no more reflection for kh > 4.24, because the corresponding
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reflected wave modes are blocked by the current.

Figure 4.31: Input wave spectrum (top-left), Approximated dispersion relation (top-
right), Reflected wave spectrum (bottom-left) and Reflection coefficients (bottom-
right) obtained from the simulation in comparison with theory: U = −0.5 m/s

Results for opposing current

The procedure to post-process the results of irregular waves in an opposing current
is the same as what is used for a following current. Fig. 4.31 presents the input spec-
trum, reflected spectrum and reflection coefficients, which are numerically computed,
in comparison with the analytical solutions.

As can be observed in the top-left figure, the numerical input spectrum agrees well
with the analytical spectrum. Note that the kh-axis for the reflected spectrum (see
the bottom-left figure) is different from that in the other three figures, because the
reflected wave modes have longer wavelengths than the corresponding outgoing modes
in the presence of the opposing current. The reflected wave energy around kh = 1.3
is much larger than the theoretical values, which requires further study. For the other
reflected wave components with kh < 3.8, which correspond with th outgoing modes
with kh < 6, the reflected energy matches reasonably with theory.

In the bottom-right figure, the reflection coefficients for different wavelengths are
presented. For the wave modes with 3 < kh < 6, the reflection coefficients are larger
than the analytical results. This deviation may be caused by the following reasons.
Firstly, the nonlinear interaction of waves at the boundary is not accounted for, since
the boundary condition is derived from the linear wave theory. Secondly, the op-
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posing current increases the wave steepness, which adds to the nonlinear effects at
the boundary. Thirdly, the procedure to post-process the numerical results may also
contribute to this difference. The simulation duration is short compared to the peak
period of the spectrum.

The simulated amounts of reflected wave energy for kh > 3.8, see the bottom-left
figure, and the reflection coefficients, see the bottom-right figure, are worse than the-
ory, because the boundary condition is not designed for these wave components.

Figure 4.32: Initial position of the oscillating sphere

4.3 Oscillating sphere in currents

In this section, a solid sphere with a prescribed motion is oscillating on the water
surface with a uniform current in a numerical tank. Wehausen and Laitone (1960)
studied the analytical solutions of an oscillating source at forward speed. The oscil-
lating sphere produces waves radiating outwards in all directions. Therefore, there
are waves moving with following, opposing and normal currents in one simulation,
which is interesting and helpful to verify the boundary condition with currents in 3D.

Table 4.3: Comparison of theoretical and numerical wavelengths in the directions of
following, opposing and normal currents at t = 10.8 s

Setup The sphere with a radius of 2 m is initially located 2 m above the free surface,
see Fig. 4.32 for the initial condition of the problem. The sphere is allowed to make
only vertical motion along z-direction. Sinusoidal motion of the sphere is prescribed
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(a) gird size: 0.5 m

(b) gird size: 0.29 m

(c) gird size: 0.17 m

Figure 4.33: Snapshots of numerical water surface elevations at t = 10.8s
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by zs(t) = 1+cos 2.4t. The current has a speed of 0.5 m/s and propagates at 45◦ with
the positive x-axis. After the impact of the sphere on the water surface initially with
uniform current, a series of waves are produced radiating outward in all directions.
The second-order boundary condition ABC-2 is used at the domain boundaries to
absorb these waves and current, because it contains two angles and is designed for
waves under different angles.

The domain lengths in both x- and y-directions are chosen as 35 m, to make sure
that at least two wavelengths can be measured. The water depth is 7.5 m. Three
simulations have been performed, with grid resolutions of 0.5 m, 0.29 m and 0.17 m,
respectively. The duration for both the simulations is 10.8 s, which ensures that the
waves in each direction radiated from the oscillating sphere have fully reached the do-
main boundaries and have been reflected. In this way, the performance of the ABC-2
can be tested.

Results The wave lengths are calculated in each direction and compared with the
theoretical values, see Table 4.3. With a small grid size in all three directions being
0.17 m, the numerical wave lengths in the directions of following, opposing and nor-
mal currents agree reasonably with the theoretical amounts.

The procedure to determine the wavelengths is explained as follows. Fig. 4.33 il-
lustrates three snapshots from the simulations on three grids at t = 10.8 s. As can be
seen, smooth water surface fields are obtained on all grids, which indicates qualita-
tively that the boundary condition ABC-2 prevents wave reflections in all directions,
including the direction of following, opposing and normal currents.

Figure 4.34: Sketch of wave lengths calculation in different directions from excel files

Further observations are expected to verify the boundary condition quantitatively.
The water level in the entire numerical domain at t = 10.8 s is exported to an excel
file and used to obtain the wavelengths in the direction of following, opposing and
normal currents. Fig. 4.34 shows a sketch how to obtain the wavelengths in these
directions from excel files. Small blue markers in the figure show the highest values
in each wave, which represent the wave crests. The wave length in each direction is
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(a) gird size: 0.5 m

(b) gird size: 0.29 m

(c) gird size: 0.17 m

Figure 4.35: wavelengths in the directions of following, opposing and normal currents
at t = 10.8 s for different grid resolutions. Small blue markers show the highest values
in each wave which represent the wave crests.
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determined as the distances between two neighbouring markers in its corresponding
direction.

The snapshots of wavelengths in these directions on three grids are illustrated in
Fig. 4.35a, 4.35b and 4.35c, respectively. The elliptic wave patterns are observed due
to the Doppler effect of the current, instead of the circular waves in the absence of
current. The wave length in the direction of the following current are longer than
that in the direction of the opposing current. As is known, a ship at forward speed
in calm water generates a Kelvin wave which includes diverging waves. In this work,
no diverging waves are observed from the oscillating sphere in uniform current. The
wavelength is in agreement with theory.

In addition, the ratios of wave amplitudes at different radii are also compared to
the theoretical values in the direction of following, opposing and normal currents,
respectively. It can be seen in Table 4.4 that the ratios of numerical wave amplitudes
are in reasonable agreement with theory at the finest grid size of 0.17 m.

Table 4.4: Comparison of theoretical and numerical wave amplitudes ratios at different
radii in the directions of following, opposing and normal currents at t = 10.8 s

Disregarding the viscous forces, the total magnitude of the energy released from the
oscillating sphere and transported by the wave is constant. Therefore, the power of
the wave is also constant. In the case of a circular wave that is travelling in a two
dimensional area, the power of the wave calculated at the distance r1 from the source
is equal to the intensity I1 multiplied by the circumference of the circle 2πr1. The
same power P calculated at a distance r2 from the source is equal to the intensity
I2 multiplied by the circumference of the circle 2πr2, i.e. P = I12πr1 = I22πr2.
Accordingly, the ratio of the intensities I1 and I2 is equal to the ratio of the radii r2

over r1: I1/I2 = r2/r1. Since the intensity is proportional to the square of the
amplitude of the wave and also to the square of the frequency f which remains
constant, i.e. I1 ∼ A2

1f
2, I2 ∼ A2

2f
2. Therefore, the ratio of the amplitudes at

different distance from the source can be obtained: A1/A2 ∼
√
r2/r1.





Chapter 5

Validation results

In this chapter, results from a validation study are presented. The numerical ap-
proach, which is explained in the previous chapters, is applied to the tests: heave and
pitch motions of a Wigley hull at forward speed in head waves. The simulations are
performed with GABC-1 imposed at both inflow and outflow boundaries to prevent
reflection of waves into the computational domain. The experimental setup is de-
scribed and an overview of the parameters in the simulations is provided, followed by
the comparison between 3D ComFLOW wave-current-structure simulation results, in
which a current velocity is used to model the ship’s forward speed, and experimental
results.

With the experiments involving a ship, we showed that the boundary condition
GABC-1 not only works for theoretical conditions, but also for the cases where the
ship generated waves are present. The simulated results in terms of ship motions take
approximately one month, which is considered long, but still come close to the mea-
surements. This work is the first to show validated ship motions for a combination of
forward speed and waves within the ComFLOW project.

An application of green water impact on the deck of the Wigley hull is shown with the
validated numerical method, by making the waves higher. A green water event is the
name given to the situation that masses of water flow over the deck of the ship. The
advantage of this simulation in ComFLOW is that one not only gets ship motions as
in other models, but for a slightly harsher wave condition one can also predict and
quantify water on the deck.

The chapter ends up with a discussion of the results.

5.1 Introduction

Vessels at sea are continuously subject to waves, wind and currents. These distur-
bances cause the vessels to move vertically. In addition, there are many maritime
applications that require a compensation of the vertical vessel motion excited by

75
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ocean waves and thus an exact knowledge about the vertical motion. Examples for
such applications are safe aircraft landing on vessels and subsea lifting operations
required for underwater installations on the seabed like pipelines and conveying sys-
tems for oil and gas. In this work, heave and pitch motions of a ship, with a constant
forward speed in waves, in a truncated domain are investigated.

Table 5.1: Ship parameters used in the experiments and simulations. J22 is the radius
of inertia for pitch.

A ship’s heave and pitch motions vary with the wave length. In very long waves they
will just follow the sea surface, while for shorter waves, near the heave and pitch
resonance, they will be strongly amplified and out of the phase with sea surface.

A linear 3D Boundary Element Method (BEM) in the frequency domain is usually
implemented to investigate ship motions. In contrast, in this work a Navier-Stokes
solver, with the numerical approaches mentioned in previous chapters, is adopted to
determine the heave and pitch motions of a ship moving forward in waves. The major
differences between BEM and the Navier-Stokes solver ComFLOW for this applica-
tion are: 1, the free surface position in ComFLOW is not linearized around a mean
free surface; 2, the motion of the body is not linearized around a mean body position;
3, the free surface is not confined to a single value at each horizontal position (x, y),
but is free to flow over the deck of the body in large relative wave height situations.
An experiment of a Wigley hull at forward speed in waves has been specifically de-
signed and carried out at Delft University of Technology during the development of
ComFLOW.

Figure 5.1: The wigley hull model in the towing tank
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5.2 Experiment modeling

The experimental tests have been carried out in the towing tank at Delft University of
Technology. The model used in the experiments is a Wigley hull. It is mathematically
defined and used regularly for tests and validation work. The Wigley hull is based
on the length L = 3 m, the width B = 0.3 m and the draft T = 0.1875 m. However,
the actual draft of the model in the experiment was 0.2 m, which was different from
the T in the Wigley parameter set. The ship parameters used in the experiments and
simulations are presented in Table 5.1.

Fig. 5.1 shows the photograph of the Wigley hull model in the experiments. The
experiments have been performed in a quite long, but narrow wave tank. Waves are
generated with a flap-type wavemaker at one of the narrow ends of the tank. At the
opposing end a beach is present to induce wave breaking and reduce reflection. The
model is initially positioned a considerable distance away from the wavemaker and
towed by the carriage in head waves after the experiments start.

The motions of the Wigley hull are measured through two vertical position gauges,
located a half meter away from the center of gravity (CoG) of the model. Then the
heave and pitch motions at the CoG of the hull can be calculated. Fig. 5.2 shows
the positions of the measurement instruments which will be utilized to compare the
numerical results with the experimental results. The wave gauge whm fixed to the
carriage, which was located at a distance of 2.984 m away from the center of grav-
ity (CoG), measured the surface elevations. Also, video recordings have been made
during the model tests. The measurements were stopped as soon as reflected waves
from the beach started to arrive at the hull model in the tank. Several sea states such
as regular and irregular long-crested waves as well as different forward speeds for the
Wigley hull, were generated.

Figure 5.2: Vertical position gauges on the ship model

5.3 Numerical simulation

A number of simulations have been performed. A grid study is performed first. Then
it is studied how the results change when the boundary, at which the GABC-1 with
current is specified, is placed closer to the structure. In the end, the results of a Wigley
hull at constant speed in an irregular head wave are present, to demonstrate the type
of simulations that the boundary condition GABC-1 with current was designed for.
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5.3.1 Grid study

In coarse grid simulations, a specific amount of grid-size-dependent numerical viscosity
is applied to obtain a velocity field without spatial instability, effectively resulting in
a first-order upwind discretization of the convective term in the momentum equation.
Upwind discretization induces spurious wave energy dissipation, which is undesirable
because it reduces the motion of a structure.

As a result, the aim of the grid study is to obtain sufficient grid resolution for rep-
resenting the input , according to the measurements in the experiments, using the
first-order upwind scheme. The grid study simulations are performed in 2-D compu-
tational domains. The domain size in x-direction was chosen to correspond to five
wave lengths. The water depth is specified as 0.73 m in line with the depth in the
experiment.

At t = 0 the wave, having a period of 1.25 s, is generated with velocities according
to Airy theory and ramped up linearly over two wave periods to the full amplitude
into the computational domain. At every time step after the initial condition, the
flow variables at the boundary are calculated according to the Airy wave theory, and
prescribed at the inflow boundary.

Figure 5.3: Time history of surface elevations for four grid resolutions

Four simulations are performed to obtain sufficient grid resolution for the desired wave
height. The input wave height is 0.0633 m. The first simulation is performed with a
mesh size of ∆x = 0.125 m on a uniform grid. With the same wave, the mesh sizes
for the other three tests are refined to ∆x = 0.0625, 0.0313 and 0.0156 m, respectively.

At both inflow and outflow boundary, the first-order generating and absorbing bound-
ary condition (GABC-1) with current is applied. A free-slip condition is employed at
the side boundaries of the computational domain, as it allows us to use a coarser grid
near the outer walls.

The numerical surface elevations measured slightly inside the domain are depicted
in Fig. 5.3. With the grid refined by a factor of 2 in three successive tests, the nu-
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merical wave amplitudes increase from 0.0282 m to 0.0289 m, 0.0291 m and finally
0.0294 m. As can be seen, the expected wave amplitude of 0.0316 m is not yet reached.
Increasing the vertical grid resolution in the wave height does not reduce the errors
in terms of dissipation or numerical dispersion for this thesis. In addition, it is very
likely to cause large errors in the VoF displacement algorithm to have a grid aspect
ratio far away from 1.

With a refinement factor of 2, the computational cost will increase by a factor of
24. Considering the grid numbers and durations adopted in the later simulations in
this work, a further refinement level will make the simulations incredibly expensive.
In order to obtain the desired wave height, our strategy is to specify a slightly higher
input wave height in the simulation on relatively coarse grids.

5.3.2 Sensitivity study

The sensitivity study aims to investigate how the ship motions change when the
domain boundary is located closer to the structure. Two waves are chosen from two
tests 77 and 79 in the experiments, where different forward speeds of the ship are
considered. The test identification numbers of the experiments with regular waves
are given in Table 5.2, with wave heights, periods, lengths and ship forward speeds
associated with these tests.

Table 5.2: Wave heights, periods, lengths and ship forward speeds in the regular wave
experiments

The initial setup of the simulation 77 is given in Fig. 5.4. A Wigley hull is included
in the computational domain. To make the Wigley hull clear, two more snapshots of
the top and side view of the hull are presented in Fig. 5.5. The ship has a length of
L = 3.0 m, a width of 0.3 m and a draft with a value of 0.2 m.

In the simulation 77, the Wigley hull is located at a distance of two ship lengths
away from the inflow boundary. Another two ship lengths are left on the trailing
side of the hull. Consequently, the size of the domain along the x- direction becomes
Lx = 5L = 15 m. Along the y- direction, the width of the domain is selected the
same as that in the experiment, which is Ly = 2.75 m. The water depth is specified
as 0.73 m, exactly the same as in the experimental towing tank.

For simulation 79, the dimension of the computational domain in the x- direction
is Lx = 3.33L = 10 m, which is smaller than the domain size L = 15 m in the test
77. The width and water depth are taken as 2.75 m and 0.73 m, which are identical
to those in the test 77.
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(a) Initial setup (b) Details of the Wigley hull

Figure 5.4: Initial setup for the test 77

(a) top view (b) side view

Figure 5.5: Top view and side view of the Wigley hull

The mesh is kept constant at ∆x = ∆y = ∆z = 0.0156 m in all three directions.
The GABC-1 with current is applied at both inflow and outflow boundaries.

To calculate the interaction between the moving Wigley hull and waves, the quasi-
simultaneous interaction law, described in Section 2.7 of Chapter 2, developed in
ComFLOW has been used in this work, see Veldman et al. (2019). It makes use of a
6 DOF model for the dynamics of the geometry, which is solved simultaneously with
the equations in the fluid domain. In the case of the Wigley simulations the degrees
of freedom are restrained to heave and pitch only. The interaction law is a relation
between the pressure and the local velocity of the body surface, which will show up
as a boundary condition in the pressure Poisson equation.

Results For test 77, first the water surface elevation measured at 2.984 m in front
of the Wigley hull is presented in Fig. 5.6. It can be seen that the resulting wave
height from the numerical simulation is 0.057 m, which is identical as measured in
the experiment. With this wave, the results of heave and pitch motions are obtained,
see Fig. 5.7a and 5.7b. The numerical heave amplitude has a value of 0.023 m, which
is the same as in the experiment. The pitch amplitudes measured in both the simu-
lation and experiment are 2.45◦.

For the test 79, the domain size is 1/3 times smaller than that in the test 77, the sur-
face elevation measured also at 2.984 m in front of the ship hull is shown in Fig. 5.8.
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Figure 5.6: The comparison of numerical and experimental surface elevation for test
77

(a) Heave (b) Pitch

Figure 5.7: Numerical results of the heave and pitch motion for the test 77

The wave heights for both the simulation and experiment are 0.052 m. Similarly as
in the test 77, the resulting heave and pitch motions for the test 79 in the simulation
and experiment are demonstrated in Fig. 5.9a and 5.9b, respectively. The average
heave amplitude of 0.018 m is obtained in the simulation, which agrees with that in
the experiment. The average numerical and experimental pitch amplitudes are both
1.57◦.

Figure 5.8: The comparison of numerical and experimental surface elevation for the
test 79

Discussion It can be concluded from the sensitivity study that the boundary con-
dition GABC-1 incorporating current works as fine in the smaller domain of test 79 as
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(a) Heave (b) Pitch

Figure 5.9: Numerical results of the heave and pitch motion for the test 79

in the large domain of test 77, for the Wigley hull at forward speed in regular waves
with the same grid size. The domain boundaries can be located quite close around
the geometry using this boundary condition.

5.3.3 Wigley hull at forward speed in irregular waves

In this section, an irregular wave, with the significant wave height being 0.006 m and
the peak period being 1.39 s, will pass the Wigley hull causing wave diffraction and
ship motions. The interaction between the irregular waves and the moving hull is
simulated.

The numerical results from test 63 are presented. The forward speed of the hull
in this test is 0.5 m/s , and thus the Froude number is Fr = 0.092. This numerical
experiment is intended to show that the boundary condition GABC-1 with current
gives stable and accurate results for irregular waves. Numerical and experimental
results are compared in terms of the surface elevations, as well as the hull’s heave and
pitch motions.

Input wave spectrum from the experiment measurement

To obtain the input wave spectrum for the numerical simulation, the wave signal from
t = 42 s to t = 102 s, measured by the wave gauge located at 2.984 m away from the
center of gravity of the Wigley hull, is extracted as shown in Fig. 5.10.

Figure 5.10: Time history of the wave from t=42 s to t=102 s in the experiment 63
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By means of Fourier transform of the wave signal in Fig. 5.10, a wave spectrum with
encounter frequencies is obtained. These frequencies need to be transformed to earth-
fixed values as input in the numerical simulation. The Fourier components directly
resulting from the Fourier transform are in complex form and the wave properties,
such as wave amplitude and wave phase for each component, can be calculated from
these complex numbers. With all wave properties known, including wave amplitudes,
frequencies and phases, they can be used as input for the numerical simulation.

Figure 5.11: Surface elevation for test 63

Simulation setup The extent of the computational domain in the horizontal di-
rection is 12 m. The width of the domain is prescribed as 2.75 m which is exactly the
same as in the experiment. The water depth has a value of 0.73 m. The boundary
condition GABC-1 with current is applied at the outflow boundary of the domain.
The grid size in all three directions is ∆x = ∆y = ∆z = 0.015 m, which results in 10
million grid points. The time step is 0.025s.

Figure 5.12: Heave motion for test 63

Results First the time series of numerical surface elevation at the inflow boundary
is compared with the experimental results. For visualization the experimental surface
elevation is shifted from t = 42 s to t = 0, as shown in Fig. 5.11. In the first 10
seconds, the numerical elevation is oscillating around the mean level. From then on,
the root mean square error between the simulated and experimental surface elevation
is 0.001 m.
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With this input wave, the resulting heave and pitch motions of the Wigley hull are
obtained and compared with the experimental data in Fig. 5.12 and 5.13 respectively.
There is a mean offset in both simulated and experimental heave motions, which is
removed in the figure for comparison. There is a phase lag between two curves in the
time interval between 10 and 15 seconds. After that the phase difference disappears.
However, the amplitude of the numerical heave is lower between t = 17 s and t = 25 s
and higher for the rest of the time than the experimental data. The root mean square
error between the simulation and experiment is 0.0011 m.

Figure 5.13: Pitch motion for test 63

In the comparison of the pitch motion, a slight phase difference between simulated
and experimental results is also present but much smaller than in the heave motion.
The root mean square error of the pitch amplitude obtained from the simulation is
0.09◦ compared to the experiment.

Figure 5.14: Monitor points locations in the simulation of regular waves. The dis-
tances of the wave gauges w1, w2 and w3 away from the front of the hull are 0.1, 0.2
and 0.3 m, respectively. The distances of the pressure gauges p1, p2 and p3 away
from the front of the hull are 0.05, 0.15 and 0.25 m, respectively.

Discussion The simulation of a Wigley hull at forward speed in irregular head
waves is completed with a good agreement with the experiment. This indicates that
our boundary condition GABC-1 not only works fine for the theoretical conditions
where only irregular waves exist in Chapter 4, but also works well for the cases where
the ship generated waves are present. The ship generated waves are stationary with
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respect to the ship, which means they do not propagate much. The validated results
here have demonstrated that the ship generated waves do not disturb the boundary
condition GABC-1 much.

5.3.4 Application: green water in extreme waves

Based on the validated waves and ship motions in the above sections, we will show one
of the applications that the ComFLOW program has been developed for: green water
in extreme waves. Buchner (2002) studied the physics of the green water process
on the bow systematically. All phases of the green water problem were investigated,
which included relative wave motions, water flow onto the deck, water behaviour and
loading on the deck and green water impact on structures.

Figure 5.15: Monitor points locations in the simulation of irregular waves. The dis-
tances of the wave gauges w1, w2, w3 and w4 away from the front of the hull are
0.05, 0.14, 0.24 and 0.34 m, respectively. The distances of the pressure gauges p1, p2
and p3 away from the front of the hull are 0.12, 0.22 and 0.32 m, respectively.

Waves and currents can induce large forces on sea-going ships that have to operate
under extreme weather conditions. For instance, in heavy storms waves and ship mo-
tions can become so large that solid amounts of sea water, called ’green water’ flow
over the deck, thus threatening the safety and operability of the ship. The amount
of water flowing onto the deck depends on the relative motion of the ship versus the
oncoming wave crest, as well as the phase between the ship and wave motions, which
indicates the dependence on the wave group and its interaction with the ship dynam-
ics.

Two simulations have been performed. In both test cases, a box is added on the
deck of the Wigley hull, which was used in Section 5.3.2 and 5.3.3. The hull moves at
a speed of 0.5 m/s in the opposite direction of the wave. The Fig. 5.14 and 5.15 show
the positions of the monitor points to capture the surface elevations and pressures.

Regular wave Firstly, a regular wave, with period T = 1.2 s and heightH = 0.12m
is used. In x-direction the domain length is 10 m and 640 cells are used. In y-direction,
the domain size is 2.75 m: 176 cells are used in the range [−0.7 m, 0.7 m] and half the
resolution is adopted for the rest. In z-direction 64 cells are specified from −0.4 m to
0.28 m and also half the resolution in the rest areas. The time step is 0.025 s. The
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(a) w1

(b) w2 (c) w3

Figure 5.16: Numerical surface elevations at different positions on the deck of the hull
in a regular wave. The distances of the wave gauges w1, w2 and w3 away from the
front of the hull are 0.1, 0.2 and 0.3 m, respectively.

(a) Heave (b) Pitch

Figure 5.17: Numerical heave and pitch motions of the hull in a regular wave

first-order generating and absorbing boundary condition GABC-1 in this research is
used at both the inflow and outflow end of the domain.

The surface elevations at four positions along the center of the structure on the deck

are shown in Fig. 5.16. The wave becomes approximately two times larger near the
box than in the foremost part of the hull. The resulting heave and pitch motions of
the hull are illustrated in Fig. 5.17.

The pressures at three different locations are presented in Fig. 5.18. The green
water on the deck of the hull is a result of the wave and ship motions. Negative
pressures have been removed because they are artefacts of the numerical method.
Snapshots of the simulation at several time instances are given from Fig. 5.19 to 5.21.
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(a) p1

(b) p2 (c) p3

Figure 5.18: Numerical pressures at different positions on the deck of the hull in a
regular wave. The distances of the pressure gauges p1, p2 and p3 away from the front
of the hull are 0.05, 0.15 and 0.25 m, respectively.

Figure 5.19: Snapshot at t = 6.3 s in a regular wave

Figure 5.20: Snapshot at t = 7.0 s in a regular wave

Figure 5.21: Snapshot at t = 7.5 s in a regular wave
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(a) x = 1.53 m (b) x = 1.62 m

(c) x = 1.72 m (d) x = 1.82 m

Figure 5.22: Numerical surface elevations at different locations on the deck of the hull
in an irregular wave. The distances of the wave gauges w1, w2, w3 and w4 away from
the front of the hull are 0.05, 0.14, 0.24 and 0.34 m, respectively.

Irregular wave Secondly, an irregular wave, with the elevations being 6 times of
those in Fig. 5.11 at all time instances, is adopted. The peak period remains 6 s.
The domain size in x, y, and z-directions are 12, 2.75 and 1.1 m, respectively. The
grid sizes in all directions are uniform with a value of 0.0156 m. The time step is
0.025 s. The boundary condition GABC-1 is only applied at the downstream end of
the domain.

Similarly, in the test with the irregular wave, several snapshots of the green water
phenomenon are depicted as well. Time histories of the surface elevations at different
locations on the deck are presented in Fig. 5.22. The heave and pitch motions of the
hull caused by the wave are shown in Fig. 5.23. Fig. 5.24 gives the pressure signals
at three locations. Their magnitudes are of the expected order. As has been studied

(a) Heave (b) Pitch

Figure 5.23: Numerical heave and pitch motions of the hull in an irregular wave
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(a) p1

(b) p2 (c) p3

Figure 5.24: Numerical pressures at different positions on the deck of the hull in an
irregular wave. The distances of the pressure gauges p1, p2 and p3 away from the
front of the hull are 0.12, 0.22 and 0.32 m, respectively.

in Buchner (2002), the air entrapment seems to be less disturbing for the green water
problems compared to the breaking wave problem, since no overtopping is observed
and thus no real air pockets can be trapped between the water and the structure.
However, during the process of water flowing onto the deck, air may come into the
water. During the final impact this air in the water can result in some cushioning.

With the bow of the hull moving downward and the wave crest reaching the bow
at the same time, the water flows over the deck, see Fig. 5.25, and even run up the
box as in Fig. 5.26. When the bow moves upward, the water on the deck decreases
gradually, see Fig. 5.27.

5.3.5 Discussion

In this chapter, the boundary condition GABC-1 which is extended to include uni-
form current has been validated by means of test cases with a Wigley hull moving
at forward speed in regular and irregular waves. The interaction between the sailing
hull and waves is also incorporated.

For the simulation of the Wigley hull at two different forward speeds (0.5 and 1.0 m/s)
in two regular waves with different amplitudes and periods, the resulting surface eleva-
tions, heave and pitch motions agree well with the experiments. From the sensitivity
study, the inflow and outflow boundaries of the computational domain can be placed
as close as 1.67 times of the ship length to the structure, which makes the computation
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efficient and attractive for the maritime applications.

Figure 5.25: Snapshot at t = 37.0 s in an irregular wave

Figure 5.26: Snapshot at t = 37.2 s in an irregular wave

Figure 5.27: Snapshot at t = 38.2 s in an irregular wave

In addition, in the test of Wigley hull at a forward speed of 0.5 m/s in irregular head
waves, the resulting heave and pitch motions are also observed to be in good agree-
ment with the experiments, which indicates that the boundary condition GABC-1 is
applicable to moving vessels in long-crested waves, where the ship generated waves
are present.

Finally, an application of green water impact on the deck of the Wigley hull is pre-
sented. With the method being validated for milder waves, the application demon-
strates how the numerical method can be used as a first-principles-based extrapolation
to more extreme waves. The green water phenomena demonstrated in the snapshots
coincide with the surface elevations and the hull motions at the same time instances.
It is an advantage for ComFLOW that one not only gets ship motions as in other
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models, but for a harsher wave condition one can also predict and quantify water on
the deck.





Chapter 6

Conclusions

This thesis presents the outcome of a doctoral study on the topic: an absorbing
boundary condition for wave-current flow simulations in maritime applications. Mod-
elling of wave loads on structures at sea is incomplete without currents and thus
the combination of currents and waves is an important aspect of simulating a real-
istic loading environment. Prediction of nonlinear forces exerted on the structures
demands that we consider the combination of waves and currents. The numerical
approach that addresses the topic has been implemented in the CFD simulation tool
ComFLOW. In order to perform numerical simulations for wave-current-structure in-
teraction, absorption of reflections of these waves and currents from the boundaries
of the computational domain is required. The thesis is dedicated to this problem, and
results demonstrating the performance of such boundary conditions are included in
Chapter 4 and 5. Below a summary of the findings and conclusions stemming from
the results in this work are presented.

Verification with regular and irregular waves on top of currents

By means of simulations of regular waves on top of six uniform currents, the first-
order Sommerfeld condition (S-1) and generating and absorbing boundary condition
(GABC-1), both including the effect of current, have been verified.

For each current, the simulated surface elevations for four waves, varying from small
amplitude waves to mildly steep waves, at the inflow boundary are compared to the
input waves first. With the small amplitude waves, which have small kh values, the
numerical input waves agree well with the analytical solutions. In the cases of steeper
waves, there exist discrepancies between simulated and theoretical amplitudes. These
differences may be attributed to the fact that linear theory is used to generate these
waves. Particularly, the opposing current further increases the steepness, i.e. nonlin-
earity, of these steeper waves.

Subsequently, numerical surface elevations of mildly steep waves at four positions
in the domain, from near the inflow boundary to near the outflow end, are shown.

93
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The wave heights decrease gradually from the inflow boundary to the outflow bound-
ary due to numerical damping. However, the damping of the wave heights is within
an acceptable level and does not influence the investigation of the reflected waves.

Lastly, the numerical reflection coefficients, defined as the ratio of the reflected wave
amplitude and the outgoing wave amplitude, are studied in comparison with theoret-
ical values. The findings and conclusions resulting from the condition Sommerfeld-1
and GABC-1 including current are presented as below.

Sommerfeld-1 including current For six currents: three following and three op-
posing ones, the numerical reflection coefficients are slightly off the theory, but they
share the same trend.

Note that in the case of U = 1.0 m/s, there is no reflection for the waves whose
kh values are larger than 4.2 since these reflected waves modes are blocked by the
current. For a larger following current, the reflected waves corresponding to the out-
going waves of the kh > 1.4 cannot exist, because the group velocities of these waves
become smaller than the current speed. The numerical reflections for the oppos-
ing current U = −2.0 m/s are hardly observed due to excessive dissipation in these
simulations.

GABC-1 including current For all six currents, the numerical reflection coeffi-
cients for 25 regular waves are lower than 5%. It is somewhat higher than the the-
oretical value, which is 2%. The difference between simulation and theory is mainly
attributed to the fact that the boundary condition GABC-1 does not account for non-
linearity: bound frequency components do not propagate at phase velocities which
can be predicted with linear theory.

As can be seen, for the following current U = 0.5 m/s, reflections for all 25 waves have
been obtained and measured. Similar to the cases for the condition Sommerfeld-1,
there is no reflection for the waves with kh > 4.2 when U = 1.0 m/s and for the
components with kh > 1.4 when U = 2.0 m/s.

The simulated reflections obtained from the regular waves on top of the first two
opposing currents U = −0.5 m/s and U = −1.0 m/s match well with theory. Again,
the numerical reflections for the stronger opposing current U = −2.0 m/s are hardly
observed due to excessive dissipation in these simulations. For larger kh values, i.e.
shorter wave length, the dissipation exceeds even 70%. The causes are not clear yet
and need further investigation in the future.

Verification with irregular waves on top of currents

The capability of the boundary condition GABC-1 with current to account for disper-
sive effects of waves on top of different currents is investigated as well. A JONSWAP
wave spectrum, with a peak period of 6.0 s and significant wave height of 2.0 m,
is imposed at the inflow side of the 2D computational domain. Two currents: one
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following and one opposing, are accounted for.

For the following current U = 1.0 m/s, the numerical reflection coefficients for the
entire spectrum, with kh < 4.24, are less than 3%. On the whole, they are smaller
than the theoretical amounts, especially for shorter waves. This may be caused by
wave nonlinearity and insufficient grid resolutions for these shorter waves. There is
no more reflection for kh > 4.24, because the corresponding reflected wave modes are
blocked by the current.

In the presence of the opposing current U = −0.5 m/s, the numerical reflection coef-
ficients for the wave modes with 3 < kh < 6 are larger than theory. This difference
may be attributed to several reasons. The first one is that the nonlinear interaction of
waves at the boundary is not accounted for. Besides, the opposing current increases
the wave steepness, which adds to the nonlinear effects at the boundary. The proce-
dure to post-process the numerical results may also contribute to this deviation.

Verification with an oscillating sphere in the 3D domain

In addition, to study how the second-order boundary condition ABC-2 incorporating
current behaves, three simulations of an oscillating sphere in a current have been
carried out on three grids. The sphere is allowed to make only vertical motion along
the z-direction. After the impact of the sphere on the water surface initially with
uniform current, a series of waves are produced radiating outward in all directions.
The boundary condition ABC-2 with current is applied at the outflow ends of the
computational domain.

The elliptic wave patterns are observed due to the Doppler effect of the current,
instead of the circular waves in the absence of current. The wave length in the di-
rection of the following current is longer than that in the direction of the opposing
current. As is known, a ship at forward speed in calm water generates Kelvin wave
which includes diverging waves. In this work, no diverging waves are observed from
the oscillating sphere in uniform current.

In three simulations, wave lengths in the direction of the following, normal and oppos-
ing current have been inspected in comparison with the theoretical values. The ratio
of simulated wave amplitudes at different radii are compared to theory in the above
three directions, respectively. With grid refinement, the numerical wavelengths and
the ratio of wave amplitudes at different radii in the direction of following, opposing
and normal current agree well with the theoretical amounts.

Validation with experimental results

In this thesis, model-scale experiments have been executed at the towing tank of
Delft University of Technology to validate the present boundary condition GABC-1
with current. A number of numerical simulations have been performed to compare
with the experimental results.
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Wigley hull in regular waves First, the grid study simulations are performed
to obtain sufficient grid resolution for representing the waves at the position where
the ship hull is supposed to be. In simulation 77, the inflow and outflow boundaries
of the domain are placed at 2.5 times of the ship length away from the hull. The
simulated heave and pitch signals match well with the measured data in the exper-
iment 77. Then in the test 79, the domain boundaries are moved closer to the hull,
which is 1.67 times of ship length. The resulting heave and pitch motions are also in
line with the experimental results. It indicates that the boundary condition GABC-1
including the effect of current works as fine in the small domain of test 79 as in the
large domain of test 77, for the Wigley hull at forward speed in regular waves with
the same grid size. The domain boundaries can be located at least this close to the
structure using this boundary condition.

Wigley hull in irregular waves Subsequently, a test of the same Wigley hull
at forward speed in irregular head waves is performed. The interaction between the
irregular waves and the moving hull is simulated. The input wave spectrum is ob-
tained from the Fourier transform of the experimental wave signal measured by the
wave gauge. The boundary condition GABC-1 with current is applied at the outflow
boundary of the domain.

The numerical input wave spectrum matches well with that extracted from the ex-
perimental data. The resulting heave and pitch motions of the hull agree well with
the measured results. This indicates that our boundary condition GABC-1 not only
works fine for the theoretical conditions where only irregular waves exist in Chapter
4, but also works well for the cases where the ship generated waves are present. The
ship generated waves are stationary with respect to the ship, which means they do not
propagate much. The validated results here have demonstrated that the ship gener-
ated waves do not disturb the boundary condition GABC-1 much. The diffracted and
radiated waves of the ship have many different angles with respect to the boundary.
They are expected to be less well absorbed.

Future outlook

In this work, the first-order boundary condition GABC-1 with uniform current is
verified and validated systematically. However, the second-order boundary condition
ABC-2 with uniform current has only been tested in the case of an oscillating sphere
in current. A complete study of the ABC-2 with uniform current is going to be an
interesting subject, in which oblique waves moving with current need to be verified
thoroughly.

Secondly, a depth-uniform current is considered in this work. However, linear and
logarithmic profile current are worthwhile to be included in a future absorbing bound-
ary condition for more practical phenomena.

Besides, the design of the boundary condition can accommodate further extensions. It
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is important to note that linear potential theory is utilized at several points through
the derivations. It is recommended to explore other possibilities for building non-
linear effects in the design. This will improve simulation results with steeper waves.

It is also important to investigate the numerical damping, which is caused by the
combination of a mean opposing current, waves and a first-order upwind discretiza-
tion.

The reflection coefficient of the first-order Sommerfeld condition with current in the
2D domain is derived with an assumption, which requires further assessment.





Appendix A

1D reflection coefficient

In this appendix, the theoretical reflection coefficient for the first-order Sommerfeld
condition (S-1) incorporating uniform current in a one dimensional domain is derived.

Consider the condition S-1 applied to a wave potential function φw and constant
current U :

[∂/∂t+ (cbc + U)∂/∂x]φw = 0, (A.1)

in which cbc is a tuning parameter, which is an approximation of the intrinsic celerity,
i.e. without current. The condition (A.1) is formulated in x- direction.

Suppose that an outgoing wave component and its reflected component can be iden-
tified. Then, the wave potential function φw can be written as a combination of the
outgoing wave potential and reflected wave potential:

φ = φout + φrefl. (A.2)

where φout = Aoute
i(ωt−koutx+θout) and φrefl = Arefle

i(ωt−kreflx+θrefl). Aout and
Arefl are the amplitudes of the respective wave modes. kout and krefl are the wave
numbers of the outgoing wave and reflected wave mode, respectively.

Note that the outgoing wave mode propagates along the positive x- direction. The
reflected wave mode is produced by the outgoing wave mode when the boundary con-
dition S-1 is not perfectly tuned to the wave mode. Accordingly, this reflected wave
mode propagates in the opposite direction of the outgoing wave mode, i.e. along the
negative x direction. Hence, the wave number krefl is negative.

Since we have the relation ωt0 − koutxbc + θout = ωt0 − kreflxbc + θrefl at a cer-
tain time t = t0 at the boundary x = xbc, the phase for the reflected mode θrefl can
be expressed as:
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θrefl = θout + (krefl − kout)xbc. (A.3)

The wave numbers kout and krefl are obtained from the dispersion relation as follows:

ω − kU = ±
√
gk tanh(kh) (A.4)

To obtain the reflection coefficient, the following derivatives are required:

∂φout/∂t = iωφout, ∂φrefl/∂t = iωφrefl

∂φout/∂x = −ikoutφout, ∂φrefl/∂x = −ikreflφrefl. (A.5)

Substitution of the relations in (A.5) into Eq. (A.1) and evaluation of the obtained
expression yields:

[ω − (cbc + U)kout]Aoute
i(ωt−koutx+θout)

+ [ω − (cbc + U)krefl]Arefle
i(ωt−kreflx+θrefl) = 0. (A.6)

Then the reflection coefficient at the boudanry x = xbc is determined as:

R =
Arefl
Aout

= − [(cbc + U)kout − ω]ei(ωt−koutxbc+θout)

[(cbc + U)krefl − ω]ei(ωt−kreflxbc+θrefl)
. (A.7)

Since the relation (A.3) at the boundary x = xbc holds, the reflection coefficient R
can be further written as:

R = − (cbc + U)kout − ω
(cbc + U)krefl − ω

= − kout/ω − 1/(cbc + U)

krefl/ω − 1/(cbc + U)
. (A.8)



Appendix B

2D reflection coefficient

In this appendix, the theoretical reflection coefficient for the first-order Sommerfeld
condition (S-1) incorporating uniform current in a two dimensional domain is derived.

Consider the condition S-1 applied to a wave potential function φw and constant
current U:

(
(ex · ek)

∂

∂t
+ (cbc + Uk)

∂

∂x

)
φw = 0, (B.1)

where ex and ek represent the unit vector in the x-direction and the wave direction
k, respectively. Uk = U · ek.

Similar to the derivation of 1D reflection coefficient in Appendix A, the wave po-
tential function φw is equal to:

φw = φout + φrefl, (B.2)

where φout = Aoute
i(ωt−kout·x) and φrefl = Arefle

i(ωt−krefl·x). Aout and Arefl are the
amplitudes of the respective wave modes. For the wave numbers, we have kout =
(koutx , kouty ) and krefl = (kreflx , krefly ).

Outgoing wave modes leave the domain over the boundary in the direction of eoutk .
The reflected wave mode is generated by the outgoing wave mode when the boundary
condition S-1 is not perfectly tuned to the wave mode.

To obtain the reflection coefficient, the following derivatives are required:
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∂φout/∂x = −ikout
x Aoute

i(ωt−kout
x x−kout

y y)

∂φout/∂y = −ikout
y Aoute

i(ωt−kout
x x−kout

y y)

∂φrefl/∂x = −ikrefl
x Areflei(ωt−krefl

x x−krefl
y y)

∂φrefl/∂y = −ikrefl
y Areflei(ωt−krefl

x x−krefl
y y)

∂φ/∂t = iω(Aoute
i(ωt−kout

x x−kout
y y) + Areflei(ωt−krefl

x x−krefl
y y)) (B.3)

Substitution of the above relations in (B.3) into Eq. (B.1) and evaluation of the
obtained expression yield:

i[(ex · ek)ω − (cbc + Uk)kout
x ]Aoute

i(ωt−kout
x x−kout

y y)

+ i[(ex · ek)ω − (cbc + Uk)krefl
x ]Areflei(ωt−krefl

x x−krefl
y y) = 0 (B.4)

Then the reflection coefficient is found to be:

R =
Arefl
Aout

= − [(ex · ek)ω − (cbc + Uk)koutx ]ei(ωt−kout
x x−kout

y y)

[(ex · ek)ω − (cbc + Uk)kreflx ]ei(ωt−krefl
x x−krefl

y y)
(B.5)

Since the above relation holds at the positions x = (0, y), it is assumed that the
potential terms have to be canceled out which results in krefly = kouty . Then the
theoretical reflection coefficient becomes:

R =
Arefl
Aout

= − (ex · ek)ω − (cbc + Uk)koutx

(ex · ek)ω − (Uk + cbc)k
refl
x

= − (cbc + Uk)koutx − (ex · ek)ω

(cbc + Uk)kreflx − (ex · ek)ω
(B.6)

The 2D dispersion relation for the reflected wave krefl = (kreflx , krefly ) becomes:

(ω −U · krefl)2 = gkrefl tanh(kreflh). (B.7)

When taking the square root of the relation (3.43), the same root of the right-hand
side applies as for kout, i.e. both kout and krefl satisfy:

ω −U · k ≡ σ =
√
gk tanh(kh). (B.8)

When krefly is known, then for a given ω this equation has only one unknown variable,

i.e. kreflx . Peregrine (1976) shows that it can have several solutions. One of these
corresponds with kout, another one (if it exists) gives krefl, and there can be more.
We have seen in Section 3.5.1 that wave numbers can be complex, and we will now
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(a) Progressive waves (b) Spurious waves

Figure B.1: The roots of the dispersion relations (B.8) for progressive waves (left) and
(B.11) for spurious waves (right) are the intersection points of their left-hand sides
(in blue) and their right-hand sides (in black) (graphs inspired by Peregrine(1976)).

treat several cases where ky = 0 and the current U runs in x-direction.

Progressive waves

For progressive waves the wave numbers kout and krefl are real, as is the frequency
ω. Fig. B.1(a) shows the left-hand side as well as the right-hand side of the relation
(B.8). The intersection point giving the reflection is indicated by B. It is noted that
0 ≤ kout ≤ −krefl ( hence 0 ≤ −crefl ≤ cout). As ω > 0, we have:

0 ≤ kout
ω
≤ −krefl

ω
(B.9)

Also it can be seen that there no intersection occurs when the current is too large.
This is understandable, since then the reflected wave is blocked by the current.

Spurious waves

For spurious waves the wave numbers and the frequency are purely imaginary:

kout ≡ ikoutI ; krefl ≡ ikreflI ; ω ≡ iωI ; σ ≡ iσI . (B.10)

The dispersion relation (B.8) now reads:

ωI − UkkreflI = σreflI =

√
gkreflI tan(kreflI h). (B.11)

As mentioned above, for spurious waves 0+nπ < |kIh| < π/2+nπ, hence kI tan(kIh)
is positive and all terms in (B.11) are real. Fig. B.1(b) illustrates the solutions of
the dispersion relation (B.11) by showing the intersection points of its left-hand side
and its right-hand side. The outgoing wave is indicated at A, whereas the relevant
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reflected wave corresponds with B. It is seen that 0 ≤ koutI ≤ −kreflI . As now ω
is purely imaginary, we see that the inequality (B.9) also holds for spurious waves.
Additionally, Fig. B.1(b) shows that more intersection points (can) exist, which cor-
respond with higher order reflections, see Dingemans (1994).

Evanescent waves

For evanescent waves, satisfying π/2 + nπ < |kI |h < π + nπ, kI tan(kIh) is nega-
tive. The dispersion relation now reads:

ω − iUkkI =
√
−gkI tan(kIh). (B.12)

In this situation where k is imaginary, i.e. kI is real, the right-hand side is real. With-
out current, i.e. Uk = 0, this means that also ω is real. Both kout and krefl satisfy
(B.12), and a situation similar to Fig. B.1(b) applies, but now in the complementary

kIh-intervals and with a horizontal ‘blue line’, implying kreflI = −koutI .

However, with current, i.e. Uk 6= 0, (B.12) forms an equation in the complex plane,
which complicates finding the desired root krefl by analytical means. It will become
complex, with non-zero real as well as imaginary parts. Numerically, the roots can
be calculated following a continuation procedure in U , starting with U = 0 for which
kreflI = −koutI . For h = 1, Fig. B.2 shows the dependence of krefl on U for two values
of kout: πi/4 in the spurious range and 3πi/4 in the evenescent range. For large U
the wave numbers krefl approach −πi/2. It is clear that the evanescent reflections do
not satisfy an inequality like (B.9). This will hamper the further analysis.

Figure B.2: Locus of krefl with varying current strength U for a spurious wave kout =
πi/4 and an evanescent wave kout = 3πi/4 (here h = 1).



Appendix C

Coefficients in ABC-2

At the end of Chapter 3, we obtain the discrete equation (3.63) for the boundary con-
dition ABC-2, in which a series of matrix coefficients are introduced. Their definitions
are presented as follows:

Krl = (γψ + εψ + λχ+ κχ)Q1

Krr = (γψ + εψ + λχ+ κχ)Q3

Krc = γ + ε+ λϕ+ κϕ+ (γψ + εψ + λχ+ κχ)Q2

Kzl = (γψ − εψ − λχ− κχ)Q1

Klr = (γψ − εψ − λχ− κχ)Q3

Kc = γ − ε− λϕ− κϕ+ (γψ − εψ − λχ− κχ)Q2

Kll = κχQ1, Krr = κχQ3, Klc = κϕ+ κχQ2

Nzl = (λχ/τpi+1 + κχτui)Q1

Nzr = (λχ/τpi+1 + κχτui)Q3

Nc = λϕ/τpi+1 + κϕτui + (λχ/τpi+1 + κχτui)Q2

Nll = −κχ/τuiQ1, Nlr = −κχ/τuiQ3, Nlc = −κϕ/τuiQ2

Ozl = −λχ/τpi+1Q1, Ozr = −λχ/τpi+1Q3, Oc = −λϕ/τpi+1Q2

Rzl = λQ1, Rzr = λQ3, Rc = λ+ λQ2

Rrl = λQ1,Rrr = λQ3,Rrc = λ+ λQ2 (C.1)
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