

Delft University of Technology

Fletcher
A framework to efficiently integrate FPGA accelerators with apache arrow
Peltenburg, J.W.; Van Straten, Jeroen; Wijtemans, Lars; Van Leeuwen, Lars; Al-Ars, Zaid; Hofstee, Peter

DOI
10.1109/FPL.2019.00051
Publication date
2019
Document Version
Accepted author manuscript
Published in
Proceedings - 29th International Conference on Field-Programmable Logic and Applications, FPL 2019

Citation (APA)
Peltenburg, J. W., Van Straten, J., Wijtemans, L., Van Leeuwen, L., Al-Ars, Z., & Hofstee, P. (2019).
Fletcher: A framework to efficiently integrate FPGA accelerators with apache arrow. In I. Sourdis, C.-S.
Bouganis, C. Alvarez, L. A. Toledo Diaz, P. Valero, & X. Martorell (Eds.), Proceedings - 29th International
Conference on Field-Programmable Logic and Applications, FPL 2019 (pp. 270-277). Article 8892145
(Proceedings - 29th International Conference on Field-Programmable Logic and Applications, FPL 2019).
IEEE. https://doi.org/10.1109/FPL.2019.00051
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/FPL.2019.00051
https://doi.org/10.1109/FPL.2019.00051

Fletcher: A Framework to Efficiently Integrate FPGA
Accelerators with Apache Arrow

Johan Peltenburg∗ Jeroen van Straten∗ Lars Wijtemans∗ Lars T.J. van Leeuwen∗ Zaid Al-Ars∗ H. Peter Hofstee∗†
∗Accelerated Big Data Systems, Delft University of Technology, Delft, The Netherlands. Contact: j.w.peltenburg@tudelft.nl

†IBM, Austin TX, USA. Contact: hofstee@us.ibm.com

Abstract—Modern big data systems are highly heterogeneous.
The components found in their many layers of abstraction are
often implemented in a wide variety of programming languages and
frameworks. Due to language implementation differences, interfaces
between these components, including hardware accelerated components,
are often burdened by serialization overhead. Serialization bandwidth of
many high-level language frameworks is an order of magnitude lower
than contemporary FPGA accelerator interface bandwidth, especially
when objects are small but numerous. Therefore, serialization bounds
the effective end-to-end performance of FPGA-accelerated solutions
integrated with applications written in high-level languages. The Apache
Arrow project defines a language agnostic columnar in-memory format
optimized for big data applications, preventing the need to serialize
or even make copies during communication between components. To
enable FPGA accelerators to benefit from the approach of Arrow, we
first investigate the properties of its format in relation to hardware
interfaces and establish that the format is usable. Second, we present
the Fletcher framework, that automatically generates highly efficient
hardware interfaces to access data of potentially complex, nested Arrow
data types. Our approach allows 11 of the languages supported by
Apache Arrow libraries to efficiently communicate large data sets with
FPGA accelerators at system bandwidth. Furthermore, on the hardware
side, the generated interfaces deliver any data type that Arrow can
represent as groups of streams, providing a better starting point for
data-flow-oriented kernel development, compared to manually creating
custom interfaces to address issues related to pointer arithmetic, bus
word misalignment and latency. For example applications, as measured
on an AWS EC2 F1 and CAPI2-enabled POWER9 system, accelerated
end-to-end application performance improves by 1.3× - 49× compared
to a hardware accelerated solution that still requires serialization.

Keywords—FPGA acceleration, Apache Arrow, big data systems, seri-
alization, accelerator bandwidth

I. INTRODUCTION

In terms of both hardware and software, the increasing het-
erogeneity in (cluster) computing frameworks built for big data
analytics causes major challenges [1]. One challenge is that different
system components that consume the same data may use different
representation of that data in memory. This introduces a serialization
requirement whenever data is passed from one component to another,
if they are not implemented using the same technology.

Serialization is generally an unwanted necessity, as it merely
transforms the form rather than the contents of the data, and is
therefore a non-functional aspect. In applications built on top of these
analytics frameworks, serialization may take up a large portion of the
run-time of the full application [2]. Examples of where serialization
takes place between components of a heterogeneous framework such
as Apache Spark [3] can be seen in Figure 1(a).

The Apache Arrow project was launched to (among other contribu-
tions) overcome this bottleneck [4], and has already seen integration
in several well known tools and frameworks from the data analytics
community, such as Spark, Parquet and Pandas. The Arrow project
defines a common columnar in-memory format for data sets and
provides zero-copy inter-process communication libraries for various
languages, including (at the time of writing) C, C++, Java, Python,

R, Matlab, Go, C#, JavaScript, Ruby and Rust. For a schematic
overview, see Figure 1(b).

In this paper, we first establish that the Apache Arrow format is
also usable in the context of FPGA acceleration, where serialization
bottlenecks can also be present. This can tremendously improve end-
to-end accelerated application throughput, because host-side serial-
ization throughput from various high-level languages can generally
be several orders of magnitude lower than contemporary accelerator
interface throughput [5].

A second advantage to using Arrow’s standardized format exists.
Because the in-memory format is derived from meta-data about the
data sets, called schemas, we may also derive highly optimized
hardware interfaces automatically from these schemas. From the
perspective of an accelerator developer, these interfaces provide an
easier starting point to interface with Arrow data sets, and in turn, to
any of the languages supported by Arrow.

Access to objects/records and their fields can be expressed through
tabular data set indices rather than the usual byte addresses, prevent-
ing the need to manually design units that perform tedious pointer
arithmetic and perform the required requests on a memory interface.
After supplying an index range of objects or records to process, the
interface delivers streams of the exact data types expressed through
the schema, rather than bus words. This allows the FPGA accelerator
developer to fully focus on implementing the actual computational
path of the accelerator only, rather than having to bother with the
interface as well. This can normally be a cumbersome exercise,
especially for data sets that consist of not just primitives such as ints
or floats, but also contain more complex data types such as structure,
lists and dictionaries (and any nested combination thereof).

Additionaly, an advantage from building on top of the Apache
Arrow ecosystem is that through Fletcher, high-performance FPGA
acceleration is made available to all supported languages. Finally, a
resulting advantage from delivering object or record fields as streams
is that this integrates more naturally with HLS-tools, without having
to write HLS-code that is, again, interface specific.

We contribute the first implementation of these ideas in the form
of a fully open-sourced (including experiments, see [6]), vendor
agnostic FPGA acceleration framework called Fletcher. We elaborate
the problem of framework heterogeneity and serialization overhead
in relation to FPGA acceleration in Section II. We investigate the
Arrow format in Section III. The Fletcher framework is discussed
in Section IV. We present the results for four example applications
using Fletcher in Section V. An overview of related work is discussed
in Section VI. Section VII concludes this paper.

II. BACKGROUND

When processing a data set with an external accelerator, the data
must be moved from host memory to accelerator over its interface.
The bandwidth of this data transfer is maximized when the data
resides in a large contiguous memory buffer (CMB) because it may
be transferred using large contiguous bursts. Thus, a developer who
wants to use an FPGA accelerator to speed up some application

Apache Spark

JVM

Off-heap
DataFrame

Serialize /
deserialize
and copy

Network

Storage

FPGA
acceler at or

Nat ive
library

A ppl icat ion

Python
tool

(a)

Apache Spark

JVM

Shared data set / memory in Arrow format

NetworkStorage

FPGA
A cceler at or

Nat ive
library

A ppl icat ion

Python
tool

A pache A r r ow l ibr ar ies Flet cher

(b)

Fig. 1. (a) Examples of where serialization can take place and (b) how Arrow
attempts to prevent serialization through the use of a common data layer.

must first make sure the data resides in a CMB, lest many short
transfers with the associated overhead must be initiated. However,
most commonly used containers and objects in various languages
do not store the data in a CMB. The in-memory formats for such
containers and objects are often designed for efficient use within the
language run-time itself, or to provide some sort of abstraction that
suits the language paradigm well. To prevent accelerators from having
to traverse objects graphs, possibly incurring memory latency several
times per object, serialization must be applied. However, serialization
negatively impacts the effective bandwidth to the accelerator.

Take the example of a C++ Standard Template Library (STL)
string. While it is possible to allocate the string in an STL vector such
that the string objects themselves reside in a CMB, the string object
constructor allocates memory for its character array using malloc()
separately for each string. Thus, the characters (data of interest) of
the string are not guaranteed to reside in a CMB. This is a general
problem in case objects hold variable length data that is allocated by
the object itself.

To continue with the example of a C++ STL string object, STL
constructors can (in contemporary versions of the C++ language) be
provided with custom allocators that could (albeit in an arguably
counter-productive manner) place them in a CMB. However, if the
strings are sufficiently short, the characters are actually placed in
the string root object space itself (by both the LLVM and GCC
implementation of the STL). This is defined in the behaviour of the
constructor, and is an optimization that prevents a second memory
allocation from taking place. This effectively breaks up any CMB
of characters. It is therefore not possible to guarantee that the data
is stored contiguously using an STL string, as we can only dictate
that, if it allocates, it should use our custom allocator. Without
rewriting the string implementation, we cannot change when it
allocates. Thus, a developer must create some custom representation
and implementation of a string, requiring extra effort.

A similar case can be made for even more abstract languages like
Python or Java, where this problem is generally worse and less trivial
to mitigate for the programmer, as no direct control exists over object
layouts in memory. Even if this effort is spent, a data set built up
like this will still suffer from more drawbacks.

Even when objects with equivalent fields are stored in a CMB,
their in-memory representations are not equivalent among different
language run-times, especially due to the presence of run-time
specific metadata (e.g. JVM: class references, C++: virtual function
tables, Python: reference counters). This (to an accelerator useless)
metadata may be of significant size, especially when objects are small
and numerous, as commonly seen in big data analytics. Therefore,
even if the data may be stored in a CMB, effective bandwidth is
decreased. Furthermore, it is required for an accelerator to implement
a filtering step before processing, to make it a true CMB, i.e. not a
CMB that also contains language-specific meta-data. This filter step
furthermore would depend on the host-side language run-time used,

while the function of the accelerator is essentially not different.
Even worse, object layouts are not guaranteed to be consistent

inside a language itself. E.g. both the Java Virtual Machine [7]
and C++ [8] do not specify or restrict how an object is laid out
in memory—it is left to the implementation of the JVM and the
compiler, respectively. Also, compilers may choose to optimize the
lay-out, e.g. to improve alignment w.r.t. cache lines in different ways.

Summarizing, to effectively integrate an accelerator hardware
design targeting a heterogeneous environment, the design must:

– be adjusted for every host-side run-time language,
– be adjusted for every compiler implementation,
– put a restriction on the application compiler/run-time, and filter

language-specific metadata,
– invent a custom in-memory format for every non-primitive data

type, in every language involved, or
– apply the costly act of serialization.
If one standardizes an as-contiguous-as-possible in-memory format

and provides interfaces to produce/consume this data in various
languages, all these options become unnecessary or irrelevant. Such a
standardized solution for software is provided by the Apache Arrow
project.

III. APACHE ARROW IN-MEMORY FORMAT

We investigate the general use case of Arrow data sets, where they
appear to a programmer in tabular form, called RecordBatches. A
RecordBatch is accompanied by a schema that specifies the types of
the fields of the objects/records stored in the table. Each record field
is stored in a separate table column.

The fact that there is a higher level description of the data structure
(the schema) already provides an advantage. While designing the
functional aspects of an FPGA accelerator can already be challenging,
a significant portion of design time involves structural aspects of the
interface. Interface design often deals with converting data on very
wide hardware buses (the platforms used in this work both use 512
bits) to something more usable at the input of the accelerator. This
includes pointer arithmetic to determine which bytes are the bytes
of interest, parallelizing or serializing words into larger or smaller
chunks, and shifting them into the right positions before turning them
into data streams to be absorbed by some kernel.

The relation between the raw bytes of a RecordBatch are known
from the schema and the format specification. It is therefore possible
to automatically generate circuits that perform the required pointer
arithmetic and pre-processing of raw bus words into streams that
are more meaningful and usable to an accelerator developer. More
specifically, based on the schema, an interface may be generated
that as a command takes a range of object/records indices of a
RecordBatch and streams out the requested fields as exactly the data
types expressed in the schema. Furthermore, parts of the control
and data flow on the host-side may also be automated (e.g. passing
buffers addresses and potentially moving data to accelerator on-board
memory).

With such a setup, is it possible to operate at system bandwidth? In
general, any serialized format suitable for FPGA processing causes
as few pointer traversals as possible, requires as little pre-processing
or reordering in the accelerator as possible and is streamable. With
this in mind, we investigate two forms of data that can be generalized
to all data structures; fixed-width data fields and variable-length data
fields.

A. Fixed-width fields

RecordBatch columns with fixed-width elements (e.g. floats,
booleans or ints) are in Arrow format stored in one contiguous

values buffer, equivalent to a C-like buffer. Given some index of
data to obtain, an offset has to be calculated, the specific data word
(or words) have to be loaded. Upon receiving the raw bytes, the
bus words have to be shaped into the correct type, before they can
be presented on a streaming output. If kernels can absorb multiple
elements per cycle, or if multiple kernels want to read from the same
column in parallel, it is possible to match system bandwidth on such
an interface. Assuming a kernel requests the full range of objects
from the table, only one “pointer” is traversed to read this field for
all objects of interest with maximum size pipelined bursts on the
memory interface.

This is much more efficient than if the accelerator would have to
traverse a pointer for each fixed-width element. For a C programmer
it may seem far fetched for a collection of integers to be stored as a
list of pointers to integers. However, some high-level languages (such
as Python and R) box every integer into an object (hence the need for
e.g. Numpy). Any interface dealing with such an in-memory lay-out
will quickly be bounded by memory latency if such a collection of
integers is to be traversed through pointers to the integer objects.

B. Variable-length fields

More interesting are Arrow columns of variable length types (e.g.
a UTF-8 string). They are referred to as lists of some other type
(e.g. a List<Char> or List<List<Int>>). They contain at
least two buffers, an offsets buffer and the values buffer. An offset at
some index in the offsets buffer corresponds to the index of the first
element of the list in the values buffer. The values buffer contiguously
holds all primitive list elements. This format offers some advantages
that an interface generation framework may exploit over what HLS-
compilers can assume about this data structure.

More formally, consider the case where a variable length object
is represented through two Arrow buffers; the offsets buffer O =
{o1, o2, ..., oN} ∈ Z≥ and values buffer V = {v1, v2, ..., vM}. O,
in the C-language, will be represented as an unsigned integer array. A
C-based HLS compiler may not make assumptions about the values
of oi, as they are defined during run-time. More specifically, it cannot
assume that in the case of an Arrow offsets buffer, oi+1 − oi ∈ Z≥;
the outcome of this calculation might also yield a negative integer.
Therefore, not to lose generality it must request each run of value
buffer elements voi ...voi+1 separately, and any data path consuming
the data is subject to memory latency.

Hardware pre-fetching (such as explored in [9]) or using spatial
locality in caches may improve this behavior, but these constructs
are costly, especially when, in the case of the Arrow format, they
are not required. To elaborate, when requesting a range j...k of
variable length objects, in fact the whole range of values of interest
voj ...vok+1 can be requested from the contiguous buffer. This can
be bursted into a FIFO, ready to be delivered on the output stream
synchronized with a length stream resulting from subtracting two
consecutive offsets. Thus, memory latency for pointer traversal is
only paid three times independent of the amount of variable length
objects that are requested; once to obtain ok+1 from the offsets buffer,
once to obtain all offsets of interest oj ...ok+1, and once to obtain all
values of interest. No dynamic hardware pre-fetching or caches are
required to deliver throughput that is close to system bandwidth. This
approach also generalizes to nested lists.

Furthermore, with these assumptions, this interface can be
generated automatically, without the need to manually write an
HDL-based interface or the need to write special HLS functions
that mimic this optimal behavior. HLS templates for transformation
functions used in higher-order functions such as map, filter and
reduce, can immediately be provided with length stream and value

stream as arguments. Again, this approach generalizes to nested types.

Arrow also supports other convenient data types such as structs,
sparse and dense unions and dictionaries, which are discussed in
its format specification. Furthermore, a special type of fixed-width
field that contains a validity bit to allow entries to be nullable is
supported.

C. Limitations

Some limitations to the Arrow approach exist. First, once data
sets have been built in memory, it is not trivial to mutate them
without breaking contiguousness. Therefore, Arrow is best at storing
immutable data sets in memory but less powerful when working
with algorithms that aim to mutate data sets in place. Second, at
the time of writing, no data format is specified for graph-based
data sets, or other more exotic non-tabular formats. Still, graphs
can generally be represented through tables, although there is, at the
time of writing, no Arrow standard specification. A final limitation
is that because a different in-memory format is used than some
language run-time is used to, code that accesses data (accessors) must
go through an additional layer (e.g. some Arrow language specific
library) rather than being able to use default ways of accessing
object or record fields. While investigating this drawback, we did not
find any significant performance degradation. We have investigated
C++ (a case where code is compiled to native instructions), where
the performance of accessing Arrow based containers is similar and
sometimes faster than accessing STL containers, as Arrow exposes
raw pointers to the data buffers. For Java (a case where code is
compiled to virtual machine bytecode), access to Arrow based data
is done through calls to the Unsafe library, as the data is stored outside
the VM managed heap. Fortunately, widely-used implementations of
the JVM inline these calls during JIT compilation, providing similar
performance to normal object field accessors. In Python (a case where
code is interpreted), it is common for high performance libraries to
use native code underneath (e.g. NumPy) written in Cython. This
involves extra developer effort but is a common trade-off made in
the Python ecosystem.

Establishing that aside from these limitations, the Arrow in-
memory format is indeed suitable since it is highly contiguous and
streamable, the next section will discuss the implementation of an
interface generation framework based on the Arrow format.

IV. FLETCHER

A. Overview

A high-level overview of our FPGA acceleration framework that
exploits the benefits of the Arrow format, called Fletcher, is seen
in Figure 2. In this figure, the general compile-time and run-time
flow is depicted. At compile-time, a developer starts with an Arrow
schema. From the schema, a default HDL or HLS template for the
accelerated function implementation and an interface that will provide
streams of requested data from the Arrow table are generated (see
Section IV-B). These sources are synthesized, placed and routed to
provide the FPGA bitstream. At run-time, the enumerated steps in
Figure 2 are taken:

1) Starting with a data source (e.g. a Parquet [10] file on disk),
the data is loaded into memory.

2) Rather than loading the data set into a language native container
(that would incur serialization overhead as soon as the data is needed
in the accelerator), the application will ingest the data into memory
formatted as an Arrow-based data set (e.g. a RecordBatch). Arrow
library functions will place the data in host memory according to

Compile-t ime?

Run-t ime?

? H ost A cceler at or ?

H ost
M em.

A cc.
M em.

FPGA

A pache
A r r ow

l ibr ar ies

Synt hesis,
P lace and

R out e

D at a
sour ce
(disk,

network)
A r r ow
Table

1 2

Flet cher r un-t ime
(C+ + , Python, Java, etc.)

H ar dwar e
A cceler at ed

Funct ion
Gener at ed
I nt er face

7

5

A r r ow
Schema I nt er face

Gener at ion I nt er face sour ces

A cceler at or sour ces

6

A r r ow
Table

6

3

3

A ppl icat ion
(C+ + , Python,

Java, etc.)

1

3, 4

4

A cceler at or D esign
(manual, HLS)

H D L/ H LS t emplat e

3

D at a flow Cont r ol flow Opt ional dat a flow

Fig. 2. Architectural overview of Fletcher. Upper part of the figure shows the
compile-time (development) flow, lower part of the figure shows the run-time
flow for host system (left) and accelerator (right).

the schema and the format specification (if not already in the Arrow
format).

3) The application can request the Fletcher run-time libraries to
prepare the Arrow data set for processing on the accelerator. For
some platforms this simply means passing virtual addresses of the
buffers [11], and for other platforms this means a copy of the buffers
must be made to accelerator on-board memory. This process is fully
automated in the Fletcher run-time libraries. Basic use requires the
user to only claim the platform / accelerator card, create a context in
which the on-board memory is managed by the run-time, bind a host-
side abstract representation of the Hardware Accelerated Function to
a context, and provide the input RecordBatches as an argument to the
Hardware Accelerated Function. Advanced users may use lower-level
API calls to the Fletcher run-time system to e.g. place other data in
the accelerator memory and control other data paths not generated
through Fletcher.

4) The application can now issue commands to the functional
part of the accelerator, the Hardware Accelerated Function (HAF).
Commands include setting arguments, reset, start, stop and poll for
completion.

5) After the HAF receives the commands from the application, it
can request a row or ranges of rows from the generated interface
through a pipelined command stream.

6) The generated interface will request the desired data from the
host memory or the accelerator on-board memory.

7) After receiving the data from the memory, the interface provides
streams of data back to the HAF, containing the data from the
requested rows and fields, in the form specified in the schema.

The last two steps can be reversed in case the HAF wants to write
to an Arrow data set in memory.

B. Interface generation

Since a RecordBatch in Arrow is an abstraction of a group
of columns, a Fletcher generated top-level interface is called a
ColumnReader (CR). The CR internals are generated in pure VHDL
by parsing a configuration string that conveys information about
the schema required to generate the hardware structure. Thus, to
generate the hardware interface from a schema involves transforming
the schema into a string which is done through a command-line tool
called Fletchgen. The core logic of the interfaces that are generated
are based on a vendor-agnostic pure HDL streaming primitives library
as a part of the Fletcher framework.

Column R eader (for list of fixed-width elements)

B uffer
R eader
(offsets)

Read Request

B uffer
R eader
(values)

Read Request

Length
Calculat ion

&
Command
Generat ion

A
rb

it
er

Command

Read Data

Offsets Read Data

Command

H
ar

dw
ar

e
A

cc
el

er
at

ed

Fu
nc

ti
on

Element

Length

M
em

or
y

In
te

rf
ac

e
M

em
or

y
In

te
rf

ac
e

H
ar

dw
ar

e
A

cc
el

er
at

ed

Fu
nc

ti
on

Column R eader (for nullable fixed-width elements)
B uffer R eader (values)

Bus request
generator

Internal
cmd. gen.

Command
Read Requests

Read DataResp. handler
Data shaper

B uffer R eader (validity bitmap)

Element

Validity bit

Sy
nc

.
Sy

nc
hr

on
iz

at
io

n

M
em

or
y

In
te

rf
.

H
A

F

Column R eader (st ruct with two fields)
Command

Column R eader (field F)

Column R eader (field E)

A
rb

it
er

A
rb

it
er

Element

Element

Sy
nc

hr
.

(a) ColumnReader for nullable, fixed-width elements. The outputs of two
BufferReaders are combined to deliver the field value with its validity bit
synchronously.

Column R eader (for list of fixed-width elements)

B uffer
R eader
(offsets)

Read Request

B uffer
R eader
(values)

Read Request

Length
Calculat ion

&
Command
Generat ion

A
rb

it
er

Command

Read Data

Offsets Read Data

Command

H
ar

dw
ar

e
A

cc
el

er
at

ed

Fu
nc

ti
on

Element

Length

M
em

or
y

In
te

rf
ac

e
M

em
or

y
In

te
rf

ac
e

H
ar

dw
ar

e
A

cc
el

er
at

ed

Fu
nc

ti
on

Column R eader (for nullable fixed-width elements)
B uffer R eader (values)

Bus request
generator

Internal
cmd. gen.

Command
Read Requests

Read DataResp. handler
Data shaper

B uffer R eader (validity bitmap)

Element

Validity bit

Sy
nc

.
Sy

nc
hr

on
iz

at
io

n

M
em

or
y

In
te

rf
.

H
A

F

Column R eader (st ruct with two fields)
Command

Column R eader (field F)

Column R eader (field E)

A
rb

it
er

A
rb

it
er

Element

Element

Sy
nc

hr
.

(b) List of fixed-width elements (non-nullable). Two BufferReaders are
combined, where the offsets BufferReader provides a command for the
values BufferReader. A list length stream and list element stream is provided
to the computational kernel.

Fig. 3. Generated internal architecture of ColumnReaders for two examples.

The configuration string causes CRs to internally configure for
different column types. A fixed-width type (as seen in Figure 3(a)
will result in a CR configuration to read a single values buffer through
a component called a BufferReader (BR). BRs include bus request
generation and response reshaping logic and deliver exactly the fixed-
width type of the schema.

Developers may add metadata to the Arrow schema and its fields
to generate interfaces that, e.g. deliver multiple elements per cycle,
contain more or less register slices in data paths, contain shallower
or deeper FIFOs or even ignore schema fields altogether if they are
not of interest. This allows the developer to make trade-offs between
area, power and performance.

Reading variable-length data chains multiple BRs as seen in
Figure 3(b), where one BR reads from an offsets buffer and through
a specialized component generates new commands for a second BR
that reads the values buffer. Although not shown in the figures, CRs
may recursively instantiate themselves to support, for example, lists
of lists; combining an offsets BR on its own top level and another
offsets BR and a values BR in the level below. Other options, such
as struct types are also supported, that instantiate a CR for each
struct field and synchronize their output streams on a top level CR.
While this paper focuses on the general motivation and overview
from the application-level, previous work has described in detail
the multitude of specific digital design challenges solved by to
the streaming primitives library and how they are combined into a
CR [12].

The Fletchgen tool creates a wrapper around the whole design
(where multiple CRs can be instantiated), and generates an HDL or
HLS template for the HAF, abstracting away all non-Arrow related
interfaces. The top-level of the hierarchical design that Fletchgen
generates currently provides the commonly used AXI4 (for data
paths) and AXI4-lite (for control paths) interfaces. A schematic
overview of all the components involved in this higher-level hierarchy
are shown in Figure 4. Since this generation step only involves
structural aspects of the design, it is implemented to perform the

Top-level Wrapper
H

ar
dw

ar
e

A
cc

el
er

at
ed

 F
un

ct
io

n
RecordBatchReader

Column
Reader

RecordBatchWriter

Column
Writer

Read
Intercon.

Write
Intercon.

Memory
I/ F

AXI4 lite
MMIO

I/ F

Command
Streams

Data
Streams

Command
Streams

Data
Streams

Fig. 4. Schematic overview of the upper layers of a Fletcher-based de-
sign, fully generated through Fletchgen. The ColumnReader/Writer, Record-
BatchReader/Writer, Read/Write Interconnect and Top-level Wrapper compo-
nents are all derived from the supplied Arrow schema.

following three stages:

1) Construction: The first stage converts Arrow more software-
oriented data type descriptions to Fletcher-specific data type descrip-
tions. These descriptions are augmented with hardware-specific traits,
e.g. to allow nested or variable length data types to be moved as
a bundle of streams operating in a specific clock domain. These
hardware-oriented type descriptions can then be used to instantiate
signals, ports and components in an abstract, graph-based intermedi-
ate representation of the structural design. Through this intermediate
representation, Fletchgen instantiates and hierarchically groups mul-
tiple ColumnReaders and ColumnWriters according to the supplied
set of Arrow schemas. Each schema results in a schema-specific
component called a RecordBatchReader/Writer (where each field of
a record in a RecordBatch can still be individually accessed). All
RecordBatchReaders/Writers are combined into a top-level wrapper
in which also an appropriate bus infrastructure is generated.

2) Transformation: In the second stage of generation, the inter-
mediate representation is supplied to a back-end, where the abstract
structural representation is transformed to a version suitable for
emission as source files for downstream tools. Currently, there is a
VHDL back-end, and a back-end for DOT graphs [13] that allow fast
visual inspection and debugging. For example, since VHDL does not
allow port-to-port connections of instantiated components, the VHDL
back-end will resolve this by inserting a signal in between. Other
transformations include the expansion of abstract types to physical
types. One example for the VHDL back-end is to expand a stream of
some other type to contain physical valid/ready handshake signals.

3) Emission: In the final stage, the transformed graph-based
representation is emitted as source code.

The combination of the ColumnReaders and Fletchgen elevates the
level of abstraction up to the point where a developer can simply
provide a set of Arrow schemas, obtain a template for the HAF
and work on the functional aspects of the accelerator right away.
Cooperative design efforts between software and hardware designers
can benefit from the schema representation of the data as well, as
a means of defining a (data-oriented) interface between hardware
and software, agnostic of the software language run-time framework
used. In other words, using Fletcher to create an FPGA accelerator
design enables the efficient use of this accelerator in any of the (at
time of writing) 11 languages that Apache Arrow supports.

C. Simulation

Fletchgen allows conversion of existing Arrow RecordBatches to
a memory model for simulation that mimics a host interface and
memory. In this way, a designer may perform hardware/software co-
design of the HAF in simulation, agnostic of the final implementation
platform.

To validate the correctness of the CRs themselves, schemas were
generated randomly, where at each schema nesting level (within
structs and lists) the complexity decreases on average such that
eventually the nesting ends. Data sets based on this schema were
generated randomly and random ranges of data are requested. The
resulting stream outputs are checked with the expected outcome. Us-
ing this method, over ten thousand generated interfaces are validated
in simulation.

Although only reading from Arrow data sets has been discussed
so far, Fletcher allows the generation of interfaces that write to
Arrow data sets in host memory as well. Components such as
ColumnWriters, BufferWriters, etc. are implemented that reverse the
streams shown in Figure 3.

V. RESULTS

We implement four applications using Fletcher to investigate its
characteristics. We benchmark on an Amazon Web Services EC2
F1 system equipped with a proprietary card that contains a Xilinx
XCVU9P (AWS/F1) and a POWER9 Barreleye system equipped with
an AlphaData ADM-9V3 equipped with a Xilinx VU3P attached
through CAPI 2.0 using the SNAP framework (P9/SNAP) [14]. These
systems can simultaneously run 8 and 144 hardware threads on their
CPU(s), respectively. The P9/SNAP system allows Fletcher to read
and write directly from and to host memory using virtual addresses,
hence implementations using this system do not require copies to
accelerator on-board memory.

Each application is implemented in C++ (GCC), Python (3.6)
and Java (OpenJDK 8). The application software-only throughput is
measured. The bandwidth of serialization from a language specific
container to a format usable by FPGA (in our case the Arrow format)
is also measured. Finally, the FPGA throughput and copy bandwidth
are measured.

A. Regular expression matcher

In this example, a large collection of (tweet-sized) strings is
matched to a set of sixteen regular expressions. The number of
matches are counted for each regular expression. It is an application
that is fully streamable and generally performs extremely well on
FPGA — hence any serialization overhead can penalize its potential
performance tremendously. With this example application, we can
measure the performance of CRs that fetch variable-length objects
(UTF-8 strings). The software kernels use the fastest regex matching
libraries we could find. In C++ we use the RE2 library [15] and spread
the workload over all available hardware threads. We use the Python
wrappers for the RE2 library as well and the standard multiprocessing
module to spread the workload over all hardware threads. In Java the
built-in regex matcher is fastest, and has also been parallelized over
all hardware threads.

In the FPGA implementation, we place multiple streaming regex
matching units in parallel where each unit has a CR configured to
deliver four characters per cycle at 250 MHz. This setup matches
the peak theoretical throughput of 16 GB/s for the on-board DDR
interface. A data set with random length strings between 0-255 with
a total size of 1 GiB is used as an input.

From the run-time measurements, shown in Figure 5 and through-
put measurements, shown in Table I, we find that the FPGA kernel

TABLE I
REGULAR EXPRESSION MATCHING RESULTS

Throughput (GB/s) Speedup
Sy

st
em

L
an

gu
ag

e

N
at

iv
e

da
ta

se
t

w
/

C
PU

Se
ri

al
iz

at
io

n

FP
G

A
C

op
y

FP
G

A
K

er
ne

l

w
/

Se
ri

al
iz

at
io

n

A
rr

ow
/F

le
tc

he
r

Im
pr

ov
em

en
t

AWS/F1
(16 regex
units)

C++ 0.08 0.55 7.13 14.27 6.18 59.73 9.67
Python 0.04 0.83 7.17 14.28 15.93 107.73 6.76

Java 0.03 0.27 7.13 14.27 8.24 152.91 18.56
P9/SNAP
(8 regex
units)

C++ 0.43 0.81 n/a 7.61 1.70 17.78 10.44
Python 0.11 0.81 n/a 7.61 6.77 70.72 10.45

Java 0.16 0.16 n/a 7.61 0.95 46.49 48.69

C++ SW-only (8 threads)
C++ Vector + Ser. + FPGA

C++ Arrow + FPGA

Python SW-only (8 threads)
Python List + Ser. + FPGA

Python/Arrow + FPGA

Java SW-only (8 threads)
Java Array + Ser. + FPGA

Java + Arrow + FPGA

A
W

S
E

C
2

F
1

0 1 2 3 4 5

Time (s)

C++ SW-only (144 threads)
C++ Vector + Ser. + FPGA

C++ Arrow + FPGA

Python SW-only (144 threads)
Python List + Ser. + FPGA

Python/Arrow + FPGA

Java SW-only (144 threads)
Java Array + Ser. + FPGA

Java + Arrow + FPGA

P
O

W
E

R
9+

S
N

A
P

10 20 30 40

CPU compute

Serialization

Host-To-Device

FPGA compute

Fig. 5. Run-time components of regular expression matching accelerator

vastly outperforms the CPU implementation, as expected. However,
to get the data set to the accelerator we must first serialize it. The
serialization throughput for each language is below 1 GB/s, while the
EC2 F1 platform has a copy bandwidth of over 7 GB/s. Once the
data is on the on-board memory, the parallel CRs are able to stream
the data to the regex units at over 14 GB/s (achieving almost 90%
of the peak bandwidth). Through the use of the Arrow in-memory
format and interfacing with the data through the use of Fletcher, the
end-to-end speedup improves by over 9×. A similar advantage may
be observed in the POWER9/SNAP case. In the particular case of
the Java implementation on this platform, serialization dominates so
much, that even though the accelerator exhibits an almost two orders
of magnitude higher throughput, it would not be worthwhile to use
the accelerator when serialization has to take place. This is mainly
due to a very low serialization throughput, and as a result, using
Fletcher yields a very high improvement factor.

Additionally, we find the FPGA area utilization of each CR for
this example to be 1.45% CLBs and 0.21% BRAM tiles for the
XCVU9P). Further details on area utilization of a wide variety
of ColumnReader/Writer configurations can be found in [12]. In
summary, the CLB utilization ranges from 0.02% for primitive types
with the width of the data bus to 2.34% for ColumnReaders for lists
of primitives able to deliver 64 elements per cycle.

B. String writer

In this example, we consider writing to Arrow RecordBatches
from FPGA. Use cases include the FPGA being the data source or
being in the data-path from another source to host memory (e.g.
data coming from a network interface or storage). The data source
contains a set of string lengths and a set of string characters (similar
to e.g. how uncompressed Parquet files store strings). Our intent is
to measure how fast ColumnWriters can write variable-length objects
into a format that is usable by the software-language run-times that
Arrow supports.

TABLE II
STRING WRITER RESULTS

Throughput (GB/s)

System Language To native
container

To Arrow
RecordBatch

FPGA
copy

Total (Arrow
RecordBatch)

AWS/F1

C++ 0.85 2.53 - 2.53
Python 0.96 2.60 - 2.60
Java 0.59 1.81 - 1.81
FPGA - 9.76 2.75 2.15

P9/SNAP

C++ 0.76 7.52 - 7.52
Python 1.60 7.68 - 7.68
Java 0.28 3.96 - 3.96
FPGA - 9.76 - 9.76

Because connecting the FPGA to an actual flash drive or network
interface is outside the scope of this work, we mimic such an input
in FPGA by generating a character stream with 64 characters per
cycle (at 250 MHz) and another stream with pseudo-random lengths
between 0-255, resulting in a total data size of approximately 1 GiB.
The length stream is generated uniformly random between 0-255.
This results in the 64-character input stream where every handshake
on average only has 75% valid input data, resulting in a peak input
rate of 12 GB/s. In software, the time to deserialize the same data
source to a language native container (C++: vector<string>,
Python: list of strings (using Cython), Java: Array<String>, all
pre-allocated where applicable) as well as to an Arrow RecordBatch is
measured (in the Python case by wrapping the C++ implementation).

From the measurement shown in Table II, it can be concluded that
the Arrow format itself already gives a performance benefit because
it does not require the need to allocate memory for each string
object separately. The ColumnWriters of the FPGA implementation
are able to generate the Arrow RecordBatch at an even higher
throughput of almost 10 GB/s, slightly over 80% of the average input
bandwidth of 12 GB/s. The device-to-host bandwidth of the AWS/F1
system only delivers 2.53 GB/s, causing a bottleneck for the FPGA
implementation. This is expected to be increased while the AWS/F1
system is further developed. For the P9/SNAP system, a more modest
speedup of 1.3× is observed.

C. K-means clustering

We perform K-means clustering (only on AWS/F1) of a data set
of integer feature vectors; a common kernel in data analytics that is
computationally intensive. The algorithm is of a more iterative nature;
it is not fully streamable and therefore the impact of serialization is
expected to be less dominant. At the same time, using Fletcher we
may generate an easy-to-use interface that delivers streams of vectors
of which the lengths is defined during run-time.

The C++ implementation uses a vector of feature vectors as input
data and performs the clustering using a parallelized implementation
on all hardware threads. The Python implementation wraps the C++
implementation through Cython. The Java implementation uses an
ArrayList of ArrayLists as an input dataset and is also multi-
threaded. The FPGA implementation processes one feature vector per
clock cycle, where up to 16 features can be processed in parallel from
the input stream received from the ColumnReader. For every iteration
of the K-means algorithm, the whole data set is requested through
the CRs. For our dataset of aprox. 1 GiB of feature vectors, the
number of iterations was 25, and thus we may calculate the average
bandwidth per iteration for all implementations.

The results of this measurement are shown in Table III. It can be
seen that the bandwidth of the ColumnReader grows close to the peak
bandwidth (delivering up to 70%, although computational aspects
of the implementation are also included in this measurement). The
results show that even for a computational intensive algorithm like

TABLE III
K-MEANS CLUSTERING RESULTS

Avg. GB/s Total run-time (s)

Language CPU FPGA CPU FPGA
(w/ ser)

FPGA
(w/o ser)

C++ 1.40 11.15 19.24 6.08 2.55
Python 1.29 11.15 20.77 8.07 3.03
Java 1.00 11.15 26.92 3.88 2.55

K-means, the benefit can be substantial (up to 2.7× in this particular
case).

D. HLS-based filter

In this example, augmenting an existing commercial HLS tool
(Vivado HLS) with Fletcher is investigated. An Arrow RecordBatch
was created with two columns containing a string and a third column
containing an integer. On this RecordBatch, an SQL-like query is be
performed that exactly matches the contents of one string and the
integer, and returns the other string column.

Initially, the kernel is described as a C++ function that has pointer
arguments to the used Arrow buffers. The HLS tool initially cannot
compile this kernel as there is no static information about the size
of the buffers. After adding a pragma for each of the buffer pointers
we are able to compile an implementation that communicates with a
memory bus. Assuming an off-chip memory latency in the order of
a hundred nanoseconds (∼25 cycles at 250MHz), this kernel incurs
memory latency for the outer loop that iterates over all strings. This
results in an outer loop iteration latency of at least 49 cycles with
an inner loop iteration latency of two cycles. Only a fraction of
the cycles are spent on actual work; the kernel is memory latency
bound. Additional pragmas and rewriting the kernel in a specific way
would allow to optimize this behavior, even as so far to possibly
write additional functions that mimic Fletcher’s approach. However,
Fletcher helps automate this process and overcomes the need for
rewriting the kernel.

In a second implementation, using Fletchgen, an interface is
automatically generated based on an Arrow schema. The interface
provides the ability to write the kernel as a C++ function with
hls::stream<type> arguments. The input streams provide the
properties of the string; a length and character stream for each string,
and a stream with the integer. After the filter step has been performed,
the kernel may push characters and lengths into the output stream.
Again an outer loop over all strings and an inner loop over all
characters is created. The HLS tool is immediately able to compile
the kernel without the use of any pragmas. Because there are no bus
requests, the minimum latency of the outer loop is much smaller; only
5 cycles. In this example, the iteration latency is improved by almost
10×. This means that our approach enables users to skip the tedious
step of writing HLS-oriented C++ code to interface more efficiently
with the data, while providing better performance at the same time
(for reasons explained in Section III-B). Developers are allowed to
immediately focus on the computational aspect of the kernel.

VI. RELATED WORK

Previous works have acknowledged serialization bottlenecks within
the context of FPGA acceleration and big data processing frame-
works, see [16][17][18][5].

Integrating big data processing frameworks with GPGPU and
FPGA have been explored for Spark with Scala (JVM based) and
OpenCL [19], although the focus is on programmability rather
than attempting to alleviate serialization bottlenecks. Research to
optimize interfaces with specific languages such as Java have been

attempted [20], but still require a software serialization step. Other
work shows highly configurable hardware templates based on com-
mon SQL-like operations written in a C# variant [21]. Because storing
structured tabular data in Arrow is one of its main use cases, it would
be interesting to merge the lessons learned from this language specific
approach and bring them to the more language agnostic Fletcher.
Other works have shown that analytics applications, e.g. [22][23], and
database applications, e.g. [24], can benefit from FPGA acceleration
in general

VII. CONCLUSION

The increasing heterogeneity in big data analytics frameworks
is burdened by serialization overhead. The Apache Arrow project
provides methods to overcome serialization bottlenecks during inter-
process communication for various software languages by providing a
common columnar in-memory format for data sets. We show that the
format is highly suitable for FPGA accelerators because it is highly
contiguous in memory and requires a minimum amount of pointer
traversals to access a collection of data objects. Based on descriptions
of the type of data set in an Arrow schema, highly efficient and easy
to use FPGA accelerator interfaces may be generated automatically.
These interface can lift the level of abstraction without losing
performance. This idea is implemented in Fletcher; the first FPGA
accelerator framework to make use of the Arrow format. Fletcher
is open-source and vendor-agnostic. Three use-cases show that the
combination of Arrow and Fletcher can be beneficial to the end-to-end
throughput of an FPGA accelerated application, especially when the
accelerated operation is streamable. For these cases, the benefit was
shown to range from 1.3× - 49×, depending on the characteristics
of the applications and the implementation platform. For a fourth use
case that uses an HLS-based design flow, Fletcher allows the kernel
to be expressed using stream arguments rather than buffer pointer
arguments, increasing the ease of use and integrated performance of
a commercial HLS tool.

Future work will focus on two aspects. First of all, a more
extensive set of benchmarks should be performed to characterize
the approach for different applications in more detail. Secondly, in
the code generation step, profiling components could be inserted
to provide run-time information about the utilization of different
generated hardware resources. When fed back to the code generation
step itself, it would be interesting to investigate if these profiles could
be automatically used by the code generation step itself to optimize
its output.

In summary, Fletcher enables fast and efficient integration of FPGA
accelerators into any software language that Apache Arrow supports
or any analytics or database framework that uses Apache Arrow in
its back-end.

ACKNOWLEDGMENT

This work has been supported by the Fitoptivis European ECSEL
project no. ECSEL2017-1-737451. The authors thank Xilinx for their
additional support.

REFERENCES

[1] M. Maas, K. Asanović, and J. Kubiatowicz, “Return of the runtimes:
Rethinking the language runtime system for the cloud 3.0 era,” in
Proceedings of the 16th Workshop on Hot Topics in Operating Systems,
ser. HotOS ’17. New York, NY, USA: ACM, 2017, pp. 138–143.
[Online]. Available: http://doi.acm.org/10.1145/3102980.3103003

[2] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and B.-G. Chun,
“Making Sense of Performance in Data Analytics Frameworks,” in
Proceedings of the 12th USENIX Symposium on Networked Systems
Design and Implementation, 2015, pp. 293–307.

[3] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin, A. Ghodsi,
J. Gonzalez, S. Shenker, and I. Stoica, “Apache Spark: A Unified Engine
for Big Data Processing,” Commun. ACM, vol. 59, no. 11, pp. 56–65,
Oct. 2016.

[4] The Apache Software Foundation, “Apache Arrow,” 2018. [Online].
Available: https://arrow.apache.org/

[5] J. Peltenburg, A. Hesam, and Z. Al-Ars, “Pushing Big Data into
Accelerators: Can the JVM Saturate Our Hardware?” in International
Conference on High Performance Computing. Springer, 2017, pp. 220–
236.

[6] Accelerated Big Data Systems Group, “Fletcher - A framework to in-
tegrate FPGA accelerators with Apache Arrow,” https://github.com/abs-
tudelft/fletcher, 2018.

[7] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley, The Java Virtual
Machine Specification. Pearson Education, 2017.

[8] I. O. for Standardization, “ISO/IEC 14882:2017, Programming
languages–C++,” ISO/IEC, vol. 14882, 2017.

[9] T. Chen and G. E. Suh, “Efficient data supply for hardware accelerators
with prefetching and access/execute decoupling,” in 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
Oct 2016, pp. 1–12.

[10] The Apache Software Foundation, “Apache Parquet,” 2018. [Online].
Available: https://parquet.apache.org/

[11] J. Stuecheli, B. Blaner, C. Johns, and M. Siegel, “CAPI: A coherent
accelerator processor interface,” IBM Journal of Research and Develop-
ment, vol. 59, no. 1, pp. 1–7, 2015.

[12] J. Peltenburg, J. van Straten, M. Brobbel, H. P. Hofstee, and Z. Al-Ars,
“Supporting Columnar In-memory Formats on FPGA: The Hardware
Design of Fletcher for Apache Arrow,” in Applied Reconfigurable
Computing, C. Hochberger, B. Nelson, A. Koch, R. Woods, and P. Diniz,
Eds. Cham: Springer International Publishing, 2019, pp. 32–47.

[13] J. Ellson, E. R. Gansner, E. Koutsofios, S. C. North, and G. Woodhull,
“Graphviz and dynagraph static and dynamic graph drawing tools,” in
GRAPH DRAWING SOFTWARE. Springer-Verlag, 2003, pp. 127–148.

[14] OpenPOWER foundation, “CAPI SNAP Framework Hardware
and Software,” 2018. [Online]. Available: https://github.com/open-
power/snap

[15] Google, “RE2, a regular expression library,” 2018. [Online]. Available:
https://github.com/google/re2

[16] Y.-T. Chen, J. Cong, Z. Fang, J. Lei, and P. Wei, “When Apache
Spark meets FPGAs: a case study for next-generation DNA sequencing
acceleration,” in The 8th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud 16), 2016.

[17] E. Ghasemi and P. Chow, “Accelerating Apache Spark Big Data Analy-
sis with FPGAs,” in UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld, July
2016, pp. 737–744.

[18] M. Huang, D. Wu, C. H. Yu, Z. Fang, M. Interlandi, T. Condie,
and J. Cong, “Programming and Runtime Support to Blaze FPGA
Accelerator Deployment at Datacenter Scale,” in Proceedings of the
Seventh ACM Symposium on Cloud Computing, ser. SoCC ’16. New
York, NY, USA: ACM, 2016, pp. 456–469.

[19] O. Segal, P. Colangelo, N. Nasiri, Z. Qian, and M. Margala, “Sparkcl:
A unified programming framework for accelerators on heterogeneous
clusters,” arXiv preprint arXiv:1505.01120, 2015.

[20] J. Cong, P. Wei, and C. H. Yu, “From JVM to FPGA: Bridging
abstraction hierarchy via optimized deep pipelining,” in 10th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud 18).
Boston, MA: USENIX Association, 2018. [Online]. Available:
https://www.usenix.org/conference/hotcloud18/presentation/cong

[21] E. S. Chung, J. D. Davis, and J. Lee, “Linqits: Big data on little clients,”
in ACM SIGARCH Computer Architecture News, vol. 41, no. 3. ACM,
2013, pp. 261–272.

[22] R. Mueller, J. Teubner, and G. Alonso, “Data processing on FPGAs,”
Proceedings of the VLDB Endowment, vol. 2, no. 1, pp. 910–921, 2009.

[23] B. Sukhwani, H. Min, M. Thoennes, P. Dube, B. Iyer, B. Brezzo,
D. Dillenberger, and S. Asaad, “Database Analytics Acceleration Using
FPGAs,” in Proceedings of the 21st International Conference on Parallel
Architectures and Compilation Techniques, ser. PACT ’12. New York,
NY, USA: ACM, 2012, pp. 411–420.

[24] P. Papaphilippou and W. Luk, “Accelerating database systems using
fpgas: A survey,” in 2018 28th International Conference on Field
Programmable Logic and Applications (FPL), Aug 2018, pp. 125–1255.

