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ABSTRACT 
Aquifer Thermal Energy Storage (ATES) can yield 
significant reductions in the energy use and greenhouse gas 
(GHG) emissions of larger buildings, and the use of these 
systems has been rapidly growing in Europe – especially in 
the Netherlands, where over 3000 systems are currently 
active in urban areas. However, the successful management 
of this technology poses a range of policy challenges, due to 
its reliance on subsurface resources and to the possibility of 
thermal interactions across adjacent systems. In particular, 
recent research suggests that ATES planning policies should 
acknowledge a potential trade-off between the total energy 
or GHG savings which can be obtained by ATES systems 
within a given area, and the economic returns realized by 
individual system operators. To better understand this 
compromise, this paper follows a simplified version of the 
multi-objective robust decision making framework 
(Kasprzyk et al., 2013), using an idealized agent-based 
model of ATES adoption and operation coupled with a 
geohydrological subsurface model. This simulation 
approach was used to investigate suitable options for the 
spatial planning of ATES systems, by exploring the 
behaviour of the coupled system under a set of socio-
technical and geohydrological uncertainties. A multi-
objective evolutionary optimization algorithm was then 
applied to search for ATES well layout parameters which 
perform well in relation to the assessment criteria. The 
optimization identified a set of planning parameters which 
describe a Pareto-efficient trade-off between the individual 
and collective performance of ATES systems under 
uncertainty. 

1. INTRODUCTION 

Aquifer Thermal Energy Storage (ATES) is an 
increasingly popular type of shallow geothermal 
energy, which relies on aquifers to seasonally store 
thermal energy for the heating and cooling of 
buildings. The Netherlands are currently a world 
leader for ATES technology, due to a combination of 
easily accessible aquifer resources, dense urban 
development, and increasingly stringent building 
energy standards. The use of ATES in the country has 
thus rapidly grown over the last decade; as defined by 
total pumped volume, ATES systems could in fact 
become the largest user of groundwater in the 

Netherlands by 2020 (Bonte, 2013). This rapid 
adoption should be carefully monitored, given the 
complex interactions of the technology with aquifer 
resources: for instance, although ATES systems do not 
cause a net extraction or injection of groundwater, 
they create local thermal disturbances which should be 
managed appropriately. 

Public authorities will therefore need to find a 
compromise between favouring the adoption of ATES 
technology to contribute towards goals for GHG 
reductions, and managing the potential impacts of 
large-scale thermal storage in the subsurface – 
particularly given the broader international potential 
of ATES  (Bloemendal et al., 2015). The rapid 
development of ATES has underlined some areas of 
concern: for instance, current approaches for the 
operation and planning of ATES systems (and shallow 
geothermal energy in general) lack the flexibility to 
manage the uncertainties which are inherent to ATES 
adoption and use. As a reaction to these uncertainties, 
design guidelines are typically highly conservative, for 
example to avoid thermal interactions between 
neighbouring systems. Consequently, in the 
Netherlands, ATES adoption may become limited by 
the availability of subsurface space in urban areas 
(Bloemendal et al., 2014). 

In order to better understand these challenges, this 
work focuses on the implications of ATES spatial 
planning parameters for the individual and collective 
performance of the technology. The following section 
summarizes ATES technology; Section 3 then 
structures the problem through a XLRM approach 
(Lempert et al., 2003) to describe relevant models and 
relationships, performance measures, uncertainties, 
and policy levers. In Section 4, this framework is 
combined with a coupled simulation environment to 
explore idealized dynamics of ATES operation under 
uncertainty, with a simplified application of multi-
objective robust decision making (Kasprzyk et al., 
2013). This approach is used to identify an efficient 
trade-off between individual economic returns and 
collective energy-saving performance. Finally, Section 
5 discusses these results in the broader context of 
future challenges for the planning of ATES 
technology. 
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2. PROBLEM BACKGROUND 

ATES systems are used to seasonally store thermal 
energy in aquifers, which – in combination with a heat 
pump – can significantly reduce the energy demand of 
buildings for heating and cooling in temperate 
climates. These systems usually use a pair (or more) 
of coupled wells to inject and extract groundwater at 
different locations or depths of the aquifer; in winter 
conditions, relatively warmer water is thus extracted 
from one well and passed through a heat exchanger for 
heating, then re-injected into a “cold” well at a lower 
temperature (typically 5-10°C). Conversely, in 
summer conditions, the flow across the wells is 
reversed so that the cooler water injected in winter is 
used for cooling, then reinjected into the “warm” well 
at a temperature of 15-25°C. This process is illustrated 
in Figure 1 a). This eventually creates thermal zones 
around each well, which can have a radius of a few 
dozen meters (Figure 1 b). 

 

Figure 1: a) Basic functioning of Aquifer Thermal 
Energy Storage (Bonte, 2013); b) Plan view 
of ATES thermal zones in a urban layout 

The characteristics of these thermal zones are crucial 
for the performance and management of ATES 
systems. They are affected by local geohydrological 
conditions, such as the porosity of the aquifer or the 
presence of a regional groundwater flow; in addition, 
thermal interferences between neighbouring systems 
can reduce thermal recovery if “cold” and “warm” 
wells are located too closely, while wells of similar 
temperatures can have beneficial interactions (Bakr et 
al., 2013). These geohydrological and operational 
factors cause significant uncertainties regarding 
subsurface conditions and the resulting performance 
of ATES systems. Furthermore, at the building level, 
the demand for heating or cooling is difficult to 
forecast due to variations in building occupancy and 
weather conditions. The actual use of ATES systems 
can therefore differ significantly from the expected 
pumping rates which are used for permitting and 

design; although the “cold” and “warm” wells would 
ideally be used symmetrically over the seasons for 
cooling and heating, ATES systems used in the 
Netherlands often have a significant level of thermal 
imbalance in practice (Willemsen, 2016). 

Given that local temperature disturbances can persist 
in the subsurface over a period of decades, this can 
cause unforeseen long-term changes in aquifer 
temperature distributions – which, in turn, can affect 
the performance of ATES systems, and eventually 
their continued adoption by building owners. Thermal 
imbalances and interactions are therefore a particularly 
sensitive aspect of ATES development. The risk of 
negative thermal interferences between neighbouring 
wells especially introduces additional constraints on 
the planning of ATES systems in dense urban areas, 
which need to accommodate various existing 
subsurface functions such as groundwater extraction.  

3. PROBLEM FORMULATION 

The problem described above can be defined as a 
complex adaptive system, which is driven by the 
interactions between environmental conditions in the 
subsurface and the use of ATES systems. The 
performance of ATES systems is thus affected by 
aquifer temperature distributions, which are themselves 
influenced by the operation of existing systems and by 
the construction of new wells by building owners. 
These dynamics are mediated by the spatial layout of 
ATES systems, and further affected by geohydrological 
and socio-technical uncertainties (for instance, aquifer 
heterogeneity, building energy demand, or the energy 
prices which influence the investment behaviour of 
potential ATES users). Following the definition of 
Lempert et al. (2003), some of these uncertainties can 
be qualified as deep -- in the sense that it would be 
impossible to precisely define the causal relationships 
and probability distributions associated with some of 
these parameters, such as future energy prices. To better 
understand plausible scenarios for the development of 
ATES as well as performance trade-offs, a modelling 
framework which acknowledges the complexity and the 
uncertainty of the underlying systems is therefore 
required. 

The many-objective robust decision making 
(MORDM) framework described by Kasprzyk et al. 
(2013) offers a suitable starting point. Rather than 
attempting to optimize the performance of a complex 
environmental system by aggregating multiple 
measures into a single metric (e.g. through cost-
benefit analysis), this framework uses a multi-
objective problem formulation to investigate key 
trade-offs across performance indicators. Quantitative 
methods like multi-objective evolutionary 
optimization can be used within this framework to 
identify solutions (for instance, ATES layout 
parameters) which perform efficiently for these trade-
offs across a broad range of uncertainties, e.g. which 
are robust. Techniques for scenario discovery can 
support the analysis by identifying the ranges and 
combinations of uncertain parameters which are most 
relevant in regards to the model outcomes.  Figure 2 
summarizes the MORDM approach. 
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Figure 2: Many-objective robust decision making framework (Kasprzyk et al., 2013) 

 
Table 1: XLRM problem formulation 

 
 

Figure 3: Coupled simulation architecture
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As a first step, Table 1 summarizes the definition of 
the problem using the XLRM framework (Lempert et 
al., 2003). The subsections below detail the models 
and relationships (R) used to represent the problem, 
the measures (M) which track the performance of 
different ATES layout policies, the uncertainties (X) 
which affect the outcomes, and the layout parameters 
which can be used as policy levers (L). 

3.1 Models and relationships 

This analysis relies on idealized simulation models for 
ATES adoption and operation (described in more 
detail in Jaxa-Rozen et al., 2015), which represent 10 
simulated ATES systems interacting with a 1000m x 
1000m x 20m confined aquifer over a time frame of 
240 months. The geohydrological dynamics are 
modelled using the MODFLOW / SEAWAT codes, 
while an agent-based model for ATES adoption and 
operation is implemented using NetLogo. These 
model components are linked through an object-
oriented architecture using the Python language, in 
which Python objects are used as a common interface 
between the model layers. Figure 3 illustrates the basic 
architecture and data exchanges. The coupled models 
are executed using the EMA Workbench package for 
exploratory modelling (Kwakkel, 2015).  

The simulated ATES operators are modelled from 
representative data for ATES systems in the 
Netherlands; at the initialization of the simulation, two 
of the operators are assumed to be actively operating 
ATES wells, and the other systems can activate or 
build wells (within imposed spatial constraints) based 
on expected economic performance. This behaviour is 
modelled by assigning a randomly distributed 
adoption threshold to each agent, which is defined as 
the expected payback period which the simulated 
operators consider to be acceptable for ATES 
technology relative to a conventional energy system; 
the expected economic returns are derived from the 
realized performance of the active simulated ATES 
systems. The distribution of adoption thresholds is 
based on empirical data for firm-level investments in 
energy efficiency in the Netherlands (Blok et al., 
2004). 

3.2 Measures 

A particular challenge for ATES planning in the 
Netherlands is the lack of a consistent framework 
which could be used to assess the performance and 
sustainable use of urban ATES systems, and therefore 
to define metrics and objectives for the analysis. 
Several methods have been applied to assess the 
thermal and economic performance of single ATES 
systems (Rosen, 1999; Rosen and Dincer, 2003; 
Sommer et al., 2015). However, an integrated 
approach to assess the long-term efficiency and 
sustainable use of an aquifer with ATES systems has 
not yet been implemented in practice. This is 
becoming an increasingly important issue for the 
public actors involved in ATES management 
(typically municipalities, as well as provincial 
authorities in the case of large-scale ATES projects 
which may impact groundwater extraction activities); 

these actors have a twofold interest in maximizing the 
energy-saving potential of ATES technology, while 
preserving the long-term integrity of aquifer resources. 
As a starting point, this analysis considers two main 
performance objectives, based on the dynamics 
outlined previously: 

• The average economic performance of ATES 
systems at the end of the simulation, which should 
minimize the payback period relative to a 
conventional energy system; 

• The contribution of ATES systems towards 
collective targets for GHG reductions, which should 
maximize the cumulative GHG emissions avoided 
relative to conventional building energy systems, over 
the time of the simulation. 

Additional intervening outcomes are also recorded to 
track the number of active systems over time, as well 
as their thermal efficiency and the use of subsurface 
resources for thermal storage (defined as the fraction 
of aquifer volume in which the temperature is affected 
beyond an arbitrary threshold of 1°C, at the end of the 
simulation). 

3.3 Uncertainties 

Each of the model components is affected by given 
uncertainties, presented in Table 2. The uncertainty 
ranges for socio-technical and geohydrological 
parameters were based on data representative of 
typical ATES/aquifer conditions where available. The 
table also provides ranges for the spatial planning 
parameters, which will be sampled in the experimental 
design along with the uncertainties. Given that the 
agent-based model uses simplified decision heuristics, 
this component is primarily driven by deeply uncertain 
external values for energy prices, which are assumed 
to remain constant over the time frame of the 
simulation. The analysis therefore ignores structural 
uncertainties regarding the decision-making process of 
ATES adopters. Due to runtime constraints, more 
detailed technical uncertainties in the ATES control 
model (which could for instance lead to variable 
thermal imbalances over time) are also excluded at 
this stage. 

Table 2: Model uncertainties 
  

 

3.4 Policy levers 

Under current approaches for the permitting and 
planning of ATES systems in the Netherlands, the 
main policy levers available to public authorities are 
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based on spatial planning parameters. These 
parameters typically relate to the minimal required 
distance between neighbouring wells, which is itself 
defined as a multiplier of the average thermal radius 
Rth (illustrated in plan view in Figure 4). This value 
corresponds to the expected radius of thermal 
influence, based on the analytical solution for heat 
transport in porous media; the prevailing Dutch 
guidelines for ATES system design require a distance 
of 3 Rth to avoid thermal interactions. 

However, recent research suggests that these 
guidelines may be overly conservative (Sommer et al., 
2015). The analysis will thus explore a broader range 
of design parameters, distinguishing distances 
between “warm” and “cold” wells, and wells of 
similar temperatures.  

 

 

Figure 4: ATES well layout parameters

4. CASE GENERATION AND EXPLORATION 

The next step of the analysis is to explore the behaviour 
of the coupled models under uncertainty, and to 
evaluate the relative impact and interactions of the 
various uncertainties and policy levers. The scatter plots 
below present the values of the two key indicators 
(economic performance and GHG savings), as well as 
subsurface use, at the final time of the simulation (240 
months). The markers show an ensemble of 1500 
experiments sampled from the uncertainties listed in 
Table 2 using a Latin Hypercube design, including the 
ranges of plausible spatial layout parameters. 

 

Figure 5: Model results under uncertainty 

The red curve provides an indication of the optimal 
(i.e. Pareto-efficient) frontier which should be feasible 
for the trade-off between individual and collective 
performance, by revising the spatial layout 
parameters. To understand the conditions under which 
this frontier could be achieved, techniques for scenario 
discovery were then applied to the full ensemble of 
results. In the context of quantitative model-supported 
decision analysis, scenario discovery can be used to 
identify the combinations of assumptions and 
uncertainties which may lead to a given policy-
relevant outcome – for instance, the conditions under 
which a policy could be successful or not. 

Although scenario discovery often uses explicit 
performance thresholds to identify a subset of cases of 
interest (Bryant and Lempert, 2010), the exploratory 
nature of this analysis would make it more difficult to 
select unambiguous thresholds across the selected 
indicators. As suggested by Gerst et al. (2013), 
multidimensional clustering may instead provide a 
more flexible way to generate scenarios by identifying 
groups of experiments which yield similar behaviours 
and outcomes. For the purposes of this analysis, the 
scikit-learn Python library was therefore used to fit a 
Gaussian mixture model (GMM) to the model results, 
across the two main indicators. This technique 
essentially assumes that the samples of interest are 
generated by a mixture of an arbitrary number of 
Gaussian distributions; expectation maximization can 
then be used to assign each sample to the distribution 
to which it most likely belongs, generating a finite 
number of clusters. A GMM with 6 components was 
selected, using the Bayesian information criterion to 
assess the quality of fit of the possible models. This 
process resulted in the following groups, shown on 
normalized axes: 

 

Figure 6: GMM clustering results 
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The clustering algorithm appears to perform well on 
the dimensions corresponding to GHG savings and 
payback period, which provide visually consistent 
clusters. These clusters can then individually be 
studied by using the Patient Rule Induction Method 
(PRIM) (Friedman and Fisher, 1999) to identify the 
combinations of uncertainties which lead to a given 
cluster classification. Expressing the model output as y 
= f(x), with x corresponding to a vector of uncertain 
input parameters of length M, the sets of cases of 
interest corresponding to each cluster C can be defined 
as Ij = {xI | f(xI ) ∈ Cj} (Bryant and Lempert, 2010). 
Each of these sets of cases of interest can be described 
by one or more sets of limiting constraints Bk = {an ≤ 
xn ≤ bn, n ∈	Lk}, applied to the ranges of a subset of the 
input parameters: Lk ⊆ {1, ..., M}. Each set Bk then 
corresponds to a “box” within the multidimensional 
input space which is associated with a given output set 
of cases of interest. The set of boxes B can in turn be 
interpreted as a “scenario”. 

This definition assumes that the cases of interest are 
entirely described by a (hyper-) rectangular region of 
the uncertainty space, which is rarely the case in 
practice. To support the identification of interpretable 
scenarios, the PRIM technique thus aims to maximize 
the coverage and density of a box set B. The coverage 
equals the ratio between the total number of cases of 
interest within a box set, and the total number of cases 
of interest; the density corresponds to the ratio 
between the total cases of interest in a box set, and the 
total number of cases in the box set. Following Bryant 
and Lempert (2010), this can be noted as: 

 

These two indicators typically present a trade-off, so 
that a box set with high coverage may have relatively 
low density, and vice versa. This trade-off can be 
assessed using a “peeling” trajectory which indicates 
the progress of the PRIM algorithm, and which lets 
the analyst select an appropriate box set for the 
purposes of the analysis. 

Table 3 presents representative box sets for two of the 
clusters displayed in Figure 6: cluster 3 (in purple), 
which provides the worst performance in terms of 
both average payback period and GHG savings, and 
cluster 5 (in light grey), which performs relatively 
well on GHG savings and has the lowest average 
payback period. The Min and Max table columns 
correspond to the ranges of the uncertain parameters 
which are associated with each of these box sets, 
while the quasi-p column gives a measure of the 
significance of each parameter. As an example, the 
results for cluster 3 can be interpreted as follows:  

53% of the cases which were grouped in cluster 3 are 
associated with the combination of a gas price 
between 0.3 and 0.49 €/m3, an electricity price 
between 0.23 and 0.3 €/kWh, and a Dopposite value 
between 1.75 and 2.8 Rth.  

Table 3: PRIM results 

 

As indicated by the coverage and density values, the 
PRIM algorithm does not perform particularly well, 
which may be due to the relatively low sample size. 
Nonetheless, the boxes describe reasonably consistent 
scenarios: in the first case (cluster 3), an unfavorable 
combination of energy prices leads to poor economic 
performance, as a low gas price reduces the 
attractiveness of ATES compared to conventional 
energy, while a high electricity price increases the 
operational costs of the ATES heat pump. In parallel, 
the distance between ATES wells of different 
temperatures is constrained to a relatively low range, 
which tends to accelerate the development of thermal 
interferences and reduces thermal efficiency – and 
therefore has an additional negative impact on 
economic performance. Cluster 3 thus corresponds to 
a “worst-case” scenario. 

In the second case (cluster 5), a relatively high gas 
price is combined with mid-range values for the 
distance between ATES wells of similar temperatures, 
and relatively high values for the distance between 
wells of different temperatures. These ranges could be 
expected to be beneficial for both economic 
performance and GHG savings, by controlling 
negative interactions between wells of different types 
while allowing for a greater number of wells to be 
built.  

4.1 Trade-off analysis and policy search 

The PRIM results indicate that spatial planning 
parameters are a significant driver for the model 
outcomes, in combination with exogenous 
uncertainties on energy prices. The next step is 
therefore to specifically search for planning 
parameters which perform well on the performance 
indicators across the same uncertainties. This can be 
accomplished by using robust multi-objective 
optimization to generate alternative solutions. A key 
concept for this analysis is the notion of Pareto 
optimality: most problems are unlikely to present a 
single “optimal” solution; however, multi-objective 
optimization can be used to approximate a Pareto 
frontier of non-dominated solutions, which describe a 
trade-off between objectives. 
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Following Hadka and Reed (2012), a vector u = (u1, 
..., um) can be said to Pareto-dominate another vector v 
= (v1, ..., vm) for a minimization problem if and only if 
∀i ∈ {1, ..., M}, ui ≤ vi, and ∃j ∈ {1, ..., M} | uj < vj. 
This is noted as u≺v. For a given multi-objective 
problem F(x) with decision variables x over a decision 
space Ω, the Pareto optimal set is then P* = {x ∈ Ω | 
∄x’ ∈ Ω, F(x’) ≺	Fሺxሻሽ. 

In the context of robust multi-objective optimization, 
candidate solutions are typically generated by a multi-
objective evolutionary algorithm (MOEA), with the 
robustness of these solutions being assessed a 
posteriori. For the purposes of this analysis, the 
problem can be defined as follows, using a simple 
robustness metric provided by Eker and van Daalen 
(2015): 

 

GHG and ROI correspond to the model outcomes as 
previously defined (cumulative GHG savings and 
average payback period, at the end of the simulation), 
over an ensemble of experiments sampled from the 
uncertain input ranges. The disadvantage of these 
robustness metrics is the lack of insight into the trade-
off between the mean and standard deviation of the 
outcome ensembles; these values would ideally be 
treated as separate optimization objectives. However, 
due to the relatively high runtime of the 
geohydrological model, such an approach would result 
in excessive computational complexity for the 
purposes of this analysis. 

This problem was implemented using the Borg multi-
objective evolutionary algorithm (Hadka and Reed, 
2012), using ensembles of 96 experiments, an initial 
population size of 20 solutions, and approximate ε 
values of 0.1 over the normalized output space. 
Although the analysis was constrained by runtimes 
using a 48-core server, the algorithm was able to attain 
a reasonable level of convergence over 200 function 
evaluations, and identified the three solutions shown 
in Figure 7. Figure 8 shows convergence as expressed 
by ε-improvements, i.e. the total number of 
improvements to the Pareto set over time. 

 

Figure 7: Optimization solutions 

 

Figure 8: Optimization convergence 

The scatter plot shown in Figure 9 compares these 
solutions with  a baseline policy which would attempt 
to minimize thermal interactions between neighboring 
systems, with a distance of 3 Rth between wells; the 
plot shows the centroids and bag plots (Rousseeuw et 
al., 1999) for each policy option across GHG savings 
and payback period, over 48 experiments. The table 
provides detailed results for the two indicators. 

 

 

Figure 9: Performance of solutions 

As such, the three solutions identified by the Borg 
algorithm seem to describe a more efficient trade-off 
between GHG savings and economic performance: 
solution 1 yields an improved mean payback period 
compared to the baseline policy, along with a mean 
increase of 35% in GHG savings. The other solutions 
trade off a certain amount of environmental 
performance and economic returns, leaving decision-
makers with a set of options. All three solutions 
decrease the standard deviation of the average 
payback period, suggesting that these policies are less 
affected by energy prices; this is caused by the 
beneficial thermal interactions between wells of 
similar temperatures, which are less significant in the 
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baseline case but which allow for an increase in 
thermal recovery (as previously described by Bakr et 
al., 2013). An additional PRIM analysis could here be 
performed to study specific vulnerabilities. 

5. CONCLUSIONS 

This work presented a simplified application of multi-
objective robust decision making for the problem of 
urban ATES planning under uncertainty. The 
combination of clustering techniques and scenario 
discovery proved useful to explore the different 
plausible modes of behaviour of the model. In 
addition, the Borg multi-objective evolutionary 
algorithm was helpful in better understanding the 
trade-off between the collective energy-saving 
potential of ATES, and the economic performance of 
individual systems. In particular, this showed the 
beneficial role of positive thermal interactions 
between ATES wells of similar temperatures,  
compared to a case which would attempt to minimize 
any thermal interactions between systems. 

From a broader perspective, while robust optimization 
was a useful technique for analysing the effect of 
spatial planning parameters and their interactions with 
exogenous uncertainties, the large-scale management 
of ATES systems may call for an altogether different 
approach to planning to maximize the benefits of the 
technology. Current planning methods rely on local 
permits and master plans, which essentially take a 

static view of ATES management under uncertain 
future conditions. For instance, permits do not 
incorporate feedback from operational performance 
which could account for thermal imbalances or 
variations in well flows, as well as variable adoption 
dynamics. As an alternative, Bloemendal et al., (2014) 
summarily evaluate the potential of a self-organized 
approach for ATES governance. As described by 
Ostrom (2009), empirical evidence indicates that such 
self-organization mechanisms – in which cooperative 
institutional arrangements replace hierarchical 
planning – may offer an effective route for the 
management of common-pool resources. Bloemendal 
et al.’s analysis suggests that self-organization could 
be appropriate for ATES development in urban areas, 
notably due to a relatively small spatial scale, slow 
resource dynamics, and the high economic benefits of 
efficient ATES operation. The design of corrective 
feedbacks and compensation arrangements would be 
crucial to preserve the sustainability of the subsurface 
under a self-organized approach, and would in turn 
require advancements in the technical control systems 
of ATES systems to facilitate their cooperative 
management. However, such a “bottom-up” 
organization could perhaps offer a more genuinely 
robust option for the successful management of urban 
ATES systems under uncertainty. 
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