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Definition 
Topological relations between spatial objects have been widely recognised, implemented and used in GIS. They provide a 

notion of the general structure and the interactions of spatial objects. Topology avoids dealing with geometry by 

introducing topological primitives namely boundary, interior and exterior. The topological primitives allow to define 

approximate topological relationships between 0D (point), 1D (linestring ), 2D (surface) and 3D (body) spatial objects in 

0, 1, 2 and 3D space. The 9-intersection model is the well-known framework for detecting binary topological relationships 

[Egenhofer & Herring 1993], and is adopted by the Opengeospatial consortium as a basic framework for implementation. 

Suppose two simple spatial objects A and B are defined in the same topological space X and their boundary, interior and 

exterior are denoted by   BBAAA ,,,,  and
B . The binary relationship R(A,B) between the two objects is then 

identified by composing all the possible set intersections of the six topological primitives, i.e.  BA ,  BA , 

 BA , BA  , BA  , BA 
, 

 BA  
 BA  and 

  BA , and detecting empty (0) or non-

empty (1) intersections. For example, if two objects have a common boundary, the intersection between the boundaries is 

non-empty, i.e. 1 BA ; if they have intersecting interiors, then the intersection  BA is not empty, 

i.e. 1 BA . Since each pair of intersections can have either the empty or non-empty value, different "patterns" 

define different relationships. The theoretical number of all the relationships that can be derived from the 9 intersections is 

29, i.e. 512 relationships, but only a small number of them (approximately 70) can be realized in reality. Following the 9-

intersection model, operators to detect topological relationships are widely implemented in GIS and DBMS commercial 

software. The operations can be used for various purposes: checking inclusions and consistency between objects, finding 

neighbouring objects, establishing connectivity (path), composing constraints, etc.         

Historical Background 

The topological relationships have gradually gained attention in the last four decades and became a major component of 

current spatial information applications [Breunig & Zlatanova 2011, Gröger & George, 2012]. The topic of research has 

shifted from issues related to the definition of a particular formalism to represent topological relationships, to 

implementation issues [Ellul & Haklay 2007, Borrman & Rank 2009, Xu & Zlatanova 2013]. The research in the 

clarification of the relationships between spatial objects in 2D space has extended to investigation and implementation of 

relationships in 3D space.  

 

The establishment of suitable framework for representation of topological relations takes relatively long time. Early work 

on topological relationships [e.g. Freeman 1975] does not have sufficient formalism and generality. The need for sound 

foundation is recognised by many researchers [e,g. Pullar & Egenhofer, 1988, Herring, 1991]. First sound models are 

developed on basis of point-set theory and the notion of boundary, interior and closure op point sets. The first, so called 

4-intersection model (4IM) is presented by [Pullar & Egenhofer 1988]. It considers only point and line objects in 1D 

space. The topological relationships between regions are introduced by [Egenhofer & Fransoza, 1991]. The 9-intersection 

model (9IM) is an extension of the framework by including exterior of objects [Egenhofer & Herring, 1991]. A critical 

comparison between 4IM and 9IM have motivated the further adoption of 9IM [Egenhofer, Sharma & Mark, 1993] The 

4IM and 9IM model have triggered many studies, discussion, comparisons and criticism since then. The framework is 

recognised as a very powerful and sound, but also rising many questions and limitations. Topics of investigation are the 

number of possible relationships, the equivalent relationships, the type of objects (simple, with holes, or with broad 

boundaries), the naming of topological relationships.  

 

A substantial number of studies are devoted to investigation of possible relationships. Some intersections (or a 

combination of intersections) between topological primitives can never occur in reality, and all the relationships that 

mailto:s.zlatanova@tudelft.nl


contain these intersections (or the combination) can be securely excluded from further considerations. For example, in real 

world, the exterior of objects (
  BA ) is always non-empty. This condition automatically reduces the possible 

relationships that can be detected with 9IM to 256. Following such approach, the possible relationships can are clarified. 

To eliminate all non-realizable relations, conditions, referred to as negative conditions, are composed. Several authors 

have presented studies on possible relationships in 2D space [Egenhofer & Herring, 1992, Kufoniyi, 1995]. [De Hoop et al 

1993, Egenhofer 1995] present an approach to define conditions and derive relationships in 3D space. Basically, the 

authors agree on the number of most of the relationships with one exception, i.e. surface and surface in 3D space. The 

negative conditions used by the authors vary significantly and complicates their comparison. For example, [Egenhofer & 

Herring, 1992] present 23 negative conditions for relationships in 2D space. To address the 3D situations, 15 more 

conditions are added by [van der Meij, 1992, Kufoniyi, 1995], which again differ from the once presented by [Clementini 

& de Felice, 1997]. Furthermore most of the conditions are related to a particular configuration of objects (e.g. conditions 

for linestring and linestring), which leads to further duplications of the effect of some of them. [Zlatanova, 2000a] 

investigates all the conditions and proposes a set of 24 conditions (not considering the symmetric cases). These conditions 

have proven to be valid for obtaining relationship between all objects embedded in 0D, 1D, 2D and 3D space (Table 1).     

 

While quite straight forward for simple objects, the 9IM reveals to have high complexity for objects with holes. Until 

recently only regions with holes in 2D have been investigated [Egenhofer, Clementini & di Felice, 1994, Schneider & 

Behr, 2006]. Studies in 3D space have not been presented so far. [Clementini & de Felice, 1997] address thickness of the 

boundary or real world objects as many objects have a boundary which cannot be approximated with a line. They present 

a modification of the framework for objects with broad boundaries.  

 

 
 

 

 

One of the most discussed topics is the fact the many relationships between real world objects appear equivalent according 

to 9IM (Figure 1). As the shape of the objects is not considered, it is impossible to distinguish between the type of 

intersection between two boundaries (0D, 1D, 2D or 3D intersection).  This consequently leads to relationships which are 

equivalent with respect to the 9IM, but look distinctive to the human eye.  Therefore several studies propose to include the 

dimension of the intersection in the 9IM [Clementini, di Felice P & Oosterom, 1993, Deng, Cheng Chen et al 2007, Strobl 

2008, Billen & Kurata, 2008]. Dimensionally extended Nine-intersection model (DE-9IM) presented by [Strobl, 2008] has 

been adopted in the OGC implementations specifications in 2011.  

 

Scientific fundamentals  

The topological relationships are defined for topological spaces on the basis of set notions [Armstrong, 1983]. A set is an 

aggregate of things, e.g. numbers, people, buildings, points. The things are elements of the set. A topology on a set X is a 

collection t of subsets of X  called open set, satisfying: 

  

 any union of elements of t  belongs to t  

 any finite intersection of elements of t  belongs to t  

 the empty set and X belong to t . 

 

Topological space is convenient as it allows defining the continuity of space without mentioning the distance. Topology is 

derived from metric space (e.g. Euclidian), where the distance function is central.  Inside a topological space, the 

Figure 1: Equivalent topological relationships according to 9IM 



topological primitives, i.e. closure, interior and boundary of a set can be defined. If X is a topological space 

and XGXKXE  ,, , then: 

 closure is the set KXKE |{   is closed and }KE  , 

 interior is the set GXGE |{    is open and }GE  ,  

 boundary is the set )( EXEE   which is a closed set.  

 

Closure, interior and boundary of a set have an important properties [Willard 1970]: 

 EE   

 EE   

 E is closed in X if and only if EE   

 E is open in X if and only if EE   

 EEE   

 EEE   

  )( EXEEX  

 XX   
 

The topological definitions given above are not convenient for particular use (e.g. representation of geometric properties) 

due to the regularity of open sets in the Euclidean space, i.e. each open set of one point has the same properties as any 

other set. Therefore it is wiser to investigate the space around a point (or several points) and conclude that around other 

points it is the same. Thus the notion about a neighbourhood is introduced:  

 

If X a topological space and Xx , a neighbourhood of x  is a set U , which contains an open set containing x , i.e. , 

Ux where U is the interior of U . 

 

The practical importance of topology for the modelling of the spatial objects is twofold. It provides a formalism to define 

spatial relationships, and it allows a formal geometric description of objects. The notions of neighbourhood, interior, 

boundary and closure provide formalism for investigating relationships between objects without considering their shape 

and size. The interrelations between the topological primitives of two or more objects in their neighbourhoods define the 

topological relationships among objects. For example, if the neighbourhood of a point is completely inside the interior of 

an object, then the point is inside the object; however, if the neighbourhood is partially in the object's interior, then the 

point is on the boundary of the object. After applying to all of the points of two objects, this mechanism supplied 

information on the interrelation of two objects. 

. 

 

The topology can be applied to strictly define the subdivision of the space and derive the shape of objects out of it. For 

this purpose, an n-dimensional space (Hausdorff space) called n-manifold, in which the neighbourhood at every point is 

equivalent to an n-dimensional ball, is introduced. Then a subdivided manifold is defined as a pair ),( CM , where the 

M  is manifold and C is a complex of cells. Each subdivided manifold has the following properties: 

 

 each (n-1)-dimensional cell is shared by exactly two n-dimensional cells 

 given two n-dimensional cells si and sj , there exists a sequence of cells si = sh =…= sk = sj such that sh Cs,k is an 

(n-1)-dimensional face 

 given any (n-2)-dimensional cell, the n- and (n-1)-cells adjacent to it can be arranged in a single connected 

alternating cycle. 

 

The first property leads to a closed manifold. The closed manifolds can be orientable or non-orientable. An orientable 

manifold is the one, in which each two n-dimensional cells that intersect in a given (n-1)-dimensional cell induce opposite 

orientations on that cell. The notations on manifolds played a critical role in constructing models for computational 

geometry. The traditional GIS and CAD topological models (e.g. winged-edge, half-wing edge) are built on subdivisions 



of 2-manifolds, i.e. vertex (0-cell), edge (1-cell) and face (2-cell). 4IM and 9IM are developed under the assumption that 

the definitions of spatial objects are conform to the properties of 2-manifold.  

 

 
 

 

 

 

 

Suppose two simple spatial objects A and B defined as non-empty sets in the same topological space X , then the 

boundary, interior, closure and exterior will be denoted as 
  BBBBAAAA ,,,,,,, . The binary relations ),( BAR   

between the two object s is then defined as investigating the intersections between the boundary, interior and the exterior: 

BA  ,  BA ,  BA , BA  ,
  BA , BA 

,  BA ,
 BA and 

 BA . The intersection 

(0-empty and 1-non-empty) between the six topological primitives can be represented as a matrix: 















































111

100

100

),(

BABABA

BABABA

BABABA

BAR  

 

For simplicity, instead of the matrix representation, a row representation of all the intersections is used in the following 

text.  The intersection of the matrix above is listed in the following order:  

BA  ,  BA ,  BA , BA  ,
  BA , BA 

,  BA ,
 BA and 

 BA  

  

For example, the relationship between objects with non-intersecting boundaries and interiors can be represented as 

000011111, which can be seen as a binary number that corresponds to the decimal number 31. This number is denoted as 

a decimal code R031. This relationship corresponds to the ‘disjoint’ relationship. It is apparent that different ordering of 

the intersections will result in a different decimal code. This specific order is chosen, because the first four intersection 

represent the 4IM. The intersection 
  BA is always empty (i.e. always 0) and separates the relationships that can be 

detected with 4IM from 9IM.  

 

The value of the intersections (empty, non-empty) between interior, boundary and exterior depends on following three 

parameters: the dimension of the objects, the dimension of the space (considered also co-dimension of the object) and the 

type of boundary (connected or disconnected). As mentioned previously, the theoretical number of relationships, i.e. 16 

for 4IM and 512 for 9IM, is not possible for real world spatial objects. To eliminate the impossible relationships, negative 

conditions are defined. Negative conditions are composed of intersection values that are not possible (therefore the name 

‘negative’) Examples of negative condition (C1, C2 and C3) are given below [Egenhofer and Herring 1992]: 

 

C1: The exteriors of two objects always intersect. 

C2: If A’s boundary intersects with B’s exterior then A’s interior intersects with B’s exterior too and vice versa.  

C3: A’s boundary intersects with at least one topological primitive of B and vice versa. 

 

The first condition restricts the intersection of the exteriors to be always non-empty, i.e.   BA Ø. This means 

that an empty value (or 0) can never appear in a relationship. Therefore condition C1 is represented as C1 = (-,-,-,-,0,-,-,-,-

) in Table 1. After these three negative conditions, the number of possible binary relationships is reduced to 104 for spatial 

objects with equal dimensions (for example surface and surface) and to 160 for spatial objects with different dimensions 

(for example linestring and surface). The condition are often symmetric. For example, condition C3 implies that it is not 

Figure 2: 2-cell and 1-cell and their interior, 
boundary and exterior 



possible to have a relationship in which BA  and BA  and BA 
can be at the same time non-empty (or 

0). However, the same is true for BA  and  BA and 
 BA , which is included in the condition as vice 

versa. The conditions depend on the type of objects and the dimension of the space they are embedded. The co-dimension 

is often used to define the difference between the dimension of an object and the dimension of the space. For example 2-

cell embedded in 3D space has co-dimension 1. For simplicity, we refer 0-cell, 1-cell,2-cell and 3-cell to as points, 

linestings, surfaces and bodies with corresponding notations P, L, S and B. The 1, 2 and 3 dimension of the space is 

denoted by IR ,  IR2   and IR 3 . Thus the notation R(L,S) means that the binary relationship concerns linestring  and surface as 

the linestring  is the first object. The relationship R(S,L) is the converse relationship, which is referred to by the vice versa 

part of the condition. 

  

The relationships can be classified in 13 groups according to the objects they apply to:  

1. Any objects: R(L,L) in IR ; R(L,L), R(S,S), R(L,S) and R(S,L) in IR2; R(L,L), R(S,S), R(B,B), R(L,S), R(L,B), 

R(S,B), R(S,L), R(B,L), R(B,S) in IR 3. 

2. Objects with equal dimensions: R(L,L) in  IR;  R(S,S) and R(L,L) in IR 2; R(L,L), R(S,S) and R(B,B) in IR 3. 

3. Objects with different dimensions: R(S,L), R(L,S) in IR 2; R(B,L), R(L,B), R(B,S), and R(S,B) in IR3. 

4. Objects with different dimensions and one of the objects with zero co-dimension: R(L,S) and R(S,L) in IR2 ; 

R(L,B), R(S,B), R(B,L) and R(B,S) in IR3. 

5. At least one of the objects has zero co-dimension: R(L,L) in IR ; R(S,S), R(L,S) and R(S,L) in IR 2; R(L,B) R(S,B), 

R(B,L), R(B,S), R(B,B) in IR 3. 

6. At least one of the objects has a disconnected boundary: R(L,L), R(S,L), R(S,L), R(B,L), R(L,S), R(L,S), R(L,B). 

7. Objects with connected boundaries and at least one of the objects has a zero co-dimension: R(S,S) in IR 2; R(S,B) 

and R(B,S), R(B,B) in IR3. 

8. Objects with equal dimensions and zero co-dimensions: R(L,L) in IR;   R(S,S) in IR2 and R(B,B) in IR3. 

9. Conditions for binary relations between objects of the same dimension and non-zero co-dimensions: R(L,L) in IR2 

and R(S,S) in IR3. 

10. Objects with equal dimensions, connected boundaries and non-zero co-dimensions: R(S,S) in IR3. 

11. Objects with different dimensions, non-zero co-dimensions and one of them with a disconnected boundary: R(S, 

L)  

12. Objects with equal dimensions, non-zero co-dimension and disconnected boundaries: R(L,L) in IR2                          and IR3. 

13. Conditions for binary relations between objects with at least one empty interior: R(P,P), R(P,L), R(P,S), R(P.B), 

R(L,P), R(S,P), R(B,P). 

 

The set of 25 negative conditions (Table 1) is the minimal set reported currently in the literature, which 
identifies all possible relationships with respect to 4IM and 9IM [Zlatanova 2000b]. The negative 
conditions eliminate 443 and leave only 69 possible relationships. Table 1 clearly shows that the 

conditions for objects with equal dimension and zero co-dimension (the conditions of group 10) are 
very restrictive, which leaves only eight possible relationships (Figure 3, Figure 4 and Figure 5). All 

possible relationships are given in Table 1: Negative conditions for eliminating impossible 
relationships in IR ,  IR2   and IR 3 

G
ro

u
p
 

R
(A

,B
) 


A


B

 

A


B
 


A


B
 

A



B

 

A
¯


B
¯
 

A
¯


B

 

A
¯


B
 


A


B
¯
 

A


B
¯
 

 C1 – – – – 0 – – – – 
 C2a – – – – – – – 1 0 

1 C2b – – – – – 1 0 – – 
 C3a 0 – 0 – – – – 0 – 

 C3b 0 – - 0 – 0 – – – 

 C4a – 0 – – – – – – 0 

2 C4b – 0 – – – – 0 – – 
 C5a – – – 1 – – – – 0 

 C5b – – 1 – – – 0 – – 

 C6a – – – – – – – – 0 
3 C6b – – – – – – – 0 – 



 C6c – – – – – 0 – – – 

 C6d – – – – – – 0 – – 

 C7a – 0 – 0 – – – – 0 

4 C7b – 0 0 – – – 0 – – 

 C8a – 0 1 – – – – – – 

5 C8b – 0 – 1 – – – – – 
 C9a – 1 – 0 – – – – 1 

 C9b – 1 0 – – – 1 – – 

 C10a 1 – – 1 – 1 – – – 
6 C10b 1 – 1 – – – – 1 – 

 C11a 0 – 1 – – – – 1 – 

7 C11b 0 – – 1 – 1 – – – 

 C12 0 – – – – 0 – 0 – 
8 C13 – 0 – – – 0 – 0 – 

 C14a – – – – – – – 0 1 

 C14b – – – – – 0 1 – – 

 C15a – – – – – 0 1 – 0 

9 C15b – – – – – – 0 0 1 

 C16a – – 0 1 – – – 0 – 

 C16b – – 1 0 – 0 – – – 

 C17a – – 0 0 – 1 – 0 – 

10 C17b – – 0 0 – 0 – 1 – 

 C18a – 1 1 1 – 0 – 0 – 
 C18b 1 – 1 1 – 0 – 0 – 

 C19a 1 1 1 1 – – – 0 – 

 C19b 1 1 1 1 – 0 – – – 

 C20a – 0 – 1 – – 0 – – 

 C20b – 0 1 – – – – – 0 
11 C21a 1 0 0 – – – 0 – – 

 C21b 1 0 – 0 – – – – 0 

 C22a 1 – 0 – – 1 – 0  

12 C22b 1 – – 0 – 0 – 1 – 

 C23a 1 – – – – – – – – 

 C23b – – 1 – – – – – – 

13 C23c – – – – – – – 1 – 

 C23d – – – 1 – – – – – 

 C23e – – – – – 1 – – – 

 C24a – 1 – 1 – – – – – 
 C24b – 1 – – – – – – 1 

 C24c – – – 1 – – – – 1 

 C24d – 1 1 – – – – – – 
 C24e – 1 – – – – 1 – – 

 C24f – – 1 – – – 1 – – 

 C25a – 0 – – – – 0 – – 
 C25b – 0 – – – – – – 0 

 

 

Table 2. Note that these relationships are applicable for simple spatial object, i.e. surfaces with holes or bodies with 

tunnels might have different relationships. 
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Figure 3: Relationships between lines in IR 

 

 

B
A

A B

A B

A B

A
B

A
B

A B

AB

R435

R511

contains

disjoint meet

R179

R031

R220

R400

R476

R287

covers

equal

coveredByinside

overlap

 

Figure 4: Relationships between surfaces IR2 
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Figure 5: Relationships between bodies in IR 3 : 8 
relationships 

 

R031

R183

R375

R415

R439

R467

R471

R479

R499

R503
R435

R403

R287

R351

R343R255

R247

R223

R095

R127

R311

R407

R179 R339

R055 R159 R243

R279

R063

R119 R191

 

Figure 6: Surface and linestring  in IR 3 : 31 
relationships (19 in IR  2, face drawn as rectangle) 
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Figure 7: Surfaces and bodies in IR3. 19 
relationships 
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Figure 8: Body and linestring  in IR 3 : 19 
relationships 
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Figure 9: Linestring  and linestring  in IR 2/ IR 3: 33 
relationships 
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Figure 10: Surface and surface in IR 3: 38 
relationships 

 

 

Figure 3 and Figure 4 portray the relationships between objects with the same dimension and zero co-dimension. The 

number of identified possible relationships are given the names: disjoint, contains, inside, equal, touch, covers, 

coveredBy, overlap. These relationships are also the once detected by 4IM. The relationships between other objects are 

given in Figure 5-9.  

 

Although the number of relationships is significantly reduced, the question if the all have to be implemented for real-

world cases remains. As it can be seen from the drawings, some of the configurations are quite complex and seem 

impractical. Some observations on the possible relationships are summarized below:  

 Clearly the 9IM is superior to 4IM. However the increased relationships are only between object of mixed 

dimensions and objects of the same dimension, which are embedded in higher dimension space such as R (L,L) 

and R(S,S) in IR 3. The relationships that appear between all objects are only seven (R031, R179, R220, R400, 

R287, R435 and R476) and they can be detected with 4IM (Figure 3, Figure 4, Figure 5). Note that ‘overlap’ 

relationship R511 is not possible for R (L,L) in IR .  The relationships that visually represents ‘overlap’ is R255. 

Because the boundary of linestring is disconnected, the intersection of boundaries is non-empty, i.e.  BA  = 

0 (Figure 3). 

 The relationships are related to the dimension of objects, i.e. some of the relationships never occur between 

particular objects. For example, R509 (the interiors can intersect without touching the boundary) appears only in 

R(L,B)/R(B,L) and R(S,B)/R(B/S) or R277 (boundaries completely overlap but the interiors not) is possible only 

for R(L,L) and R(S,S) in higher dimension space. This implies that certain relationships (respectively topological 

operators) will be quite specific and will depend on the dimension of the objects and the space.   

 The relationships are related to the geometric representation of the objects. This is to say that some relationships 

may not be needed because some configurations of objects are too complex and normally they are simplified. For 

example R455 performed for body and surface (Figure 7) may never be needed for urban applications. Most 

probably the surface A will be represented as two surfaces: one on the top and one inside the body B.   

 As it can be realized, the names (given in Table 2) established for relationships according 4IM are not sufficient 

for 9IM. The relationships between surfaces in 3D space are one typical example. The human perception of 

‘intersection’, ‘cross’ might be completely different:  e.g. overlap stands for R511 (e.g. surface and surface in 

2D) and R255 (e.g. surface and linestring in 3D). Most of the relationships are not associated with appropriate 

names and even it is difficult to specify the type of interaction. Further implementations topological operators 

would require establishment of new names.  

 

As mentioned previously, the calculations of intersections will give equivalent results if using classical geometric 

representations (Figure 1). In 2011, the OGC Implementation specifications for Geographical features have been adapted 



to incorporate the Dimensionality Extended Nine-Intersection model (DE-9IM) as presented by [Strobl, 2008. The matrix 

for representing the 9IM is augmented to include the dimension of the intersection between the two objects as follows 

[Herring, 2011]: 
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The dim(x) gives the maximum dimension (-1, 0, 1, or 2) of the objects in the intersection x, with a numeric value of -1 

corresponding to dim(∅). The values 0, 1 and 2 correspond to point, linestring  and surface intersection. For 

implementation, it is recommended considering a set of nine pattern-values (p). The possible pattern values of p are {T, F, 

*, 0, 1, 2}. The meaning of the values have to be as follows [Herring, 2011]:  

 

p = T ⇒ dim(x) ∈ {0, 1, 2}, i.e. x ≠ ∅ 

p = F ⇒ dim(x) = -1, i.e. x = ∅ 

p = * ⇒ dim(x) ∈ {-1, 0, 1, 2}, i.e. Don’t Care 

p = 0 ⇒ dim(x) = 0 (point) 

p = 1 ⇒ dim(x) = 1 (line sting) 

p = 2 ⇒ dim(x) = 2 (polygon) 

 

The OGC specifications provide further instructions how the functions have to be implemented for point, linestring, 

polygon and area in 2D space.   

Key applications 

The topological operators are commonly implemented for vector modesl (boundary representation) and more specifically 

on geometrical models. Following the OGC Abstract specification, Topic 1 Feature Geometry, the geometry is 

represented as an ordered sequence of vertices that are connected by straight line segments or circular arcs, which are used 

to describe 0,1,2  and 3D objects. The vertices can be given with different dimensions (1D, 2D and 3D). For example, 

three-dimensional points are elements composed of three ordinates, X, Y and Z. Line strings are composed of one or more 

pairs of points that define line segments. Polygons are composed of connected line strings that form a closed ring and the 

area of the polygon is implied. Self-crossing polygons are not supported, although self-crossing line strings might be 

supported. If a line string crosses itself, it does not become a polygon and does not have any implied area.    

 

The usage of the topological relations is well-represented in query languages. All database management system with a 

spatial support, have provided topological operations based on the 9IM. The operations are developed by referencing the 

name of the 8 relationships (covers, coveredBy, contains, inside, overlaps, touch, equal, anyinteract). The operator 

anyinteract detects if two objects are disjoint. If the operator returns non-empty value, other operators can clarify what the 

relationships is. Oracle Spatial 11g, provides operators to check the topological operators in two versions as one operator 

SDO_RELATE (with mask for each relationship) and as convenience operators named after the relationships. PostGIS 

provides operators per relationship.  

 

Consistency and validity 

The topological operations are utilised for different purposes. The most common use is investigation if a geographical 

map is a planar partition, i.e. to detect gaps or overlaps between geographical objects. These operations are of major 

importance for organisations, which maintain topographic, land use, cadastral, hydrological, etc. maps, such as National 

mapping organisations, Cadastre, Topographic offices, Municipalities, etc.    

 

An example of the use of Oracle Spatial operation and function for the work of Rijswaterstaat, the Dutch organisation 

responsible for design, construction, management and maintenance of infrastructure facilities is presented in [Zlatanova, 

Tijssen, van Oosterom, et al, 2003]. The main goal of the experiments was the possibility to perform validity check and 

consistent maintenance at database level utilising the existing operators. An overlapping test was performed to investigate 

the relationships between the polygons in one map layer (assuming polygons should not overlap). All the datasets were 

checked (with the operator SDO_RELATE) for the relationship ANYINTERACT. If the operator detects interaction, the 



geometry of the overlapping polygon is composed using the Oracle Spatial and Graph function 

SDO_GEOM.SDO_INTERSECTION. The function returns an object that is the topological intersection (AND operation) 

of two geographical objects. Finally, the area of the intersecting polygon is computed using again the Oracle Spatial and 

Graph function, SDO_GEOM.SDO_AREA. The computed area gives an indication over the type of overlap. The area of 

all computed polygons should be equal to the area of the outer polygon of the given area. Following this procedure 

‘overlaps’ can be easily detected.  

 

                        

Figure 11: Detecting overlaps and gaps between two polygons with SDO_RELATE (mask 
‘ANYINTERACT’) 

It should be noticed that most of the topological operators are currently implemented for a 2D space. If an object is given 

with its 3D coordinates, it is first projected on the xy-plane and then the operation is performed. The topological operators 

might even trigger an error if vertical objects are given as predicates. Oracle Spatial and Graph 11g provides few operators 

such as SDO_ANYINTERACT and SDO_INSIDE, which make use of the 3D coordinates.  

 

The topological operations can be used to define constraints either for update of existing data sets, i.e. to avoid wrong 

overlaps and intersections between geographical object, or to restrict the use from performing certain actions, which will 

result in violation of sematic or topological rules. [Lowsma, Zlatanova, van Lammeren et al 2006] present such a set of 

constraints, which are implemented in a landscape simulator SALIX-2. Examples of a constraint on the topological 

relationships between two objects are ‘Yucca tree must never stand in water’ and ‘the tree must never be planted on a 

paving’. These constraints are then checked each time when students plant trees in the landscape simulator. SALIX-2 

maintains trees, bushes and ground surfaces (water, paving, soft paving, grass, and bridge). The constraints are 

implemented in Oracle Spatial 9i using triggers (before and after) and the operators SDO_ANYINTERACT and 

SDO_RELATE (mask = ‘inside’).  

 

Visibility analysis 

Although most of the topological operators are 2D, they can be readily applied to 2.5D objects, i.e. object that have only 

one z-coordinate for a given x,y. The relationships between a large number of 3D geographic objects can also be derived 

on the basis of 2D investigations. For example most of the topological relationships between city models in LOD1 or 

LOD2 are easy to check using the 2D operators. Only relationship ‘inside’ would require clarification of the intersection 

in Z-direction. Such analysis can be performed by developing database scripts. Scripting, which use 2D topological 

operations is a power approach to complex spatial analysis, e.g. visibility line. Figure 12 illustrates visibility analysis 

between buildings, which is computed entirely with PostGIS operations and user defined functions, which make use of the 

operator ST_intersect.         

 

 



  

Figure 12 Visibility analysis, utilizing ST_Intersects in PostGIS (courtesy Martin Warmer). 

 

Navigation 

Topological relationships can be used to define surfaces, appropriate for walking and support path finding on the basic of 

adjacent patches [Schaap, Zlatanova & van Oosterom, 2012]. The patches are defined in such a way to slightly overlap. 

These overlapping parts are lately used to find possible directions for movement. A 3D model is proposed, which 

maintains information of a network and set of surface patches with corresponding attributes and behaviour. The model is 

implemented in Oracle 11g and results are in Google Earth. Oracle Spatial and Graph 11g network shortest route 

capabilities for logical network are used for finding the optimal route for individual travellers with specific speed and 

accessibility properties. The application makes use of the Oracle Spatial and Graph operations SDO_ANYINTERACT 

and SDO_RELATE to define the walking surfaces (Figure 13)  

 

  

Figure 13: Overlapping patches for navigation and the resulting walking route (SDO_INTERACT and 
SDO_RELATE).   

 

3D topological relationships 

There are still many cases that true 3D operator are needed. 3D world contains more information than 2D and the validity 

and integrity of 3D models are getting of increasing importance (Figure 14) [Ellul, 2013]. [Borrman & Rank, 2009] 

present algorithms define to inside, contain, touch, overlap, disjoint and equal in 3D space for the purpose of analysing 

Building information models. The operators are implemented in 3D raster domain (octree-based), i.e. prior performing the 

operations the boundary objects is voxelised.  

 



[Xu & Zlatanova, 2013] argues that topological operations have to be advanced to 3D by investigating which real-world 

object can result in 3D conflicting situations. They concentrate on the objects as defined within CityGML and propose 

three steps: 1) investigating the semantics of the objects and expressing the impossible relationships in natural language 

(‘houses can never intersect at any LOD’, ‘trees can intersect at their branches’), 2) translating to geometric 

representations (‘bodies cannot intersect if houses’, ‘surfaces can intersect if trees’ ) and 3) defining the needed 3D 

relationship (‘R(B,B) = { R031,R278} and R (S,S) ={R287,R511). Most of the 3D operations are needed for man-made 

objects (such as buildings, tunnels, bridges) and trees. Relationships between buildings, tunnels and bridges would require 

considering geometries with holes. Several relationships are then implemented, re-using 2D topological operators.  

 

    

Figure 14: Examples of relationships between objects, which cannot be detected by 2D topological 
operators [Xu & Zlatanova 2013] 

Future directions 

Advances in data collection, processing, management and visualisation have led to and increased need for well-defined 

objects, consist data sets and elaborated analysis. The size of current data sets and complexity of 3D models have 

increased the interest in database storage with centralized management of information with extended analytical 

capabilities. The topology and topological relationships are key component in this process. Future investigations and 

developments are envisaged under the following broad groups: algorithms, data structures and applications. 

 

Topological relationships are most well-developed for simple objects and implemented for 2D objects. Next step is the 

implementations of the DE-9IM for 2D objects. Algorithms for 1D, 2D and 3D objects embedded in 3D space are still 

investigated only in research environment. A first option of extending the operations in 3D is by re-using and combining 

existing operators. The complexity of real world man-made objects clearly shows that simple objects with holes and 

tunnels have to be urgently included in research agendas. A small set of 3D operators on solids with tunnels could be the 

first easy step. Investigations in higher order topology, which is beyond the immediate neighbours or considering 

semantic expressions is very much of interest. 

 

The implementation of topological relationships is highly depended on the underlying spatial model. Current 

implementations make use of geometrical model as defined in the OGC abstract specification. Research and prototype 

implementations have convincingly shown that topological models have advantages to the geometrical model in keeping 

consistency and especially facilitating adjacency relationships. The disadvantage of topological data structures is the lack 

of unified data structure in 3D. [van Oosterom, Stoter, Quak et al 2002] propose maintenance of the existing topological 

data structures in a metadata table similar to the reference coordinate systems. A complete and detailed description of all 

parameters defining topological model such as dimension, primitives used, existence of explicit relationships, number of 

tables, rules, etc., will make possible to transform data between topological models.  

 

The topological operations are presently discussed only for vector models. However they can be implemented for 2D or 

3D raster models as well. The topological primitives interior, boundary and exterior remain the same but their importance 



changes. In vector models, the boundary is the most critical primitive, which is realised though the shape of the object. In 

raster/voxel domain, the interior will be the leading primitive. Considering the complexity of 3D objects, 3D raster 

domain with its unified primitives (voxels) and well-defined structures (e.g. octree) can be an attractive option for 

implementing 3D topological operations. 

 

Topological operations have been traditionally developed to represent relationships between geographical objects. The 

interest in topology in more domains is increasing. One straight-forward implementation is detecting connectivity between 

objects and deriving dual graph. This approach has been widely accepted for shortest path computations, spatial syntax 

analysis and walk through. Recently a new standard IndoorGML has been adopted by OGC, which utilises the prima-dual 

approach for indoor navigation [Lee, Li, Zlatanova et al 2014].  Topological relationships attract the attention of CAD and 

BIM domain as well. Indoor environments are truly 3D, contain much more objects with multifaceted shapes and complex 

relationships. Examples are pipes and cables in buildings, furniture in rooms, elevators and escalators between floors. 

Such relationships will definitely need extended 3D topological relationships. The richer set of geometric primitives in 

CAD and BIM domains, the density of objects and complexity of relationships could be another reason for shift to the 3D 

raster domain as unified environment for 3D topological relationships.             
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Table 1: Negative conditions for eliminating impossible relationships in IR ,  IR2   and IR 3 
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 C1 – – – – 0 – – – – 

 C2a – – – – – – – 1 0 
1 C2b – – – – – 1 0 – – 

 C3a 0 – 0 – – – – 0 – 

 C3b 0 – - 0 – 0 – – – 

 C4a – 0 – – – – – – 0 
2 C4b – 0 – – – – 0 – – 

 C5a – – – 1 – – – – 0 

 C5b – – 1 – – – 0 – – 

 C6a – – – – – – – – 0 

3 C6b – – – – – – – 0 – 

 C6c – – – – – 0 – – – 
 C6d – – – – – – 0 – – 

 C7a – 0 – 0 – – – – 0 

4 C7b – 0 0 – – – 0 – – 

 C8a – 0 1 – – – – – – 
5 C8b – 0 – 1 – – – – – 

 C9a – 1 – 0 – – – – 1 

 C9b – 1 0 – – – 1 – – 

 C10a 1 – – 1 – 1 – – – 

6 C10b 1 – 1 – – – – 1 – 

 C11a 0 – 1 – – – – 1 – 

7 C11b 0 – – 1 – 1 – – – 

 C12 0 – – – – 0 – 0 – 

8 C13 – 0 – – – 0 – 0 – 

 C14a – – – – – – – 0 1 

 C14b – – – – – 0 1 – – 

 C15a – – – – – 0 1 – 0 

9 C15b – – – – – – 0 0 1 

 C16a – – 0 1 – – – 0 – 
 C16b – – 1 0 – 0 – – – 

 C17a – – 0 0 – 1 – 0 – 

10 C17b – – 0 0 – 0 – 1 – 
 C18a – 1 1 1 – 0 – 0 – 

 C18b 1 – 1 1 – 0 – 0 – 

 C19a 1 1 1 1 – – – 0 – 
 C19b 1 1 1 1 – 0 – – – 

 C20a – 0 – 1 – – 0 – – 

 C20b – 0 1 – – – – – 0 

11 C21a 1 0 0 – – – 0 – – 

 C21b 1 0 – 0 – – – – 0 

 C22a 1 – 0 – – 1 – 0  
12 C22b 1 – – 0 – 0 – 1 – 

 C23a 1 – – – – – – – – 

 C23b – – 1 – – – – – – 
13 C23c – – – – – – – 1 – 

 C23d – – – 1 – – – – – 

 C23e – – – – – 1 – – – 
 C24a – 1 – 1 – – – – – 

 C24b – 1 – – – – – – 1 

 C24c – – – 1 – – – – 1 
 C24d – 1 1 – – – – – – 

 C24e – 1 – – – – 1 – – 

 C24f – – 1 – – – 1 – – 
 C25a – 0 – – – – 0 – – 

 C25b – 0 – – – – – – 0 

 

 



Table 2: Possible relationships between spatial objects in IR ,  IR2   and IR 3 
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R031 0 0 0 0 1 1 1 1 1 R031 

2  R051 0 0 0 1 1 0 0 1 1 R051 

R055 0 0 0 1 1 0 1 1 1 R055 

R063 0 0 0 1 1 1 1 1 1 R063 

3  R092 0 0 1 0 1 1 1 0 0 R092 

R093 0 0 1 0 1 1 1 0 1 R093 

R095 0 0 1 0 1 1 1 1 1 R095 

4  R117 0 0 1 1 1 0 1 0 1 R117 

R119 0 0 1 1 1 0 1 1 1 R119 

R125 0 0 1 1 1 1 1 0 1 R125 

R127 0 0 1 1 1 1 1 1 1 R127 

5 Crosses R159 0 1 0 0 1 1 1 1 1 R159 

6 Contains R179 0 1 0 1 1 0 0 1 1 R179 

R183 0 1 0 1 1 0 1 1 1 R183 

R191 0 1 0 1 1 1 1 1 1 R191 

7 Inside R220 0 1 1 0 1 1 1 0 0 R220 

R221 0 1 1 0 1 1 1 0 1 R221 

R223 0 1 1 0 1 1 1 1 1 R223 

8 Crosses? R243 0 1 1 1 1 0 0 1 1 R243 

R245 0 1 1 1 1 0 1 0 1 R245 

R247 0 1 1 1 1 0 1 1 1 R247 

R252 0 1 1 1 1 1 1 0 0 R252 

R253 0 1 1 1 1 1 1 0 1 R253 

R255 0 1 1 1 1 1 1 1 1 R255 

9 Touch R272 1 0 0 0 1 0 0 0 0 R272 

R275 1 0 0 0 1 0 0 1 1 R275 

R277 1 0 0 0 1 0 1 0 1 R277 

R279 1 0 0 0 1 0 1 1 1 R279 

R284 1 0 0 0 1 1 1 0 0 R284 

R285 1 0 0 0 1 1 1 0 1 R285 



R287 1 0 0 0 1 1 1 1 1 R287 

10  R311 1 0 0 1 1 0 1 1 1 R311 

R316 1 0 0 1 1 1 1 0 0 R316 

R317 1 0 0 1 1 1 1 0 1 R317 

R319 1 0 0 1 1 1 1 1 1 R319 

11  R339 1 0 1 0 1 0 0 1 1 R339 

R343 1 0 1 0 1 0 1 1 1 R343 

R349 1 0 1 0 1 1 1 0 1 R349 

R351 1 0 1 0 1 1 1 1 1 R351 

12  R373 1 0 1 1 1 0 1 0 1 R373 

R375 1 0 1 1 1 0 1 1 1 R375 

R381 1 0 1 1 1 1 1 0 1 R381 

R383 1 0 1 1 1 1 1 1 1 R383 

13 Equal R400 1 1 0 0 1 0 0 0 0 R400 

R403 1 1 0 0 1 0 0 1 1 R403 

R405 1 1 0 0 1 0 1 0 1 R405 

R407 1 1 0 0 1 0 1 1 1 R407 

R412 1 1 0 0 1 1 1 0 0 R412 

R413 1 1 0 0 1 1 1 0 1 R413 

R415 1 1 0 0 1 1 1 1 1 R415 

14 Covers R435 1 1 0 1 1 0 0 1 1 R435 

R439 1 1 0 1 1 0 1 1 1 R439 

R444 1 1 0 1 1 1 1 0 0 R444 

R445 1 1 0 1 1 1 1 0 1 R445 

R447 1 1 0 1 1 1 1 1 1 R447 

15 CoveredBy R467 1 1 1 0 1 0 0 1 1 R467 

R471 1 1 1 0 1 0 1 1 1 R471 

R476 1 1 1 0 1 1 1 0 0 R476 

R477 1 1 1 0 1 1 1 0 1 R477 

R479 1 1 1 0 1 1 1 1 1 R479 

 Overlaps R499 1 1 1 1 1 0 0 1 1 R499 

R501 1 1 1 1 1 0 1 0 1 R501 

R503 1 1 1 1 1 0 1 1 1 R503 

R508 1 1 1 1 1 1 1 0 0 R508 

R509 1 1 1 1 1 1 1 0 1 R509 

R511 1 1 1 1 1 1 1 1 1 R511 

 

 

 


