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Abstract—Network outages have significant economic and
societal costs. While network operators have become adept at
managing smaller failures, this is not the case for larger, regional
failures such as natural disasters. Although it is not possible, and
certainly not economic, to prevent all potential disaster damage
and impact, we can reduce their impact by adding cost-efficient,
geographically redundant, cable connections to the network.

In this paper, we provide algorithms for finding cost-efficient,
disaster-aware cable routes based on empirical hazard data. In
contrast to previous work, our approach finds disaster-aware
routes by considering the impact of a large set of input disasters
on the network as a whole, as well as on the individual cable.
For this, we propose the Disaster-Aware Network Augmentation
Problem of finding a new cable connection that minimizes a
function of disaster impact and cable cost. We prove that this
problem is NP-hard and give an exact algorithm, as well as a
heuristic, for solving it. Our algorithms are applicable to both
planar and geographical coordinates. Using actual seismic hazard
data, we demonstrate that by applying our algorithms, network
operators can cost-efficiently raise the resilience of their network
and future cable connections.

I. INTRODUCTION

Communication networks are one of our key critical in-
frastructures. In fact, as identified by U.S. Presidential Policy
Directive 21 [1], communication networks provide “enabling
functions” across all other critical infrastructure sectors. Large
network outages can have enormous economic and societal
impact. Yet, as past events have shown [2], much of our
communication infrastructure is still very vulnerable to larger,
regional failures such as disasters.

In 2006, an earthquake of the coast of Taiwan damaged 8
submarine cable systems, severely disrupting communications
in the region [3]. In 2008 and 2009, new cable systems
were installed that deliberately avoided this earthquake region.
Thus, when a similar event damaged the same 8 cable systems
again in 2009, network operators were able to restore service
much quicker [4]. Numerical simulations suggest disaster-
aware submarine cable deployments could potentially save
society billions of dollars [5].

By installing a new cable connection, a network operator
can introduce geographic redundancy. In case of a disaster,
connections can be routed through the new cable instead of
through the disaster area. As a simple example, consider the
new cable connection depicted in Fig. 1. By avoiding D1,
the new link ensures that nodes 2 and 3 remain connected.
Note that avoiding D1 forces the new cable to either go

through disaster D2 or make a large detour. Designing disaster-
resilient topologies requires operators to make these kind of
compromises for hundreds of disaster regions, taking into
account cable laying costs, disaster probabilities, the impact
of disasters on the network as a whole, as well as the impact
of a disaster on the new cable itself.

When designing a real network, only considering two po-
tential disasters is insufficient, and decisions need to be made
based on a whole class of potential future disasters. Taking
into account all possible combinations of failures and disaster
regions would simply be too time-consuming to do manually.
Thus, to create truly disaster-resilient network topologies, we
need an automated system that can suggest potential cable
routes based on actual hazard data.

Although there is a large body of work on finding disaster-
resilient cable connections, none of the previous work consid-
ers, simultaneously, the impact of a large class of disasters on
the cable route itself, as well as on network connectivity as
a whole. To fill this gap, we propose a set of algorithms for
finding cost-efficient, disaster-aware cable connections based
on a large set of representative disasters. The main idea behind
our algorithms is to separate the decision of which disaster
regions to avoid from the design of the route itself. This
allows us to develop exact and heuristic algorithms that search
through the problem space and are able to incorporate any
pathfinding algorithm for computing the actual routes

Of course, the final decision on the design of a network or
cable must be made by the stakeholders, and not by an auto-
mated system. By varying an input parameter, our algorithms
can quickly generate multiple routes that are Pareto-optimal in
cable cost and expected disaster impact. In addition, because
our algorithms assign a specific cost to each disaster, and
specifically select a set of regions to avoid, they can provide
detailed information on why a proposed cable connection takes
a certain route. Armed with this data, network operators,
governments, and other stakeholders can make an informed,
disaster-aware decision on any new cable connection.

Our main contributions are as follows:

• We define the Disaster-Aware Network Augmentation
Problem of finding a new cable connection that minimizes
a cost-function of expected disaster impact and cable cost
(Sec. II). By varying a parameter, α, in the objective
function we make it possible for network operators to find
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Fig. 1. Example disaster-aware network augmentation. Node 3 is connected to
node 2 through node 1. However, if disaster D1 were to occur, this connection
would fail. To increase the resilience of this network, we can add a cable
connecting nodes 3 and 2 (dotted line), avoiding disaster D1.

various different Pareto-optimal connections for cable
cost and expected impact.

• Since the Disaster-Aware Network Augmentation Prob-
lem is NP-Hard (Sec. III), we propose both an exact
branch & bound algorithm (Sec. IV), as well as a heuristic
(Sec. V). Our algorithms are applicable to both the plane,
as well as on geographical coordinates.

• We demonstrate our approach by augmenting a real
network topology based on actual seismic hazard data
(Sec. VI). Given a representative disaster set of 100,000
disasters, our algorithms are able to compute cost-
efficient network augmentations within 3 minutes.

II. PROBLEM STATEMENT

A. Network and Disaster Model

We model the network as a directed multigraph G =
(V, E , ψ), with nodes v ∈ V connected by links e ∈ E , where
ψ : E → V×V and e ∈ E connects v1 to v2 iff ψ(e) = (v1, v2).
Thus, we permit the same pair of nodes to be connected by
multiple links.

We model the physical structure and location of network
nodes as points in R2 and denote these points as p(v) for all
v ∈ V . Any link e ∈ E between v1 and v2 is modelled as
a finite sequence of line segments or geodesics connecting
v1 to v2, seg(e) = (s1, s2), (s2, s3), . . . , (sl−1, sl) where
s1, . . . , sl ∈ R2, s1 = p(v1), and sl = p(v2).

To determine how to optimally augment this network, we
assume we are given a finite set of representative disasters1 to
protect against, D: We model each potential disaster d ∈ D
as a disaster region A(d) in the plane or on the globe, with
associated probability P (d), and assume exactly one of these
disasters occurs (i.e.

∑
d∈D

P (d) = 1) and destroys all network

components intersecting its disaster region. We denote this
random disaster by D.

Representative sets of disasters are similar to the stochastic
event sets used in catastrophe modelling [7] and should be
easily obtainable by network operators. In contrast to many
approaches that make use of stochastic event sets, we do not
assign structural failure probabilities to network components,
but instead assume a more pessimistic outcome where every

1We base our disaster model on our earlier work on determining network
resiliency [6].

component inside an affected region fails. For network aug-
mentation, such a worst-case perspective should result in more
resilient and less overfitted cable connections among the many
uncertainties involved in disaster modelling.

If a node lies in a disaster region, all its incident links
also intersect this region. Thus, we do not need to explicitly
consider node failures, as the failure of all incident links would
disconnect nodes from the network as well. We define the
failure state, S(d) ⊆ E , of a disaster d to be the set of links
intersecting the disaster region A(d), where we say a link
e ∈ E intersects A(d) if and only if one or more of its line
segments, seg(e), intersects A(d).

Before augmenting the network, we first need an impact
measure over these failure states to optimize towards. For this
purpose, we construct the set E+G (d) ⊆ V×V of all node pairs
that are still directly connected by a functioning link:

E+G (d) := ψ[E \ S(d)] (1)

We allow any function M : P(V ×V)→ R over these sets
of node pairs as an impact measure, as long as

∀B ⊆ C ⊆ V × V,M(B) ≥M(C) (2)

B. Cable Costs

When suggesting the addition of new links to the network,
it is imperative to take the costs of installing these links
into account. A simple measure of this cost is cable length.
However, costs can vary greatly depending on the specific
path of the cable, e.g., if it crosses less accessible areas. To
take these factors into account, we divide a rectangular area
encompassing the network into a grid of w × h cells and
assume we are given the costs of laying a cable from the
center of each cell to the centers of all 8 of its neighbors.

We formulate the route of a new link e from node v1 to
v2 as a sequence of grid cells, r(e) = cx1,y1 , . . . cxl,yl , where
any successive cell cxi,yi is a neighbor of the previous cell
cxi−1,yi−1 , v1 ∈ cx1,y1 , and v2 ∈ cxl,yl . The cost of this route
is

C(r(e)) =
l−1∑
i=1

C(cxi,yi , cxi+1,yi+1
), (3)

where C(cxi,yi , cxi+1,yi+1
) is the cost of laying a cable between

cells cxi,yi and cxi+1,yi+1 . The exact path of the fiber, seg(e),
can now be constructed by connecting the centers of the grid
cells in r(e):

seg(e) = (p(v1), ctr(cx2,y2)), . . . , (ctr(cxl−1,yl−1
), p(v2)),

(4)
where ctr(cxi,yi) is the center of cell cxi,yi .

Note that the existing links E of G do not need to adhere to
this grid system, and we solely use the grid and C as a means of
computing the path and cable cost of new links. Furthermore,
our algorithms are also applicable to any other system for
computing cable costs, as long as it allows us to compute a
shortest path avoiding a given set of disaster regions.
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Fig. 2. Example of a reduction from a 3-SAT instance ((x1 ∨ x2 ∨ ¬x3) ∧
(¬x1 ∨ x2 ∨ ¬x2)) to a Disaster-Aware Network Augmentation Problem
instance.

C. Disaster-Aware Network Augmentation Problem

Any augmentation can now be defined by three properties:
(1) the source node, v1; (2) the destination node, v2; and (3) the
route of grid cells connecting these two nodes, r. Given such
a link triple, we define a network augmentation as follows:

Definition 1 (Network Augmentation): Given a link triple
(v1, v2, r), where v1, v2 ∈ V and r is a valid route of cells
connecting these nodes,

(V, E , ψ) + (v1, v2, r) = (V, E ∪ {e}, ψ′) (5)

where

ψ′(e′) =

{
(v1, v2) if e′ = e

ψ(e′) otherwise
(6)

and seg(e) is given by Eq. 4.
Any impact measure M for G is also applicable to
G + (v1, v2, r), giving us a straightforward way of computing
the benefit of augmenting the network with any link triple.

Definition 2 (Disaster-Aware Network Augmentation Prob-
lem): Given a directed multigraph G, node locations p, link
segments seg, cable costs C, metric M , and α > 0, find a link
triple (v1, v2, r) that minimizes

cost(v1, v2, r) :=

αE[M(E+G+(v1,v2,r)
(D))] + C(r) (7)

Remark 1: By varying α, we can find different Pareto-
optimal link triples for expected impact and cable cost. If
possible, one should choose α such that αE[M(E+G (D))]
roughly represents the expected future cost of the class of
disasters taken into consideration.

This problem can be divided into two sub-problems:
1) Given two nodes v1, v2 ∈ V , find a route, r, that

minimizes cost(v1, v2, r);
2) Find the optimal source and destination nodes

v1, v2 ∈ V .

III. NP-HARDNESS

Theorem 1: The Disaster-Aware Network Augmentation
Problem is NP-hard, even if we restrict ourselves to a single
node pair.

Proof: We will provide a polynomial-time reduction from
the NP-complete 3-SAT problem [8] to the decision variant of
the Disaster-Aware Network Augmentation Problem.

Suppose we are given a Boolean formula f in conjunctive
normal form, where each clause contains exactly three literals:

f = C1 ∧ C2 ∧ · · · ∧ Ck (8)

with

C1 = l1,1 ∨ l1,2 ∨ l1,3, C2 = l2,1 ∨ l2,2 ∨ l2,3, . . . (9)

The 3-SAT problem is to determine if this formula is satisfi-
able. Let V be the set of all variables in the formula. To reduce
f to an instance of the Disaster-Aware Network Augmentation
Problem, we first create a grid of (1+2k+2|V |)×3 cells and
assign the same cost of 1

3(1+2k+2|V |) to each of the possible
connections from a cell to its neighbors. We then create a
graph G = {V, E , ψ} of two nodes (V = {s, t}) and no links
(E = ∅) and place s in the middle cell of the left-most column,
and t in the middle row of the right-most column.

We form a disaster set D by combining all possible literals,
i.e., D =

⋃
x∈V
{x,¬x}. Fig. 2 demonstrates how we construct

the disaster regions:
1) We create a column of 3 disaster sub-regions for each

clause Ci of f that fills up exactly one column of cells:
the disaster region of li,1 fills up the first cell of this
column, the region of li,2 the second cell, and the region
of li,3 the third cell.

2) We also create a column of 2 disaster sub-regions for
each variable x ∈ V , where x fills up the first two cells
of the column, and ¬x the third cell.

3) We then place all these columns directly to the right of
the column containing s, and put a spacing of 1 cell
between each successive column.

We set P (d) = 1
D for all d ∈ D and choose α = |D|.

Finally, we assign an impact of 0 if s is connected to t, and
an impact of 1 otherwise:

M({(s, t), (t, s)}) = 0, M({(s, t)}) = 0,

M(∅) = 1, M({(t, s)}) = 1
(10)

Note that this means that a solution that connects t to s instead
of s to t will always have a cost of at least |D|.

Now, suppose there is a route r from s to t with cost

αE[M(E+G+(s,t,r)(D))] + C(r) < 1

2
D + 1 (11)

This would mean that r intersects at most 1
2D = |V | disasters,

as otherwise αE[M(E+
G+(s,t,r)(D))] ≥ 1

2D + 1. To reach t
from s, the route must intersect x or ¬x for each variable x ∈
V . Because the number of intersected disasters is at most |V |,
this means that for all x ∈ V , the route can not intersect both
x and ¬x. In addition, the route must also intersect at least one
disaster region of the literals of each clause. Thus, the selection
of literals intersected by r form a satisfying assignment for f .

Vice versa, suppose f is satisfiable. In other words, there is
an assignment of TRUE and FALSE to each variable v ∈ V
such that each of the clauses of f (and thus f itself) is satisfied.
We will construct a route r from s to v such that

αE[M(E+G+(s,t,r)(D))] + C(r) < 1

2
D + 1 (12)



First, our route will need to cross all the columns of clauses.
Because each clause is satisfied by the assignment, at least
one literal of each clause must evaluate to TRUE. Thus, we
construct the route in such a way that we only intersect this
literal of the clause. Note that due to the spacing between
successive clauses, this is always possible. Next, the route will
need to cross the columns of variables as well. Here, as with
the clauses, we intersect the literal that evaluates to TRUE.
This way, we can construct a route r from s to t that only
intersects the |V | literals that evaluate to TRUE. Furthermore,
because we pass through each cell at most once,

αE[M(E+G+(s,t,r)(D))] + C(r) <
1

2
D +

3(1 + 2k + 2|V |)
3(1 + 2k + 2|V |)

=

1

2
D + 1

(13)

We thus have a polynomial-time reduction from the 3-SAT
problem to the decision variant of the Disaster-Aware Network
Augmentation Problem, and can conclude that the Disaster-
Aware Network Augmentation Problem is NP-hard.

Remark 2: This proof also applies to sub-problem 1 by
itself. Thus, determining the optimal route between a given
source and destination node is already NP-hard.

IV. BRANCH AND BOUND

In this section we describe an exact algorithm for sub-
problem 1 based on the branch and bound paradigm. Suppose
we are given two nodes v1, v2 ∈ V , our goal is to find a route
r of cells from v1 to v2 that minimizes cost(v1, v2, r). This
might seem similar to the shortest path problem. However,
the difficulty lies in that, unlike for the shortest path problem,
where the sub-path of a shortest path is itself a shortest path, in
our case a sub-route of a minimum-cost route is not necessarily
a minimum-cost route itself.

The key insight behind our approach is that if we decide
on a specific set of disasters to avoid, R ⊆ D, the problem
of finding a route with minimum cable cost between v1 and
v2 that does not intersect any disaster in R is a shortest path
problem. In the rest of this paper, we call these subsets of
representative disasters restrictions, and the minimum-cable-
cost route avoiding a restriction a restricted shortest route. As
we show in this section, we can quickly compute the cost of
any given route between v1 and v2 as a sum of pre-computed
disaster penalties and cable costs. Thus, to determine the cost
associated to a given restriction R, we simply find a restricted
shortest path for R, and compute the cost of this path. This
allows our algorithm to search for the optimal restriction R
instead of the optimal route, greatly simplifying the problem.

We first introduce an indicator value I(d, r):

I(d, r) =

{
1 if seg(r) intersects A(d)
0 otherwise

(14)

Regardless of our choice of route r, the impact of any
disaster d ∈ D is M(E+G (d)) if r intersects it, and M(E+G (d)∪

1: input: G, v1, v2,M, C,D, α
2: output: optimal route from v1 to v2, r
3: compute M(d)+ ∀d ∈ D . Equation 15
4: W ← α

∑
d∈D

P (d)I(d, r)M(d)+ + C(r) . Equation 17

5: W (∅)←∞
6: D ← {d ∈ D|M(d)+ > 0, p(v1) /∈ A(d), p(v2) /∈ A(d)}
7: r ← SEARCH(D, ∅, ∅, ∅)

8: function SEARCH(D, R,D−, r∗)
9: cutoff←W (r∗)− α

∑
d∈D−

P (d)M(d)+

10: try to find a restricted shortest route sp(R) from v1
to v2 with a cutoff cost of cutoff

11: if sp(R) not found then
12: r ← r∗
13: else
14: if W (sp(R)) < W (r∗) then
15: r ← sp(R)
16: else
17: r ← r∗
18: end if
19: for all d ∈ D \ (D− ∪R) intersected by sp(R) do
20: r ← SEARCH(D, R ∪ {d},D−, r)
21: D− ← D− ∪ {d}
22: end for
23: end if
24: return r
25: end function

Fig. 3. Pseudocode for the exact depth-first branch and bound algorithm for
finding the minimum-cost route from node v1 to node v2.

{(v1, v2)}) otherwise. If we take the difference of these values,
we get a measure of the benefit of adding a connection from
v1 to v2 in case of a disaster d:

M(d)+ :=M(E+G (d))−M(E+G (d) ∪ {(v1, v2)}) (15)

Now, for any route r,

E[M(E+G+(v1,v2,r)
(D))] =∑

d∈D

P (d)(M(E+G (d) ∪ {(v1, v2)}) + I(d, r)M(d)+) =

E[M(E+G (D) ∪ {(v1, v2)})] +
∑
d∈D

P (d)I(d, r)M(d)+

(16)

If we subtract any constant from our objective function the
resulting optimization problem is equivalent to our old one.
Thus, we subtract αE[M(E+G (D) ∪ {(v1, v2)})] to obtain the
new objective function

W (r) := α
∑
d∈D

P (d)I(d, r)M(d)+ + C(r) (17)

As P (d)M(d)+ does not depend on the route of the link
itself and can be pre-calculated, W (r) can be seen as the
sum of the cable cost, C(r), and a pre-computed penalty,
αP (d)M(d)+, for every intersected disaster region A(d).



We denote a restricted shortest route by sp(R), where
R ⊆ D is the set of disasters this route should avoid.
Our exact algorithm is a depth-first search for the optimal
restriction R. The algorithm starts at R = ∅, and tries to find
the optimal restriction and route from there. The algorithm
is provided in pseudocode in Fig. 3. For readability, the
algorithm is formulated as a recursive function call. However,
our implementation uses an iterative approach.

A. Branching

The number of possible restrictions (2|D|) grows exponen-
tially in |D|. Thus, to keep computation times manageable,
reducing the number of considered disasters is essential.
Fortunately, it is likely that for many of the representative
disasters d ∈ D, connecting v1 to v2 will not bring any benefit
and M(d)+ = 0. In addition, disasters that intersect p(v1) or
p(v2) might have a positive benefit M(d)+) > 0, but can
not be avoided. These two sets of disasters do not need to be
considered by our algorithm and are excluded.

After computing sp(R), we can limit the number of poten-
tial branches even more. If sp(R) does not intersect a disaster
d ∈ D, adding d to the restriction will not change the restricted
shortest route. Thus, for any restriction R, we only consider
extending R with disasters intersected by sp(R), where we
say a route sp(R) intersects a disaster d ∈ D if and only if
any of the line segments seg(sp(R)) intersects A(d).

We choose to branch on individual disasters: If sp(R) in-
tersects k disasters with positive benefit, d1, . . . , dk ∈ D from
large to small benefit, we create k branches, R∪{d1}, . . . , R∪
{dk}. If the optimal solution avoids R ∪ {di}, our approach
will find this solution in branch R ∪ {di}. Thus, after having
visited branch R ∪ {di}, we remove di from consideration in
branches R ∪ {di+1}, . . . , R ∪ {dk}. This both prevents the
algorithm from visiting the same restriction twice and further
limits the number of considered restrictions.

B. Bounding

Throughout our algorithm, we keep track of the best route
encountered so far, r∗, and its objective value, W (r∗). Once
we know that all further restrictions on R would lead to a
worse solution than r∗, we can stop exploring branch R. For
every restriction R, C(sp(R)) is a lower bound on the objective
value W for any further restrictions. However, by taking into
account the disasters we explicitly removed from consideration
in our branching approach, we can improve upon this bound.

Let D− be the set of all disasters removed from consider-
ation. If the optimal route avoids a disaster d ∈ D−, it has
already been found previously and r∗ is the optimal route.
Thus, we can stop exploring a branch when

C(sp(R)) ≥W (r∗)− α
∑
d∈D−

P (d)M(d)+ (18)

C. Shortest Route Computations

Our algorithm needs to compute a new route sp(R) for
every considered restriction R. To speed up computations,
we pre-compute the minimum distance between each cell and

v2 using Dijkstra’s Algorithm, and then use A∗ to compute
restricted shortest routes from v1 to v2. Furthermore, we
immediately stop computing a route once the cost to reach
the current cell and the minimum distance between the current
cell and v2 exceeds the cutoff value given in Eq. 18.

While computing a restricted shortest route, we constantly
need to check if a line segment between two adjacent cells
does not intersect any disaster d ∈ R. To reduce the computa-
tion time spent on these checks, we use caches to keep track
of which line segments intersect which disasters.

D. Global Optimization

To find the optimal link triplet (v1, v2, r), we apply our
branch & bound algorithm to every pair of nodes in the
network. In this context, we make some small adjustments
to the algorithm to further reduce computation times. First,
we propose pre-computing the failure state S(d) and impact
M(E+G (d)) of all disasters d ∈ D. This allows us to compute
penalties for each failure state instead of for each disaster. As
the number of failure states tends to be much smaller than
the number of disasters, this significantly speeds up the pre-
computation phase of each node pair.

Second, we keep track of the minimum-cost route r∗ and
the corresponding upper bound across all node pairs and pass
this global upper bound to the branch and bound algorithm.
This requires us to transform the global upper bound (on cost)
to a local upper bound (on W ). Let uglobal be a global upper
bound, we can transform uglobal to a local upper bound by

ulocal = uglobal − α(E[M(E+G (D) ∪ {(v1, v2)})]) (19)

We apply this bound as an initial upper bound for our search
function, as well as a limit on the cells we pre-compute A∗

heuristics for. Note that the transformed local upper bound
might be negative. In this case no possible route from v1 to
v2 could improve upon our current global best route, and we
can skip node pair (v1, v2).

The global upper bound is essential in reducing computation
times. However, depending on the order we traverse node pairs
in, it might take a long time before we have obtained a low
upper bound. Thus, to obtain a reasonable upper bound a
priori, we initially compute the shortest route for each node
pair. We then select the route with minimum cost and use it
as the initial value for r∗.

V. HEURISTIC

Although our branch & bound algorithm is fast enough for
many practical use cases, its runtime is still exponential in
the number of representative disasters, D. Since the Disaster-
Aware Network Augmentation Problem is NP-hard, we pro-
pose a heuristic for sub-problem 1 that can find near-optimal
solutions for larger disaster sets in a fraction of the runtime
of the branch & bound approach.

In the previous section, we have reduced the problem of
finding the optimal route between two nodes to the problem of
determining which regions to avoid. We use this same concept



to create a heuristic and apply simulated annealing to find an
approximate solution for the following optimization problem:

min
R⊆D

W (sp(R)) =

α
∑
d∈D

P (d)I(d, sp(R))M(d)+ + C(sp(R)), (20)

where sp(R) is a restricted shortest route from v1 to v2
avoiding R. To find the global link triple, we use the same
approach as described in Sec. IV-D, and simply replace the
branch & bound approach with our heuristic.

A. Simulated Annealing

A simulated annealing algorithm searches for an optimal
solution by randomly selecting and evaluating neighboring
solutions. If the neighbor has a lower cost, the algorithm
directly switches to this solution. If not, it does so with a
probability depending on the current temperature as well as the
difference in costs [9]. By starting with a high temperature and
slowly decreasing it over time, simulated annealing initially
searches throughout the problem space and then gradually
“locks in” to a local minimum.

An important consideration when applying simulated an-
nealing to any problem is the selection of neighbors. We take
the same approach as described in Sec. IV-A (but do not
exclude D−). The neighbors of a restriction R are

{R ∪ {d}|d ∈ D \R ∧ sp(R) intersects A(d)} (21)

and
{R \ {d}|d ∈ R} (22)

For our experiments, we have made the following imple-
mentation choices for our simulated annealing algorithm.
• Initial solution: As in the branch & bound approach, we

start at the empty restriction R← ∅, and compute sp(∅).
• Transition probability: Let δ be the increase in cost of

the neighboring solution. We transition to this solution
with probability 1 if δ < 0 and with probability e

−δ
T

otherwise, where T is the current temperature.
• Temperature T : We set the initial temperature to
−α

∑
d∈D

P (d)I(d,sp(∅))M(d)+

ln 0.25 .
• Temperature Reduction: Every 10 “repetitions” of con-

sidering a neighboring solution we reduce the temperature
by T ← 0.9T .

• Freezing Point and Stopping Condition: If none of the
10 repetitions resulted in a move to a different solution,
we set the temperature T to 0 (thus switching to hill
climbing). If none of the repetitions resulted in a move,
and the temperature is already 0, we submit the restricted
shortest path with the lowest cost we have encountered
up till this point as the solution.

We make the following modification to the standard simu-
lated annealing implementation: If the cable cost of a restricted
shortest path sp(R) exceeds W (r∗), where r∗ is the best route
we have found up till this point, we outright reject R as a
potential solution and set δ =∞. As discussed in Sec. IV-B,

this prevents the algorithm from moving to restrictions that are
too restrictive to improve upon r∗, while not blocking off the
optimal solution from the search space. More importantly, it
allows us to save computation time by setting an upper bound
on the maximum cable cost and cutting of the pathfinding
algorithm if this upper bound is exceeded.

VI. EXPERIMENTS

A. Setup

We demonstrate our methods on the undirected Italian sub-
topology of Interoute, a 25-node, 35-link network traced and
made publicly available by the authors of [10]. All experiments
were conducted on commodity hardware: a AMD Ryzen 7
3700X 3.6 GHz processor with 32 GB of available RAM.

We augment Interoute with respect to the publicly available
earthquake dataset from [10]. This dataset was purpose-built
by seismologists for analyzing the resiliency of communica-
tion networks. It essentially consists of a set of 1,196,037 disk
disasters, which together represent all possible earthquakes
that can strike Italy.

To demonstrate the applicability of our algorithms to geo-
graphic coordinates, we do not transform coordinates to the
plane. Instead, we construct a grid of around 0.05 x 0.05
degree covering the longitude-latitude coordinates of all nodes
padded by 0.05 degrees on all sides (resulting in a 232 by 194
grid). To compute cable costs and determine which network
components are affected by a disaster, we use the great circle
distance for a sphere with radius 6,371 km.

We filter out all disasters that do not damage any network
components and reweight the remaining probabilities to make
them sum to 1, as it is not necessary to protect the networks
against these events and they would be filtered out at the
penalty computation stage. This leaves us with 454,433 out
of 1,196,037 disasters.

Our impact metric, M , is the number of disconnected node
pairs, divided by the total amount of node pairs. Thus, M =
0 if all node pairs are connected, and M = 1 if all node
pairs are disconnected. The expected impact of earthquakes
on Interoute is approximately 0.0141. This might seem small,
but the disaster set is simply so extensive that it also contains
many disasters that barely affect the network. In fact, the total
disaster rate is 1.6006 per year. This means that on average,
more than 2% of connections fail due to earthquakes per year.
In practice, there will be some events where a large part of
the network is disconnected at once, and in most years none
or nearly none of the connections are affected.

B. Connecting Node Pairs

We first consider sub-problem 1: finding the optimal route
between two given nodes v1, v2 ∈ V . To decrease computation
times, we sample 10 sets of 50,000 disasters and use these as
representative disaster sets. We randomly select 20 node pairs,
and then use our simulated annealing heuristic to compute a
route between these nodes for each sampled disaster set:
• on a cost grid where cost is equal to the distance in km

(uniform cost case);
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Fig. 4. Mean computation time of a route between two random nodes (using
simulated annealing).

• and on grids where the cost of traversing a cell is a
random uniformly distributed value from [0, 2) times the
traversed distance (in km) (random cost case).

We repeat this experiment (for the same disaster sets and node
pairs) for different α and evaluate all routes on the full disaster
set. We do not consider the time required to compute the
initial failure states and impacts2, and compute these separately
before running any experiments.

The lowest α we consider is α = 103. For such an α, a
network operator would only be willing to install up to around
14 km of additional cable to completely mitigate the impact
of all potential disasters. The maximum α we consider is 108.
Here, an operator would be willing to install around 100, 000
as much cable to achieve the same goal.

As can be seen in Fig. 4, computation times increase with
α, but stay within 30 seconds even for an α as high as 108.
At lower α, our approach only needs to test a few, small
restrictions, but for higher α the number and size of considered
restrictions, and thus the runtime, rises.

In Fig. 5, we compare the mean reduction in expected
disaster impact due to the routes computed by our simulated
annealing heuristic to that of the shortest route. As we are
connecting random node pairs, we can not expect a major
decrease in expected impact. Nevertheless, the improvement
of a disaster-aware route over the shortest route is quite
impressive. For random costs, the mean reduction in disaster
impact due to adding a new route to the network is improved
by more than 50% just by adding a small detour to the
cable route. This is on top of any planned benefits of the
cable in terms of, e.g., capacity. For lower α, the mean
cost of connecting two random nodes is negative, and it is
not worth it to deviate from the shortest path (see Fig. 6).
However, as α increases, the simulated annealing solution
starts outperforming the shortest path. Note that in practice,
network operators will have enough time to compute routes
based on the full representative disaster set, which would result
in an even larger improvement over the shortest route.

C. Global Solution

Next, we consider the Disaster-Aware Network Augmenta-
tion Problem itself and try to find optimal link triples across

2Roughly 310 (26) seconds for the full Interoute disaster set on 1 thread
(all cores), and around 35 (3) seconds on the smaller disaster sets.

all node pairs. We run 10 experiments on the full disaster set:
5 for the uniform cost case, and 5 for the random cost case. In
each experiment, we add new cable connections to the network
in a greedy fashion (i.e., we iteratively compute and add the
next solution for the Disaster-Aware Network Augmentation
Problem to the network) until doing so would not be worth it
anymore (cost ≥ αE[M(E+G (D))]. As before, we exclude the
time required to compute initial failures.

Fig. 7 shows the mean computation times of the first
link triple. Again, computation times increase with α. Using
simulated annealing, we manage to find a solution within 20
minutes, even for α = 108. This is fast enough for network
operators to vary α and compare different potential routes.

By repeating the same experiment for different α, we can
get an idea of how much we can reduce the expected impact
given a certain cable budget. Fig. 8 shows the mean normalized
reduction in impact against the mean total cable cost of greed-
ily augmenting Interoute. By adding new cable connections
to the network, we significantly reduce the expected impact
of disasters. The biggest reduction in impact comes from
some cheaper, very effective cable connections. If we want
to reduce the expected impact even further, we need to invest
progressively more for smaller reductions in impact.

D. Resilience Against New Disasters

Our algorithms extend network topologies based on a set of
representative disasters, D. This raises the question of how our
new routes perform on disasters that are not included in this
input set D. Does our approach actually increase the resilience
of the network to a whole class of disasters, or does it overfit
routes to the set of input disasters?

To answer this question, we take an approach that is similar
to 10-fold cross-validation: (1) We randomly split our disaster
set, D, into 10 groups, or folds, of disasters; (2) For each of
these groups, D∗, we greedily augment Interoute by applying
our simulated annealing algorithm to D \D∗ until there is no
improvement in cost anymore and (3) compute the expected
impact of D∗ on this augmented network (re-weighting prob-
abilities where required). For the purpose of this experiment,
we assume uniform cable costs and set α = 5, 000, 000.

If we take the full set of 454,433 disasters into account,
the greedy simulated annealing approach reduces the expected
impact from around 0.01411 to 0.00916 by adding 3 new
cable connections with a total length of around 1235 km. In
comparison, the average expected impact over all 10 folds is
around 0.00917. This is achieved by adding 3 new connections
with an average total length of around 1232 km. We conclude
that as long as the set of input disasters is representative of
the disasters we want to protect the network against, the routes
we compute based on D also manage to effectively reduce the
impact of disasters that were not included in D.

E. Number of Representative Disasters

We have shown that by increasing the resilience of a
network to a set of representative disasters, we also increase its
resilience to disasters that were not explicitly considered. But
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against the total cable cost.

how many representative disasters should a network operator
include in their input set D? In this section, we study the effect
of |D| on the reduction in expected impact, as well as on the
computation time of our approaches.
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Fig. 9. Mean computation time of the first new link triple for Interoute against
the number of considered disasters. α = 5, 000, 000.
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Fig. 10. Mean total cost of a greedily computed set of new Interoute cable
routes divided by the cost of not augmenting the network ((αE[M(E+

G (D))]))
against the number of considered disasters. α = 5, 000, 000.

We start with the set of 454,433 disasters, D, and will treat
this as the set of all potential disasters that can affect the
network. Clearly, if we sample disasters from D, the set of
sampled disasters is representative of D. Thus, we can create
a representative disaster set of any size simply by sampling
disasters from our initial disaster set.

To be more precise, to create an input set D∗ of N disasters,
we sample N disasters from D with replacement (where the
probability of sampling a disaster d ∈ D is P (d)) and assign
each disaster a probability of 1

N . We then apply our algorithms
on D∗ to greedily extend Interoute with new cable connections
until there is no benefit in cost. Finally, we compute the
expected impact of the full set D on this augmented network
to check how well we have managed to increase the resilience



of the network. We set α = 5, 000, 000 and repeat this process
20 times for each N .

As can be seen in Fig. 9, the runtime of both algorithms in-
creases with the number of considered disasters. Remarkably,
at these representative disaster set sizes, the branch & bound
algorithm is faster than the simulated annealing algorithm, and
both manage to find the initial link triple in less than 3 minutes.
In comparison, even if α = 100, 000, the branch & bound
algorithm takes more than an hour to compute a link triple for
the 454,433 disasters input set.

Fig. 10 shows the relative improvement in total cost3 over
not augmenting the network against the number of considered
disasters. We see that the costs of the link triples found by
simulated annealing lie very close to that of the link triples
found by the branch & bound algorithm. Importantly, we
confirm that we do indeed need approaches that work for
larger disaster set sizes (of at least 1,000 disasters), as the
total cost drastically decreases as we increase the size of
the representative disaster set. However, we also spot some
opportunities: by reducing the disaster set size from 454,433
to 100,000 or even 10,000 we significantly reduce computation
times, while not sacrificing much of the cost of the final result.

VII. RELATED WORK

For an overview of overall strategies for increasing the
survivability of communication networks to disasters, we refer
the reader to a recent survey conducted by T. Gomes et al. [11].

Variations of what we call sub-problem 1, finding an optimal
cable path while taking into account potential disasters, have
been studied extensively [12]–[19]. As these works focus
entirely on the path or topology of a single cable connection,
they do not take into account the network-wide impact of
disasters and solely consider the damage disasters can do
to this single cable. Because our algorithms decouple path
planning and finding the optimal restriction, approaches such
as [14], [15] can be straightforwardly incorporated and used
for finding restricted shortest routes. This would extend our
approach by allowing network operators to include costs that
depend on the length of the cable segment intersecting disaster
regions, such as repair rates or even shielding [15].

Building upon the spine concept introduced in [20], L. Gar-
rote et al. gave a heuristic for the obstacle-avoiding Euclidean
Steiner tree problem [21]. In contrast to our approach, L.
Garrote et al. aim to design a high-availability spine that avoids
disaster-prone areas, and do not explicitly consider the impact
of disasters on network connectivity metrics.

Cao et al. gave a heuristic for optimizing cable costs of a
planar N -node topology under constraints on the disconnec-
tion probability of any node in the network [22]. The main dif-
ference with our work is that we consider the augmentation of
an existing network, while C. Cao et al. considered the design
of an entirely new submarine network topology. Furthermore,
where their heuristic only considered uniformly distributed

3The expected impact on the augmented network multiplied by α plus the
total cable cost of all link triples.

disk disasters and simplified cable costs, our disaster and cable
cost models are more general.

Given a desired topology, pre-computed set of candidate
cable routes, and the probabilities of failure of each of these
routes, D. L. Msongaleli et al. formulated the optimization
of submarine cable deployments under disasters as an integer
linear optimization problem [5]. Their simulations suggest
that disaster-aware submarine topologies could potentially save
society billions of dollars.

P. N. Tran and H. Saito proposed an interesting heuristic for
optimizing a weighted set of end-to-end disconnection prob-
abilities under cable length constraints by either recomputing
the routes of existing links [23] or augmenting the network
by adding new links [24] based on actual seismic hazard
data. To compute a set of link triples, they first compute
a set of potential candidate routes for each considered link,
and then feed these to a dynamic programming algorithm for
the global optimization problem. Compared to our approach,
their earthquake disaster model is more detailed and takes
into account link failure probabilities. This does come at a
cost, as their approach does not seem to scale well to larger
network sizes or disaster sets. In particular, computing the end-
to-end disconnection probabilities in their evaluation metric is
a well-known NP-hard problem for even a single disaster [25].
Furthermore, although the authors did limit the paths a cable
was allowed to take to streets, their approach is based on a
uniform cable-cost scenario.

In contrast to our approach, none of the previous work can
be applied to a large set of disaster inputs and optimize cable
routes for a network-wide impact metric, let alone incorporates
detailed cable laying costs.

VIII. CONCLUSION

In this paper, we have presented the Disaster-Aware Net-
work Augmentation problem of finding a cost-efficient link
triple (pair of nodes and a route between these nodes) to in-
crease the resilience of networks to a large set of representative
disasters. The solutions to this problem are Pareto-optimal for
expected disaster impact and cable cost.

As the Disaster-Aware Network Augmentation Problem is
NP-hard, we have given both an exact algorithm, as well as a
heuristic. The main idea behind our algorithms is to split the
problem of finding a disaster-aware route into the problem of
deciding which disasters to avoid (a restriction) and finding a
restricted shortest route avoiding these disasters.

We have demonstrated the effectiveness of our algorithms
by computing disaster-aware cable connections for a real
topology using actual seismic hazard data. Using our approach,
operators “going the extra mile” can increase the disaster-
resilience of their network by adding a cost-efficient selection
of new cable connections. By making disaster-aware design
decisions, instead of planning based on cable costs only,
network operators can simultaneously increase the capacity of
their network, as well as reduce the impact of future disasters.
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