

Delft University of Technology

Elastic Slicing in Programmable Networks

Turkovic, B.; Nijhuis, S.H.; Kuipers, F.A.

DOI
10.1109/NetSoft51509.2021.9492528
Publication date
2021
Document Version
Accepted author manuscript
Published in
Proceedings of the 2021 IEEE Conference on Network Softwarization

Citation (APA)
Turkovic, B., Nijhuis, S. H., & Kuipers, F. A. (2021). Elastic Slicing in Programmable Networks. In K.
Shiomoto, Y.-T. Kim, C. E. Rothenberg, B. Martini, E. Oki, B.-Y. Choi, N. Kamiyama, & S. Secci (Eds.),
Proceedings of the 2021 IEEE Conference on Network Softwarization: Accelerating Network Softwarization
in the Cognitive Age, NetSoft 2021 (pp. 115-123). Article 9492528 (Proceedings of the 2021 IEEE
Conference on Network Softwarization: Accelerating Network Softwarization in the Cognitive Age, NetSoft
2021). IEEE. https://doi.org/10.1109/NetSoft51509.2021.9492528
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/NetSoft51509.2021.9492528
https://doi.org/10.1109/NetSoft51509.2021.9492528

Elastic Slicing in Programmable Networks
Belma Turkovic, Sjors Nijhuis, and Fernando Kuipers

Delft University of Technology, the Netherlands

Abstract—The concept of network slicing enables operators to
provision multiple virtual networks on top of a single (shared)
physical infrastructure. Adding elasticity to slicing, i.e., the ability
to on-demand provision/release dedicated network resources,
improves resource utilization. However, efficiently allocating and
scaling slice resources, while maintaining state consistency, is
challenging. Especially with P4-programmable network devices
that process packets at Tbps speeds, controller-driven scaling of
network functions would be too time-consuming, and data-plane
scaling is needed.

In this paper, we address this need, by developing a custom
scaling protocol and framework that can consistently, with negli-
gible delay, scale network slices and functions transparently to the
slice end-users. We compare, via emulation and experiments on
programmable hardware, our approach to state-of-the-art scaling
techniques and demonstrate significant slice resource utilization
improvements and scaling duration reductions.

I. INTRODUCTION

Since their introduction, Software-Defined Networking
(SDN) and Network Functions Virtualization (NFV) have
enhanced network flexibility, reconfigurability, and agility [7],
[15]. Moreover, when combined, they support offering
Quality-of-Service (QoS) through the concept of network
slicing [5], [18].

Network slicing assumes that virtual networks, each tailored
to different service needs, are created on top of a shared phys-
ical infrastructure. Each of these virtual networks consists of
virtual nodes and virtual links. As can be seen in Fig. 1, every
virtual link represents a path with reserved network resources
(e.g., bandwidth) in the physical network. Moreover, those
links connect virtual nodes, representing Network Functions
(NFs), that provide a specific network functionality. Stateful
NFs, such as firewalls or heavy-hitter detection, require knowl-
edge of the previously processed packets to function correctly,
while stateless NFs, such as routing, do not [27].

As traffic volumes are unpredictable and generally change
over time, a static slicing solution either over-provisions re-
sources or does not guarantee a certain QoS [20]. A slicing
solution that supports elasticity, i.e., the ability to automati-
cally scale the assigned network resources to match the current
traffic volumes, would solve this problem. We discern two
ways of scaling: (1) vertical scaling, in which slice resources
are scaled up/down at the NF(s) and reserved bandwidth
increased/decreased on the virtual link(s) (Fig. 1a), and (2)
horizontal scaling, in which a new NF is deployed/removed
and a portion of the traffic redirected by creating/removing
virtual links connected to the slice, to reduce the load on
the existing NF (Fig. 1b). This way, service providers only

pay for the resources they use (pay-per-use model), end-
users get their requested level of QoS level, and network
providers can support multiple services simultaneously using
fewer resources.

Scope & Motivation. In this paper, we consider elastic
slicing (both vertically and horizontally) in the context of
P4-programmable data-planes [3]. On the one hand, NFs
primarily responsible for packet forwarding (e.g., firewalls,
NAT, monitoring) might benefit from hardware acceleration by
being offloaded to (P4) programmable switches. On the other
hand, programmable hardware can process packets at Tbps
speeds [11]. Hence, NF-state may change very frequently,
making controller-driven scaling and traditional NFV frame-
works (focused on migrating software-maintained states) too
time-consuming. Moreover, even if controllers could keep up,
migrating an NF, which potentially maintains hundreds of
state variables per flow [13], would overload the controller,
thereby prolonging the scaling time and leading to state
inconsistencies. Yet, up-to-date state information is crucial for
the correct functioning of many NFs.

Fortunately, programmable switches come with monitoring
features that enable the data-plane to report the exact QoS
the packets experienced while being processed [14], [26].
And, in contrast to centralized approaches, programmable
switches allow us to offload time-sensitive actions from the
central controller to the data-plane. When combined with the
advanced monitoring features, we can quickly detect and react
to changing traffic conditions [20].

Contributions & Outline. We present an elastic network-
slicing framework for P4-programmable network devices that
economizes on slice resource utilization, while maintaining
state consistency and at low scaling time.

We split our framework into two components: (1) a central
controller and (2) a data-plane component. With its global view
of the network, the central controller is responsible for long-
term network management, such as the (de)allocation of NFs
and route calculation. The data-plane component is deployed
directly on the switches and only has a local network view but
fast reaction time and accurate traffic information. Therefore,
it is responsible for reacting to time-sensitive operations, such
as load monitoring (Sec. II-A), state transfer, and virtual link
configuration (Sec. II-B).

In Sec. III, we evaluate our framework, both through emula-
tion as well as via experiments on programmable hardware, by
comparing it to traditional (controller-driven) approaches. Our
experiments show that only by having an “inteligent” data-
plane, on-time scaling can be achieved.978-1-6654-0522-5/21/$31.00 c©2021 IEEE

Ph
ys

ic
al

ne
tw

or
k

Sl
ic

e
1

2Gbps

2Gbps 2Gbps 2Gbps 2Gbps

2Gbps

NF1 NF2 NF4NF3
2Gbps 2Gbps2Gbps Scale-

Up

Scale-
Down 5Gbps

5Gbps 5Gbps 5Gbps 5Gbps

5Gbps

NF1 NF2 NF4NF3
5Gbps 5Gbps5Gbps

(a) Vertical scaling. Whenever a new flow joins or the volume of an existing one increases, resource reservations on all the virtual links are increased.

Ph
ys

ic
al

ne
tw

or
k

Sl
ic

e
1

5Gbps

5Gbps 5Gbps 5Gbps 5Gbps

5Gbps

NF1 NF2 NF4NF3
5Gbps 5Gbps5Gbps Scale-

Out

Scale-
In 7Gbps

5Gbps 5Gbps 5Gbps 7Gbps

7Gbps

2Gbps 2Gbps

2Gbps2Gbps

NF1 NF2
NF3’

NF4NF3
7Gbps 2Gbps 2Gbps

5Gbps5Gbps

(b) Horizontal scaling. When NF3 is no longer able to process all the incoming traffic without any QoS degradation, and/or bandwidth assigned on virtual links
NF2-NF3 and NF3-NF2 cannot be scaled up, a new NF3 instance NF3’ is spawned and two new virtual links (NF3’-NF2 and NF3’-NF4) created (Scale-Out).
Similarly, if enough resources to process all the incoming traffic are present on one of the paths, two virtual nodes are merged into one (Scale-In).

Fig. 1: Different types of scaling.

II. ELASTICITY FRAMEWORK

To support elasticity, we propose a hierarchical framework
(Fig. 2a) consisting of:

1) A central controller (CC) that, with its global overview
of the available network resources and existing traffic
flows, determines the network’s long-term behavior. It is
responsible for initializing new slices, finding the most
appropriate locations to place NFs during scaling, and
guiding the data-plane component.

2) The data-plane component (DPC) that, based on the cen-
tral controller’s input and measured traffic conditions,
performs all latency-sensitive tasks. It is responsible for
load monitoring, state transfer, and flow rerouting.

To support the information exchange between different data-
plane components running at different switches, we imple-
mented a custom slice management (SM) protocol, shown in
Fig. 2a. During each scaling process (horizontal or vertical),
the DPCs exchange information and update the slice (e.g.,
reroute flows, transfer state, adjust bandwidth) using the SM
header.

Fig. 2b illustrates the processes to react to overload. DPC
processes are shown in green and involve all latency-sensitive
tasks. For example, a DPC continuously monitors the slice
and quickly detects traffic changes. In contrast to a controller-
driven approach, it makes this decision on a per-packet basis,
informing the CC only when scaling is needed, and does
not depend on a monitoring interval or the control-plane’s
speed. If detected, the CC (whose processes are shown in
blue) first attempts the easier of the two: vertical scaling.
If insufficient resources are available at that path, the CC
tries to reroute a flow to a path that would have enough
resources or, ultimately, scales-out. Since scaling-out is the
most involved of these three situations, Fig. 2 explains the
involved interactions in more detail. It is essential to notice
that, while the CC indicates which flows to reroute (green-blue
blocks in Fig. 2b), the process of rerouting and state-transfer
is completely offloaded to the data-plane (Fig. 2). Therefore,
route/state inconsistencies, due to one switch receiving a

controller update (e.g., a new route) before others or after the
state has changed, are avoided.

During under-load detection, the processes are similar (but
reversed). As before, upon detection, DPCs inform the CC,
which either scales vertically (scaling-down) or horizontally
(scaling-in). However, in contrast to the previous example,
during under-load, if enough resources are available on one
path so that another one can be merged into it, the framework
will initiate the scaling-in (horizontally) independently of the
possibility to scale-down (vertically, see Sec. II-A).

How much bandwidth to assign? We decided to use an auto-
tuned value ∆Bw, which represents the step in which we
increase/decrease reserved bandwidth. If ∆Bw is set low, the
reserved bandwidth is increased/decreased in tiny steps. While
this increases resource efficiency, it also leads to instability
and frequent scaling processes for dynamic traffic. If ∆Bw
is high, resource efficiency reduces, and scaling will occur
infrequently. Our solution initially assigns a low value to
∆Bw to preserve the slice resources. After each scaling event,
∆Bw is increased by a factor k, and a timer is started.
If another scaling event occurs within this timer, the same
process is repeated. This process continues until an interval
is encountered in which no scaling occurred, which causes
∆Bw to be reset to its initial value. This way, we start scaling
conservatively, only assigning small chunks of bandwidth to
the slice. However, if we detect a high increase, we quickly
build-up ∆Bw to reduce the number of scaling events.

Since our framework relies on offloading latency-sensitive
tasks to the DPC, we will explain two main tasks: (1) load
monitoring and (2) virtual link configuration, state transfer,
and flow rerouting (as well as all involved modules) in more
detail.

A. Load monitoring

Since the scaling procedure is relatively time-consuming
and requires many network updates, frequent scaling would
lead to network instability and sub-optimal resource utiliza-
tion. To infer the best times for horizontal scaling, for each
P4 NF, we deployed two two-rate three-color meters: growth

2

Central controller (control plane)

Slice initialization NF (de)allocation DPC maintenance

Virtual node
(data-plane)

Fu
nc

tio
ns

H
ea

de
rs Slice management

Type
(3 b)

FlowID
(16 b)

Length
(8 b)

Route
(variable)

Bandw.
(8 b)

States
(variable)

IPEth.

Load
Monitoring

DPC

Virtual link
configuration

State
managementNFs

(a) Hierarchical design of the slicing framework.

Monitor NFs

Fully
utilized & traffic

increasing?

Enough
available resources on

each physical link
on the path?

Enough
available

resources on
other paths?

Update DPC
info

Reconfigure
virtual links

Scale-up
(vertical)

Reroute
a flow

Calculate NF
placement

Deploy NF

Update DPC info

Config. virtual links
& transfer state

& reroute flow(s)

Scale-out (horizontal)

no

yes

yes

no

yes

no

(b) Flow chart illustrating the process of scaling-out and -up.

Central controller

Slice initialization NF (de)allocation DPC maintenance

1

1

2Inform the
controller

2

3
Calculate NF placement

Deploy4Load Monitoring

Virtual link
configurationNF2

State management
1

Central controller

Slice initialization NF (de)allocation DPC maintenance
5

5Indicate
what flows

to divert

6

6

Reroute, transfer state
& create virutal link

Load Monitoring

Virtual link
configurationNF1

State management

Load Monitoring

Load Monitoring

State management

State management

Virtual link
configuration

Virtual link
configuration

NF2

NF2’
6

6

6

(c) Interactions between components during scaling-out. DPCs continuously track the slice’s utilization (step 1, Sec. II-A). If they detect overload, they notify
the CC (step 2). The CC subsequently determines the switch where NF2’ will be deployed on and the route to connect the node to the rest of the slice (step
3). Next, the CC deploys the new NF (step 4) and, upon its completion, informs NF1 to divert a portion of its traffic to the newly deployed NF2’ (step 5).
When a packet of this flow is received, the state from NF2 is transferred to NF2’, and a virtual link is created using the Slice Management Protocol (step 6,
Sec II-B).

Fig. 2: Elastic slicing framework. CC (DPC) modules and tasks are shown in blue (green).

NF1

NF26/7

0/3
0/3

6/4

0/4

t/Ng

R

Rg

Cg

1 2 3 4 5

P4 NF overloaded

Scale-
Out

NF1

NF2

NF2’

10/3

1/2
1/2

10/0

1/4

t/Ng

R

Rg

Cg

1 2 3 4 5

t/Ng

R

Rg

Cg

1 2 3 4 5

Growth counter never
reaches the threshold thout

Constant utilization

Filtering the small
fluctuations

(a) Growth meter. If the traffic volumes increase and more and more packets are colored yellow or red, the growth rate Rg and, consequently, the growth
counter Cg increase until Cg reaches the threshold M . At this moment, scaling is initialized. In contrast, small fluctuations in the traffic volumes or large
temporary peaks are filtered out.

NF1
NF2

NF2’

NF2”

NF34
/
1

9/2

5/6
5/4 5/4

9/2 9/2

9/
2

0/
5

4/0

18/2

4/0

4/
0

Scale-
In

NF1
NF2

NF2’ NF30
/
4

9/2

9/2
9/0 9/0

9/
2

9/2 9/2

0/
5

0/3

18/2

0/3

0/
3

(b) Merging meter. To merge NF2” into NF2’ or NF2, either of them needs to have enough resources to take over the traffic processed on NF2” (i.e., 4). DPC
maintenance calculates the minimum resources available on the virtual links connecting NF2 and NF2’ to NF1 and NF3. Finally, it sets the rate thresholds
on NF2” to the maximum of these two: 4. Likewise, the thresholds on NF2 and NF2’ are configured to 4 and 2, respectively. As all the packets processed on
NF2” are green, i.e., NF2” is processing less traffic than the amount of free resources available on NF2’, scaling-in is initiated and the thresholds recalculated
to 0 and 2 for NF2 and NF2’, respectively.

Fig. 3: Load monitoring. The first number above the link represents the amount of reserved bandwidth, while the second
number represents the total amount of bandwidth available on the link (i.e., not assigned to any other slices).

3

meter to detect that the slice is close to its full capacity, and
decline meter, to detect that the slice is underutilized.

Growth meter. Scaling-out (and up) is initialized whenever
the slice is no longer able to process all the traffic without any
degradation. Consequently, the growth meter rate threshold
needs to be configured low enough to allow the CC to deploy
the new NF without any degradation to any of the flows
currently processed in the slice. In this paper, we set them to
∆BW and 2∆BW less than the reserved bandwidth BWr.
Additionally, to avoid unnecessary NF allocations, too frequent
scaling, and instabilities due to traffic fluctuations, the switches
ensure that the traffic is increasing continuously.

To do so, we instructed the switches to track three additional
metrics: the growth rate (Rg), growth counter (Cg), and
decline counter (Cd). The growth rate tracks the number
of yellow packets processed in the last Ng packet interval
(Fig. 3a). Cg uses Rg to track the overall trend of the slice
utilization and is calculated as follows: if the number of
yellow packets (the growth rate Rg) is increasing between
two subsequent intervals of N packets, or the number of
red packets is greater than zero, the Cg is increased by one.
However, if Rg is decreasing, Cg is reset to 0. This way,
if the slice utilization is continuously increasing (for at least
M intervals), scaling will occur after at most N ·M packets
since the first yellow/red packet (Fig. 3a). Moreover, to detect
under-load, each switch tracks Cd, increasing it by one if all
the packets in an N -interval are green. Otherwise, it resets it
to 0. Consequently, if Cd reaches M , meaning that for the last
N · M packets, the slice had excess 2∆BW bandwidth, the
switch will initiate the scaling-down process (by ∆BW).

Merging meter. To be able to scale-in, an NF should process
less traffic than the maximum available on the other NFs im-
plementing the same functionality. As illustrated in Fig. 3b, the
CC configures the rate thresholds by calculating the maximum
traffic volume that any of the other NFs can take over. To avoid
too frequent scaling and instabilities, the switches track an
additional metric, the merging counter Cm. This metric tracks
the number of all-green intervals (in the same way Cd did),
and, whenever it reaches M , scaling-in is initialized. Finally,
the CC readjusts the thresholds (Fig. 3b).

Processing at the CC. To filter the requests belonging to the
same event (e.g., scaling-up detected at multiple switches), we
implemented a back-off mechanism that, every time a scaling
request is received, checks if other requests were received in
at least the last N ·M ·MSS/BWreserved seconds.

B. Virtual link configuration, state transfer and flow rerouting

To avoid the state and route inconsistencies associated
with a controller-driven approach, our framework reroutes the
flows, transfers their state, and updates the resource allocations
in the data-plane (while processing data-packets), as illustrated
in Fig. 4. To fill in the Slice Management header, it relies
on the central controller’s updates (in particular, the DPC
maintenance module) indicating, among other things, what
flow to divert to the new NF. For example, if the controller

decided to reroute B (Fig. 4), it informs NF1 of this. NF1, after
receiving the first packet of flow B forwards it to the original
NF (NF2) to pick up its state (Fig. 4a). While the original
packet is processed further along the path (thus avoiding
unnecessary delay), a small copy is sent back to NF1, and,
afterwards, NF2’. Each switch on the new virtual link updates
its forwarding rules (e.g., output port stored in a register
array) and resource allocation, as this packet passes through
(Fig. 4b). Since it is not possible to update the bandwidth
allocations in P4, we decided to generate a digest to a local
digest listener, while processing this header. Consequently, this
local listener issues the command to update the reservations.
When this packet reaches NF1, all subsequent packets (of flow
B) are diverted to NF2, and the new virtual link is established.
Finally, the same process is used to create the other virtual
link (connecting NF2’ to the rest of the slice). Moreover,
to account for packets that were already forwarded towards
NF2 (before NF1’s rule was updated), we instruct NF2 to
send small updates to NF2’, in the same way the first packet
was sent, but with a different type (to prevent unnecessary
forwarding rules and bandwidth allocation updates (Fig. 4d)).

Scaling-in. To avoid the dependency on the incoming packets,
we decided to change the migration procedure during scaling-
in by transporting one flow’s state per received packet destined
for NF2’. Thus, in contrast to the example shown in Fig. 4,
we use a sequential index to read all the active states of the
states table and append it to the SM header. Two situations
can occur. First, the data packet can belong to a flow whose
state is still present at NF2. In this case, a small copy to
transfer the state of the flow indicated by the sequential index
is sent to NF2, while the original packet is forwarded further
along the path (after updating its state). Second, the packet
can belong to a flow whose state was already transferred to
NF2. In this case, in addition to the state information of the
flow indicated by the sequential index, we also forward the
data-packet back to NF2. Upon reception, NF2 updates the
state from the SM header as well as the state belonging to the
data-packet. Further, while processing these transfer packets,
switch NF1 adjusts its forwarding rule for the flow in the SM
packet to point to NF2 (instead of NF2’). However, this rule
is only put into affect after the state table was transferred (i.e.,
table size packets were sent to NF2’).

Difference with SwingState. In our state migration, we
leverage the idea from SwingState to transport the packets
in the data-plane. However, in contrast to SwingState, we
avoid the dependency on the incoming traffic patterns, which
could lead to a very long scaling-in process and, consequently,
overhead for infrequent flows. Moreover, we combine the state
transfer with rerouting and significantly reduce the number
of updates that need to be sent. To do so, we assume that
during horizontal scaling, NFs implementing the same function
execute the same P4 program (i.e., state tables have the same
size), and that the same hash function is used for index cal-
culation (assumption not needed for SwingState). In scenarios
in which this assumption does not hold, the controller can

4

NF1 NF2

NF2’

B 5 1

A 33 0

0/2
0/3

Eth SM

1 B 0 0 0 N/A

Type Fl.ID Len. Route Bw. State Send pick-up
packet1

Set to send
updates2

3 Return
state

(a) After receiving flow B’s packet, NF1 appends the SM header (shown in
green) and forwards it to NF2 (step 1). Upon reception, NF2 creates a copy,
updates the SM header (e.g., state information, source route to NF1), sets a
bit register associated with B to 1, indicating that B’s state is migrated (step
2), and returns the packet to NF1 (step 3).

NF1 NF2

NF2’

1/1

0/3

Eth SM

2 B 2 1 1 5

Update forwarding rule, resources and SM hdr.4

(b) NF1 updates its forwarding rules for flow B, adjusts the allocated
bandwidth for the slice to ∆BW (1, circled values, step 4). Next, it updates
the SM header (e.g., source route to reach NF2’) and forwards it to NF2’.
All switches in the path repeat this process, updating their forwarding rule
to the value from the source route and allocating the resources.

NF1 NF2

NF2’

B 0 0

A 0 0

1/1 1/2
Eth SM

2 B 0 0 0 5

Update
state 5

(c) Upon reception, NF2’ updates its state.

NF1 NF2

NF2’

B 6 1

A 33 0

B 5 0

A 0 0
1/1 1/2 Eth SM

Update
state7

6Send
update

(d) If a packet of flow B is received at NF2, an update is sent to NF2’.

Fig. 4: Virtual link configuration & state management module.

provide a table index mapping to the switch transferring the
state, ensuring consistency.

C. Overhead and limitations

Collisions. Indices to P4 register arrays storing the state are
calculated by hashing the packet’s header fields. Hence, the
probability of hash collisions increases with the number of
concurrent unique flows in a slice. When flows collide, P4
NFs merge their state. Hence, our framework, which relies
on each NF’s state management, does not distinguish between
colliding flows either and will treat them as the same flow.

Memory overhead. Per state array, DPC uses two bit arrays
to store active flows and transferred flows. Moreover, is uses
two registers containing source routes (towards the next and
previous NF), and eleven counters for load monitoring (e.g.,
number of red/yellow/green packets in the current and previous
intervals, Cd, Cg , Cm)

Latency and packet overhead. Every time the DPC appends
the SM header, it increases the packet’s transmission delay.
Moreover, our solution generates additional packets (e.g., state
transfers, state updates). However, due to the small size of the
SM header (a few bytes), this overhead is not significant and
lower than other data-plane approaches (see Sec. III).

Packet reordering. Like other data-plane scaling approaches
(e.g., SwingState) packet reordering can occur if packets are
present at the outdated link during rerouting. While we make
sure to reroute these packets, we cannot guarantee that all
packets will arrive at their correct virtual node in correct order.
Consequently, NFs that depend on exact packet order might
have their state overwritten by an update packet. To maintain
state consistency, a sequence number can be appended to
each packet at the first NF, and the state only updated if the
sequence number is higher than the last received one.

Hybrid scenario (only some P4-programmable switches).
To use our approach, switches acting as NFs must be
P4-programmable. For non-virtual nodes, traditional SDN

switches can be used. The only difference would be that to
adjust bandwidth reservations a packet would be sent to the
CC resulting in a potential latency increase. Moreover, to
avoid potential inconsistencies during rerouting, the controller
would, while deploying a new NF, update the rules on SDN
switches connecting this new NF to the rest of the slice.

Recirculations. During the scaling-in process, in some cases
we need to read multiple indexes from the same state register
array (i.e., a state belonging to the original flow and the
state belonging to the flow indicated by the sequential index).
For switches with a limited number of memory accesses per
register array, we implement these actions using recirculations.

P4 NF deployment. All currently available programmable
hardware requires a firmware reload when a new P4 program
is deployed. Since this is never instantaneous, it can lead
to some downtime, state loss, and service interruptions for
all NFs deployed on the switch and all flows processed by
it. Fortunately, various data-plane reconfiguration approaches
facilitate uninterrupted reconfigurability of the data-plane [9],
[23], [29], and should be used to enable dynamic NF place-
ment. In this paper, for simplicity, the P4-program contains all
the NFs, and we just update a register indicating if the NF is
active or not.

III. EVALUATION

Experiment setup. To evaluate our solution, we used two
topologies, shown in Fig. 5. The first one (Fig. 5a), was emu-
lated using Mininet with the P4 software-switch (behavioural
model [1]), while the second one (Fig. 5b) used an Intel
Tofino switch [11]. We observed similar results with both
our implementations. A notable difference was a more un-
predictable latency in Mininet, presumably due to emulation.
Due to space constraints, we will focus mostly on the hardware
measurements.

Traffic scenarios. We considered two traffic patterns: (1)
baseline scenario (Fig. 6a), used to test the scaling processes;

5

Cn

C1 S1

Sn
.

2

1 3

4

5

6
7

Programmable switches (bmv2)Clients Servers

(a) Simulation topology (7 nodes, 10 links).

1
3

2Cn

C1
4

S1

Sn
.

Clients Servers

(b) Experiment topology (Intel switch, 4 nodes, 4 links).

Fig. 5: Topologies. Blue lines represent the initial slice, while
red lines represent the path added during horizontal scaling.

f1 f2 f3 f4 f5 f6 f7 TotalFlows:

t1td 2td 3td 4td 5td 6td 7td 8td 9td 10td 11td 12td 13td 14td0

Requested bandwidth

tm

bwi

td bwmax,link1

bwmax,link1 + bwmax,link2

(a) Baseline scenario.

t1td 2td 3td 4td 5td 6td 7td 8td 9td 10td 11td 12td 13td 14td0

Requested bandwidth tm

tm2

bw0

bwi = bwi−1/ktd
bwmax,link1

(b) State transfer stress scenario.

Fig. 6: Traffic scenarios.

and (2) state transfer stress scenario (Fig. 6a), to test the state
transfer process while scaling-in, especially when some flows
send packets rarely. In all scenarios, the number of TCP/UDP
flows (generated using iperf3) was varied, as well as td, tm,
n, k. Moreover, delay tc was added to each control-plane
request/replay to account for the slower control-plane. Each
experiment was run five times. Since we mainly focused on
the data-plane’s performance, the controller did not track the
flows’ bandwidths, but always rerouted the last flow that was
added to the path.

Comparison baselines. Our monitoring approach has been
compared to an approach that uses an SDN controller to re-
configure a slice (both route and bandwidth reservations) by
periodically monitoring the queuing delay/utilization of the
slice (controller-driven approach). We varied the controller’s
monitoring delay between 1, 3, and 5 seconds, and the
number of successive intervals in which an increase/decrease
in queuing delay/utilization happens from 1 to 3. For the state
transfer, we compared our approach to (1) SwingState [17] and
(2) a controller-driven polling approach (i.e., the controller,
while rerouting the flow, also polls for state information).

Performance metrics. We evaluated all our schemes on (1)
the average and maximum round-trip times, (2) the average

and maximum jitter, (3) overhead caused by the state-transfer
process (in bytes and packets), (4) percentage of encountered
corrupt states during transfers (both temporary and at the end
of the scaling process), and (5) duration of the scaling process.

A. Overall performance

Control-plane. In all our experiments, we observed that the
control plane was limiting the factor in our framework. For
example, the switch generates the digest notification (i.e.,
small notifications to the control-plane indicating the need
for, for example, scaling and/or rerouting) much faster than
control software can process them and adjust the parameters
(e.g., meter rates, deciding which flow to reroute).
Tuning the monitoring module (N,M,∆Bw). Choosing a
lower N or M decreases the detection time since fewer packets
need to be processed by the NF to detect overload (Fig. 7a).
However, we observed that a very low N (e.g., 64) increases
the number of intervals needed for detection (e.g., for M = 5,
our framework needed 15 intervals on average for N = 64
compared to 5 intervals on average for N = 256). Moreover,
when combined with a very high M , the probability of reset-
ting the counter Cg , and missing the scaling event, increases.
Similarly, during scaling-in/scaling-down, low values of N and
M decrease the detection time (Fig. 7a). However, at the same
time, we observed that the probability of scaling-in/scaling-
down too quickly (or immediately after the scaling-up/scaling-
out process) increases, leading to instability.

Further, we evaluated the influence of different ∆BW .
A higher ∆BW decreases the number of generated scaling
events, but due to the reduced granularity increases the excess
bandwidth (i.e., Bwres−Bwreq, Fig. 7b). Additionally, since
the threshold needed to trigger scaling-down is set at Bwres−
2∆Bw, the excess bandwidth per-link is usually under 2∆Bw
(Fig. 7b). The only difference to this rule occurs when, due to
the adaptive nature in which we assign the bandwidth (e.g., if
two subsequent scaling-up events are registered, we double the
∆Bw), the bandwidth is scaled higher than Bwreq + 2∆Bw
(Fig. 7b for bw = 19 and ∆Bw = 10). However, if no
new flow is generated, this increase is only temporary and is
always followed by a scaling-down event. Furthermore, if the
increased number of scaling events is combined with a very
high M and/or N, by very steep bandwidth increases, the time
needed to reach the needed bandwidth can be very long (and
might never be reached during the duration of the scenario).
Hence, we chose N = 128 and M = 5 and ∆Bw = 10 as the
values that provided a good trade-off between fast and stable
load detection for the remainder of this paper.
Scaling-down upon competition of all flows on a path.
P4 programs are executed upon packet reception. Hence, if a
switch does not receive packets, the load monitoring module
will not detect the last scaling-down event. Consequently,
at least 2∆Bw resources will remain assigned. The only
exception to this is a scaling-in event that releases all the
resources assigned on a path. To avoid these situations, the
central controller must detect these cases and, subsequently,
release the assigned resources.

6

Scaling-out Scaling-in
N, (bw = 15Mbps) (bw1 = 19Mbps)
M 5 10 25 5 10 25
64 0.98 1.23 2.60 0.90 1.27 3.24

128 1.27 1.91 5.70 1.28 2.90 4.73
256 1.47 2.75 6.59 2.95 3.98 8.07
512 2.42 4.98 12.66 4.34 6.73 14.41

1024 4.49 9.61 24.97 6.86 12.32 27.68

(a) Detection speed (in 1000 · pkts) of f2 during
scaling for different values of N and M . ∆Bw =
10Mbps, bw1 = bw2 = 14Mbps, td = 10.

Detection speed Detection speed Max. excess Num. of scaling
bw, scaling-up scaling-down bandwidth operations

∆Bw 10 5 2.5 10 5 2.5 10 5 2.5 10 5 2.5
11 0.99 0.99 1.24 1.43 1.43 1.43 18 8 3 4.0 8.3 10.0
13 1.31 1.39 1.31 1.61 1.44 1.19 14 9 1.5 4.0 9.0 12.0
15 1.38 1.47 1.30 1.29 1.38 1.12 20 10 5 6.0 10.0 12.0
17 1.26 1.01 1.01 1.34 1.17 1.17 16 6 3.5 6.0 8.0 14.0
19 1.44 1.34 1.35 1.46 1.37 1.12 22 7 2 7.0 10.0 15.0

(b) Baseline scenario (N = 256,M = 5, td = tm = 10s, nf = 2). Detection speed
of the second flow (in 1000 · pkts), excess bandwidth (Bwres − Bwreq) and the total
number of scaling operations for different values of bw and ∆Bw.

bw2, tm 1 2 3
10 4 5 5

7 3 4 5
5 3 4 5
3 2 3 5
1 0 0 0

(c) Number of times (out of 5)
scaling was detected for f2.M =
5, N = 256, bw1 = 25,∆Bw =
2.5, td = 15, nf = 2.

Our approach SwingState +
bw, (dataplane reroute) control-plane reroute
tc 0 0.1 1 0 0.1 1
1 0.003 0.003 0.003 0.09 0.09 0.18
4 0.003 0.003 0.003 0.09 0.09 0.20

16 0.003 0.003 0.003 0.18 0.27 1.6
64 0.003 0.003 0.003 0.54 1.63 6.1

262 0.003 0.003 0.003 1.03 3.25 24.2

(d) Traffic volume overhead per flow during scaling-out
(in 1000 · pkts) for different controller delays tc and
different bw. Values for td are in s. nf = 1

Our approach SwingState +
bw, (dataplane reroute) control-plane reroute
w 64 128 256 64 128 256
1 0.02 0.05 0.11 0.18 0.18 0.18
5 0.02 0.05 0.11 0.18 0.19 0.18

10 0.02 0.05 0.11 0.26 0.25 0.25
20 0.02 0.05 0.11 0.36 0.36 0.36
50 0.02 0.05 0.11 0.89 0.85 0.91

(e) Traffic volume overhead during scaling-in (in 1000 ·
pkts) for different state table sizes w (size of the
register array) and different bw. tc = 0.01, nf = 2.

Fig. 7: Evaluation of the separate modules of the framework (4-node topology, TCP). All bandwidth values are in Mbps.

State transfer. SwingState transfers the state in the data-
plane, but relies on an external entity (in this case, the central
controller) to reroute the traffic. Hence, until the controller
reroutes the traffic, SwingState continues sending updates to
the newly deployed NF. Consequently, as Fig 7d illustrates, the
overhead of transferring one flow during scaling-in depends on
the controller delay tc and the flow’s bandwidth (how many
packets are sent before the controller can react). In contrast,
our approach incorporates a data-plane rerouting procedure.
Hence, it depends solely on how fast the network can transport
the SM header to the previous NF, which will, upon reception,
update its forwarding rule (i.e., stateful register storing the
output port). Furthermore, during scaling-in, our approach
depends on the width of the state array and the number of
flows processed by the NF. For example, if we consider the
scenario in Fig. 7e, for a table size of 64, our approach sends
64 packets towards the NF to pick up the states stored in each
register. However, the two flows we were transferring in this
example had hashes 41 and 56. Hence, the first 40 packets
were processed as usual, and no updates were created (the
bit array index indicated that flows with indexes lower than
40 were not active). Next, the state for the first flow (with
the index 41) was transferred. Next, for each index between
41 and 56, packets belonging to the first flow triggered an
update for the first flow and were sent back to be processsed
by the other NF. Finally, all packets between 56-64 triggered
an update as well (since they can only belong to the flows
that were already transferred). In contrast, SwingState does
not have this dependency. However, it depends on the traffic
pattern of the incoming packets. Hence, if an infrequent flow
would need to be transferred during scaling-in, it would delay
the whole process (and the controller would not be able to

remove the NF).

B. Dataplane vs. controller-driver approach

Control-plane vs data-plane load monitoring. In our ex-
periments, we observed that the controller-driven approach is
unreliable. When we increased the monitoring interval (from 1
second to 3 or 5 seconds), but kept the number of successive
intervals in which an increase in queuing/utilization should
be observed constant (2 or 3), the TCP’s congestion control
mechanisms at the end-hosts kicked-in, reducing the rate and,
consequently, the observed queueing delay/utilization. Thus,
the controller immediately detected a decrease and concluded
that the congestion was merely a consequence of a short-term
fluctuation and that scaling is not needed. In contrast, if we
reduced the number of successive intervals to 1, we observed
that the controller detected the need for scaling too early and,
consequently, oscillated between a scale-in/down and scale-
out/up phase. The data-plane solution, due to the possibility
of using smaller monitoring intervals (number of packets N)
and the possibility of aggregating the statistics on the switch,
detected the overload faster, and, consequently, maintained a
lower average and maximum delay for all the flows (Fig. 8).

Very low td. As mentioned above, our framework was limited
by the latency between the switches and the central controller.
Consequently, in scenarios with a lower td our framework had
less improvement than with higher td (Fig 8). Moreover, when
we set td < tc, our framework could not scale in time.

Monitoring overhead and limitations. The CC must peri-
odically query the switches’ registers. This overhead depends
on the configured monitoring interval tmon and is equal to
nvnf ·tmon. Moreover, during scaling procedures, the CC could
not process all the tasks within the given monitoring interval,

7

Max. delay [ms] Avg. delay [ms] Reserved resources [Gb] Min throughput [%]
Slicing approach td = 1 td = 5 td = 10 td = 1 td = 5 td = 10 td = 1 td = 5 td = 10 td = 1 td = 5 td = 10

Our approach 171.0 127.4 58.06 69.8 31.6 38.0 6.1 12.2 20.6 81.29 99.78 99.89
SwingState + Polling 185.5 186.8 186.6 105.7 63.6 54.9 6.8 14.1 23.4 70.25 90.75 99.85

Controller-Driven + Polling 226.3 189.7 186.8 107.1 62.1 53.3 6.3 13.6 23.6 67.7 90.75 99.83
No Slicing 186.8 186.8 186.8 135.9 127.2 125.5 4.8 10.4 17.4 35.66 59.10 57.99

(a) Baseline scenario. Observed QoS at the end-hosts and resource utilization.

Corrupt [%] Overhead [#kB] Overhead [#pkts] Max. Duration [s]
Slicing approach td = 1 td = 5 td = 10 td = 1 td = 5 td = 10 td = 1 td = 5 td = 10 td = 1 td = 5 td = 10

Our approach 0.00 0.00 0.00 0.28 0.28 0.29 12.2 12 12.4 0.001 0.001 0.001
SwingState + Polling 0.00 0.00 0.00 50.36 46.94 47.93 1398.8 1304.0 1331.5 0.1 0.1 0.1

Controller-Driven + Polling 43.0 48.1 55.2 - - - - - - 0.1 0.1 0.1

(b) State transfer accuracy.

Fig. 8: Baseline scenario (4-node topology, TCP, tm = 30, nf = 8, bw = 20Mbps, bwlink1 = 100Mbps, tc = 0.1, w = 64.)

resulting in delays. In contrast, by offloading monitoring to the
data-plane, our solution only contacted the controller in case
overload was detected. This resulted in a significant reduction
of this overhead to a few digest notifications per switch for
each scaling-event.

State corruption. During every reroute (scaling-in or scaling-
out), the controller-driven approach could not transfer the state
in time, causing all rerouted flows to have an incorrect count.
Moreover, while deploying the state, the controller overwrote
the present state in the switches, deleting all the state infor-
mation and, hence, in contrast to data-plane approaches (our
framework, SwingState), it could never recover. Consequently,
all packets that followed had an incorrect count (≈ 50% of
the packets, since 4, flows got rerouted to the second path in
Fig. 8). In contrast, our approach and SwingState maintained
state consistency, with our scheme being faster (due to the
offload of the rerouting procedure to the data-plane).

C. State transfer stress scenario

To test the scaling-in functionality, we configured the con-
troller to reroute 8 of the 11 flows to the red path. After the
first flow was completed, the controller initiated the scaling-in.
We observed that tc (the delay between controller and switch)
limited the speed of the controller-driven approach (Fig. 9).
Moreover, as previously, during each rerouting, the state was
corrupted. In contrast, SwingState and our framework avoided
inconsistencies, recovering from them using update packets.
Moreover, low-speed flows determined the duration of this
process for SwingState (Fig. 9). In our experiments, we noticed
that iperf3 (which we used to generate traffic) sent bursty
traffic, especially at low speeds, and would remain idle the
rest of the time. Consequently, packets originating from flows
with the lowest bandwidth occurred even less frequently than
initially expected, and only after the last flow (with the lowest
bandwidth) terminated SwingState was able to complete the
scaling-in. Furthermore, since our framework was transferring
only eight flows but directed 64 packets (table width size)
to the NF, many packets needed to be sent back as an
update (since their state was already transferred), increasing
the overhead in bytes.

IV. RELATED WORK

Over the years, several network-slicing frameworks have
been proposed. However, most of them focus on providing
isolation between different slices and do not provide QoS guar-
antees inside a slice, cannot handle the problems associated
with P4 NFs, and/or do not adapt to the time-varying require-
ments that slices may have. The slicing framework presented
in [20] does dynamically scale the resources assigned to a
flow. However, it relies on the network edge to detect when
scaling needs to occur and only supports vertical scaling.

NFV frameworks. Depending on how the state is organized,
stored, and accessed, the different NFV scaling solutions
can be divided into local (e.g. [4], [6], [19], [21], [24]),
remote (e.g. [12]), and distributed approaches (e.g. [8], [22],
[28]). Remote approaches store all the state remotely at some
centralized storage and can thus not be used with P4 NFs,
since they would impose significant performance penalties
per processed packet (to retrieve the state). Local approaches
never migrate the state and can, therefore, not deal with
scenarios in which an increase of the flow’s volume causes NF
overload. Additionally, they must wait for all flows present on
an NF to finish before shutting it down, resulting in inefficient
resource utilization. Furthermore, most NFV frameworks were
not designed with P4 NFs in mind. The ones that were, such
as P4NFV [10], use a controller-driven approach and will,
consequently, suffer from all aforementioned issues associated
with that approach.

Data-plane state migration. SwingState [17] depends on the
arrival pattern of the incoming packets and can therefore have
a long transfer time. LODGE [25] targets distributed network
applications by creating a shared network state. SNAP [2] and
U-HAUL [16] move only the state of long-lived flows. Thus,
these approaches are not well suited for this paper’s objective.

V. CONCLUSION

This paper has presented an elastic network-slicing frame-
work for P4-programmable network devices. The framework
has a hierarchical design, focusing on both the control and
data-planes. With its global overview of the network, the
control-plane guides the data-plane behavior, but offloads all

8

Corrupt [%] Overhead [#kB] Overhead [#pkts] Max. duration [s]
Slicing approach td = 1 td = 5 td = 10 td = 1 td = 5 td = 10 td = 1 td = 5 td = 10 td = 1 td = 5 td = 10

Our approach 0.00 0.00 0.00 55.68 55.68 55.68 45 45 45 0.07 0.07 0.07
SwingState 0.00 0.00 0.00 10.48 11.45 12.5 291.2 318.3 347.4 7.3 42.2 86.5

Polling 5.62 5.95 6.14 - - - - - - 0.1 0.1 0.1

Fig. 9: State transfer scenario for the 4-node topology, Overhead during scaling-in. tm = 120, nf = 11, bw = 1kbps, k = 4,
bwlink1 = 1.32Gbps, tc = 0, w = 64.

time-sensitive tasks, such as overload (under-load) detection,
rerouting, and state transfer to the fast data-plane. Conse-
quently, at time-sensitive moments, the data-plane compo-
nent can perform tasks autonomously and with limited input.
Finally, this paper has demonstrated that offloading time-
sensitive tasks to the data-plane can increase slice resource
efficiency, while minimizing scaling time and maintaining
state consistency, especially when compared to state-of-the-
art controller-driven approaches.

REFERENCES

[1] P4 behavioral model. https://github.com/p4lang/behavioral-model. Ac-
cessed: 19-03-2018.

[2] ARASHLOO, M. T., KORAL, Y., GREENBERG, M., REXFORD, J., AND
WALKER, D. Snap: Stateful network-wide abstractions for packet
processing. In Proceedings of the 2016 ACM SIGCOMM Conference
(2016), pp. 29–43.

[3] BOSSHART, P., DALY, D., GIBB, G., IZZARD, M., MCKEOWN,
N., REXFORD, J., SCHLESINGER, C., TALAYCO, D., VAHDAT, A.,
VARGHESE, G., AND WALKER, D. P4: Programming protocol-
independent packet processors. SIGCOMM Comput. Commun. Rev. 44,
3 (July 2014), 87–95.

[4] FAYAZBAKHSH, S. K., SEKAR, V., YU, M., AND MOGUL, J. C.
Flowtags: Enforcing network-wide policies in the presence of dynamic
middlebox actions. In Proceedings of the second ACM SIGCOMM
workshop on Hot topics in software defined networking (2013).

[5] FOUKAS, X., PATOUNAS, G., ELMOKASHFI, A., AND MARINA, M. K.
Network slicing in 5g: Survey and challenges. IEEE Communications
Magazine 55, 5 (2017), 94–100.

[6] GEMBER, A., ANAND KRISHNAMURTHY, S. S. J., GRANDL, R., GAO,
X., ANAND, A., BENSON, T., AKELLA, A., AND SEKAR, V. Stratos:
A network-aware orchestration layer for middleboxes in the cloud. corr
(2013), 2013.

[7] GEMBER, A., PRABHU, P., GHADIYALI, Z., AND AKELLA, A. Toward
software-defined middlebox networking. In Proceedings of the 11th
ACM Workshop on Hot Topics in Networks (2012), pp. 7–12.

[8] GEMBER-JACOBSON, A., VISWANATHAN, R., PRAKASH, C.,
GRANDL, R., KHALID, J., DAS, S., AND AKELLA, A. Opennf:
Enabling innovation in network function control. ACM SIGCOMM
Computer Communication Review 44, 4 (2014), 163–174.

[9] HANCOCK, D., AND VAN DER MERWE, J. Hyper4: Using p4 to
virtualize the programmable data plane. In Proceedings of the 12th
International on Conference on emerging Networking EXperiments and
Technologies (2016), ACM, pp. 35–49.

[10] HE, M., BASTA, A., BLENK, A., DERIC, N., AND KELLERER, W.
P4nfv: An nfv architecture with flexible data plane reconfiguration. In
2018 14th International Conference on Network and Service Manage-
ment (CNSM) (2018), IEEE, pp. 90–98.

[11] Intel R© TofinoTM. https://www.intel.com/content/www/us/en/products/
network-io/programmable-ethernet-switch/tofino-series.html. [Online;
accessed 03-November-2020].

[12] KABLAN, M., ALSUDAIS, A., KELLER, E., AND LE, F. Stateless
network functions: Breaking the tight coupling of state and processing.
In 14th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 17) (2017), pp. 97–112.

[13] KHALID, J., GEMBER-JACOBSON, A., MICHAEL, R., ABHASHKU-
MAR, A., AND AKELLA, A. Paving the way for {NFV}: Simplifying
middlebox modifications using statealyzr. In 13th {USENIX} Sympo-

sium on Networked Systems Design and Implementation ({NSDI} 16)
(2016), pp. 239–253.

[14] KIM, C., BHIDE, P., DOE, E., HOLBROOK, H., GHANWANI, A., DALY,
D., AND HIRA, MUKESH AMD DAVIE, B. In-band network telemetry
(int), 2016. https://p4.org/assets/INT-current-spec.pdf, Last accessed on
10-06-2020.

[15] KREUTZ, D., RAMOS, F. M., VERISSIMO, P., ROTHENBERG, C. E.,
AZODOLMOLKY, S., AND UHLIG, S. Software-defined networking: A
comprehensive survey. Proceedings of the IEEE 103, 1 (2015), 14–76.

[16] LIU, L., XU, H., NIU, Z., WANG, P., AND HAN, D. U-haul: Efficient
state migration in nfv. In Proceedings of the 7th ACM SIGOPS Asia-
Pacific Workshop on Systems (2016), pp. 1–8.

[17] LUO, S., YU, H., AND VANBEVER, L. Swing state: Consistent updates
for stateful and programmable data planes, 2017.

[18] ORDONEZ-LUCENA, J., AMEIGEIRAS, P., LOPEZ, D., RAMOS-
MUNOZ, J. J., LORCA, J., AND FOLGUEIRA, J. Network slicing
for 5g with sdn/nfv: Concepts, architectures, and challenges. IEEE
Communications Magazine 55, 5 (2017), 80–87.

[19] PALKAR, S., LAN, C., HAN, S., JANG, K., PANDA, A., RATNASAMY,
S., RIZZO, L., AND SHENKER, S. E2: a framework for nfv applications.
In Proceedings of the 25th Symposium on Operating Systems Principles
(2015), pp. 121–136.

[20] POLACHAN, K., TURKOVIC, B., PRABHAKAR, T., SINGH, C., AND
KUIPERS, F. A. Dynamic network slicing for the tactile internet. In 2020
ACM/IEEE 11th International Conference on Cyber-Physical Systems
(ICCPS) (2020), IEEE, pp. 129–140.

[21] QAZI, Z. A., TU, C.-C., CHIANG, L., MIAO, R., SEKAR, V., AND
YU, M. Simple-fying middlebox policy enforcement using sdn. In
Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM
(2013), pp. 27–38.

[22] RAJAGOPALAN, S., WILLIAMS, D., JAMJOOM, H., AND WARFIELD,
A. Split/merge: System support for elastic execution in virtual mid-
dleboxes. In Presented as part of the 10th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 13) (2013),
pp. 227–240.

[23] SAQUETTI, M., BUENO, G., CORDEIRO, W., AND AZAMBUJA, J. R.
Virtp4: An architecture for p4 virtualization. In 2019 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW)
(2019), IEEE, pp. 75–78.

[24] SEKAR, V., EGI, N., RATNASAMY, S., REITER, M. K., AND SHI, G.
Design and implementation of a consolidated middlebox architecture.
In Presented as part of the 9th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 12) (2012), pp. 323–336.

[25] SVIRIDOV, G., BONOLA, M., TULUMELLO, A., GIACCONE, P.,
BIANCO, A., AND BIANCHI, G. Lodge: Local decisions on global states
in progrananaable data planes. In 2018 4th IEEE Conference on Network
Softwarization and Workshops (NetSoft) (2018), IEEE, pp. 257–261.

[26] TURKOVIC, B., KUIPERS, F., VAN ADRICHEM, N., AND LANGEN-
DOEN, K. Fast network congestion detection and avoidance using p4.
In Proceedings of the 2018 Workshop on Networking for Emerging
Applications and Technologies (2018), pp. 45–51.

[27] VASSILARAS, S., GKATZIKIS, L., LIAKOPOULOS, N., STIAKOGIAN-
NAKIS, I. N., QI, M., SHI, L., LIU, L., DEBBAH, M., AND PASCHOS,
G. S. The algorithmic aspects of network slicing. IEEE Communications
Magazine 55, 8 (2017), 112–119.

[28] WOO, S., SHERRY, J., HAN, S., MOON, S., RATNASAMY, S., AND
SHENKER, S. Elastic scaling of stateful network functions. In 15th
{USENIX} Symposium on Networked Systems Design and Implementa-
tion ({NSDI} 18) (2018), pp. 299–312.

[29] ZHANG, C., BI, J., ZHOU, Y., AND WU, J. Hypervdp: High-
performance virtualization of the programmable data plane. IEEE
Journal on Selected Areas in Communications 37, 3 (2019), 556–569.

9

