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Propositions 

 
Accompanying the dissertation 

Grabs and Cohesive Bulk Solids 
Virtual prototyping using a validated co-simulation 

by M. Javad Mohajeri 

 

1. A validated full-scale simulation of the grabbing process of bulk solid cargo is a reliable 
platform for virtual prototyping in realistic operational conditions. (This thesis.) 
 

2. An accurate simulation of equipment as it interacts with bulk solids is possible using a 
proper contact model and the simplest particle shape, the sphere, with no negative effect 
on the computation time and complexity of simulation. (This thesis.) 
 

3. Applying multi-objective optimisation methods systematically to the simulation of bulk 
handling equipment is the key step towards robust designs. (This thesis.) 
 

4. In a system driven by competitiveness and the free market, the trait of being ambitious is 
a potential risk for the exploitation of human and natural resources. 
 

5. In the economic crisis caused by a pandemic, those giant companies making massive 
profits must share the majority of their gains with the people who have been hit by the 
same crisis.  
 

6. In theory, capitalism is supposed to encourage free market for competition, but in practice 
a capitalistic system does its best to suppress competition. 
 

7. Someone who is afraid of failure will not have a story to tell. 
 

8. The culture of “work hard and party hard” overwhelms many employees with stress in 
long-term, so “work normal and party normal” should be promoted as a healthy culture. 
 

9. The COVID-19 virus knows no borders, neither should humanity. 
 

10. Unhappy the land that needs heroes. - Bertolt Brecht 

 

These propositions are regarded as opposable and defendable, and have been approved as such 
by the promotors Dr. ir. D. L. Schott and Prof. dr. ir. C. van Rhee. 
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Summary 

Due to the high demand of iron ore products in the steel industry, they have the largest share in 

dry bulk trading per year, above coal and grains. Approximately 9000 Cape-size bulk carriers with 

capacities up to 400 000 tonnes (DWT) transport the annual demand of iron ore to destination 

ports. Grabs are employed extensively to unload iron ore from ship holds. A fast and reliable 

unloading process is required to maintain a minimized cost for port operators and to deliver iron 

ore products to customers on time. In practice, many factors, such as moisture, varying material 

properties over the cargo depth and grab’s dynamics, contribute in creating challenges for 

achieving the desired performance during the unloading process. A solution for improving the 

unloading process is to enhance the design of grabs by using simulation-based methods. This 

enables a higher mass of iron ore to be collected per grab cycle, thus minimizing the total 

unloading time of a bulk carrier. 

Virtual prototyping of grabs is a novel simulation-based method that allows for evaluating 

the design performance in an affordable way. The virtual prototype of a grab as it interacts with 

bulk material are co-simulated at full-scale by coupling two different solvers: Discrete Element 

Method (DEM) and MultiBody Dynamics (MBD). The co-simulation requires virtual crane 

operator, CAD model of grab connected to a crane, and calibrated DEM material model as inputs. 

Over the past decade, reliable DEM calibration procedures have been developed to model free-

flowing bulk solids, such as iron ore pellets, sand and gravel. However, due to moisture content 

the majority of iron ore products show cohesive and stress-history dependent behaviours, which 

should be considered in the calibration procedure. Additionally, considering particle size and 

shape of such fine iron ore products, the extreme computation time of DEM simulations is a 

challenge to be solved. Furthermore, a grab is often used to handle a broad variety of iron ore 

cargoes that are different in their properties, such as moisture content, shear strength and bulk 

density. The variability of bulk solid properties influences the grabbing process considerably, and 

thus, the grab’s efficiency. 

The primary objective of this dissertation is to develop an accurate co-simulation of grab 

and cohesive iron ore, and utilizing it for optimizing virtual prototypes. Once properties of an iron 

ore product in interaction with equipment are characterized, a reliable multi-variable calibration 

procedure needs to be employed to set various input parameters of a DEM material model, 

including continuous and categorical variables. Furthermore, once proper scaling rules are applied 

on the DEM simulation, a full scale grab-material co-simulation can be set up to be validated. 

Next, by determining the optimal settings of design variables the effect of bulk cargo variation on 



 

the grab’s efficiency can be minimized. This is the fundamental strategy of robust grab design. 

Bulk terminal operators value grabs that are optimized for multiple objectives, including a 

maximized efficiency with a minimized deviation. 

A consolidation-penetration test method is developed to investigate whether the stress-

history dependent behaviour of iron ore is significant for the grab application. This laboratory test 

method replicates the pre-consolidation stress expected in a cargo pile during the grabbing 

process. Next, grab relevant bulk properties of a range of iron ore products are characterized using 

laboratory test methods, such as consolidation-penetration, ring shear, wall friction and ledge 

angle of repose tests. The obtained data are used for calibrating a realistic material model. 

Coefficient of static friction, surface energy, and particle shear modulus are found to be the most 

significant continuous variables for the simulated processes, and the rolling friction treatment is 

found to be a significant categorical variable. Next, the DEM material model of a cohesive iron 

ore is created by using a reliable multi-variable multi-objective calibration procedure. The 

calibrated DEM parameter set and its definiteness are verified using 20 different bulk response 

values. 

Once the material model is calibrated, scaling rules for the selected contact model are 

applied to minimize the computation time of the co-simulation. The scaling rules are verified for 

a range of particle sizes, geometry dimensions, test devices, and cohesive forces. Geometry 

dimensions should be scaled separately from the particle size to maintain the constant bulk mass 

and volume quantities. The co-simulation of grab and cohesive iron ore is set up using up-scaled 

particles with a mean diameter of 55 mm. The scaling rules resulted in a reduction from 103
 hours 

of computation time for around 8 million particles, to just under 4 hours for around 600 000 

particles. 

The simulated grabbing process is validated by conducted full-scale grabbing experiments 

in the cargo hold. This allowed the process to be recorded in realistic operational conditions. The 

co-simulation is validated by comparing its predictions to experimental data from various aspects, 

such as grab’s kinematics and dynamics. The predictions of the co-simulation compared well to 

experimental data in all aspects, including force in cables, torque in winches, kinematics of 

geometry, payload, collected volume and average porosity of bulk solid. The validated co-

simulation proves that the stress-dependent behaviour of cohesive cargo as it interacts with the 

grab were captured successfully. 



 

Finally, a multi-objective optimization framework is established to incorporate the bulk 

cargo variation in the design procedure. Two objectives are included in the optimization 

framework: a maximized grab performance in average, and a minimized deviation from the 

average performance. To map the relationships between geometric design parameters and the 

mentioned objectives, different virtual prototypes of grabs are simulated for a broad range of iron 

ore cargoes. Next by applying a surrogate modelling-based optimizer, an optimal grab design is 

created. The optimal grab design is then tested using the co-simulation, assessing to what extent 

the predictions of the surrogate model match with the simulated responses. The established 

optimization framework offers straight forward steps to design grabs for varying bulk cargo 

properties. 

The entire chain of a bulk handling system, especially for cohesive materials, can be 

simulated accurately at full-scale, aiming at maximizing the performance of the entire system. To 

achieve that, the approach presented in this work can be implemented for other bulk solids as well 

as for bulk handling equipment other than grabs. Moreover, the validated co-simulation of grab 

and cohesive iron ore paves the way for innovating design and operation concepts, thereby further 

minimizing the required time and energy for unloading iron ore carriers. 
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Introduction on co-simulation of grabs 

and cohesive bulk solids 

Iron ore products are transported from origin mines to customers, which are mainly steel 

manufacturers. Due to the high demand of iron ore products in the steel industry, they have the 

largest dry bulk trading per year, above coal and grains [1]. Global production of iron ore in 2009 

amounted to 1552 million ton, which has been raised to 2494 ton in 2018 [2]. The two main 

exporting countries of iron ore are Australia and Brazil, sharing around 75% of the global 

market [3]. The top 5 importing countries are located in Asia and Europe, which results in 

intercontinental shipping of iron ore products. In 2018, a total of 3210 million ton of dry bulk 

solids have been shipped; of which 46% was iron ore [1]. More than 90% of the yearly tonnage 

transport of iron ore is shipped by Cape-size bulk carriers [4]. Approximately 9000 Cape-size 

carriers with capacities up to 400 000 tonnes (DWT) transport the annual demand of iron ore to 

destination ports.  

To unload iron ore cargoes from bulk carriers at destination, grabs are employed. Figure 1-1 

displays a grab unloading a bulk carrier. The mooring time of bulk carriers needs to be as short as 

possible, thus, minimizing costs of terminal operators and other stakeholders. Therefore, a time-

efficient and reliable unloading process is required at destination ports. Considering the increasing 
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global demand for iron ore, the unloading process can be improved in terms of productivity to use 

available facilities, such as cranes, in a sustainable way. A promising solution for improving the 

unloading process is to enhance design of grabs. 

 

Figure 1-1. Unloading bulk carriers at destination using grabs 

1.1. The Grabbing Process 

During unloading of a bulk carrier, grabs collect the material from the cargo hold to transfer 

toward the next handling element, which is usually a hopper-conveyor system. A cycle of 

unloading the cargo using grabs consists of the following phases:  

• Grabbing bulk solids from the cargo hold,  

• Transferring the grab from the cargo hold toward next handling equipment,  

• Releasing the collected material (e.g. on a hopper-conveyor system), and  

• Transferring the empty grab to the cargo hold. 

The grab’s efficiency, ηgrab, depends mainly on the first part, the grabbing process, which 

determines the amount of bulk solid collected, MDWT. Therefore, investigating the grabbing 

process is the main focus of this dissertation. The grab’s efficiency in an unloading cycle, ηgrab, 

can be calculated using Eq. (1.1). 
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where MDWT is the weight of collected bulk solids using the grab, and Me is the grab’s weight 

when it is empty. The grab’s efficiency for iron ore cargoes is typically in the range of 0.5 to 0.75. 

To improve the grab’s efficiency for a specific crane capacity, Me should be minimized while 

MDWT is maximized. The general model of the grabbing process (i.e. of an iron ore cargo) is 

schematically shown in Figure 1-2. In addition to the grab design itself, dimensions of ship’s hold, 

properties of bulk cargo, crane operator, crane specifications are main contributing elements in 

the grabbing process. Thus, predicting performance of new design concepts is still a challenge, as 

it requires considering interactions between multiple contributing elements.  

 
Figure 1-2. General model of grabbing process (i.e. of iron ore) during unloading bulk carriers 

Furthermore, a grab is often used to handle a broad variety of iron ore cargoes that are different 

in their properties, such as moisture content, shear strength and bulk density. The variability of 

bulk solid properties influences the grabbing process considerably, and thus, the grab’s efficiency 

[5]. The consistency in grab’s efficiency needs to be maintained for designing a robust product. 

However, bulk cargo variability has not explicitly been incorporated in the design process of grabs 

and other equipment.  
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To design and develop a new grab, its performance needs to be evaluated in a range of 

operational conditions. For example, quantifying the payload, MDWT, allows to decide whether 

the new grab design meets expectations. This can be evaluated either by physical or virtual 

prototyping of new design concepts. 

1.2. Physical Prototyping of Grabs 

Physical prototyping is a traditional approach to enhance the grabbing process by fabricating new 

design concepts for testing. Manufacturers create new design concepts using their engineering 

knowledge and in-house experience. In the physical prototyping approach, once a new design 

concept is developed, a real-scale grab is manufactured.  

The real-scale grab prototype is tested at a bulk terminal to evaluate its performance during 

the grabbing process. For example, Figure 1-3 shows a real-scale prototype that was built to be 

tested at a bulk terminal in 1968. This prototype aimed at improving the grabbing process at the 

final stage of unloading a ship’s hold, where the bulk cargo is trimmed. The product was finalized 

after manufacturing multiple real-scale prototypes with incremental improvements, and it is 

currently being used at bulk terminals (shown in Figure 1-1). It is known that physical prototyping 

is a time- and cost-intensive design approach, requiring multiple grabs to be manufactured. 

 
Figure 1-3. A real-scale physical prototype is built to be tested at bulk terminal (1968, Rotterdam). 

Courtesy of Nemag B.V.  
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1.3. Virtual Prototyping of Grabs in Interaction with Bu lk Solids 

The virtual prototyping of grabs [6–10] is a novel design technology. The virtual prototyping 

offers a time- and cost-efficient way to replicate the grabbing process of bulk solids in a simulation 

environment. To model grabs in interaction with bulk solids, a co-simulation framework is used 

that couples a Discrete Element Method (DEM) solver with a MultiBody Dynamic solver.      

Figure 1-4 presents the co-simulation framework, which requires virtual crane operator, CAD 

model of grab connected to a crane, and calibrated material model as inputs. A coupling server 

communicates between two solvers at each time interval; the geometry motion is calculated using 

the MBD solver, and the reaction forces on the geometry is calculated using the DEM solver. 

To set up the DEM simulation, a material model needs to be included. A material model 

replicates the behavior of an actual bulk solid in interaction with equipment. Calibration and 

verification of DEM input parameters is the common approach to ensure that the material model 

simulates the behavior of corresponding bulk solid properly [11].  

Co-simulation of grabs and bulk 
solids

Coupling 
server

DEM solver
Computing bulk behaviour and 

bulk-equipment interaction

MBD solver
Computing geometry motion

M
ot

io
n 

of
 

ge
om

et
ry

F
or

ce
s 

on
 

ge
om

et
ry

Inputs:

• Virtual crane operator

• CAD model of grab 
connected to a crane

• DEM material model

 
Figure 1-4. Co-simulation framework between MBD and DEM solvers to simulate the grabbing process 

Figure 1-5 displays a generic DEM calibration procedure, including main components. In general, 

input variables of DEM, such as particle density, friction coefficients, and particle shape, are 

varied until the mismatch between simulated and actual bulk response is minimized. Over the past 

decade, reliable DEM calibration procedures have been developed to model free-flowing bulk 

solids, such as iron ore pellets [9], glass beads [12], sinter ore [13], sand [14,15], and gravel 

[16,17]. By setting multiple targets for the DEM calibration, more than a single bulk response can 



Introduction on co-simulation of grabs and cohesive bulk solids 

14 

be considered. This prevents the “ambiguous parameter combinations” problem in the DEM 

calibration procedure, which is discussed in detail in [17]. For example, to calibrate DEM input 

variables for simulating iron pellets in interaction with ship unloader grabs, Lommen [8] 

considered at least three different calibration targets. The static angle of repose was replicated 

using the ledge and free-cone methods; the penetration resistance of iron pellets was also 

replicated, using a wedge penetration test setup. The calibrated material model was used to 

simulate the grabbing process of iron ore pellets in a real-scale co-simulation. The co-simulation 

was validated by comparing its outcome to real-scale experiments on the grabbing process. 

In contrast to such a free-flowing material, the majority of iron ore products and other bulk 

cargoes (e.g. coal) show cohesive and stress-history dependent behaviours, which cannot be 

captured using the current DEM material model. Additionally, considering particle size and shape 

of such fine iron ore products, the extreme computation time of DEM simulation is another 

challenge to be solved. Scaling techniques can offer a promising solution to minimize the 

computation time. 

[Y’]

Simulate bulk responses, 
Y’, for various sets of 

input variables

Find comparable 
Y and Y’

Calibration targets, Y,
e.g. generated using 

laboratory tests

Calibrated set of DEM 
input parameters 

DEM input variables. e.g. 
particle density

 
Figure 1-5. Main components of a generic DEM calibration procedure. 

In general, iron ore products are produced in different particle size ranges, such as lump, pellet, 

sinter feed and pellet feed. Lump ore products have particle size between 6.3 and 40 mm [18]. 

Particle size range of pellets is between 8 and 14 mm; because of size and characteristics of 

particles in iron ore pellets, the variations of moisture content or consolidation state does not play 

a role on their bulk properties [8]. Therefore, pellet as well as lump size iron ore products are 

considered as free-flowing materials. Figure 1-6 displays three different iron ore samples, pellets, 

sinter feed and pellet feed  categories, indicating the difference in their particle size distribution. 

Sinter feed and pellet feed products have a particle size usually less than 11 mm [19,20]. Cohesive 
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forces between particles are created due to the liquid bridge, and hence the amount of moisture 

present influence material behaviour and its interaction with equipment.  

 
Figure 1-6. Various size range in iron ore products; pellets, sinter feed and pellet feed [21] 

Furthermore, piles of iron ore in bulk carriers can be up to 20 m deep [19]. Due to the self-weight 

of bulk solid, a considerable vertical pressure (stress) is created over the pile depth. This vertical 

pressure probably densifies moist iron ore cargoes over the pile depth. It is unclear whether the 

densification of iron ore cargoes influences the grabbing process upon unloading of bulk carriers. 

Therefore, the current co-simulation framework [8] needs to be extended to include a 

realistic DEM material model of iron ore fines, such as sinter feed type, in interaction with grabs. 

Figure 1-7 schematically illustrates a DEM contact spring-damper system between two particles, 

a and b. Here, three main modules are identified: contact force in the normal direction is denoted 

by fN, while fT and τR represent force in the tangential direction and rotational torque respectively. 

Without choosing a proper combination of contact modules, calibrating a realistic DEM material 

model is infeasible. 

 
Figure 1-7. A contact spring-damper system between two particles, including normal, tangential, and 

rotational directions 

Pellets                           Sinter Feed                        Pellet Feed 
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The current co-simulation framework uses an elastic contact model, which is not able to capture 

cohesive and stress-history dependent behaviours [22]. Including the plastic overlap in a contact 

spring enables the possibility of capturing the stress-history dependent behaviour [23]. Elasto-

plastic adhesive contact springs are promising options to calibrate material behaviour of iron ore 

fine products that are moist [24]. Figure 1-8 shows a schematic model of an elasto-plastic adhesive 

contact spring, which consists of three parts: (I) loading, (II) unloading/reloading, and (III) 

adhesive parts. By introducing cohesive forces as well as elasto-plastic stiffness into the DEM 

calibration procedure, the number of DEM input variables and the number of required bulk 

responses increase [23,25–27]. Therefore, a reliable calibration procedure is required to calibrate 

DEM material models that are based on elasto-plastic adhesive springs.  

 
Figure 1-8. A non-linear elasto-plastic adhesive contact spring.  

1.4. Research Objectives 

The primary objective of this dissertation is to simulate the grabbing process of cohesive iron ore 

cargoes accurately. This can be achieved by establishing a reliable DEM calibration procedure as 

well as a scaling approach for elasto-plastic adhesive contact springs. The common approach to 

create DEM calibration targets is to determine bulk responses using experiments at laboratory, 

such as penetration [28], angle of repose [26], shear cell [29] test setups. Once the DEM material 

model is calibrated, a real-scale co-simulation needs to be set up that has a practical computation 

time. Up-scaling of DEM particles can offer a solution to minimize the computation time [30]. 

Next, validating the accuracy of the simulated grabbing process is required. 

Furthermore, by including the material model of iron ore fines in the existing co-simulation 

framework, a systematic design framework can be established to enhance the grab’s efficiency. It 

is important to determine the optimal settings of design variables in order to minimize the effects 

f 

δ 

Part I  

Part II  

Part III  
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of bulk cargo variation on the grab’s efficiency. Such an approach is the fundamental strategy of 

robust design [31]. Bulk terminal operators value grabs that are optimized to satisfy multiple 

objectives, including a consistent, and simultaneously, a maximized efficiency. Therefore, a 

multi-objective optimization framework is developed to incorporate the bulk cargo variation in 

the design procedure of grabs. 

The following research questions are addressed in this dissertation: 

1 How can the effect of stress-history dependency of cohesive iron ore on the grabbing process 

be evaluated using a laboratory experimental setup? 

2 What are variability and interdependency of iron ore properties and their interactions with 

equipment in realistic transport and storage conditions? 

3 How to minimize the computation cost for a large scale co-simulation of grabs and cohesive 

bulk solids? 

4 What is a reliable calibration procedure to develop a realistic material model of cohesive iron 

ore for the grabbing process? 

5 What is the accuracy of the MBD-DEM co-simulation of grabs and cohesive iron in replicating 

the actual process? 

6 How can bulk cargo variation be included in the design procedure of grabs? 

1.5. Outline of This Dissertation 

The outline of this dissertation is illustrated in Figure 1-9 and a brief description of the content of 

each chapter is outlined below. 

Chapter 2 presents a consolidation-penetration test method to investigate whether the stress-

history dependent behaviour of iron ore is significant. Such a laboratory test method replicates the 

consolidation stress expected in a cargo pile during the grabbing process.  

Chapter 3 studies the material characteristics of iron ore fine samples further, in conditions 

similar to unloading conditions in the cargo hold of the vessel. Various characteristics are 

quantified, such as shear strength, wall fiction, ledge angle of repose and penetration resistance. 

In Chapter 4, first an appropriate DEM contact model is selected for modelling cohesive 

and stress-dependent behaviours of iron ore products. Next, to overcome the extreme computation 

time of DEM simulations, a hybrid particle-geometric scaling approach is established. 
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In Chapter 5, a material model is calibrated to simulate the cohesive iron ore sample 

including its stress-history dependency behaviour. A reliable multi-step optimization framework 

is established to consider feasibility and definiteness in the calibration procedure.  

Chapter 6 compares the simulated grabbing process of cohesive iron ore to reality, therefore 

establishing a validated model. To achieve this, bulk cargo properties in interaction with a Scissors 

grab are determined at a bulk terminal.  

Chapter 7 demonstrates a multi-objective optimization framework to incorporate the bulk 

cargo variation in the design procedure. Virtual prototypes of grabs are tested in handling a broad 

range of iron ore cargoes, resulting in an optimal grab design.  

Chapter 8 concludes the adequacy of the research approach and provides recommendations 

for further research on enhancing the grabbing process and other similar applications. 
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Figure 1-9. Visual outline of this dissertation 

 





 

 

2  

 

 

Stress-history dependency of cohesive iron 

ore∗∗∗∗  

The grabbing process starts with cutting the free surface of the bulk iron ore. The initial 

penetration depth of the grabs’ knives into the material is an important success factor in their 

filling ratio. The resistance to penetration is influenced by the consolidation process of the cargo, 

which occurs during loading and sailing. When bulk carriers arrive at the port of destination, the 

iron ore cargo is often in a partially consolidated form in the cargo hold. In this chapter, a test 

method is developed to mimic the penetration process of the grabs’ knives into material, and to 

determine whether the penetration resistance of iron ore fine is sensitive to the pre-consolidation. 

The relationship between pre-consolidation and bulk density is investigated as well. 

Section 2.1 describes the material properties of an iron ore fine cargo. Furthermore, the test 

method is described including the experimental hardware and procedure. Next, levels of pre-

consolidation are selected to create an experimental plan. Section 2.2 presents results of the 

                                                

∗ This chapter corresponds to the reference: M. Mohajeri, F.M. Sickler, C. van Rhee, D.L. Schott, “A 

consolidation-penetration test for wedge-shaped penetration tools”. Journal of FME Transactions, Volume 

46, Issue 3, 2018, 392-399. DOI: 10.5937/fmet1803392M. 
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experiment, including the influence of pre-consolidation on the penetration resistance and the bulk 

density. Section 2.3 presents conclusion on the link between the pre-consolidation and the 

penetration resistance for the grabbing process. 

2.1. Material Properties and a Consolidation-Penetration Test Method  

As the unloading of a ship’s hold starts and proceeds, the grab collects bulk material that is stored 

at greater depths. Consequently, when the grab’s knives touch the bulk surface that is an over-

consolidated condition. Over-consolidation means that the current existing vertical stress is less 

than the historical maximum stress. The historical maximum, which is referred as the pre-

consolidation stress, is the maximum vertical overburden stress that a particular sample has 

sustained in the past [32]. Since the grabs’ performance is influenced by the initial penetration 

depth of their buckets into bulk materials, it is expected that a higher pre-consolidation stress 

results in a lower grab payload by reducing its initial penetration depth. 

The exact state of the iron ore cargo remains unknown, as many factors are involved in its 

production, loading and transportation. For instance, the varying forces that acted upon the cargo 

during loading and sailing can lead to different states of compaction [4]. The state of compaction 

or the relative density compares the current packing with both the densest and the loosest packing 

conditions. 

In [8], a penetration test was used to calibrate the Discrete Element parameters of iron ore 

pellets in interaction with grabs. Due to the low sensitivity of pellets to consolidation, no 

significant influence on the penetration resistance could be identified. However, the majority of 

the iron ore products are iron ore fines (IOFs), which are expected to have a higher penetration 

resistance in the over-consolidated condition. 

The influence of pre-consolidation on the penetration resistance of soil material has been 

investigated by a number of researchers; some examples are [33], [34] and [35]. However, the 

influence of pre-consolidation on the penetration resistance of IOFs has not been investigated yet. 

2.1.1. Cargo (IOF) characteristics  

Iron ore products are produced in three different particle size ranges: pellets, sinter feed and pellet 

feed. The first ore, pellets, are marble-sized, heat-hardened balls of iron and have a particle size 

between 8 and 18 mm [8]. The other two groups have a particle size usually smaller than 6.3 mm 
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[36]. Figure 2-1 displays three samples, one of each iron ore category, indicating the difference in 

their particle size range. 

Pellets are out of the scope of the current investigation, since consolidation does not play a 

role in their resistance against grabs knives’ penetration [8]. Therefore, a pellet feed type of iron 

ore is selected for this experiment. Table 2-1 shows the particle size and density characteristics of 

the iron ore sample. 50% of the sample weight consists of particles smaller than 0.88 mm, and 

80% of the particles have a diameter between 0.001 and 6.3 mm, indicating a wide particle size 

distribution. 

 

 
Figure 2-1. Iron ore products with different particles sizes 

Table 2-1. Characteristics of the iron ore sample [37] 

Particle size distribution 

(mm) 

d10 0.001 

d50 0.088 

d90 6.3 

Particle density (kg/m3) 4182 

IOF cargoes are often transported in a wet state, and their bulk properties, such as bulk density 

and compressibility, are different in wet and dry states [38]. To create this wet state, first the iron 

ore sample was dried in an oven device according to the procedure described in [39], and then 

water was added to the dry sample. 

Since cargo moisture should be always low enough to prevent any hazardous cargo 

liquefaction [40], the sample was prepared with only 5% dry-based moisture content. Dry-based 

moisture content is the portion of a representative sample consisting of water, expressed as  a 

percentage of the total dry mass of that sample [32]. This parameter can be expressed as follows: 

 �� � 100 �� − ����  (2.1) 

Pellets   Sinter feed  Pellet feed 
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where ρb and ρd are the bulk density in wet and dry states respectively. 

A mixing machine was used to combine the water with the dry iron ore to create a 

homogeneous moisture distribution. Figure 2-2, which shows the iron ore before and after the 

mixing, indicates that prior to mixing there are several relatively large agglomerated particles 

present in the material. Most of these agglomerates are created during the drying process of the 

IOF sample in the oven. During mixing, these pieces are broken down into smaller pieces. 

Next, to create an over-consolidated sample, representing the cargo’s in-hold situation, an 

estimation of this cargo condition is required. This is a challenging job, since a combination of 

both deterministic and non-deterministic forces act upon the cargo, such as the weight of the cargo 

itself, the drop height during the cargo loading and the waves’ impact during sailing. Additionally, 

it is nearly impossible to identify which of these forces are more influential on the grabs’ 

performance during the unloading of cargo. 

Therefore, the design guideline for bulk carriers [41], as well as [42], is used to estimate a 

range of consolidation stresses required to replicate the IOF cargo condition in a laboratory 

environment. Based on the design guideline, the maximum height of the IOF pile inside the hold 

of a typical Cape-size bulk carrier should be limited to 15 m; this complies with the measurement 

data of [20]. However, based on [42], the height of an IOF cargo pile can be up to 20 m in practice. 

Therefore, the maximum height of an IOF cargo is assumed to be 20 m, to cover the whole range. 

 
Figure 2-2. The iron ore sample before (A) and after (B) mixing with the mixer machine [37] 

Since the aim of the current chapter is to investigate the relationship between vertical 

consolidating pressure and penetration resistance of the cargo, a range of pre-consolidation 

stresses are determined to replicate the confining pressure acting on IOF cargoes at different 

A.              B.              
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layers. Figure 2-3 displays a 3D view of an IOF cargo pile in the ship’s hold. The geometrical 

profile suggests different levels of vertical pressure along the pile depth.   

 

Figure 2-3. Laser scan of a ship’s hold containing cargo of iron ore fine [20] 

2.1.2. Experimental hardware 

A column of iron ore with the height of 20 m and the area of 1 m2 approximately weighs 55 tons, 

corresponding to vertical confining pressure of 540 kPa at the bottom of the column. In order to 

replicate this pressure, a hydraulic servo-controlled test frame is selected with a maximum force 

of 200 kN. 

Figure 2-4 displays the schematic cross section of the penetration tool selected for this study. 

This is the same tool that [8] used to study the penetration of a grab into the iron ore pellets. Using 

the same tool aids in producing comparable results, which will be used for the grab design 

application. 

A wedge-shaped penetration tool is chosen, as plane stress is required to resemble the 

penetration of a grab in iron ore. The tool is chosen to be symmetric to minimize the bending 

stress in the experimental apparatus. The 40 mm width of the penetration tool is based on 

manufacturing requirements; this specify a minimum of 30 mm and a maximum of 50 mm as the 

characteristics of a real grab. The tool angle was chosen to be 30º as this is the standard angle used 

by other researchers such as [43] and [44], as well as in the existing industrial scale grabs. The 

wedge length is 200 mm. 



Stress-history dependency of cohesive iron ore  

26 

The ideal penetration tool tip shape for minimizing penetration resistance is a sharp one. 

However, due to the abrasive nature of iron ore, in practice a sharp tip wears off quickly; therefore, 

a blunt tip is often used. 

 
Figure 2-4. Cross section of the wedge penetration tool [8] 

Figure 2-5 displays details of the test container. The dimensions of the container are limited by 

the apparatus to be used for the penetration test. The penetration tool has a depth of 75 mm. Care 

has to be taken that the tests are unaffected by the adjacent sides or bottom wall of the container 

[45]. To avoid this wall effect, the depth of the container should be at least 75 mm multiplied by 

2, which results in 150 mm. The length of the container is of importance because as the material 

is penetrated the material will displace to the sides. For the cone penetration into sand, the ratio 

used of the nearest wall to the cone diameter is larger than 2 [46]. To ensure that enough space on 

both sides of the wedge is available, at least 80 mm of space on each side of the penetration tool 

is required, resulting in a total container width of 80 + 80 + 40 = 200 mm. These dimensions result 

in a container with a volume of 15 liters. 24 kg of the iron ore sample is used to fill the container. 

Before starting the consolidation phase, the sample of the iron ore is loosened to ensure that 

almost no consolidation remains from mixing or transportation. Then the iron ore is loaded in the 

designed container, and the bulk surface is leveled out manually. 

In order to create a homogeneous sample, the state of compaction should be uniform along 

the depth. One of the factors that could affect the state of compaction is the layer thickness [47] 

or “under-compaction” effect that is investigated in [48]. To study the influence of this factor on 

the test results, consolidating in one layer and three layers are considered in the test procedure. In 

both cases, each layer is consolidated using the same compressive force. A rigid top plate (1, in 
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Figure 2-5) is placed between the hydraulic jack and the bulk surface to distribute pressure 

uniformly on the sample. 

 

Item 

No. 
Quantity Title Material Function 

1 1 Top plate - Consolidation 

2 1 Back plate S355 J2+N N.A (fixed) 

3 2 Side plate S55 J2+N N.A. (fixed) 

4 1 Transparent plate Plexiglas Capture flow 

6 1 Bottom plate S355 JR N.A (fixed) 

Figure 2-5. Details of the test container 

For the experiment of consolidating in one layer, 24 kg of the iron ore sample is poured into the 

container using a small shovel. After creating a levelled-out surface, the sample is consolidated 

by applying the predetermined force of 5 kN on the top plate, equivalent to 66.7 kPa consolidating 

pressure on the sample. Next, in a separate experiment, the sample is consolidated in three layers 

of 8 kg each by applying the same consolidating pressure. 

In the next phase, the penetration phase, the reaction force on the wedge tool during 

penetration into the iron ore sample is measured. Since previous research, [8] and [43], have stated 

that the penetration velocity has little to no influence on the penetration resistance, a constant 

velocity of 6 mm/s is used. 
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Figure 2-6 displays the consolidation phase, as well as the material condition before starting 

the penetration phase. After the penetration phase, the wedge is moved upward to the initial 

position with the same velocity (6 mm/s). After each experiment, the container is emptied and the 

sample is loosened. 

To calculate the bulk density, the material depth is determined by using the elevation where the 

wedge tool touches the bulk surface, and a force of 0.1 kN is measured. 

Figure 2-7 shows the schematic set-up for determining the vertical displacement of the 

wedge tool relative to the material depth. Since the test apparatus does not record the displacement 

data relative to the material depth, the sample surface is adjusted with +10 mm. Therefore, the 

penetration resistance can be compared in a consistent manner. 

2.1.3. Experimental plan 

The two dependent variables measured in this experiment are, I) the recorded reaction force on 

the wedge during penetration into the sample, the so-called penetration resistance, and II) the bulk 

density of the sample after the consolidation phase. The effect of three independent variables on 

them are measured: I) number of consolidated layers, II) applied consolidation stress and III) 

number of repetitions. 

In the first experiment, the sensitivity of the penetration resistance to the number of 

consolidated layers is investigated. The experiment determines whether consolidating the iron ore 

sample in one layer or in three layers influences the penetration resistance significantly. 

For the second experiment, the effect of increasing consolidation stress on the penetration 

resistance is investigated. Table 2-2 shows the range of forces and the corresponding 

consolidation stress to be applied on the iron ore sample. As explained in 2.1.1, several levels of 

Figure 2-6. Consolidating the iron ore sample; Left) consolidating iron ore with the top plate, Right) 

Starting point of the penetration phase 
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consolidation stress are determined to represent a range of possible vertical confining pressure in 

ships’ holds, at different depths in the iron ore cargo. 

Each test is repeated at least three times. This makes it possible to measure the penetration 

resistance and the bulk density in at least three test repetitions, and to plot the confidence interval 

of the results. 

 
Figure 2-7. Schematic view of the set-up for measuring the displacement of the wedge tool over material 

depth 

Table 2-2. Levels of applied consolidation stress 

Applied force [kN] 0 1 5 10 20 40 

Equivalent consolidation stress [kPa] 0 13.3 66.7 133.3 266.7 533.3 

2.2. Test Results 

Figure 2-8 illustrates the effect of the consolidation strategy, one layer versus three layers, on the 

penetration resistance. For a stress level of 66.7 kPa, the average penetration resistance, as well 

as the 95% confidence intervals (CI 95%), are shown for both cases. Even though at the initial 

depths, with the displacement smaller than 40 mm, the recorded reaction forces in both cases are 

similar, they start to diverge as the tool penetrates deeper. The difference is quantified by 

calculating the ratio of the average penetration resistance at the 100 mm wedge displacement in 

the case of consolidating in one layer over the other case; this ratio is 0.91.  

The difference at the greater depths is likely to be caused by applying more consolidating 

energy to the second and third layers; this results in a slightly stiffer bulk material, and thus more 
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resistance to penetration. Comparing the bulk density supports this idea; in the case of 

consolidating in three layers, the bulk density (average) is 11 kg/m3 higher than the other case. 

However, considering the similarity in the trend of the penetration resistance in both cases, the 

overlapping confidence intervals, and the small difference in the bulk density, the second set of 

experiments are conducted by consolidating the sample in one layer. 

 
Figure 2-8. The effect of number of consolidation layers on the penetration resistance; consolidation 

stress: 66.7 kPa 

A major objective of this chapter is to determine the relationship between penetration resistance 

and consolidation stress. Their relationship is illustrated in Figure 2-9, which presents the 

penetration resistance at 100 mm of the wedge displacement for all the applied levels of 

consolidation stress. The circles indicate the average of the measurement, and the 95% confidence 

interval for each consolidation level is displayed using vertical error bars. The variations in the 

measured penetration resistance can be explained by the manual operation of the consolidation 

phase. 

As expected, with increasing consolidation stress, the penetration resistance increases as 

well. However, the rate of increasing the penetration resistance decreases when the consolidation 

stress increases. For instance, applying the first level of consolidation (13.3 kPa) increases the 

penetration resistance by 67% compared to the loose condition. At the other end of the diagram, 

increasing the applied consolidation stress by 100% (266.7 kPa), resulted in only a 22% increase 

in the penetration resistance. 

To quantify this non-linear behavior, a quadratic regression (dashed line in Figure 2-9) with 

R2 = 0.9976 is fitted on the data. R2, the coefficient of determination, is commonly interpreted as 
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the proportion of total variance explained by the independent variable [49]. When R2 = 1, all the 

variance is explained by the regression model. A linear regression can only fit the data with 

R2 = 0.9038. Therefore, the quadratic regression model with a R2 of 0.9976 demonstrates the 

accuracy of the fitted non-linear model.  

 
Figure 2-9. The penetration resistance at 100 mm wedge displacement for each compaction level (as 

stated in Table 2-2); included is a non-linear regression line (dashed) equation and its R2 value 

Figure 2-10 displays another non-linear behavior; a sudden increase in the penetration resistance 

at initial depths of consolidated material is observed. After this, the measured penetration 

resistance decreases again. With an increasing consolidation stress, this peak increases in 

magnitude and repetition over depth, which  can be explained due to the shear failure mechanism 

of the bulk material. Schulze [19] explained that if a consolidated specimen is sheared under 

normal stress it will start to flow (fail) when a sufficiently large shear force is applied. For 

instance, comparing the initial peak for different levels of consolidation indicates that a higher 

state of compaction requires a higher (shear) force to initiate particle flow. 
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Figure 2-10. Effect of consolidation stress on the failure pattern  

One of the major bulk material factors affecting penetration resistance is bulk density [51]. A 

higher relative bulk density often results in a higher penetration resistance. In what follows, first, 

the relationship between bulk density and consolidation stress is described; next, the relationship 

between penetration resistance and bulk density is illustrated. 

Figure 2-11 displays the relationship between the applied consolidation stress and the 

measured bulk density. The approach used to measure the bulk density (Figure 2-7), might have 

introduced some level of error into the result. For instance, the average bulk density of the sample 

in the loose condition is higher than that of the next consolidation level (13.3 kPa), which is not 

as expected. In addition, the confidence interval of the average bulk density in the loose condition 

is larger, than that of other consolidation levels. This is probably caused by leveling out the bulk 

surface manually; it is difficult to create a repeatable and perfectly flat surface in this way. 

A clear trend is that the higher the consolidation stress, the higher the resulting bulk density. 

For example, the average bulk density in the loose condition is 2109 kg/m3, and this increasing to 

2275 kg/m3 at the highest consolidation stress (533.3 kPa). This relation was expected, since 

applying consolidating stress reduces the voids in the sample, and thus, makes it denser. To 

quantify the relationship between the bulk density and the consolidation stress, a non-linear 

regression model is fitted, with a R2 = 0.9614.  
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Figure 2-11. Average bulk density at different levels of consolidation; Included is a non-linear 

regression line (dashed) equation and its R2 value  

The bulk density result can be used to link the test results to the iron ore condition in the ship’s 

holds during the unloading. For example, by measuring the relative bulk density of the cargo, the 

required energy for the initial penetration of the grab’s knives can be estimated. This value is 

useful for finding a design that requires the least amount of energy, allowing the grab a greater 

initial penetration.  

By integrating the resulting force (in N) over the depth (in m), the penetration resistance in 

Joules is obtained. Figure 2-12 displays the relationship between the penetration resistance at 

100 mm wedge displacement and bulk density. The circles indicate the average of the 

measurement done at different levels of consolidation stress. The 95% confidence of interval of 

the penetration resistance and bulk density are displayed using vertical and horizontal error bars 

respectively.   

As was expected, a higher energy is required for cutting a denser sample. However, this is 

with exception of the test results in the loose condition, in which the recorded bulk density is 

higher than the next level of consolidation stress. The result can be fitted using a linear regression 

model with a R2 = 0.9211, suggesting a linear relationship between the penetration resistance and 

bulk density. However, since there are overlaps between the 95% confidence intervals of the bulk 

density data, caution in interpreting the relationship is advised. 
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Figure 2-12. Relationship between bulk density and penetration resistance; included is a linear 

regression line (dashed) equation and its R2 value 

2.3. Conclusion 

The test method developed in this chapter has been successfully used to investigate the effect of 

consolidation stress on the penetration resistance. A wedge-shaped tool was penetrated into a 

moist sample of iron ore fine that replicates the interaction between a grab’s knives and bulk 

material. 

• An increasing non-linear relationship between the pre-consolidation and the penetration 

resistance was found. Therefore, there is a strong link between the stress-history dependency 

of cohesive iron ore and the grabbing process.  

• Regarding the experimental procedure, a one-layer strategy was adequate for creating a 

consolidated sample of iron ore fine. The results are repeatable, with only one exception, the 

results of bulk density in the loose condition. 

In the next chapter, the created test method in combination with other test methods will be 

used to characterize bulk properties of iron ore fines that are likely to be sensitive to consolidation, 

such as the sinter feed type of iron ore. Next chapter will also focus on moisture content as a 

variable, which is known to affect the penetration resistance and compressibility of fine granular 

materials. Including the moisture content, allows for investigating the interdependency of bulk 

properties in a quantitative way.  
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Variability and interdependency of bulk 

properties of cohesive iron ore∗∗∗∗  

Bulk properties of iron ore such as bulk density and compressibility depend on various factors, 

such as particle properties [8] and moisture content [52]. Therefore, in addition to identifying 

properties of an iron ore product, variability of the product needs to be also considered in the 

design and operation of handling equipment. An ideal unit of bulk transport or storage equipment 

is able to handle cohesive iron ore with consistent productivity. In practice, however, 

uncontrollable bulk property variations affect the productivity. Therefore, this chapter quantifies 

variability and interdependency of bulk property of a range of cohesive iron ore products that 

originate from Brazil.  

Grab relevant bulk properties of iron ore products are divided into two groups. Possible 

influencing bulk properties on the grabbing are identified in Section 3.1. Also, this section presents 

a list of bulk properties that are dependent to the influencing ones. Three different laboratory test 

                                                

∗ This chapter corresponds to the reference: M.J. Mohajeri, M.J. van den Bos, C. van Rhee, D.L. Schott, 

“Bulk properties variability and interdependency determination for cohesive iron ore”. Powder 

Technology, Volume 367, 2020, 539-557. DOI: 10.1016/j.powtec.2020.04.018. 
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methods relevant to the grabbing process are employed, which are introduced in Section 3.2. 

Section 3.3 describes the experimental design diagram, including selected levels for influencing 

bulk properties and experimental plan. Using a multi-variate experimental plan, three influencing 

characteristics of iron ore – type, moisture content and consolidation state – are included. 

Experimental results are presented in Section 3.4. Furthermore, correlations between influencing 

and dependent bulk properties are analyzed in Section 3.5. A stress-history dependent behavior is 

captured in both the shear and penetration tests, with the results being highly dependent on the 

pre-consolidation stress. Section 3.6 presents the conclusion on determined variability and 

interdependency for the iron ore samples, as well as further recommendations. 

3.1.  Influencing and Dependent Bulk Properties of Iron Ore Products 

The uncontrollable variations of independent variables can be responsible for product 

performance inconsistency [53]. Thus, it is important to determine the optimal settings of 

controllable factors in order to minimize the effects of uncontrollable variations on the process. 

This is the fundamental strategy of robust design [31]. A number of examples on minimizing the 

effects of uncontrollable variations on the process can be found in [54–58]. However, in practice 

the distribution of uncontrollable variables and their link to the process is often unknown. As a 

practical solution, one can assume a range of possible variations of the uncontrollable variables 

to use in the design optimization process [55]. However, assuming an unrealistic distribution may 

end to biased optimization outcome with inadequate performance [57]. 

Figure 3-1 illustrates how the variability of iron ore properties plays a role in the handling 

process. The process input is a specific type of equipment (i.e. grab). A rope grab that is lowered 

on an iron ore cargo is displayed in Figure 3-2.  

In the flowchart, key performance indicators (KPIs) of equipment assess product 

performance, such as grab’s payload and energy consumption. In the handling process, bulk 

materials are stored and transported; for instance once ships reach the destination, using grabs 

cargoes are excavated to be transported to quay side. The first group of input variables is design 

and operation parameters, which can be controlled, such as bucket dimensions and operating 

speed. The second group, bulk properties variability, is the uncontrollable variation of bulk 

properties, which are difficult or nearly impossible to be controlled by designers or operators. For 

example, the inherent properties related to the material origin, effects of mining aspects condition 

(e.g. water table height), the mine excavation process and the preprocessing before sending to 



Chapter 3  

37 

destinations (e.g. grinding). The bulk properties variability are divided into two groups in this 

chapter, influencing and dependent bulk properties. In general, influencing bulk properties are 

responsible for the variations of dependent bulk properties. 

 

Figure 3-1. Controllable and uncontrollable inputs in bulk storage and transport processes, including 

ship unloader grabs  

In [22], stress-strain responses and bulk density of two Swedish iron ore sample are quantified in 

uni-axial consolidation tests under various combinations of moisture content. Additionally, the 

Jenike shear test is applied to quantify the shear strength of the bulk materials at dry and moist 

conditions, however, without creating a pre-consolidated situation. In [48], the influence of 

moisture content variation and pre-consolidation on flowability of four different Australian 

cohesive iron ore samples were investigated. Free surface flow of the samples (e.g. angle of 

repose) as well as interaction of iron ore fines with handling equipment were out of scope of the 

two mentioned studies, and thus they need to be considered when the grabbing process is being 

investigated.  

In [38], effects of type of iron ore and level of moisture content on the bulk density and 

angle of repose of two samples of iron ore fine are investigated. Also, the bulk density 

measurements are performed under the effect of consolidation and vibration at various levels of 
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moisture content. The results show that bulk density is sensitive to type of iron ore, level of 

moisture content and consolidation. However, the relationship between consolidation states and 

shear strength, or consolidation states and penetration resistance of iron ore fines are not 

researched. 

 
Figure 3-2. A rope grab lowered on iron ore cargo 

As discussed above, even though a number of studies are conducted that can help to incorporate 

the variability of bulk properties in handling process, some links remained unquantified. First, the 

effect of level of pre-consolidation stress on the penetration resistance of iron ore is unknown. 

Identifying this relationship is essential in some bulk handling applications, such as ship unloading 

and excavation in stack yards. Second, by quantifying the interdependency of flowability, pre-

consolidation and moisture content for cohesive iron ore, the uncertainty of bulk properties 

variability can be introduced into the design procedure of bulk handling equipment. Furthermore, 

relationships between influencing and dependent bulk properties are not fully established in the 

literature. For instance, the effect of pre-consolidation stress on the penetration resistance might 

be dependent to type of iron ore. 

Based on the literature review, the influential bulk properties are categorized into three 

different groups as follows: I) type of iron ore, II) moisture content, and III) consolidation state. 

The first group, type of iron ore, covers those characteristics of samples that can be assumed 

constant during storage and excavation, such as chemical composition, particle size distribution, 

clay type and content. Also, variations of particle size distribution due to possible segregation 
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during transport of iron ore cargoes is considered to be negligible in the current investigation. 

More than five dependent bulk properties are also measured in this chapter that can be categorized 

under three main groups, as follows: I) bulk density and compressibility, II) shear strength and 

flowability, and III) interaction with equipment.  

3.1.1. Influencing bulk properties 

Three different influencing bulk properties are included in this chapter, which are also suggested 

in Figure 3-1. The first property is the type of iron ore cargo, which will be referred with I in this 

chapter. In general, iron ore products are produced in four different particle size ranges: lump, 

pellet, sinter feed and pellet feed. Lump ore products have particle size between 6.3 and 40 mm 

[18]. Particle size range of pellets is between 8 and 14 mm; because of size and characteristics of 

particles in iron ore pellets, the variations of moisture content or consolidation state does not play 

a role on the dependent bulk properties [8]. Therefore, pellet as well as lump size iron ore products 

are out of scope of the current investigation, as discussed in the previous chapter. Figure 3-3 

displays three different iron ore samples, pellets, sinter feed and pellet feed  categories, indicating 

the difference in their particle size distribution. Sinter feed and pellet feed products, which are 

included in this study, have a particle size usually less than 11 mm [19,20]. In [20], a Scanning 

Electron Microscope (SEM) was used to take high magnification photos of the sinter feed type 

products. All the tested samples had porous particles of irregular shapes and a range of particle 

sizes. Pellet feed type iron ores tend to be more uniformly sized, compared with sinter feed type 

products.  

 
Figure 3-3. Various size range in iron ore products; pellets, sinter feed and pellet feed [21] 

Second influencing bulk property is the level of moisture content. Iron ore cargoes are found in a 

wide range, from relatively dry condition to saturated condition [4]. The dry-based moisture 

content, denoted by MC in this dissertation, is the portion of a representative sample consisting of 

water, or other liquid express as a percentage of the total dry mass of that sample [32].  

The last important influencing bulk property that is included in this investigation is the 

consolidating state. In general, the consolidation occurs due to the consolidating stress, σ, acting 
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on bulk solids [50]. Also, the kinetic energy coming from releasing bulk solids from height leads 

to a more consolidated condition [20].  

3.1.2. Dependent bulk properties 

The dependent bulk properties are basically sensitive to the level of influencing ones. First 

dependent property, bulk density (ρb) as shown in Eq. (3.1), follows from the solid density (ρs),  
and the density of the fluid within the voids (ρf) [50]. 

 ��= �1 − �� �� � � � �� (3.1) 

where S and ε are the degree of saturation (with fluid) and porosity respectively. The porosity 

indicates the ratio of void volume to total volume of bulk solids, and decreases by applying the 

consolidating effort. The fluid density, ρf, is assumed to be constant in this investigation, and equal 

to the density of water.  

On an element of iron ore normal stresses as well as shear stresses may act. It can be 

expected that if the ratio of shear stress and normal stress exceeds a certain value, the particles 

will start to slide over each other, which will lead to relatively large deformations. The resistance 

against shear force or Shear strength depends mainly on two factors: frictional strength, which is 

the resistance to movement between the slope material's interacting constituent particles, 

and cohesion strength, which is the bonding between the particles. The cohesion strength of the 

liquid bridge in an iron ore bulk is dependent on the volume of the bridge, and hence the amount 

of moisture present [22]. Therefore, the cohesive behavior of iron ore is created due to the capillary 

force mainly, contrary to rock or dust materials. According to [59], three bonding states can be 

identified in moist bulk solids, pendular, funicular and capillary states. The bonding strength is 

weak at the pendular state. By increasing quantity of liquid in bulk solids, the bonding strength of 

liquid bridge increases to a peak at funicular state. A fully saturation point may be reached by 

further increasing the moisture content, which causes the drop of capillary pressure near fully 

saturation [60]. Fine-grained bulk solids with moderate or poor flow behavior due to cohesive 

forces are called cohesive bulk solids [50]. If the influence of the cohesive forces can be neglected, 

a bulk solid is called non-cohesive or free-flowing. 

Jenike [61] as well as Schulze [50], suggested to characterize flowability of a bulk solid by 

its unconfined yield strength, σc, as a function of the consolidation stress, σ1. The unconfined yield 

strength, σc, is the stress causing failure under an unconfined compression. Usually, flow function, 

ffc, is used to characterize the flowability numerically, as shown in Eq. (3.2). 
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 ��� � ���� (3.2) 

The larger ffc is the better a bulk solid flows. The flow behavior is categorized based on its flow 

function in Table 3-1. 

Table 3-1. Flow behavior based on flow function [50] 

Range ffc < 1 1 < ffc < 2 2 < ffc < 4 4 < ffc < 10 10 > ffc   

Flow behavior 
NF: not 

flowing 

VC: very 

cohesive 
C: cohesive 

EF: easy-

flowing 

FF: free-

flowing 

Furthermore, for a design procedure the quantities characterizing the interaction between bulk 

solids and equipment have to be known. Essentially, this can be quantified by measuring the shear 

strength between the geometry surface of equipment and bulk solids, generally referred in 

literature as wall friction. In addition to frictional forces, adhesive forces may contribute to the 

shear strength between wall material and bulk solid specimen. The wall friction, is important for 

the design of grab, silo, transfer chute, hopper, and other equipment that contact with bulk solids 

during their transport [50].  

3.1.3. Iron ore samples 

The selected samples are different in various aspects, such as the size and shape of particles and 

their origin. First two samples belong to the Carajas mines that are one of the largest iron ore 

resources in the globe [62]. I1 and I2 are pellet and sinter feed types of iron ore respectively. Third 

sample, I3, is a pellet feed type that is extracted from Minas-Rio mine that is located in the southern 

part of Brazil. All the three iron ore samples are collected at a destination port located in the 

Netherlands, where the iron ore cargoes are unloaded from ocean going bulk carriers. 

The particle size distribution of the samples is determined according to [63], and the results 

are displayed in Figure 3-4. Smallest and largest sieve sizes of respectively 0.053 and 1.4 mm are 

used. In first sample, I1, 50% of weight consists of particles larger than 0.053 mm, indicating the 

median size of particles, d50 as defined in [64]. Next sample, I2, has a median value of 0.880 mm, 

that is more than 16 times larger than I1. The d50 value of I3 could not be determined using the 

sieves. This indicates particles size of I3 is considerably smaller than the Carajas samples. 

Therefore, a large variation of particles size is covered in experiments. 



Variability and interdependency of bulk properties of cohesive iron ore  

42 

 
Figure 3-4. Particle size distribution of the iron ore samples 

The as received moisture content (dry-based), MCas,rec, of the samples is determined according to 

the method described in [65], in which the water content is dried using a ventilated oven.            

Table 3-2 displays the as received moisture content of the iron ore samples. 

Table 3-2. As received moisture content of the iron ore samples, based on three measurements per type 

I: Type of iron ore I1 I2 I3 

MCas,rec 13.3 8.7 6.8 

3.2. Test Apparatus 

3.2.1. Ring shear test 

Shear cells are used commonly to quantify the flowability of granular materials [66]. Jenike [67] 

established a methodology to apply shear test results in the design procedure of hoppers and silos. 

Shear cells are able to measure the three dependent properties of iron ore under investigation here 

and is therefore selected.  

The Schulze ring shear tester RST-01.01 type M, is used that its main function and 

dimensions are described in [68]. In the test procedure, first the shear cell is filled with a bulk 

solid specimen. Next the normal stress, σ, is applied on the bulk solid specimen through the top 

lid. Both normal stress and the vertical displacement of the lid are recorded over time. Thus, the 

bulk density of the specimen are captured for various levels of normal stresses. Also, two 

horizontal tie rods prevent the top lid from rotating; forces in the tie rods are denoted by F1 and 

F2. So, during the rotation of the bottom ring, a shear deformation in the bulk solid specimen is 

created. A schematic cross-sectional view of this process is shown in Figure 3-5 with. Figure 3-5a 

shows a cross section schematic view of ring shear test, before starting the rotation. In the next 

one, the shearing is commenced once the bottom ring starts to rotate with an angular velocity of 
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ω, and Xm denotes the shear deformation. Figure 3-5c shows the shear deformation when shear 

failure occurred. The shear stress is directly proportional to F1 and F2; with the equations found 

in [68], the forces F1 and F2 are converted to the shear stress as displayed in Eq. (3.3). 

 � � ��  � � �  !��" #�  (3.3) 

where rs and rm are the moment arms of the tie rod forces and the lid force (τ Ad) respectively. The 

stress in the horizontal plane at steady-state flow is measured and referred as the shear stress, τ. If 

the shear stress does not reach a constant, steady-state flow is assumed after 30 mm of shear 

displacement with variations of less than 0.05% per mm of shear displacement [68].  

 
Figure 3-5. The shearing mechanism in the Ring Shear Test - based on [50]; a) before shearing, b) 

during shearing, c) shear failure 

With a proper test procedure and correct design of the ring shear tester, test results close to those 

achieved with the Jenike shear tester can be obtained, but the reproducibility is clearly better [50]. 

Table 3-3 provides an overview of  the measured dependent bulk properties in the ring shear test 

as well as wall friction test. With small adjustments in the shear cell, the wall friction test can also 

be conducted using the same test device [50]. The measurement method for the wall friction using 

the ring shear test is similar to the ring shear test procedure. The difference is that in the wall 

friction test, the base cell is replaced by a wall material. In Figure 3-6, half of the cross section 

views of both ring shear cell and wall friction cell are shown. The cell depth is 12 mm in the wall 

friction test to ensure the shear failure occurs between particles and the wall material. A blasted 

hot-rolled stainless steel plate is used in our experiment as the wall material. 
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Figure 3-6. Cross-sectional view of the ring shear cell (left side) and the wall friction cell (right side) 

Table 3-3. List of measured dependent bulk properties in ring shear and wall friction tests 

Test Setup Raw measurement Dependent bulk properties 

Ring Shear Test

ΔL
Lid displacement 

ρb: Bulk density

τ
Shear Stress 

Mohr-Circle, including:
ϕ lin: Linear internal friction
τc: Cohesion strength
σc: Unconfined yield  strength
ffc: Flowability

 

Wall Friction Test
(using shear cell)

τw
Wall shear stress 

φx: Wall friction angle
τa: Adhesion strength

 

 

3.2.2. A test to determine angle of repose 

When a bulk solid material is experiencing a free surface flow, its surface forms an angle. This 

angle, which is referred as the angle of repose, αM, usually measures the maximum slope angle of 

bulk solid material between a horizontal plane and the free surface angle [40]. The angle of repose 

represents the shear strength of bulk solid materials in their loosest state [69]. According to the 

Mohr-Coulomb equation, the shear strength of bulk solids materials in a failure plane, τs is often 

approximated by Eq. (3.4) [70]: 

�� � �� �  �$ %&' �(� (3.4) 

where tan(φ) indicates the friction coefficient of the bulk solid. �$ is the normal stress in the failure 

plane, and τc denotes the cohesion of the bulk material: In other words, τc is the shear strength of 

the bulk material if �$ � 0. By increasing �$ , due to increasing the height of bulk solids material 

for instance, it is expected that the contribution of τc in the shear strength decreases. When τc is 
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negligible, αM represents φ mainly. Failure will occur once shear stress in an arbitrary cutting 

plane exceeds the shear strength of the bulk material. The remaining bulk solids in the box forms 

an angle of repose, αM. This parameter represents the shear stress of bulk material under the force 

of gravity. Therefore, angle of repose, αM, can be used to investigate the effect of type and 

moisture content of iron ore on its free surface flow. 

αM is an important characteristic in the handling processes; according to [71] angle of repose 

results are useful to categorize flow properties. It is used commonly to design silos and hoppers. 

For example, in [72] the correlation between the angle of repose and flow pattern in silos is 

discussed. Additionally, [73] formulated the correlation between the angle of repose and discharge 

mass flow rate from hoppers. In an application oriented study, [74], silo discharge of wood chips 

material is improved by using angle of repose tests. 

Also, in the excavation application, the volume of the collected bulk material is mainly 

determined by its angle of repose. During closing of buckets, the excess material flows out the 

buckets from its open sides, and so, with a higher angle of repose this results in a higher volume 

of the collected bulk material. For instance, Figure 3-7 shows two different types of iron ore in 

the grab’s buckets. Figure 3-7a shows iron ore pellets that is a free flowing material, while      

Figure 3-7b shows a fine and moist iron ore cargo that has a considerably higher angle of repose. 

  

Figure 3-7. Forming an angle of repose inside grab buckets; a) A free-flowing cargo with a low angle of 

repose, b) cohesive iron ore with a high angle of repose 

A ledge method set up [9] for measuring the angle of repose is used. The test setup and its 

procedure, is also referred under other names in literature, such as shear box [75] and rectangular 

container test [14]. Figure 3-8a displays the test box dimensions. The container is 250 mm high, 

215 mm long and 80 mm wide. In the ledge angle of repose test the bulk material is poured from 

a small height, around 10 cm, into the test box slowly to minimize the effect of consolidation. 

Next, the door opens to allow the sample to flow. Once a static angle of repose is created, photos 
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are taken from a horizontal view. αM is determined from the images by taking the coordinates of 

ten equally spaced points on the slope of the material, as shown in Figure 3-8b. Then, the linear 

regression technique is used to fit a straight line to the data points and the angle of the line with 

the horizontal represents the angle of repose. 

  
Figure 3-8. The test box to determine angle of repose; a) the initial condition and dimensions, b) formed 

angle of repose 

3.2.3. Consolidation-penetration test 

When the surface of bulk solid material is touched by an excavating equipment (i.e. grab), its 

knives penetrate the material. The resistance of the bulk material to penetration influences the 

initial penetration depth and the cutting trajectory of the knives. Therefore, characterizing the 

penetration resistance of a bulk solid material in interaction with the knives of a grab is essential 

for design of excavating equipment such as grabs. 

As shown in Figure 3-9, a wedge-shaped penetration tool is used in our measurements; since 

its cross section resembles the penetration of grabs’ knives in bulk solid materials. The tool 

dimensions are similar to the tool used in [8], with a 200 mm length. The container properties are 

displayed in Figure 3-10. The container volume is 15 litres.  

Four dependent bulk properties are quantified in the consolidation-penetration test, as 

displayed in Table 3-4. According to [21], by recording the reaction force on the wedge-shaped 

tool during the penetration phase, the penetration resistance force is quantified. By integrating 

penetration resistance force over penetration depth, the penetration resistance is determined in 

Joules [9]. W50,ratio is the ratio between W50 measured at a specific level of pre-consolidation to 

W50 when no pre-consolidation is applied. The bulk density of the sample before and after the 
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consolidation phase is measured, which is used to discuss bulk compressibility under the effect of 

pre-consolidation.  

 
Figure 3-9. The penetration tool cross-sectional view 

 
Figure 3-10. Dimensions of the container used in consolidation-penetration test 
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Table 3-4. List of measured dependent bulk properties 

Test Setup Raw measurement Dependent bulk properties 

Consolidation-
Penetration Test

ΔW

Wedge 
displacement 

ρb: Bulk density
Cb: Compressibility 

FW
Reaction force on 

wedge 

Fw-ΔW: Penetration resistance as a 
function of penetration depth
Wd,σ: Energy required to penetrate 
to depth d at the pre-consolidation 
of σ

 

 

Both the flowability and shear strength of a bulk solid material play a role in the test. As 

schematically illustrated in Figure 3-11, a shearing zone, as well as a compacted zone, are created 

during penetration of a wedge-shaped tool in bulk solid materials. 

 
Figure 3-11. Zones during the penetration test – based on [76] 

3.3. Experimental Design Diagram  

A simple and popular method to design the experimental plan is one-factor-at-a-time method 

(OFAT). In this method, the variability of the dependent bulk properties can be determined by 

changing the level of one of influential bulk properties, while the others are kept constant [77]. 

However, since the influence of more than one influential bulk property are being investigated, 

using statistically designed experiments that several properties are varied simultaneously is more 

effective [53], and enables to identify interdependencies between the different properties. Within 
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experimental designs three types of variables are distinguished. First of all the variables that are 

kept constant throughout all experiments such as the dimensions and operational parameters of 

the tests. Second, the three independent variables that are varied and to which the system response, 

here bulk response, is measured. The bulk response is defined as the dependent variable.  

3.3.1. Levels of influencing bulk properties 

The three influencing bulk properties and their ranges are shown in Table 3-5. Each property is 

denoted by a letter and a number to indicate the variable name and its corresponding level 

respectively. According to the measurements done in [20], the variation of moisture content for a 

specific type of iron ore is less than ±2% in different cargoes. To gain a comprehensive insight on 

the influence of moisture content on the dependent bulk properties, a variation of ±4% with steps 

of 2% is investigated in this chapter.  

On one hand, it is important to select pre-consolidation stress levels similar to stress levels 

that exist in the application under investigation. On the other hand, it is nearly impossible to 

measure the actual pre-consolidation stress acted on different layers of iron ore in an application 

[50]. Therefore, the range of pre-consolidation stress in the experimental design diagram is 

selected based on the available information in literature. The maximum vertical pre-consolidation 

stress in a ship’s hold containing iron ore is estimated to reach 400 to 500 kPa at the bottom of 

cargo holds [78]. Additionally, the bulk material in the bottom of the cargo hold are usually 

trimmed using bulldozers or by the grab itself. This means that the efficiency of the grab closing 

process, in terms of its payload, does not play a significant role in the trimming stage, compared 

to prior unloading stages. Therefore, to choose a range relevant to the efficiency of the grab 

closing process, the highest stress level for the consolidation-penetration test is set to 300 kPa. 

The other levels of σpre are 0, 8, 20 and 65 kPa.  

Table 3-5. Selected range of the influential bulk properties in experimental design diagram 

Level I: Type of iron ore  
MC: Level of moisture 

content [%] 

σpre: Pre-consolidation 

stress [kPa] 

1 I1- Carajas pellet feed MCas,rec-4% 0 

2 I2- Carajas sinter feed MCas,rec-2% 8 

3 I3- Minas-Rio pellet feed  MCas,rec 20 

4 - MCas,rec+2% 65 

5 - MCas,rec+4% 300 

The maximum consolidation stress is expected to be up to 20-30 kPa inside grab’s buckets during 

its filling. Table 3-6 provides examples of the estimated range of static or quasi-static 
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consolidation stress that are expected to occur in various iron ore storage and transport 

applications. Additionally, to capture the stress-dependency of bulk materials in a higher 

resolution compared to the consolidation-penetration test, choosing a lower range of σpre is 

preferred. According to [50], the estimation of the consolidation stress for a comparative 

characterization of bulk materials must be adjusted to the capabilities of the particular shear tester. 

The ring shear tester used in the current investigation is able to apply up to σpre = 20 kPa. 

Therefore, as shown in Table 3-7, 2, 8 and 20 kPa are the three selected levels of vertical pre-

consolidation stress for the shear test. 

Table 3-6. Estimated range of static or quasi-static consolidation stress for handling iron ore in 

different applications 

Application consolidation stress range [kPa] 

Ship’s hold 0-450 

Ship unloader grab 0-30 

Conveyors 0-2 

Silo and hoppers Stress depends on silo and hopper dimensions 

 
Table 3-7. Selected range for the pre-consolidation stress 

σpre 
Consolidation-

penetration test 
Ring shear test 

σpre,0 0 2 

σpre,8 8 8 

σpre,20 20 20 

σpre,65 65 - 

σpre,300 300 - 

 

3.3.2. Experimental plan 

For each of the test setups a separate experimental plan is created as described hereafter.  

A. Ring Shear Test 

Table 3-8 displays a full factorial designed experiment that is used in the ring shear tests. This 

experimental plan includes all probable combinations of levels for all variables, which results in 60 

different combinations. Since the reproducibility of results obtained by ring shear testers is adequate [50], 

each experiment is repeated once. σpre,20 is also chosen for the wall friction test. 
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Table 3-8. Experimental plan of the ring shear tests 

 List of independent 

variables 
Level 1 Level 2 Level 3 Level 4 Level 5 

I [-] I1 I2 I3 - - 

MC [%] as,rec -4% as,rec -2% as,rec  as,rec +2% as,rec +4% 

σpre [kPa] σpre,2 σpre,8 σpre,20 - - 

B. Angle of Repose measurements 

In the angle of repose measurements, as shown in Table 3-9, a full factorial design is used to 

measure the effect of the two independent variables and their interrelation: type of iron ore and 

level of moisture content. This results in 15 experiments. Each experiment is repeated at least 5 

times to ensure a good repeatability. 

Table 3-9. Experimental plan of the angle of repose measurements 

List of independent 

variables 
Level 1 Level 2 Level 3 Level 4 Level 5 

I [-] I1 I2 I3 - - 

MC [%] as,rec -4% as,rec -2% as,rec  as,rec +2% as,rec +4% 

C. Consolidation-Penetration Test 

In the excavation applications, the interaction between all the independent variables (I, MC and 

σpre) are not necessarily present. For example, in a cargo hold the consolidation pressure varies in 

the direction of the cargo depth, but the moisture content usually remains constant in this direction 

[20], except for the trimming stage. The moisture content can vary from ship to ship for a same 

type of iron ore, depending on for example excavation conditions in the mine and weather 

conditions during loading of the ship. 

Therefore, two separate full factorial experimental plans are designed for the consolidation 

penetration test, that are displayed in Table 3-10. In the first set of experiments (I), the effect of 

consolidation is incorporated for different type of iron ore in the consolidation-penetration test. 

This results in 15 experiments. In the second set of experiments (II), all the possible combinations 

between the type of iron ore and the level of moisture content are included.. This results in 15 

tests as well. This totals to 30 experiments for the consolidation-penetration test. Each experiment 

is repeated at least 3 times.  
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Table 3-10. Experimental plan of the consolidation-penetration test 

List of independent 

variables 
Level 1 Level 2 Level 3 Level 4 Level 5 

Experiment set I. Interaction of type of iron ore and consolidation stress 

I [-] I1 I2 I3 - - 

σpre [kPa] σpre,0 σpre,8 σpre,20 σpre,65 σpre,300 

Experiment set II. Interaction of type of iron ore and moisture content 

I [-]  I1 I2 I3 - - 

MC [%] as,rec -4% as,rec -2% as,rec  as,rec +2% as,rec +4% 

3.4. Experimental Results 

3.4.1. Ring shear test 

Figure 3-12 presents results of the ring shear tests on iron ore sample I1 at various combinations 

of MC and σpre. Figure 3-12a shows the yield locus lines at σpre = 2.0 kPa, in which the measured 

τ are plotted over the applied σ. The yield loci are relatively similar for MCas,rec-4%, MCas,rec-2% and 

MCas,rec with the measured τpre of respectively 1.8, 1.9 and 2.0 kPa. The measured τpre at MCas,rec+2% 

is equal to 2.6 kPa that is around 35% to 43% larger than the measured values at lower levels of 

MC. A similar trend applies to the measured values of τshear at σpre = 2.0 kPa for this sample. 

Figure 3-12b shows the yield loci for σpre = 8.0 kPa. The measured shear values of τpre and 

τshear (at 4 different levels of σshear) are the lowest at MCas,rec-4% compared to the other levels of 

MC. Similar to the previous level of σpre, the highest shear stress values are measured at MCas,rec+2% 

for this sample, with a τpre around 18% to 31% larger than the measured values at lower levels of 

MC. However, the relative difference between measured peak values of τshear at 4 different levels 

of σshear between MCas,rec+2% and MCas,rec% is limited to 5%. 

Figure 3-12c shows the yield loci for σpre = 20.0 kPa. A shear stress of 20.5 kPa is measured 

at MCas,rec during the pre-shearing stage. Changing moisture content from the lowest level to 

highest level caused an increase of 18% in τpre. The measured values of τshear at 4 different levels 

of normal stress show the highest shear strength values occurs at MCas,rec  and MCas,rec+2% ,and the 

lowest at MCas,rec-4%. With σshear = 8.1 kPa and MCas,rec, a shear stress of 12.4 kPa is measured, 

which is 39% higher than the τpre at σpre = 8 kPa. A similar comparison can be done between σpre 

of 8 and 2 kPa. This clearly indicates that the level of normal stress that is applied during the pre-

shear stage increases the shear strength. This stress-history dependent behavior of the shear 

strength occurs at all levels of moisture content for this iron ore sample. 
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Figure 3-12. Yield locus of I1 in various moisture content levels and pre-consolidation levels, 

 σpre : a) 2 kPa, b) 8 kPa, c) 20 kPa 

For iron ore sample I1, the ring shear test could not be conducted for MCas,rec+4%. As shown in 

Figure 3-13, the particles start to form large agglomerates. Due to the large agglomerates it is 

impossible to create a flat surface in the shear cell without compressing the material, which must 

be avoided during preparing the test. Furthermore, according to [68], particles should be in general 

smaller than 6 mm in diameter to be used in this ring shear test. 
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Figure 3-13. Forming large agglomerates after adding 4% extra moisture content; a) MCas,rec , b) 

MCas,rec+4% 

Figure 3-14a and Figure 3-14b show the bulk density results of sample I1 with including and 

excluding the weight of moisture respectively. A general trend is that by increasing the level of 

MC, the sample becomes more compressible. Similar trend also was observed in [48] for four 

Australian iron ore samples. The moisture content variation in iron ore samples is responsible of 

the change in the compressibility due the macro-shrink behavior of the clay content [79]. For that 

reason there is a positive inter-correlation between ρb, MC and σpre. The main outlier in this graph 

is the bulk density results of the sample at MCas,rec+2%; a considerably higher initial bulk density, 

ρb,0, is measured at this moisture level compared to the lower levels. The bulk density at 

MCas,rec+2% is still distinct at σpre,20.  This can explain the reason behind measuring higher shear 

stresses at MCas,rec+2% in this pre-consolidation stress, compared with other levels of MC.  

 

Figure 3-14. Bulk density measurements of I1 using RST; a) bulk density, b) dry bulk density 

Figure 3-15 presents results of the ring shear tests on the second iron ore sample, I2. In              

Figure 3-15a, σpre = 2 kPa, a high dependency of shear stresses to the level of moisture content is 
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observed. At this level of σpre, higher shear stress values are measured overall at MCas,rec, 

compared to other levels of MC. The lowest shear stress values are also measured at  

MCas,rec-4%, which is the driest condition of the sample in this experiment. At MCas,rec+4%, the 

highest level of moisture content, the τshear,4 is 48% higher than τpre. This can be explained by 

Figure 3-16 that shows that the excessive water easily flows out of the sample under σpre = 2 kPa. 

For that reason, results of the tests at MCas,rec+4% are neglected in interpreting the results, as 

partially saturated materials are the focus of current chapter. 

 

 

Figure 3-15. Yield locus of I2 in various moisture content levels at σpre equal to: a) 2 kPa, b) 8 kPa, c) 

20 kPa 
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In contrast to results of σpre = 2 kPa, at σpre = 8 kPa lower variations of shear stress values (in 

percentage) are measured at all the applied moisture content levels. The measured values of τpre 

do not show a clear trend by changing the levels of moisture content. 

Figure 3-15c with the ring shear test results at σpre = 20 kPa shows a lower dependency of 

τpre to MC in general, compared to σpre = 8 kPa. Except τpre at MCas,rec-2%, the other measurements 

are close to τpre at MCas,rec with less than 4% variations. ϕlin changes by 8 degrees, corresponding 

to about 20% change, with the variation of moisture content. τc changes 1.3 kPa, corresponding 

to 77%, by varying MC. Therefore, τc of the sample is more sensitive than ϕlin to moisture content 

variation 

Similar to sample I1, a stress-history dependent shear strength is observed in sample I2. For 

instance, at the normal stress of about 2 kPa for σpre  equal to 2, 8 and 20 kPa in the as received 

condition, shear stresses of 2.0, 4.2 and 5.6 kPa are measured respectively. In other words, the 

shear strength is increased more than 100% at this material condition by pre-consolidating the 

sample. This stress dependent behavior is important in design of handling equipment, such as 

grabs. For instance, once cohesive iron ore bulk is consolidated by 20 kPa rather than 2 kPa during 

closing of grab’s buckets, higher shear stress is required to mobilize the flow. Therefore, a better 

filling process could be expected by minimizing the consolidation on cohesive iron ore bulk 

during closing of grab’s bucket. 

 
Figure 3-16. Excessive water leaving the sinter feed sample in the wet test condition (MCas,rec+4%) 

Figure 3-17 shows the bulk density results of sample I2 in the ring shear test. ρb,0 at MCas,rec is 

1995 kg/m3
 in the shear cell that increases to 2799 kg/m3 after shearing at 20 kPa consolidation 

stress. The sample is less compressible at lower levels of MC; the difference between ρb,0 and ρb,20 

(bulk density under 20 kPa normal stress) at MCas,rec-4% and MCas,rec-2% are respectively equal to 

285 and 630 kg/m3. Only for MCas,rec+2% the bulk density decreases after pre-shearing at 2 kPa 
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normal stress. This is caused by the dilation of the sample during shearing that lifts the cell’s lid 

over a recorded distance of 1 mm. 

 
Figure 3-17. Bulk density measurements of I2 using RST; a) bulk density, b) dry bulk density 

Figure 3-18 presents the yield locus lines of sample I3, Minas Rio pellet feed, at five different 

levels of MC. This sample is less dependent to the variations of moisture level, compared to the 

two Carajas samples. This can be clearly seen in all three graphs at σpre  equal to 2, 8 and 20 kPa 

that are shown in Figure 3-18a, b and c respectively. For instance, in Figure 3-18a, σpre = 2 kPa, 

an average cohesion strength, τc, of 0.8 kPa with a deviation of less than 0.1 kPa is measured at 

all levels of MC. The cohesion strength values of I3 are higher than two previous samples at 2 kPa 

pre-consolidation level. Relatively consistent values of ϕlin are also measured at various levels of 

MC; at σpre  equal to 2, 8 and 20 kPa average linear internal frictions of respectively 29.8, 40.5 

and 37.8 degree with a maximum standard deviation of 2 degree are measured. Based on the visual 

observations, the particles of Minas Rio sample are unlikely to form agglomerates by increasing 

moisture content. For that reason, the shear stress shows a low sensitivity to variations of MC. 

The stress-history dependent behavior of the shear strength is also captured in sample I3, similar 

to two previously discussed samples. 
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Figure 3-18. Yield locus of I3 in various moisture content levels at σpre equal to: a) 2 kPa, b) 8 kPa, c) 20 

kPa 

Figure 3-19 shows the bulk density results of sample I3 in the ring shear test. Both ρb and ρb-dry 

show a positive correlation with the (pre-)consolidation stress. For example, ρb,0 at MCas,rec is 

equal to 1370 kg/m3 that rises to 2336 kg/m3 by shearing under consolidation stress of 20 kPa. 

Furthermore, both ρb and ρb-dry tend to increase by adding moisture. This means that the bulk 

density of the sample is not only increased because of the additional weight of moisture, but also 

due to an additional compressibility. Similar to I1, the other pellet feed size sample, no uplift of 

the cell’s lid occurred during the ring shear test. 
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Figure 3-19. Bulk density measurements of I3 using RST; a) bulk density, b) dry bulk density 

Figure 3-20 shows results of the experiment using the wall friction test setup. In each graph, the 

effect of normal stress on the wall friction angle, ϕx, at various levels of MC is displayed. The 

measured values of ϕx in the first sample, I1, at three first low levels of MC follow a similar trend. 

At the lowest and highest levels of normal stress, σ  = 1.1 kPa and σ  = 17.1 kPa, ϕx of 32.7̊ , 34.4̊  

and 31.5̊ are measured respectively. By increasing the moisture to MCas,rec+2%, higher values of 

ϕx are measured in average, compared to lower levels of MC. This behavior is caused by the 

adhesion strength created due to the extra water added to the sample. 

Due to change in MC in sample I2, a high variation of around 20˚ in ϕx is measured under 

σ = 1.1 kPa. By increasing the normal stress, the range of variation starts to decrease, and under 

σ = 17.1 kPa the values of ϕx are between 20.7˚ to 23.3̊. 

In third sample, an average ϕx of 34.4o is measured under 1.1 kPa, with an outlier at MCas,rec-

4%. In general, at all levels of MC, there is a negative correlation between wall friction angle and 

normal stress; there are some exception data points at MCas,rec-4% and MCas,rec-2%. 

3.4.2. Angle of repose and effective angle of internal friction 

Figure 3-21 compares the angle of repose (αM) measurements with effective angle of internal 

friction (φeff) for three samples of iron ore at various levels of MC. In left graphs, the average of 

measured αM are shown with the vertical error bars indicating the standard deviation of 10 test 

repetitions. Overall, the measured values of αM are between 55˚  to 70̊  in all the tests, except for 

the sample I2 at MCas,rec+2%. The effective angle of internal friction, φeff, is the slope of effective 

yield locus in ring shear test as defined in [50], which is an important parameter in designing silos 
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and hoppers. φeff represents the ratio of the minor principal stress (σ2) to the major principal stress 

(σ1) at steady-state flow. For cohesive bulk solids, φeff usually decreases with increasing 

consolidation stress [50].  

 

 
Figure 3-20. Results of wall friction test; a) I1, b) I2, c) I3 

In Figure 3-21a, the measurements on I1 are shown, in which the MCas,rec is equal to 13%. A 

variation of only 1̊ is captured in αM by reducing the MC. The test could not be executed properly 

at higher levels of MC, because the extreme stickiness of the bulk material led to an inadequate 

filling of the test box. By increasing MC, φeff increases at all levels of σpre  for I1. The negative 

correlation between σpre and φeff can be seen clearly in Figure 3-21a (right). For the current 

sample, considering standard deviation values of angle of repose measurements, αM is comparable 

with φeff measured at σpre = 2 kPa.  
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Figure 3-21. αM and φφφφeff results for three different iron ore samples; a) I1, b) I2, c) I3 

The results of angle of repose on the sinter feed sample, I2, are shown in Figure 3-21b. An angle 

of repose of 63˚ is measured in average at MCas,rec. The same value is measured at MCas,rec-2% and 

MCas,rec-4%. A sudden increase of about 20˚  in the averaged angle of repose is observed by testing 

the sample at MCas,rec+2%. A higher standard deviation in the measurement is found as well at 

MCas,rec+2%; for which the bulk material does not flow in some of the repetitions. A possible 

explanation for the sudden increase in the angle of repose is that as the material’s moisture content 

approaches liquidation, agglomerates merge and create inter-particle bonds. The inter-particle 

bonds are stronger than inter-agglomerate bonds [38], so the inter-particle friction in the material 

is higher, which leads to increase in the angle of repose. The test could not be executed at 

MCas,rec+4% due to extreme stickiness behavior that was also observed in sample I1 at high levels 

of moisture content. The test is also conducted on a dry sample to determine the effect of cohesion 
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strength on the angle of repose; this results in αM = 58° for the dry sample that is 5° lower than 

measured αM at MCas,rec. The negative correlation between σpre and φeff can be seen in         

Figure 3-21b (right), expect for MCas,rec-4%. No decisive conclusion can be made by comparing αM 

and φeff values for the sinter feed type sample, I2.  

In contrast with two previous samples, there seems to be a small negative correlation 

between MC and αM for I3, shown in Figure 3-21c. At the highest level, MCas,rec+4%, the bulk 

material tends to flow easier with an average measured value of αM = 57̊ . However, the error bars 

at different MC levels overlap with each other; a conclusive correlation between MC and αM 

cannot be therefore found. φeff values show a consistent trend at all levels of σpre for I3, 

independent of MC level. Comparable φeff and αM are measured at two lowest levels of MC, which 

starts to diverge, up to 12°, by increasing MC. 

Due to relatively consistent measured trends of αM  and φeff in I1 and I3, it is expected to not 

observe high variations of angle of repose in practice, such as after filling grab’s buckets. In 

contrast, for sample I2, a higher variation of angle of repose, and consequently equipment 

performance is expected to occur. 

3.4.3. Consolidation-penetration test 

Two sets of experiments are conducted using the consolidation-penetration test setup. In the first 

set, the effect of σpre on the penetration resistance is studied by investigating all possible 

combinations between defined levels of I and σpre; level of moisture content, MC, is kept constant. 

In contrast, in the second set, the interaction between I and MC is investigated to quantify their 

interaction with regards to the penetration resistance of iron ore samples. 

Figure 3-22 shows an overview of the results obtained in first experiment set for three iron 

ore samples. The graphs in the left column (a, c, and e) display the reaction force recorded during 

penetration of the wedge tool into iron ore samples. Five different levels of σpre are applied, from 

0 to 300 kPa. At σpre,0, the loose condition, no consolidation stress is applied; while only the bulk 

material surface is flattened. The right graphs (b, d, and f) show the accumulative penetration 

resistance in Joules that is calculated by integrating the reaction force over penetration depth. The 

lines represent the average of three measurements, and the vertical error bars indicate the standard 

deviation values. 

In the loose condition, the highest resistance is measured in the sinter feed sample, I2; an 

average reaction force of more than 1300 N is measured after penetrating 0.10 m into the sample. 

Considerably lower forces are measured for the other two pellet feed samples at their loose 
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condition. In sample I1, the penetration tool could not be moved deeper than 0.08 m; therefore, 

the measured data are filtered out after 0.07 m. 

Once sample I1 is pre-consolidated by 8 kPa, a notable increase in the penetration resistance 

occurs. Similar behavior is captured in I2 that is originated from the same mining site. The last 

sample, I3, however shows a different behavior under the effect of pre-consolidation; the peak 

value of FW only increases by 11% by applying a σpre = 8 kPa. After reaching the peak, a steady-

state penetration resistance is observed after a certain depth for sample I3.  

In sample I3 a positive correlation exists between σpre and the depth where the peak reaction 

force occurs. However, the peak value of FW is less sensitive to σpre, in contrast with two other 

samples. There is a strong positive correlation between σpre and peak value of FW in samples I1 

and I2. This phenomena is probably correlated with the change in bulk density due to the pre-

consolidation stage. Additionally, the peak occurs at smaller penetration depths in these two 

samples, compared to I3.  
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Figure 3-22. Results of experiment set I in the consolidation-penetration test, the effect of σpre at  

MC ac-rec; a) I1 (FW-ΔW), b) I1 (Work-ΔW), c) I2 (FW-ΔW), d) I2 (Work-ΔW), e) I3 (FW-ΔW), f) I3 (Work-ΔW) 
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Figure 3-23 displays results of experiment set II, in which the effect of variation of MC on the 

penetration resistance of iron ore samples in the loose condition, σpre = 0 kPa, is investigated. The 

first sample, I1, has the highest value of MCas,rec among the other samples. According to the force-

displacement graph, the average reaction force of three measurements is the highest at MCas,rec for 

I1 compared to other levels of MC. However, by considering the standard deviation of the 

measurements, indicated in the Work-ΔW graph, there is no conclusive correlation between level 

of MC and the penetration resistance of this sample. Only once the bulk material reaches MCas,rec+4 

that is equal to 17%, the resistance against penetration almost disappears. This results in a peak 

value of only 17 N in FW. 

Sample I2 has the highest peak value of FW at MCas,rec, compared to other levels of MC of 

this samples, as well as compared to other samples. At the initial 0.03 m of the penetration depth, 

in all levels of MC in sample I2, similar trend in FW is captured. However, the reaction force 

increases exponentially at MCas,rec and MCas,rec-4% by moving the penetration tool deeper. The 

exponential trend starts at greater depths at  MCas,rec-2% that results in a lower accumulative 

penetration resistance, compared to the two previous MC levels. This phenomena can be explained 

by the results that were obtained previously in our experiment with the ring shear test; the lowest 

compressibility of sample I2 is measured at MCas,rec-4%. The low compressibility creates more 

penetration resistance in the compaction zone under the wedge-shape tool (see Figure 3-11). At 

MCas,rec+2% and MCas,rec+4% a considerably low values of FW are recorded, with the peaks of less 

than 10 N. Due to the excessive water, the bulk material starts to behave more as liquid rather than 

solid materials. 

In sample I3, the peak value of FW is the least sensitive to variation of MC, compared to two 

other samples. The peak values in this samples are between 600 to 800 that however, happens in 

different depths. For example, at highest level of MC, the peak force is located at 0.08 m, but at 

MCas,rec-4% at 0.11 m. This results in a positive correlation between MC and accumulative 

penetration resistance (work) of sample I3 that can be concluded from the right graph. 
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Figure 3-23. Penetration resistance of iron ore samples in different levels of MC; a) I1 (FW-ΔW), b) I1 

(Work-ΔW), c) I2 (FW-ΔW), d) I2 (Work-ΔW), e) I3 (FW-ΔW), f) I3 (Work-ΔW), 

 



Chapter 3  

67 

3.5. Correlations Between Influencing and Dependent Bulk Properties 

In the previous section, results of the experiments using the ring shear, ledge angle of repose and 

consolidation-penetration tests were presented. In this section, the effect of the different 

influencing bulk properties on the flowability, penetration resistance and bulk density are 

discussed. 

Figure 3-24 illustrates the comparative flowability analysis that is created using the ring 

shear test results. In Figure 3-24a and Figure 3-24b, the mean ffc values derived respectively for 

different levels of MC and σpre are presented. The standard deviation values are also presented to 

indicate the variance of flowability due to the change of the third (absent) property. For instance, 

the standard deviations of the mean ffc in the left graph is due to the variance of σpre. 

According to Jenike classification [67], the sinter feed sized sample behaves as a cohesive 

(C) material, however easy-flowing (EF) and very cohesive (VC) flowability are also captured in 

some tests. Furthermore, high variations of ffc in sample I2 is notable. The two pellet feed sized 

samples, I1 and I3, are categorized as VC at almost all levels of MC and σpre. Only in sample I1 at 

σpre = 20 kPa a ffc value of higher than 2 is captured due to higher levels of applied σshear compared 

to other pre-consolidation levels. The range of measured flow functions for the three Brazilian 

samples, I1 to I3, is similar to the range measured for the Australian iron ores using Jenike direct 

shear tester [48], resulting in an ffc between 1 to 4. 

As suggested in [80], for cohesive iron ore material, cohesion forces tend to be less contributing 

to the shear strength at higher consolidation stresses. For that reason, a positive correlation 

between σpre  and ffc in all samples is expected. In Table 3-11, the correlation coefficients between 

σpre  and ffc, as well as between MC and ffc are shown. The correlation coefficient quantifies the 

statistical correlation between two variables, which is bounded between -1 and +1 [53]. A 

correlation coefficient of ±1 indicates the strongest agreements between two variables, and 0 

means no agreements. No conclusive correlation between MC and ffc is found for the three 

samples. In contrast, an average correlation coefficient of 0.735 is found between σpre  and ffc for 

the samples. High values of correlation coefficients exists between σpre  and ffc for samples I1 and 

I2 values, however, a weaker agreement exists for sample I2. This suggests that for sample I2 the 

influence of σpre on ffc is interdependent on the level of MC. 
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Figure 3-24. Comparative flowability analysis; a) Main effect of MC variation on ffc, a) Main effect of 

σpre variation on ffc 

Table 3-11. Correlations coefficients in the ring shear tests 

Sample I1 I2 I3 Average Standard deviation 

σpre and ffc 0.875 0.338 0.992 0.735 0.285 

MC  and ffc 0.258 -0.396 0.077 -0.020 0.276 

Furthermore, the interaction between MC and σpre on the flowability of three samples is analyzed 

in Figure 3-25. Two properties have interaction when the effect of one influencing property (i.e. 

MC) on the output of the experiment (i.e. ffc) is considerably affected by the level of the other 

influencing property (i.e. σpre) [53]. For instance, as predicted above, in sample I2, the ffc for 

MCas,rec-4% is the highest at σpre,8, while the lowest flowability for MCas,rec+2% is found at σpre,8. This 

suggests an interaction between MC and σpre on ffc for sample I2. In contrast, almost no interaction 

is found for sample I1 and I3. 
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Figure 3-25. Interaction plots between MC and σpre on ffc for different iron ore samples; a) I1, b) I2, c) I3  

Figure 3-26 presents the comparative analysis done on the penetration resistance results. In 

Figure 3-26a and Figure 3-26b, the W50,ratio values are shown respectively for different levels of 

MC and σpre. W50,ratio is calculated by dividing the accumulative penetration resistance, work in 

Joules, at ΔW = 0.05 m over the same parameter measured at MCas,rec and σpre,0. In I1 and I2, the 

MC variation leads to reduction in the penetration resistance, In I3, by increasing MC the peak FW 

is occurred at lower ΔW, therefore a positive correlation between W50,ratio and MC is found. In 

Table 3-12 the correlations between MC and W50,ratio, as well as σpre and W50,ratio are presented.  

σpre is responsible for a substantial increase in the penetration resistance of iron ore cargoes, 

especially for the sinter feed sized sample. For that reason, it is expected that there is a negative 

correlation between σpre and penetration depth of grabs into iron ore cargoes. 
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Figure 3-26. Comparative penetration resistance analysis; a) Interaction plot between MC and type of 

iron ore, b) interaction plot between σpre and type of iron ore 

Table 3-12. Correlations coefficients in the consolidation-penetration tests 

Sample I1 I2 I3 Average 
Standard 

deviation 

σpre and W50,ratio 0.980 0.979 0.986 0.982 0.003 

MC  and W50,ratio 0.39 -0.59 0.90 0.235 0.617 

Figure 3-27 presents the effect of σpre on ρb of the three iron ore samples quantified using 

the consolidation-penetration test. The filled markers represent the average of three tests 

repetitions at a specific σpre, and the vertical error bars indicate the standard deviation of ρb. All 

the tests are executed at MCas,rec. The values of ρb,0 are confirmed by comparing with measuring 

bulk density of three samples according to ISO 17828 [81]. Higher values of bulk density are 

obtained in the consolidation-penetration test setup compared to measurements in the shear cell. 

For example, for sample I2 at the loose condition, average ρb is around 200 kg/m3 higher that what 

was measured using the shear cell. The difference between the dimensions and the geometry of 

the cell and test container caused the difference in ρb results. In smaller geometries, wall effects 

are likely to be more influential on the packing of cohesive bulk materials. 

By applying σpre,8, a sudden increase in ρb is measured in samples I2 and I3; at this level of 

σpre mainly rearrangements of particles and elastic deformations contribute to the densification 

process [22]. Then, bulk densities increase with a milder slope between σpre of 8 and 65 kPa. For 

example in sample I2, ρb,65 is 7% higher than ρb,8. The compressibility of the bulk materials tend 

to converge to a maximum limit by applying σpre higher than 65 kPa. Overall, sample I2 shows the 
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most sensitivity to σpre. A wide distribution of particle sizes makes sinter feed type iron ore capable 

to obtain a denser packing [78]. 

 

Figure 3-27. Bulk density results for MCas,rec; a) consolidation-penetration tests, b) ring shear test 

3.6. Conclusion 

The aim of this chapter was to first establish links between the influencing and dependent bulk 

properties. Second the range of variations of bulk properties of iron ore was determined, which is 

applicable to design of various of types of handling equipment, including grabs. Using three 

different setups and by running five separate experiments in total, it was successfully shown that 

the three influencing bulk properties, type of iron ore, moisture content and pre-consolidation are 

responsible for the variations of the dependent bulk properties.  

• In terms of variability of flowability, the three iron ore samples are categorized as cohesive to 

very cohesive based on the ring shear test results. In average, there is a strong positive 

correlation between pre-consolidation and flowability, independent of moisture content. 

However, in average a weak correlation exists between moisture content and flowability when 

the interdependency to pre-consolidation is considered.  

• No conclusive correlation was found between moisture content and the angle of repose of the 

three iron ore samples. The variability of angle of repose, αM, of these samples were measured 

using the ledge method. The test results are in the range of 55° to 70°, except for the Carajas 

sinter feed sample at MCas,rec+2% that resulted in an angle of repose of 84° in average of multiple 

repetitions. The mentioned range is consistent with measurements done in [8], [38] and [82] 
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on moist iron ore samples using a similar test method. In contrast, [8] measured an angle of 

repose of 40° for free flowing iron ore pellets using the ledge method. 

• The penetration resistance has a strong positive correlation with pre-consolidation, independent 

of moisture content. There is a weak correlation between moisture content and penetration 

resistance when the interdependency to the type of iron ore is considered.  

• The bulk density has a strong positive correlation with pre-consolidation, independent of 

moisture content. There is also a strong positive correlation between moisture content and bulk 

density, independent of pre-consolidation. 

Furthermore, a general conclusion is that the dependent bulk properties of cohesive iron ore 

samples are highly sensitive to the history of the applied stress, σpre. This phenomena was observed 

in both ring shear and consolidation-penetration tests, in which high correlations between pre-

consolidation and respectively flowability and accumulative penetration resistance are found. 

Design of bulk handling equipment (e.g. grabs) for cohesive iron ore can be improved by 

minimizing the undesirable effect of pre-consolidation on the process. This can be done, for 

instance, by optimizing geometrical optimization of equipment; by applying a relatively low pre-

consolidation stress on bulk solids during closing of grab’s buckets. Then, the flow is expected to 

be mobilized requiring a lower shear force. Furthermore, both (moist) bulk density and dry bulk 

density, are also highly correlated with pre-consolidation. Therefore, choosing appropriate range 

of pre-consolidation in the design of equipment for handling cohesive iron ore is also crucial. 

Highest variation of the dependent bulk properties, in total, was captured in the Carajas 

sinter feed sample, I2. This sample showed a high sensitivity of the penetration resistance and bulk 

density results to pre-consolidation. Also, its angle of repose tends to reach a maximum by 

increasing the moisture content. Furthermore, the flowability of sample I2 showed highest 

sensitivity to the variation of moisture content, in which an interaction between moisture content 

and pre-consolidation was found. Therefore, the highest inconsistency of the productivity (e.g. 

grab’s payload) is expected to occur in the handling process of the Carajas sinter feed product. 

Therefore, using test results of sample I2, the variability of iron ore properties can be incorporated 

in optimizing bulk handling equipment that are used in excavation and storage. 
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Minimizing computation cost for 

modelling cohesive bulk solids∗∗∗∗  

Discrete Element Method (DEM) is a suitable numerical tool to simulate bulk solids. DEM is able 

to capture the discontinuous behavior of bulk solids by modelling motion of individual particles 

and interaction with each other and equipment. The computation time of DEM simulations 

increases exponentially when particle size is reduced or the number of particles increased. This 

critical challenge limits the use of DEM simulation for industrial applications, including the 

grabbing process. Scaling techniques can offer a solution to reduce computation time. Therefore, 

                                                

∗ This chapter corresponds to the following references:  

M.J. Mohajeri, R.L.J Helmons, C. van Rhee, D.L. Schott, “A hybrid particle-geometric scaling approach 

for elasto-plastic adhesive DEM contact models”. Powder Technology, Volume 369, 2020, 72-87. DOI: 

10.1016/j.powtec.2020.05.012. 

M.J. Mohajeri, C. van Rhee, D.L. Schott, “Penetration resistance of cohesive iron ore: a DEM study”, 9th 

International Conference on Conveying and Handling of Particulate Solids, 2018. 
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a proper scaling approach is developed in this chapter to simulate cohesive materials with a 

minimum number of required computational nodes.  

The previous chapter concluded that the pre-consolidation plays a significant role in the 

behavior of cohesive bulk solids. Thus, first, a DEM contact model that to simulate the stress-

history dependent behavior of cohesive bulk solids is selected based on its feasibility. In Section 

4.2, available scaling techniques for DEM simulation are evaluated. Next, a proper scaling 

technique is developed to consider elasto-plastic and cohesive behavior of bulk solids. Section 4.3 

provides a simulation plan to include effect of particle as well as geometry scaling in a hybrid 

manner. In Section 4.4, the scaling technique is verified by simulating the ledge angle of repose, 

ring shear test, and uni-axial consolidation tests. Recommendations to apply the hybrid particle-

geometry scaling technique are provided in Section 4.5. Finally, Section 4.6 presents conclusion 

for the proper scaling approach for an elasto-plastic adhesive DEM contact model.  

4.1.  Selecting a Stress-History Dependent Cohesive Contact Model  

The consolidation-penetration is selected as a test case to investigate which DEM contact model 

is able to capture the stress-history dependent behavior of cohesive bulk solids. In this test case, 

the effect of pre-consolidation on bulk properties (i.e. bulk density) and interaction with 

equipment (i.e. the penetration resistance) can be analyzed.  

4.1.1. Simulation setup of the consolidation-penetration test 

The laboratory consolidation-penetration test method that was developed in Chapter 2, is used for 

determining the penetration resistance of a cohesive iron ore sample. A simplified virtual 

apparatus similar to the experimental apparatus is created in the DEM commercial software 

package EDEM®. The components of the virtual apparatus are displayed in Figure 4-1. The only 

difference between the real and virtual apparatus is that instead of the Plexi-glass, a periodic 

boundary condition is used in the simulation. In the container, the particles are created using a 

dynamic factory and placed in random positions. They are allowed enough time to reach a quasi-

static condition, where the average velocity of particles is smaller than 10-5 m/s. 

The simulation consists of two stages, the consolidation and the penetration. Once the DEM 

particles are relaxed, the consolidation stage is commenced, in which the lid plate moves 

downward with a small velocity of 0.02 m/s. After occurring first contact between the lid plate 

and particles, a constant pressure between them are maintained to mimic the consolidation stage 

in the real experiment. The magnitude of the applied pressure is referred as the pre-consolidation 
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stress. After compressing the particles for 1 second, the lid plate is moved upward at the same 

velocity. 

After preparing a consolidated sample, the wedge-shaped penetration tool, which is 0.20 m 

long, moves downward with the constant velocity of 1 mm/s, similar to the penetration stage in 

the real experiment. The reaction force on the wedge-shaped tool during penetration into the 

cohesive iron ore sample is measured, a smoothing operation is used to reduce the possible effects 

of noise in the measurements: by integrating the resulting force, F [N], over the depth, s [m], the 

penetration resistance, W [J] is obtained. 

  
Figure 4-1. Virtual apparatus in EDEM®; left) the consolidation stage, middle) the penetration stage, 

and right) wedge-shaped tool 

This chapter compares two DEM contact models, first the Hertz-Mindlin (no-slip) combined with 

Linear Cohesion (HMLC) [83], second the Edinburgh Elasto-Plastic Adhesion (EEPA) [24]. The 

first contact model, Hertz-Mindlin, is a non-linear elastic model and has been used in most recent 

DEM studies [11]. To replicate the cohesive behavior of the iron ore sample, the Linear Cohesion 

model is added to the base contact model that modifies the normal contact force by adding the 

following force: 

 � � 2 ,� - ./ 01 (4.1) 

where, kc, Rp and 01 are the cohesion energy density [J/m3], particle radius [m], and normal 

overlap between particles [m] respectively. A constant cohesion energy density of 50 kJ/m3. The 

contact parameters of the EEPA model are selected similar to [84]; only a smaller Surface Energy 

value (8 J/m2) is used that allows for creating bulk density and void ratio values comparable to 

values measured in the real experiment. 
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The wall friction test was done using a ring shear cell, according to [50]. Since no adhesion 

strength was observed between the iron ore particles and the steel material, the Hertz-Mindlin (no-

slip) contact model is used for modelling the interaction of particles with the geometries. 

Particles of iron ore fines are irregular in shapes having a wide size distribution [20]. In this 

chapter, however, particle shapes are simplified to spheres. To compensate the simplification of 

the particle shapes, the influence of restricting rotation of the particles on simulation output is 

therefore investigated. By restricting rotation of the particles, their angular motion is prevented. 

Thus, a better interlocking between particles is created, compared to the use of a rolling friction 

spring-damper model. When rotation of particles is allowed, the built-in rolling friction model of 

EDEM® software package is used, which is referred in literature as model A [85]. Additionally, 

a size distribution with the standard deviation of 0.1 is used. A mean particle size of 11 mm in 

diameter is used, which is around 10 times larger than the real particles; using a realistic particle 

representation of cohesive iron ore in the virtual simulation would have resulted in an unfeasible 

computational time per simulation.  

The particle shear modulus (G) is also selected to be 5 MPa in the current section, which is 

close to the value used by [22] for modelling cohesive iron ore. However, [86] showed using a 

value smaller than 100 MPa might result in undesirable effects in the penetration of a wedge into 

bulk material. They advised that the approach should be verified when the particle shear modulus 

is altered. 

Therefore, as displayed in Table 4-1, a simulation plan is designed to select a contact model 

that model the stress-history dependent behavior appropriately. Three different independent 

variables are included, contact model, integration time-step, and the ability of particle to rotate. 

The simulation output is analyzed though three dependent variables, ∆ρb,0, W50 and W80. Here, 

∆ρb,0 is defined as the change in bulk density in the loose condition (0 kPa) over the simulation 

time. If a DEM simulation is stable and reliable, ∆ρb,0 prior to the penetration stage should be 

almost 0 kg/m3. ∆ρb,0 is calculated by comparing the bulk density after filling the container, and 

the bulk density before the first contact between the wedge tool and the particles. W50/200 and 

W80/200 are defined as the dimensionless penetration resistance at the penetration depths of 50 mm 

and 80 mm, respectively, which are calculated using Eq. (4.2). Once a stable DEM simulation of 

the compression-penetration test is developed, the influence of the contact models on capturing 

the dependency to the pre-consolidation stress is investigated. 
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 23/5 6−7 � Penetration resistance 6J7 at depth of GWeight of iron ore sample 6kN7 � Length of the wedge tool 6m7 (4.2) 

Table 4-1. Simulation plan to select a stress-history dependent contact model 

Independent variables Range of investigation 

Contact model [HMLC EEPA] 

Time-step  
Percentage of Rayleigh time step [%]: [1.5 3 6.25 12.5 25 50] 

Corresponding absolute value [10-5 s]: [0.62 1.25 2.80 5.60 10.4 20.6] 

Rotation of particles [Allowed Restricted] 

4.1.2. Simulation results  

Figure 4-2 displays the influence of the investigated independent variables on the dimensionless 

penetration resistance, W50 and W80. In the case of allowing particles to rotate, both contact 

models show a high sensitivity to the integration time-step. On the other hand, when the rotation 

of particles is restricted, the results are more stable, except for the 50% of Rayleigh time-step. 

When the time-step is too large, important data during contact detection and calculation is missed. 

Figure 4-3 also confirms the findings about effect of rotation; when the rotation of particles is 

activated, the bulk density changes during the simulation for both contact models. Therefore, the 

rotation of particles is capped for prospective simulations in this section. 

  

..  

Figure 4-2. Influence of time-step on the dimensionless penetration resistance; left) rotation is allowed, 

and right) rotation is restricted 
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Figure 4-3. Influence of time-step on the bulk density change in the loose condition; left) rotation is 

allowed, and right) rotation is restricted 

Next, the effect of contact model on the dependency of the simulation output on the applied pre-

consolidation stress is investigated. In Figure 4-4, the results are compared with the experimental 

results obtained in Chapter 3 for the Carajas SF sample. In this experiment, three different levels 

of pre-consolidation stress are applied on the sample, 0, 8 and 65 kPa. As illustrated in Figure 4-4, 

a higher pre-consolidation stress results in a higher penetration resistance in both laboratory tests 

and the DEM simulations. The elastic contact model, HMLC (red squares), shows a lower 

dependency to the pre-consolidation stress, especially for the greater depth. This shows this 

contact model is unable to capture a realistic compressibility of the cohesive iron ore between the 

penetration tool and bottom of the container. On the other hand, the Elasto-plastic contact model, 

EEPA (blue diamonds), is capable to better replicate the dependency of the penetration resistance 

to the consolidation level. Although, the EEPA model underestimates W80 at the pre-consolidation 

of 8 kPa; calibrating the contact stiffness will probably improve the results. 

Figure 4-5 displays the change in the bulk density before and after the consolidation stage. 

Similar to the penetration resistance, the EEPA model is more successful in replicating the 

laboratory results, with the exception in 8 kPa pre-consolidation stress. 
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Figure 4-4. Effect of pre-consolidation stress on the penetration resistance; left) dimensionless 

penetration resistance at depth of 50 mm, and right) Dimensionless penetration resistance at depth of 

80 mm 

 

Figure 4-5. Effect of pre-consolidation stress on bulk density 

Additionally, this section showed that the built-in rolling friction model of EDEM® software 

package, model A, produces simulations that are unstable. Restricting rotation of particles 

enhanced stability of the simulation. Another promising solution is to implement a rolling friction 

model in the software package that ensure a sufficient level of stability. Also, choosing an 

appropriate contact model is crucial for modelling cohesive materials properly. Further calibration 

of the EEPA contact model will minimize the mismatch between experimental and simulation 

results. 

4.2. Scaling Technique 

4.2.1. An overview of scaling techniques for DEM  

To predict the outcome of the flow process accurately, the DEM parameters should be chosen 

carefully. To select the input parameters with confidence, the common procedure is to calibrate 

and to validate DEM simulations [9,28,87,88]. Three different calibration approaches for 

choosing DEM parameters can be named, as follows: 
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The first approach, Direct Measuring, requires measuring the input parameters directly at 

particle or contact level [11]. Accurate measurements of the micro-properties do not necessarily 

lead to a successful prediction of the bulk flow properties [2-3]. Furthermore, modelling the actual 

shape and size of particles leads to a computation time that is impractical for industrial 

applications, such as silo flow [4-5], transfer chutes [92–94], and ship unloader grabs [9], where 

the approximate number of particles required is greater than 107.  

In the second approach, in-situ calibration, field experiments on a specific industrial 

process, at a scale of 1:1, are used to either calibrate or re-calibrate a DEM simulation replicating 

the real process. For example, Ilic et al. [93] have used the in-situ calibration approach in a 

qualitative way for modelling the accelerated flow in transfer chutes. Using this calibration 

approach, the shape and size of particles can be modelled in a simplified way that are different 

than those actually handled in full-scale operations [94]. In the in-situ calibration approach, a 

sufficient number of experiments must be conducted to avoid ambiguity of DEM parameter set 

[95]. Additionally, a disadvantage of the in-situ calibration approach is that the calibrated DEM 

parameter set depends on the design, and it might fail to simulate processes different than the in-

situ calibration experiments. 

In the third approach, Bulk Calibration, a laboratory experiment or series of experiments 

is/are first conducted to measure the bulk properties that are relevant to the application under 

consideration [11]. Next, the input parameters for DEM simulations are calibrated by minimising 

the mismatch between output simulations and laboratory measurements. In general, to produce 

comparable bulk responses, these calibration simulations replicate a laboratory setup and 

procedures at a scale of 1:1 [96].  

Although the Bulk Calibration Approach can use a less detailed representation of particle 

shape and size, an important challenge remains the huge size of equipment used in bulk terminals, 

compared with particle size and the scale of calibration laboratory experiments. For instance, a 

Schulze Ring Shear Tester used to measure the bulk properties of particles smaller than 6 mm has 

an internal volume of less than 10-2
 m3 [97]. Equipment in bulk terminals, such as ship unloader 

grabs and silos, by contrast, have volumes that are 103 to 104
 greater than laboratory devices. This 

challenge limits the use of DEM simulations for industrial applications [9-10].  

Various approaches are used to reduce the computation time of DEM simulations. They 

can be categorized into two main groups. In the first group, computational techniques are used to 

speed up simulations, whereas particle size and geometry are kept constant. For instance, in [91] 
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reducing the stiffness of contact springs successfully led to more rapid simulation by allowing a 

larger integration time step to be chosen. [100] also proposed using a more efficient DEM solver 

to reduce the computation time. 

In the second group, either geometric size or particle size or both is/are scaled. Table 4-2 

provides an overview of the scaling techniques applicable to DEM simulations. Scaling can be 

done at either global or local level. At global level, scaling is applied to the entire simulation 

domain, influencing all the particles. For example, particle size can be scaled up in the entire 

domain by a constant scaling factor s. At local level, scaling is only applied to a specific region 

or a specific group of particles. For instance, in the Scalping or Cut-off technique [6, 15], finer 

fractions of particles are omitted by replacing them with the larger particle size fractions. 

Table 4-2. An overview of scaling techniques applicable to DEM simulations (s: scaling factor) 

Scaling technique 
Scaling factor of 

geometry 
Scaling factor of particle Level 

Local Particle Refinement 1 Variable s over domain Local 

Scalping (cut-off) 1 Finer fractions are up-scaled Local 

Exact Scaling s s Global 

Geometric Up- or Down-Scaling s 1 Global 

Coarse Graining (CG) 1 s Global 

Hybrid Particle-Geometric Scaling 

(current chapter) 
SBox SP Global 

The philosophy of Local Particle Refinement, which uses up-scaled particles outside the area of 

interest, is similar to Local Mesh Refinement [102]. This technique was successfully applied in 

[103] to model cone penetration into free-flowing materials using DEM. However, the main 

challenge when using local scaling techniques is that the speed of current DEM solvers depends 

mainly on the smallest particle size used in the simulation. The reduction in computation time is 

therefore limited by the critical integration time step. 

In Exact Scaling, both particle size and geometric dimensions are scaled by the same scaling 

factor s. An example can be found in [104], which investigates the upscaling of the uni-axial 

confined, uni-axial unconfined and cone penetration test for cohesive elasto-plastic soils. An 

important uncertainty with the Exact Scaling method is that both micro-properties at particle scale 

(e.g. particle mass), and macro-properties at bulk scale (e.g. bulk volume, porosity) are varied 

simultaneously. For instance, to create comparable initial stress states during scaling, Janda and 

Ooi [104] suggested to reduce the gravity with the same scaling factor that is used to up-scale 
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particles and geometry sizes. Since the scaled system should have the same energy density as the 

original (unscaled) system [105], altering gravity during scaling is not recommended. Schott et al. 

[91] also proposed the Geometric Downscaling of excavation equipment, which did not result in 

confirmed scaling rules. 

Another technique, referred to as Coarse Graining (CG), substitutes larger grains for the 

original DEM particles, thus allowing for a lower number of particles in simulations. [9] 

successfully applied this technique, using the calibrated DEM parameters in a large-scale 

simulation of grabs and free flowing bulk materials. [106] investigated the coarse graining of the 

JKR contact model [9] combined with Hertz-Mindlin [107] in a shear tester, but no scaling rules 

for modelling cohesive bulk materials were established. A more successful study [30] investigated 

the Coarse Graining of an Adhesive Elasto-Plastic in the uniaxial consolidation process through 

a trial and error approach, and it found that the constant cohesion force of the contact spring 

(constant pull-off force) should be scaled up by the square of the particle scaling factor. 

One or more combinations of the scaling techniques mentioned can be used to reduce the 

computation time of DEM simulations. For example, [96] used three different scaling techniques, 

Exact Scaling, Coarse Graining and Scalping, to simulate the angle of repose of a free-flowing 

bulk material. In practice, however, raw bulk materials and powders, such as moist iron ore fines 

and coal usually show cohesive elasto-plastic behaviour. Bulk responses of this type of materials, 

such as shear strength, bulk stiffness, and bulk density, depend on the history of applied normal 

pressure on the bulk specimen [21,22,48,108]. As discussed in the previous section, this stress-

history dependent behavior can be simulated properly by using contact models that are based on 

an elasto-plastic adhesive spring. Thus, the question is how combinations of scaling solutions can 

be applied to a different contact model incorporating the behaviour of cohesive elasto-plastic 

materials.  

In the remaining of this chapter, therefore, a hybrid particle-geometric scaling approach with 

the focus on an adhesive elasto-plastic DEM contact model is developed. This hybrid approach 

combines particle scaling with geometric scaling in a sequential manner. Figure 4-6 compares the 

idea behind the hybrid approach (Figure 4-6a) with Exact Scaling (Figure 4-6b) and particle 

upscaling (Figure 4-6c) techniques. In hybrid scaling, only particle properties (e.g. particle size, 

particle interaction parameters) or geometric properties (e.g. dimensions) are varied at a time, 

which is the main novelty over Exact Scaling. As discussed earlier, the main uncertainty with the 

Exact Scaling is that both micro-properties at particle scale, and macro-properties at bulk scale 

are varied simultaneously. In hybrid scaling, the geometric size is scaled each time after applying 
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particle upscaling, so basically larger particles can fit in the simulation setup. This creates a 

novelty for hybrid scaling over particle upscaling, in which up-scaled particles might not fit 

properly in the simulation setup. ϕTComputation is the ratio of the computation time of the scaled 

simulation to the computation time of the reference simulation. 

By applying hybrid particle-geometric scaling on a simulation setup, its internal volume can 

be increased to a level comparable to equipment in solid bulk terminals. This allows to create 

DEM simulations of an industrial process that have practical computational time using scaled up 

particles.  

 

Figure 4-6. Scaling approaches, (a) hybrid particle-geometric scaling approach (b) Exact Scaling, and 

(c) particle upscaling 

4.2.2. Particle scaling for an elasto-plastic adhesive contact model 

The Coarse Graining technique substitutes coarse grains s times larger than the original particles 

for the original particles with radius Rp. In general, a higher scaling factor s leads to a lower 

computation time of DEM simulations. According to [105], the scaled system should have the 

same energy density as the original (unscaled) system. Using the same particle density maintains 

the same potential and kinetic energy densities through CG [9]. The contact stiffness and damping 
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should be also scaled precisely, to maintain the same energy losses between the scaled system and 

the original one. 

Lommen et al. [9] establish the CG principles for the Hertz-Mindlin contact model in both 

the normal and tangential spring directions. Figure 4-7 shows the normal direction of the spring-

damper system for both eight original particles and the substituted coarse grain with s = 2. If 

spherical particles are used, by maintaining the same Young’s modulus in two systems, the contact 

stiffness and damping are identical to the equivalent stiffness and damping of the original system 

respectively. 

 

Figure 4-7. A coarse grain contact with a scaling factor of 2 and the equivalent contact of the original 

group of particles [9] 

Figure 4-8 is a schematic diagram of the non-linear mode of the EEPA contact spring in the normal 

direction. The contact spring in the normal direction consists of four different parts: 

• Constant pull-off force f0 (N): an ever-present adhesive force that is added to other normal 

forces. 

• Branch I, the loading spring: the contact follows the path k1 when two particles are approaching 

each other. Choosing n = 1.5 makes the loading spring equivalent to the Hertz-Mindlin contact 

spring in the normal direction [84]. 

• Branch II, the unloading and reloading spring: due to plastic deformation, upon unloading the 

contact spring switches to the unloading and reloading spring k2. The specific overlap 

corresponding to zero spring force during unloading is described as the plastic overlap δp. This 

plastic overlap is tracked and updated as the stress history-dependent parameter of the contact 

spring. The stiffness of the contact spring in Branch II, k2, is a function of k1 and the plasticity 
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ratio λP, and it is equal to 
PQ�RST. The plasticity ratio, λP, controls the ratio between stiffness in 

branch II (k2) and stiffness in branch I (k1), which shows the influence of plasticity ratio at 

contact scale. This means by increasing the plasticity ratio, a higher level of plastic overlap 

occurs during contact. 

• Branch III, the adhesive spring: if unloading continues beyond δp, an adhesive (negative) force 

is created that is limited to the maximum adhesive force fmin. Once this point is reached, the 

adhesive spring is activated, whose stiffness is kadh. If unloading continues, two particles 

separate if at δN = 0 the absolute normal force is larger than the constant pull-off force f0. 

 

Figure 4-8. The relationships of the EEPA contact spring in the normal direction [84] 

Eq. (4.3) shows the mathematical formulation of the sum of hysteretic force in the normal spring:  

�U � V �W � ,� 0U1                X� ,! �0U1 − 0Y1� Z ,� 0U1                �W � ,! �0U1 − 0Y1�        X� ,� 0U1 [ ,! �0U1 − 0Y1� [ −,��\  0U]     �W − ,��\  0U]              X� − ,��\ 0U] Z ,! �0U1 − 0Y1�             (4.3) 

If n = 1.5 is used, the stiffness of the contact spring in Branch I, k1, is calculated as follows: 

,� � 43  `∗ √.∗
 

 (4.4) 
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where E* and R* are the equivalent Young’s modulus and radius of two particles that are in contact. 

By using λP = 0, the contact spring is converted to an elastic spring [24]. The plastic overlap is 

calculated in Eq.(4.5):  

0Y � cY �1 0U (4.5) 

The stiffness of the adhesive spring, Branch III, is calculated as follows: 

,��\ � ��"d1 − �W�0"d1]   (4.6) 

where δmin is the corresponding overlap with the maximum adhesive force fmin. Since the minimum 

overlap, δmin, is the intersection between Branch II and Branch III, then it can be considered equal 

to ��efghPi jTg
Pi ��/1. The power value for Branch III  is x. Similarly to JKR theory [109], the 

maximum adhesive force as formulated in Eq. (4.7) is a function of the contact patch radius a (m) 

and the adhesion surface energy Δγ (J/m2).  

�"d1 � 32  - ∆l & (4.7) 

Figure 4-7 shows that the equivalent stiffness of the original system keq, which consists of s2 pairs 

of series springs, can be derived using Eq. (4.8) for n = 1.5. Using the fact that in series springs, 

δseries = s δN, and based on the definition of k1 (Eq. (4.4), keq during loading is determined.  

,
m,o � p! ,�
�d
�  

� p!  14  0�
�d
�1  

� p!  14  �p 0U�1  

� p!  ,�p�.q 

� √p ,� 

(4.8) 

Maintaining the same equivalent Young’s modulus for the coarse system yields: 

`∗r � `∗
 (4.9) 

Therefore, according to Eq. (4.10) in Branch I, the stiffness of the coarse system is equal to the 

equivalent stiffness of the original system. The same scaling rule is applicable to the tangential 

stiffness kt [9]. 
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,�r � 43  `∗s  t.∗s
 

� 43  `∗ √p.∗
 

� √p ,� � ,
m,o  

(4.10) 

Eq. (4.11) rewrites the normal force in unloading and reloading, Branch II, for the coarse system. 

First, ,!r  and 0Yr  are replaced by 
PQ�RST and cY Qg 0U respectively. 

�U,oor � ,!r  u0Ur 1 − 0Yr 1v 

� ,�r�1 − cYr �  w0Ur 1 − cYr x�1y10Ur 1z 

� ,�r  �1 − cYr x�1y1��1 − cYr � u0Ur 1v 

(4.11) 

Next, according to Eq. (4.10), ,�r  is replaced by √p ,�. Also, since the coarse system is equivalent 

to s2 pairs of series springs, 0Ur  = p 0U. If the same plasticity ratio λp is maintained for the coarse 

system, for n = 1.5: 

�U,oor � √p ,� w1 − cYx�1y1z
�1 − cY� p�.q �0U1� 

� p! ,� w1 − cYx�1y1z
�1 − cY� �0U1� 

� p! ,! x0U1 − 0Y1 y 

� p! �U,oo  

(4.12) 

Therefore, according to Eq. (4.12), during unloading and reloading, the stiffness of the coarse 

system is equivalent to the original system consisting of s2 pairs of series springs. 

The next step is to find scaling rules for cohesive forces. Figure 4-9 compares the constant 

pull-off springs between the original system and the coarse system with a scaling factor of 2. If 

the constant pull-off force is scaled up by s2
, according to Eq. (4.13), the force in the coarse system 

(FA) is equal to the equivalent force in the original system (FB). The equivalent constant pull-off 

forces in the original and coarse systems are therefore equal. 
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Figure 4-9. A coarse grain contact with a scaling factor of 2 during pull-off and the equivalent contact of the 

original group of particles 

 { � �Wr � p! �W �  | (4.13) 

Similarly to Eq. (4.8), the equivalent stiffness of the original system in Branch III, keq.III, is derived 

in Eq. (4.14): 

,
m,}}} � p! ,�
�d
�  

� p!  1p!   �
�d
�0�
�d
�]  

� p!  �U�p 0U�]  

� p!R] ,��\  

(4.14) 

If the Surface Energy, Δγ, is scaled by the factor s for the coarse system: 

∆lr � p ∆l  (4.15) 

Furthermore, since 0Ur  = p 0U, the contact radius a is proportional to the particle radius, which is 

scaled up by the scaling factor s. The minimum attractive force in the coarse system �"d1r  is 

therefore: 

�"d1r � 32 p! - ∆l & (4.16) 

Thus, according to Eqs. (4.6), (4.12), (4.13), (4.14), (4.16) and (4.17), in Branch III , for n = 1.5, 

the stiffness of the coarse system is proven to be equal to the equivalent stiffness of the original 

system. It is remarkable that changing the value of x, the power value of Branch III, leaves the 
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conclusion still valid. δmin is replaced by ��efghPijTg
Pi ��/1 using the fact that this point is the 

intersection between Branch II and Branch III. 

,��\r � ��"d1r − �Wr�0"d1r ]  

� p!��"d1 − �W�
��"d1r � ,!r  0Yr 1,!r �]1  

� p!��"d1 − �W�
wp! �"d1 � √p  ,!  p1 0Y1√p ,! z]1 

�� p!��"d1 − �Wp] 0"d1] � 

� p!R] ,��\  � ,
m,ooo 

(4.17) 

4.2.3. Geometric scaling 

Geometric dimensions are linearly scaled, which means that all the dimensions are scaled by the 

same factor, referred to in this chapter as SBox. The scaling of geometric kinematics is also by the 

same scaling factor. This allows for maintaining a constant shear strain rate during geometric 

scaling. 

4.3. Hybrid Simulation Plan for Particle and Geometric Scaling 

In this section, a simulation plan is designed to firstly investigate the influence of the proposed 

particle scaling rules on bulk responses in quasi-static and dynamic regimes. Second, to evaluate 

the decoupled effect of scaling from both a particle and a geometric perspective, a hybrid particle-

geometric simulation plan is created. To isolate the effects of SBox from SP, only one of them is 

varied at a time. In other words, when geometry dimensions are varied, particle properties (e.g. 

particle size, particle density, contact settings) are maintained constant. This allows for creating 

intersects between two levels of SBox, as illustrated previously in Figure 4-6. Following test cases 

are used to study behaviour of bulk material from various aspects:  

• Uniaxial confined consolidation simulation, which captures the stiffness of bulk material under 

vertical consolidation stresses. Using this case, it is evaluated whether bulk stiffness is scaled 

properly.   
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• Ledge angle of repose simulation, which is widely used to develop calibrated DEM simulations 

[9,14,82,96]. This test cases evaluates the performance of hybrid particle-geometric scaling 

when modelling the free-surface flow of cohesive bulk materials. 

• Schulze ring shear simulation, which is used to model shear flow under the effect of 

consolidation stresses. Shear tests are commonly used to characterize bulk materials (free-

flowing and cohesive) [50], and to calibrate DEM simulations [90,110–115]. 

The transition from a quasi-static to a dynamic regime can be characterized using the Inertial 

Number, Iregime, which has been used in [116] to study the shear flow. The ratio between inertial 

forces and confining pressure can be expressed using Eq. (4.18). 

~�
�d"
 � 2 l�  .Y ��Y ��  (4.18) 

where l�  is the shear strain rate, RP is the particle radius, �Y is the particle density, and P is the 

confining pressure. Iregime ≤ 0.01 has been characterized as a quasi-static regime [116]. 

4.3.1. DEM input parameters 

Main constant DEM parameters to model particles and their interaction are listed in Table 4-3a. 

These parameters are selected based on the calibrated DEM simulation of cohesive elasto-plastic 

coal in ring shear test that is developed in [29]. The calibrated DEM parameters have been verified 

in terms of shear strength and bulk density for various levels of consolidation pressure. A spherical 

shape is used to model DEM particles. A normal distribution of particle size with a standard 

deviation of 0.1 is used. A particle density of 1350 kg/m3 has been used in [29]. In the current 

study, particle density is increased to 4500 kg/m3 that allows to simulate density level of heavier 

bulk solids, including cohesive iron ore [8]. 

DEM input variables are listed in Table 4-3b. Main DEM variable in all tests is particle size. 

A reference particle radius of 5.5 mm has been used, corresponding to SP = 1. The rotational 

freedom of particles can be suppressed artificially by either introducing a rolling friction model 

[85] or restricting rotation of particles [9,117]. Restricting rotation of particles has been done in 

[29] by applying a counterbalance torque in each time-step necessary to prevent rotational 

movement. This leads to increasing the resistance of particle against rotational torque. Restricting 

rotation of particles has been successfully used to resemble realistic material behavior 

[8,9,29,105,118]. A restricted rotation option as the reference value is used to consider the 

rotational torque between particles. The plasticity ratio is another DEM variable in this 
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investigation. A reference value of 0.75 is used to enable elasto-plastic behavior of the contact 

spring. 

Table 4-3a. Constant DEM input parameters to model particles and their interaction - based on [29] 

Item Symbol Units Value 

Shear Modulus G MPa 7.5 

Poisson’s ratio υ - 0.25 

Particle shape ψP - Sphere 

Coefficient of restitution CR,p-p - 0.01 

Coefficient of static friction µs,P-P - 0.25 

Particle density ρP kg/m3 4500 

Table 4-3b. DEM input variables to model particles and their interaction 

Item Symbol Units Reference value 

Particle radius at SP=1 RP mm 5.5 

Rolling friction model - - Restricted rotation [29] 

Plasticity ratio λP - 0.75 [29] 

4.3.2. Uniaxial consolidation 

Simulation setup 

A virtual uniaxial confined consolidation simulation setup is used to evaluate the Coarse Graining 

technique under vertical consolidation stresses. Figure 4-10 shows the specifications of the 

simulation setup, including reference box dimensions. Particles are generated using a moving 

particle factory plate, which fills the box from bottom to top. This avoids compaction during the 

particle generation step, which might be caused by the kinetic energy of the particles. Next, 

particles are allowed to settle and to reach a static condition, where the ratio of the kinetic energy 

to the potential energy is less than 10−6, as defined in [104]. Afterwards, the loading 

(consolidating) stage starts by moving the lid plate downward at a velocity of VLid. After the bulk 

material has been consolidated, the unloading stage starts by moving the lid plate upward at the 

same velocity. A lid velocity of 4 mm/s is used at SBox = 1, which is equivalent to an axial strain 

rate of 0.02 s-1. Based on Eq. (4.18), by using the axial strain rate, an Inertial Number, I, smaller 

than 0.01 during the consolidation (up to 200 kPa) is created, and therefore, the simulation 

procedure creates a quasi-static regime.   
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Figure 4-10. Schematic view of the uniaxial consolidation simulation setup (SBox = 1) 

Tests 

Two different tests are conducted using the uniaxial simulation setup. The first test, 1.1, uses the 

non-adhesive non-linear Elastic mode of the contact model, which is basically similar to the Hertz-

Mindlin contact model. In other words, λP, Δγ and f0 are set to zero in the first test with n = 1.5.  

Figure 4-11 shows the experimental plan for Test 1.1 with the uniaxial consolidation 

simulation. Test 1.1 includes both the upscaling and downscaling of particle size and the upscaling 

of box size. The horizontal axis indicates the particle scaling factor SP, and the vertical axis 

indicates the box scaling factor SBox. The box dimensions and top lid velocity VLid are upscaled 

linearly, by scaling factors of 2.5 and 5, relative to the reference simulation setup. For each level 

of SBox, five different levels of SP are investigated. This results in smallest and largest particle 

radii of 2.2 and 33 mm respectively in Test 1.1. 

In the second test, the contact plasticity is activated by setting λP = 0.75. Test 1.2 with 

uniaxial consolidation simulation uses the non-linear Elasto-Plastic mode of the EEPA contact 

model . SP is varied from 2 to 6 while SBox is kept constant at 5. 
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Figure 4-11. Experimental plan for hybrid particle-geometric scaling in Test 1.1 with the uniaxial 

consolidation setup 

Objectives 

The tests with the uniaxial consolidation setup determine two main responses. The first is the 

average porosity of bulk material, as formulated in [50]. This parameter compares the packing 

densities after filling the box in different simulations. The second response is the pressure on the 

moving lid σLid during its displacement in the z direction. This enables the stiffness of bulk 

material during loading and unloading to be compared at different levels of SP and SBox. 

4.3.3. Angle of repose 

Simulation setup 

The angle of repose (αM) is an important characteristic in bulk handling processes; according to 

[71], angle of repose results are useful to categorise flow properties. Multiple test procedures are 

available in literature to determine αM, some example are described in [50]. Using different test 

procedures, different values of angle of repose (αM) for a same bulk material can be expected [9]. 

A ledge method setup or shear box is used to simulate the static angle of repose. Figure 4-12 

shows the reference test box dimensions. The container is 200 mm high, 200 mm long and 80 mm 

wide. The fixed parts are coloured black. The red part, which is the flap opening, starts moving at 

a velocity of V = 1 m/s to initiate particle flow by removing the lateral support. This leads to a 

shear strain rate of up to 0.2 s-1, and I larger than 0.01 during the flow under the gravity force. 

Based on (4.18), the simulation procedure creates a dynamic regime that ends with a static 

condition once an angle of repose is formed. 
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Figure 4-12. Dimensions of the angle of repose test setup; reference box size (SBox = 1) 

Tests 

Three tests are conducted using the ledge angle of repose setup. To be consistent with the previous 

uniaxial consolidation test experiments, a reference particle radius of 5.5 mm, equivalent to Sp = 1, 

is used in the current experiments. Figure 4-13 shows the experimental plan for Test 2.1, which 

verifies the developed coarse graining technique by applying a hybrid particle-geometric scaling 

approach, in which both particle size and box size are varied in a sequential manner.  

In the second test, 2.2, particle size and level of cohesion are varied using a full factorial 

experiment to verify the coarse graining technique for different levels of cohesion. In Table 4-4, 

a relative cohesion term is defined to distinguish between the expected levels of bulk cohesion, 

from a relative low angle of repose to high values. For example, at a medium level of relative 

cohesion for SP = 2, Δγ and f0 are equal to 20 J/m2 and -0.32 N respectively. To create relatively 

high bulk cohesion for SP = 2, Δγ and f0 are increased by 50% respectively, compared to the 

medium level. A decrease of 50% is also applied to create relatively low cohesion.  
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Figure 4-13. Experimental plan for hybrid particle-geometric scaling in Test 2.1 with an angle of repose 

setup 

Table 4-4. Three different levels of relative cohesion for SP = 2 

Level of relative 

cohesion 
Δγ [J/m2] f0 [N] 

Low 10 -0.16 

Medium 20 -0.32 

High 30 -0.48 

All the simulations in Test 2.1 are conducted at medium relative cohesion. Thus, Δγ and f0 are 

varied with respect to the particle scaling factor SP according to equations (4.15) and (4.13) 

respectively. The test box dimensions are also scaled by geometric scaling factors SBox of 0.5, 2.5, 

5 and 10. Five levels of SP, the particle scaling factor, are tested at each level of SBox. This results 

in a total of 25 simulations in Test 2.1. First, in the smallest box size, SBox = 0.5, five different 

particle scales are simulated, Sp equal to 0.2, 0.3, 0.4, 0.5 and 0.6. Next, five particle sizes are 

simulated in SBox = 1.0, that are equal to Sp = 0.4, 0.6, 0.8, 1.0 and 1.2. Sp equal to 0.4 and 0.6 are 

simulated in both SBox = 0.5 and 1.0. It is expected that by maintaining the particle size constant, 

the angle of repose can be compared under the effect of varying box dimensions. In other words, 

the link between SBox = 0.5 and 1.0 in the experimental plan is Sp = 0.4 and 0.6, which allows to 

verify the adequacy of hybrid particle-geometric scaling using the ledge angle of repose 

simulations setup. The hybrid scaling is continued by using SBox = 2.5 and Sp = 1, 1.5, 2, 2.5, 3. In 

SBox = 5, particle scales of 2, 3, 4, 5, and 6 are simulated. Using the largest geometry dimension, 

SBox = 10, particle scales of 4, 6, 8, 10 and 12 corresponding to particle radii of 22, 33, 44, 55 and 
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66 mm are simulated. Therefore, in Test 2.1 with the ledge angle of repose setup, adequacy of the 

following hypotheses are checked: 

a) The particle scaling rules that are established through equations (4.8) to (4.17) is applicable for 

various particle sizes 

b) The exact scaling, where both particle and geometry are scaled with a same scaling factor, is 

not applicable on cohesive materials when an elasto-plastic adhesive contact model is used. In 

other words, the effect of particle scaling should be decoupled from the effect of geometry scaling, 

which can be done using a hybrid particle-geometric scaling approach.  

In Test 2.2, the dimensions of the text box are kept constant at SBox = 5. The particle size is 

varied from SP = 1 to 6, and three levels of relative cohesion are investigated. This results in 

running a total of 15 simulations. 

In Test 2.3, the effect of coarse graining is also evaluated for the case of enabling rotation 

of particles. The following variables are included in Test 2.3: particle scaling factor, coefficient 

of static friction, and coefficient of rolling friction. The rolling friction model follows the 

recommendation by Ai et al. [85] to use model C for quasi-static conditions. Following the 

suggestion of [119], the rolling stiffness of [120] is used and the viscous rolling damping torque 

is disabled. By enabling rotation of particles, their mobility increases, so higher restrictive forces 

(e.g. cohesive and friction) needs to be used, compared to the case when the rotation restricted 

option is used. The reference values of coefficients of static friction and rolling friction are chosen 

according to the calibrated model of wet sand in [121], which are equal to 0.7 and 0.8 respectively. 

for SP = 2, Δγ and f0 equal to 100 J/m2 and -1.32 N are used respectively. This resulted in αM = 53˚, 

similar to the angle of repose measured for SP = 2 in Sbox = 5 with the medium relative cohesion 

level when the restricted rotation option is used. Δγ and f0 are varied with respect to the particle 

scaling factor SP according to equations (4.15) and (4.13) respectively. In this test, the ledge angle 

of repose simulation is done using Sbox = 5, and Sp = 2, 3, 4, 5, and 6. Using an one-variable-at-a-

time approach, level of μs,p-p is varied between 0.3 to 0.9, and level of μr,p-p is varied between 0.4 

to 1. This allows to confirm the particle scaling rules are independent of levels of coefficient of 

static and rolling friction.  

Objectives 

The equilibrium of forces and stresses can be drawn for a critical failure angle αM,critical, as 

illustrated in Figure 4-14. In an arbitrary cutting plane As, different normal and shear stresses will 

act, depending on αM,critical. All normal and shear stresses at the free surface are equal to zero. 
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Failure will occur once τα exceeds the shear strength of the bulk material. According to the Mohr-

Coulomb equation, the shear strength of bulk material τs is often approximated by Eq. (4.19) [70]: 

�� � �� � �$ tan �(� (4.19) 

where tan(φ) indicates the friction coefficient of the bulk material. τc denotes the cohesion strength 

of the bulk material: in other words, τc is the shear strength of the bulk material if �$ � 0. If the 

box dimensions in the Test 2.1 are scaled up, the vertical stress acting on As increases, due to the 

greater weight of bulk material. Although the exact location of As is unknown, Eq. (4.19) suggests 

that increasing the normal stress �$ , decreases the contribution of c to the shear strength. A 

negative correlation between SBox and αM can therefore be expected. To enable the effect of box 

scaling on the angle of repose of cohesive materials to be evaluated, we need to ensure that the 

vertical pressure in the z direction (and consequently �$� is scaled correctly in DEM simulations. 

 

Figure 4-14. Equilibrium of forces at the critical failure angle 

According to [122], normal stresses in vertical sections can be calculated using Eq. (4.20), in 

which the constant vertical stress σv is assumed to act across the cross-sectional area A.  

��,3 � � �� #� tan�(]� � 61 − �R� ������� � 3{ 7 (4.20) 

where g, ρb, K, φx, which denote standard gravity, bulk density, lateral stress ratio and wall friction 

angle respectively, are assumed to be constant [50]. U is the cross-sectional perimeter, and z is the 

bulk material height above the cross-section. Since in Test 2.1 all the box dimensions are scaled 

linearly, according to Eq. (4.21) a linear relationship exists between σv,bottom and Sbox. 
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(4.21) 

where the parameters with subscript 1 refer to the original box dimensions with Sbox = 1. σv,bottom 

increases linearly when Sbox is increased, where the constant α is the rate of change. To check 

whether a unique α can be obtained during hybrid particle-geometric scaling, and also to ensure 

that the simulation results match the analytical solution, σv,bottom is measured for all the 

simulations. 

The coordination number, or the average contacts per particle, is another important factor 

in quantifying particle packing [123]. This indicator is used here to evaluate the effect of both 

Coarse Graining and geometric scaling on particle packing. The average coordination number 

over all the particles is measured after the bulk material has reached a static condition. Since the 

number of contacts between geometry and particles is basically higher for simulations with 

smaller particles, only contacts between particles are included when calculating the average 

coordination number. 

In addition, the angle of repose αM is measured using a computer image-analysis technique 

as proposed in [124]. Once a static angle of repose is created, αM is determined from the images 

by taking the coordinates of ten equally spaced points on the slope of the material. Then, the linear 

regression technique is used to fit a straight line to the data points and the angle of the line with 

the horizontal represents the angle of repose. Using the images, the bulk surface profiles after the 

creation of the angle of repose are also compared between simulations. 

The four parameters mentioned, σv,bottom, average coordination number, αM and bulk surface 

profile, are used to evaluate the effects of particle and box scaling on the angle of repose 

simulation. 

4.3.4. Ring shear test 

Simulation setup 

A DEM simulation of the ring shear test (RST) is set up based on [97] and [125]. The RST is 

commonly used to characterise the flowability of cohesive and free-flowing materials. A 

schematic cross-sectional view of the RST cell filled with particles is shown in Figure 4-15. 
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Figure 4-15. Schematic cross-sectional view of the original ring shear cell: (left) cell dimensions, (right) 

schematic view of process 

The simulation setup and test procedure is similar to [29], in which the calibrated DEM parameters 

of cohesive material using the elasto-plastic adhesive contact model is developed. In the 

simulation, the shear cell is first filled with particles. After they reach the static condition, the pre-

shearing stage starts. In this stage, a uniform normal pressure of 20 kPa is first applied to the bulk 

material surface using the lid plate. Next, the shear cell starts to rotate over the centre line (C.L.) 

with a rotational velocity of ωcell. A range of rotational velocity between 5 to 20 degree/s was 

used. It was found that this range of velocity is enough to create a steady-state shear flow in the 

bulk material. Using a lower rotational velocity a longer time is required to to create the steady-

state shear stress in simulation. For that reason, to ensure that the steady-state is always reached 

within the simulation time, a ωcell = 15 deg/s is used in all simulations with ring shear test. This 

leads to a shear strain rate of 0.49 s-1, and a dynamic regime. In the second stage of the test, the 

shearing stage, the normal pressure is reduced to 2 kPa to measure the shear stress of the pre-

consolidated bulk material. 

Test 

Figure 4-16 shows the experimental plan designed to scale RST simulations. Three different shear 

cell sizes are created by scaling the reference cell by scaling factors of 2 and 5, while ωcell is kept 

constant during this test. The particle radius is also varied from 2.2 to 27.5 mm. 
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Figure 4-16. Experimental plan for hybrid particle-geometric scaling in Test 3 with RST 

Objectives 

The shear stress values are measured at both the pre-shearing and shearing stages, referred to in 

this chapter as τpre and τshear respectively. The measured values of τpre and τshear for different 

combinations of SCell and SP are used to evaluate the hybrid particle-geometric scaling in RST 

simulations. 

4.4. Results of Hybrid Particle-Geometric Scaling 

4.4.1. Uniaxial consolidation 

Figure 4-17 shows the porosity values measured for different levels of SBox. The average porosity 

is measured after the particles reach a static condition, and before starting the loading stage. 

Upscaling the box dimensions decreases the porosity, due to a greater total mass of particles, 

which results in denser packing in general. These results show that SBox and average porosity are 

strongly correlated, with a correlation coefficient of -0.985. The maximum porosity at each level 

of SBox is measured for the smallest value of SP/SBox, thus the minimum porosity is measured for 

the highest value of SP/SBox respectively. Hence the minimum porosity occurs when SP = 6 at 

SBox = 5 and is equal to 0.385. This value is higher than the theoretical limit of minimum porosity 

for rigid spheres. According to [126], nmin (also known as nKeppler) for rigid spherical particles = 

approximately 0.22. The maximum variation in porosity due to the scaling of particle radius is 

0.5%. This variation is probably caused by the particle generation method, where the new particle 

is placed in the simulation domain without any contact with neighbouring particles. The initial 

conditions are therefore adequately comparable at each level of SBox. 
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Figure 4-17. Porosity in Test 1 (uniaxial consolidation test) before loading 

Figure 4-18 shows the outcome of Test 1.1, which illustrates the influence of both SBox and SP on 

the loading and unloading behaviour of bulk material. The vertical axis represents σLid and the 

horizontal axis indicates the vertical location of the lid plate ZLid divided by the height of the box 

HBox. The σLid variation due to particle upscaling is determined by calculating the maximum 

difference between σLid in the simulation with the smallest SP and other simulations. 

As shown in Figure 4-18a, for SBox = 1, loading is continued until ZLid/HBox = 0.15, and a 

maximum σLid of 184 ± 6 kPa is measured for SP from 0.4 to 1.2. The minimum σLid, 0 kPa, during 

the unloading stage for SBox = 1 occurs at ZLid/HBox = 0.0302 ± 0.0020. This value represents the 

residual deformation due to one complete cycle of loading (consolidating) and unloading the bulk 

material. 

As shown in Figure 4-18b, for SBox = 2.5, loading is continued until ZLid/HBox = 0.12, and a 

maximum σLid of 165 ± 4 kPa is measured. A residual deformation of 0.0243 ± 0.0000 is 

measured. As shown in Figure 4-18c, for SBox = 5, loading is continued until ZLid/HBox = 0.12, and 

a maximum σLid of 151 ± 4 kPa is measured for SP from 2 to 6. A residual deformation of 

0.0276 ± 0.0004 is measured. 

On average, a standard deviation of 3% is measured for both maximum σLid and residual 

deformation at three levels of SBox. Test 1.1 therefore confirms that the uniaxial confined 

consolidation simulation using the non-linear non-Adhesive mode of the contact model is 

adequately insensitive to particle scaling. This mode of the contact model is equivalent to Hertz-

Mindlin. 
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Figure 4-18. Influence of SP and SBox on the loading and unloading paths of the non-linear Elastic 

contact mode in the uniaxial consolidation simulation (Test 1.1) 

Figure 4-19 shows the outcome of Test 1.2, which uses the non-linear elasto-plastic mode of the 

contact model. Loading is continued until ZLid/HBox = 0.095, and a maximum σLid of 120 ± 1 kPa 

is measured. This results in a standard deviation of less than 1% in maximum σLid with varying 

the particle radius from 11 to 33 mm. A residual deformation of 0.0749 ± 0.0006 is measured in 

Test 1.2, which is 2.7 times the residual deformation in the equivalent SBox in Test 1.1 when λp = 0. 

The considerable difference in the value of residual deformation, as well as the difference in 

maximum σLid, is due to enabling the plasticity of the contact model, which has been discussed in 

[24] as well. A standard deviation of less than 1% is measured for the residual deformation in 

Test 1.2. 
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The above shows that, in both the elastic and elasto-plastic modes of the contact model, the 

loading and unloading paths are adequately independent from SP. Coarse Graining as well hybrid 

particle-geometric scaling are therefore applicable to the uniaxial confined consolidation test. 

 
Figure 4-19. Influence of SP and SBox on the loading and unloading paths of the non-linear Elasto-Plastic 

contact mode in the uniaxial consolidation simulation (Test 1.2) 

4.4.2. Angle of repose 

Figure 4-20 shows the relationship between σv,bottom, SBox and particle size. The vertical axis 

indicates σv,bottom; the horizontal axes in Figure 4-20a and Figure 4-20b show the box scaling 

factor SBox and SP/SBox respectively. According to the fitted linear regression in Figure 4-20a, the 

simulation results match the analytical solution with α = 3.43 and a coefficient of determination 

R2 of 0.9989. This confirms that the simulation is able to capture the effect of geometry scaling 

on the vertical pressure distribution properly. A negligible effect of SP/SBox on σv,bottom is measured 

in Figure 4-20b. The normal pressure on the cutting plane σα is therefore scaled correctly in DEM 

simulations, and it is comparable at every level of SBox. 

As Figure 4-21 shows, for the entire range of SP/SBox, the average coordination number 

follows a similar trend as SBox increases. Particle packing therefore depends on SBox. Although 

some deviations of the average coordination number, up to 10%, are captured for SBox = 0.5 and 

1, the influence of SP/SBox on particle packing is significantly less than the effect of SBox. The 

increase in the average coordination number due to the scaling of box dimensions is caused by the 

strong correlation between SBox and vertical pressure in the bulk material, as demonstrated 

previously in Figure 4-20. As illustrated in Figure 4-22, the coordination number (averaged in 
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horizontal directions) increases in the z direction. In other words, particle packing is in the loosest 

state near the bulk surface (z→0), and the bulk material becomes denser as z/HBox increases. In 

general, increasing HBox in Test 2.1 creates denser packing at a higher level of SBox. 

 

Figure 4-20. σv,bottom in Test 2.1; (a) linear relationship between σv,bottom and SBox, (b) negligible 

sensitivity of  σv,bottom to particle size 

 

Figure 4-21. Average coordination number in Test 2.1 
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Figure 4-22. Increasing particle packing over box height (SP = 4) 

Figure 4-23 shows the angle of repose results of Test 2.1, in which SP and SBox are varied. With 

SBox = 0.5 and 1, an angle of repose of 90° is measured for all the particle sizes. If the box 

dimensions are scaled up with SBox = 2.5, the particles start to form an angle of repose smaller 

than 90°, which is equal to 63° in average. A standard deviation of only 1° is measured for 

SBox = 2.5. The average values of αM at SBox = 5 and 10 are 53° and 43° respectively; standard 

deviations of less than 1° are measured in these tests when varying the particle size. Considering 

the low standard deviation values, the particle-scaling thus successfully replicated similar angles 

of repose for the SP/SBox range investigated at each level of SBox. Therefore, hypothesis a 

(described in Section 4.3.3) on the adequacy of the particle scaling rules in the ledge angle of 

repose simulation is confirmed.  

Furthermore, the performance of Exact Scaling, where both SP and SBox are scaled at the 

same time, is analysed in the angle of repose simulation. Figure 4-24 shows the αM of the 

simulations where SP = SBox. Increasing the scaling factor, as Eq. (4.20) suggests, makes the 

cohesion term c less of a contributory factor to the shear strength compared to the friction 

coefficient, tan(φ). This led to a negative non-linear relationship between the geometry scaling 

factor and αM. Exact Scaling is therefore an inadequate solution to scaling the angle of repose 

simulation for cohesive materials when an elasto-plastic adhesive contact model is used. This is 

consistent with findings of [94] in DEM modelling of a draw-down test. This confirms hypothesis 

b, which was described in Section 4.3.3. 
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In addition, in the hybrid experimental plan designed, at each level of SBox at least one SP 

intersects with a higher level of SBox. For example, SP = 1 is simulated in both SBox equal to 1 and 

2.5, corresponding to Sp/SBox equal to 1 and 0.4 respectively. According to Figure 4-23, for SP = 1 

at SBox = 1, an αM = 90˚ is captured, while at SBox = 2.5 using the same particle size and contact 

settings, αM is equal to 64˚. The difference in the angle of repose is caused due to the differences 

in level of normal pressure and average coordination number, that were demonstrated earlier in 

this section. For that reason, following a hybrid particle-geometric scaling, first particles are 

scaled up from SP = 0.4 to 1.2. Second, geometry dimensions are scaled up from SBox = 1 to 2.5, 

by keeping the particle size and contact settings constant for SP = 1. Next, particles are scaled up 

from SP = 1 to higher scales i.e. SP = 3. Given the success of the particle scaling rules, αM is 

adequately equal between SP = 1 and 3 at SBox = 2.5. Additionally, the intersection between 

SBox  = 1 and 2.5 is SP = 1. Therefore, up-scaling is done from SP = 0.4 to 3 in this case, by 

decoupling the geometry scaling from particle scaling. This is done by using an intersection point 

between SBox = 1 and 2.5, which is SP = 1. Applying a similar rationale, the effect of geometry 

scaling is decoupled from the particle scaling for the other levels of SBox. Using hybrid particle-

geometric scaling, the ledge angle of repose simulation is therefore scaled up by increasing the 

particle size 60 times, from a particle radius of 1.1 mm to 66 mm. 

Keeping SBox constant in the Test 2.2 enables the effect of the cohesion parameters Δγ and 

f0 under Coarse Graining to be investigated. To analyse the results of Test 2.2, in addition to αM, 

the difference in bulk surface profiles is shown. Figure 4-25 illustrates an example of comparing 

bulk surfaces between two DEM simulation outputs. The left image shows the reference image, 

in which SP = 2 and relative cohesion is set at a low level. The right image compares the outcome 

of the simulation with SP = 5 and a similar level of relative cohesion with the reference image. 

The green area indicates the missing area in the second image compared with the reference image. 

Red lines, which represent the bulk surface offset by particle radius in the simulation with SP = 2 

(2 RP,ref. = 11 mm), are used to evaluate the variation in bulk surface. The bulk surface in the coarse 

grained simulation therefore matches the reference simulation well. 

Figure 4-26 compares the bulk surfaces between simulations with low (left) and high (right) 

relative cohesion levels. The magenta area indicates the difference due to the increase in cohesion. 

Both the angle of repose and the bulk surface irregularity increase as the relative cohesion 

increases.  



 Chapter 4 

107 

 
Figure 4-23. Influence of particle and geometric scaling on the angle of repose results in Test 2.1 

 
Figure 4-24. Inadequacy of Exact Scaling in angle of repose simulation of cohesive materials 

 
Figure 4-25. Comparing bulk surface between two particle scaling factors (low relative cohesion) 
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Figure 4-26. Comparing bulk surface between two different levels of relative cohesion at SP=2 

Figure 4-27 shows comparative bulk surfaces at low, medium and high levels of relative cohesion. 

In general, the mismatch is zero in the upper part of piles, and is only present in the middle and 

lower parts of the pile. Overall, at all three levels of relative cohesion, the difference in bulk 

surface between coarse grained particles and the simulation with RP = 11 mm (SP = 2) is limited 

to 2 RP,ref = 11 mm. 

 
Figure 4-27. Angle of repose results in Test 2.2 

Figure 4-28 compares αM in Test 2.2. The dashed line shows the average αM at all five levels of 

SP. The average αM with low relative cohesion is equal to 47° with a standard deviation of less 

than 1°. Increasing the relative cohesion to a medium level increases the average αM to 53°, and 
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an average αM of 62° is measured at high relative cohesion with a standard deviation of 1°. This 

confirms that the Coarse Graining technique is applicable to different levels of relative cohesion. 

Angle of repose results in Test 2.3, in which the rolling friction C is used, are presented in 

Table 4-5. By increasing coefficient of static friction from 0.3 to 0.9, the average αM is increased 

from 45˚ to 56˚. By increasing coefficient of rolling friction from 0.4 to 1, and maintaining a 

constant coefficient of static friction at 0.7, average αM is increased from 47˚ to 54˚. In all cases, 

by varying particle scaling factor, a standard deviation of 1˚ or less is captured for αM. This shows 

that the particle scaling rules were established in Section 4.3 are applicable when a rolling friction 

model (e.g. model C) is used. Additionally, scalability of particles in the ledge angle of repose 

simulation for elasto-plastic cohesive materials is confirmed independent of values of coefficients 

of static and rolling friction. 

 
Figure 4-28. Angle of repose results in Test 2.2 

Table 4-5. Effect of coefficients of static and rolling friction on the angle of repose for different particle 

scaling factors, SP =2 to 6, at SBox = 5 

µs,P-P µr,P-P αM [˚] 

0.3 0.8 45±0.6 

0.5 0.8 48±1.0 

0.7 0.8 53±0.7 

0.9 0.8 56±0.6 

0.7 0.4 47±0.9 

0.7 0.6 50±0.4 

0.7 1 54±0.8 



Minimizing computation cost for modelling cohesive bulk solids 

110 

4.4.3. Ring shear test 

Figure 4-29 shows the outcome of the test with the RST simulation. For each simulation, two 

different shear stress values are plotted. The results of the pre-shearing stage τpre and the shearing 

stage τshear are plotted in the left and right graphs respectively. τpre and τshear of 20.5 kPa and 5.3 kPa 

respectively are measured for SP = 0.4, the smallest particle size. ±20% of the measured shear 

stress values for SP = 0.4 is used to evaluate the influence of particle and geometric scaling. In 

other words, a variation of ±20%, compared to the measured shear stress values for the smallest 

particle size, is considered acceptable during scaling of the ring shear test. As the left graph shows, 

τpre increases by 20% when particle size is scaled up from SP = 0.4 to SP = 5 and the geometry of 

SBox is scaled up from 1 to 5. Similarly to the pre-shear stage, the shearing stage results show that 

τshear increases by 20%, due to the scaling up of particles and geometry. In addition, a comparison 

of the results of the pre-shear and shearing stages shows that during the shearing stage, a relatively 

higher variation in τ due to upscaling is measured. The measured values of τshear for intersects of 

different levels of SCell (i.e. SP = 1.2 and 1.8) vary considerably when geometric size is scaled up. 

The hybrid particle-geometric scaling approach therefore enables the upscaling of both particles 

and geometry in this test by using the intersect points that decouples the effect of particle and 

geometric scaling on shear stress . 

 
Figure 4-29. Ring shear test results: (left) pre-shear stage, (right) shearing stage 

4.5. On Applying Hybrid Particle-Geometric Scaling 

Using a hybrid particle-geometric scaling, the upscaling of particles and geometry can be used to 

develop large-scale DEM simulations of industrial granular processes, such as grabs, silo flow 
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and transfer chutes, while a minimized computational time is maintained. To achieve this, steps 

shown in Table 4-6 are recommended to follow. 

Table 4-6. Necessary steps to apply hybrid particle-geometric scaling in combination with DEM 

calibration 

 I) 

Laboratory test 

II) 

Calibrated DEM 

simulation 

III) 

Simulating 

geometric scaling 

IV) 

Simulating 

particle scaling 

SBox 1 1 >1 (e.g. 5) >1 (e.g. 5) 

Sp 1 1 1 >1 (e.g. 5) 

Response 1 

(e.g. bulk stiffness) 

y1 y1 y1’ y1’ 

Response 2 

 (e.g. angle of repose) 

y2 y2 y2’ y2’ 

Response 3 

(e.g. shear strength) 

y3 y3 y3’ y3’ 

• Step I is to conduct the laboratory tests to characterize complex behaviour of cohesive and 

elasto-plastic materials for various bulk responses, denoted by y.  

• Step II is to calibrate the DEM simulation replicating the laboratory tests at a scale of 1:1, 

which is a common calibration procedure.  

• Step III is to vary the geometry scale by maintaining constant particle size and contact settings. 

Values of bulk responses are expected to be affected by geometric scaling.  

• Step IV is to vary the particle scale and to compare bulk responses with outcome of step III. 

More scaling steps can be added to reach the desired trade-off between computational time and 

accuracy. Once a scaled up simulation with a reduced computational time is developed, 

validation should be achieved using in-situ experiments [9]. Validation experiments can be 

done in quantitative and qualitative ways; some examples can be found in [8,28,92–94,127–

131].  

4.5.1. Implementation for other contact models 

The current chapter applies hybrid particle-geometric scaling to the Edinburgh elasto-plastic 

adhesive (EEPA) contact model. In general, the hybrid scaling approach can be used for other 

cohesive DEM contact models simulating cohesive materials. For instance, the Hertz-Mindlin 

contact model combined with the Linear Cohesion model, as formulated in [22], can be used to 

model elastic adhesive (cohesive) bulk materials. Using the Linear Cohesion model adds an 
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additional normal cohesive force to the Hertz-Mindlin model. The additional normal cohesive 

force is calculated according to Eq. (4.22): 

���\ � ,��\ # (4.22) 

where kadh is the cohesion energy density (J/m3) and A is the contact area (m2). The particle scaling 

rules can be established similarly to the approach that was used earlier in Section 4.2. Using the 

superposition principle, the equivalent force of the original system fadh,eq, which consists of s2 pairs 

of series springs, can be derived using Eq. (4.23). Using the fact that in series springs, δseries = s δN, 

the contact area is scaled by s2. Maintaining kadh constant during scaling makes the additional 

normal cohesive force fadh  scale-invariant.  

���\,
m � p! �1 � p! ,��\  # (4.23) 

The concept of the EEPA contact model is similar to the Adhesive Elasto-Plastic contact model 

that was earlier developed by S. Luding in [23]. The main difference between these two contact 

models is that in Luding’s model, the contact stiffness during unloading and reloading also 

depends on the plastic overlap δP. This allows the level of non-linearity of plastic displacements 

during unloading and reloading to be adjusted. This difference should be taken into account if 

Coarse Graining is applied to the contact model described in [23]. 

4.6. Conclusion 

In this chapter, a hybrid particle-geometric scaling approach was developed that allows for scaling 

DEM simulations by isolating the effects of varying particle size and geometric dimensions on 

bulk properties. Additionally, particle scaling rules were derived by extending the Coarse 

Graining technique to incorporate two important aspects of bulk materials, their elasto-plastic 

behaviour and their cohesive forces.  

• Three different types of tests were used to confirm that the proposed particle scaling rules as 

well as hybrid particle-geometric scaling are applicable to quasi-static and dynamic regimes.  

• Uniaxial consolidation test at various vertical confining pressures, up to 190 kPa: the Coarse 

Graining technique is applicable to both the non-linear Elastic and non-linear Elasto-Plastic 

modes of the EEPA contact model. This was confirmed for a range of particle sizes, from a 

diameter of 2.2 mm until 60 mm. 

• Ledge angle of repose that investigates the shear flow of cohesive materials under gravity force: 

first, the hybrid scaling approach was successfully applied to scale up the particle size as well 
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the geometry size. In other words, the particle size was scaled up to 60 times by isolating the 

effect of particle scaling from geometric scaling. Furthermore, the Exact Scaling technique, 

where both particle size and geometry are scaled using the same scaling factor, is inadequate 

for the ledge angle of repose test for cohesive (elasto-plastic) materials. Comparable initial 

conditions (e.g. average coordination number) cannot be created using Exact Scaling. Second, 

the particle scaling rules have been successfully applied to different levels of cohesion 

parameters f0 and Δγ. There was a positive correlation between cohesion and ledge angle of 

repose. 

• Shear stress values in ring shear test for both the pre-shear (τpre) and shearing (τshear) stages: the 

variations were limited to 20% by applying the hybrid particle-geometric scaling. 

It was demonstrated that the constant pull-off force f0 and the surface energy Δγ should be scaled 

by the factors s2 and s respectively during particle scaling. Furthermore, in hybrid particle-

geometric scaling, only particle properties (e.g. particle size, particle interaction parameters) or 

geometric properties (e.g. dimensions) are varied at a time, which is the main novelty over Exact 

Scaling or Coarse Graining. Using a hybrid scaling, the upscaling of particles and geometry can 

be used to develop large-scale DEM simulations of cohesive (elasto-plastic) bulk solids with a 

minimized computational time. Next chapter will focus on calibrating DEM input parameters 

using the EEPA contact model.  
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A multi-objective DEM calibration 

procedure for cohesive and stress-history 

dependent bulk solids∗∗∗∗  

DEM simulations can only predict bulk level responses accurately if their input parameters are 

calibrated appropriately. Calibration aims at finding an optimal combination set of DEM input 

parameters that replicates the captured bulk responses. This chapter presents a reliable and novel 

calibration procedure for simulating the bulk responses of Carajas SF that were captured in 

Chapter 3. 

Multiple challenges are experienced when calibrating DEM input parameters for cohesive 

materials. Section 5.1 discusses major challenges, including that DEM calibration may lead to 

either an “ambiguous parameter combination” or an empty solution space. In other words, a 

calibration procedure might fail to meet definiteness and feasibility criteria. Another major 

                                                

∗ This chapter corresponds to: M.J. Mohajeri, C. van Rhee, D.L. Schott, “Replicating cohesive and stress-

history dependent behavior of bulk solids: feasibility and definiteness in DEM calibration procedure”. 
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challenge in DEM calibration is that the categorical-type DEM variables (e.g. contact module) 

have not yet been considered when optimization methods are used. A multi-step multi-objective 

procedure is introduced to address definiteness and feasibility, including both continuous and 

categorical DEM variables. In each step, the variables’ solution space is narrowed down to be 

further optimized in the next step. The specific DEM calibration targets, simulation setups, and 

initial sampling strategy are also introduced in Section 5.2. Section 5.3 presents results of the 

multi-step DEM calibration. The adequacy of calibrated input parameters are verified in 

Section 5.4. Section 5.5 presents conclusion on the adequacy of the calibration procedure, in terms 

of definiteness, feasibility evaluation, sampling techniques, number of variables and calibration 

targets. 

5.1. Feasibility and Definiteness in DEM Calibration Procedure  

To simulate, design, and optimize processes and equipment for handling bulk solids, such as iron 

ore and coal, the discrete element method (DEM) is an adequately accurate computational method. 

However, DEM simulations can only predict bulk level responses (e.g. shear strength) accurately 

if their input parameters are selected appropriately. To select the input parameters with 

confidence, the common procedure is to calibrate [9,28,87,88]. 

Over the past decade, reliable DEM calibration procedures have been developed to model 

free-flowing bulk solids, such as iron ore pellets [9], glass beads [12], sinter ore [13], sand [14,15], 

and gravel [16,17]. By setting multiple targets for the DEM calibration, more than a single bulk 

response can be considered. This prevents the “ambiguous parameter combinations” problem in 

the DEM calibration procedure, which is discussed in detail in [17]. For example, to calibrate 

DEM input variables for simulating iron pellets in interaction with ship unloader grabs, Lommen 

et al. [9] considered at least three different calibration targets. They replicated the static angle of 

repose using the ledge and free-cone methods; the penetration resistance of iron pellets was also 

replicated, using a wedge penetration test setup. 

In general, DEM calibration is performed following the generic procedure shown in    

Figure 5-1 To find an optimal combination of DEM input parameters that satisfies multiple 

calibration targets, optimization methods can offer a solution. Various optimization methods have 

already been applied to calibrate the continuous type of DEM variables successfully 

[12,13,16,132]. Continuous DEM variables are numerical variables that have an infinite number 

of values between any two values [133]. For example, the coefficient of static friction is an 
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important continuous DEM variable during calibration [11]. Richter et al. [16] concluded that 

surrogate modeling-based optimization methods are most promising for DEM calibration when 

continuous variables are included. 

Categorical-type DEM variables have not yet been included in the calibration procedure 

when optimization methods are used. Categorical variables are finite numbers of groups or 

categories that might not have a logical order [133]. For example, shape of particles is a DEM 

categorical variable that plays an important role during calibration [134]. One can use design of 

experiments (DoE) methods to include categorical variables in the DEM calibration procedure. 

However, a high number of simulations might have to be run with no guarantee of finding an 

optimal set of DEM input parameters [16]. Additionally, iron ore fines and other similar bulk 

solids (e.g. coal) have an irregular distribution of particle shape [20] as well as fine particle sizes 

[30]. Modeling accurate particle shapes and sizes for cohesive bulk solids in DEM simulations 

thus leads to a computation time that is generally impractical for studying industrial bulk handling 

processes, such as flow in silo [30]. 

Categorical input 
variables

Examples:

[Y’]

• Particle shape

• Contact module

Continuous input 
variables

Examples:

• Shear modulus

• Coefficient of 
static friction

Simulate bulk responses, Y’, for various sets of input 
variables

Find comparable 
Y and Y’

Calibration targets, Y,
e.g. generated using 

laboratory tests

Calibrated set of DEM 
input parameters 

 
Figure 5-1. Main components of a generic DEM calibration procedure. 

Furthermore, selecting an appropriate contact model from the available options is an important 

challenge in the DEM calibration. Applying optimization methods without choosing a proper 
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contact model might, for example, lead to an empty solution space or inadequacy in meeting 

macroscopic bulk behaviors other than the selected calibration targets [13]. A contact model 

generally includes multiple modules to calculate forces and torques between elements (e.g. 

particles). Figure 5-2 schematically illustrates a contact spring-damper system between two 

particles, a and b. Here, three main modules are identified: contact force in the normal direction 

is denoted by fN, while fT and τR represent force in the tangential direction and rotational torque 

respectively. Contact modules can be selected independently of each other. For instance, a rolling 

friction module can be implemented in various ways to determine rotational torque between two 

particles [9,85,119]. Therefore, each module of the contact model can be considered as a 

categorical variable in DEM calibration. 

By contrast with free-flowing materials, cohesive bulk solids such as moist iron ore fines 

usually show a stress-history-dependent and cohesive behavior [108]. Their bulk responses, such 

as shear strength, bulk density, and penetration resistance, depend on the history of applied normal 

pressure on the bulk specimen [22,48,108]. As shown in the previous chapter, this stress-history-

dependent and cohesive behavior can be simulated by using contact models based on an elasto-

plastic adhesive spring. Orefice and Khinast [25] used a multi-stage sequential DEM calibration 

procedure to model cohesive bulk solids using a linear elasto-plastic adhesive model; the 

calibration was done by replicating a specific bulk response at each stage, starting with the angle 

of repose (measured using the funnel test) as the first calibration target. Three continuous DEM 

variables were included during the calibration; other DEM input parameters, continuous and 

categorical, needed to be kept constant during their calibration procedure. The multi-stage 

sequential calibration procedure might fail to meet the following criteria. 

• Feasibility. Replicating all the selected bulk responses can be infeasible using chosen values 

for the input parameters that are constant during the calibration, such as a specific contact 

module. Therefore, considering the necessity of including multiple calibration targets, the 

calibration procedure can lead to an empty solution space for one or more than one of the 

calibration targets. 

• Definiteness (or avoiding ambiguous parameter combinations [17]). To meet this criterion, a 

bulk response independent of the calibration targets needs to be simulated successfully using 

the calibrated set of DEM input parameters. Additionally, properly selecting all modules of the 

DEM contact model is a prerequisite. Otherwise, the calibrated set of input parameters might 

fail to capture a bulk response different than the selected calibration targets. 
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Figure 5-2. A contact spring-damper system between two particles, including normal, tangential, and 

rotational directions. 

For example, the “definiteness” criterion has been focused on in the automated calibration 

procedure developed by [29], which is based on a genetic algorithm to replicate stress-history-

dependent and cohesive behavior of bulk solids in the ring shear test. By introducing cohesive 

forces as well as elasto-plastic stiffness into the DEM calibration procedure, the number of DEM 

input variables and the number of required bulk responses increase [23,25–27]. For that reason, 

the abovementioned criteria become important in developing a reliable calibration procedure to 

simulate cohesive and stress-history-dependent behavior of bulk solids. As yet, however, no 

literature has addressed how to ensure that both criteria, feasibility and definiteness, are met in a 

DEM calibration procedure considering both continuous and categorical DEM input variables. 

Additionally, calibrating DEM input parameters is still a challenge when a high number (i.e. >2) 

of variables in combination with a high number of bulk responses (i.e. >2) is involved. Therefore, 

a reliable DEM calibration procedure is needed to capture the cohesive and stress-history-

dependent behavior of bulk solids.  
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5.2. DEM Calibration Procedure 

5.2.1. A Multi-Step Optimization Framework 

In general, a calibration procedure aims at identifying an optimal combination of DEM input 

parameters, �∗ � ��∗, … , �U�∗ , that leads to simulated bulk responses, �r � ��r , … , �U�r , adequately 

similar to responses captured in physical laboratory or in-situ tests, � � �� , … , �U� [11]. Ns is 

the number of DEM input parameters and Ny the number of calibration targets. Bulk responses 

such as bulk density and shear strength thus need to be determined first, using appropriate physical 

tests. This allows for setting calibration targets and for quantifying the difference in bulk responses 

between simulated and physically determined values. To ensure that feasibility and definiteness 

criteria are satisfied for multiple calibration targets, a multi-step DEM calibration procedure 

considering categorical input parameters is proposed in Figure 5-3. The following four steps are 

included: (I) feasibility; (II) screening of DEM variables; (III) surrogate modeling-based 

optimization; and (IV) verification.  

To apply surrogate modeling-based optimization, the parameter space needs to be searched 

effectively to be able to approximate �r. Accordingly, F(X) maps relationships between new 

calibration targets, Y = y1, …, yMy, and (significant) DEM variables. Although the full factorial 

design can be used to create multi-variate samples, all the possible combinations between 

significant DEM variables must be included. This leads to a high number of simulations needing 

to be done. Fractional factorial designs, such as Taguchi [135], Placket-Burmann [136], and Box 

Behnken [137] designs, can be used to generate multi-variate samples required for surrogate 

modeling without the need to create all the possible combinations of variables. For example, if a 

full factorial design is used for 4 input variables having 3 levels each, that leads to 34
 = 81 

combinations to run. Using the Taguchi (orthogonal) method, a fractional factorial design can be 

created by running only 9 or 27 possible combinations.  

The accuracy of the surrogate model is evaluated using the coefficient of determination, R2. 

This coefficient quantifies the surrogate model accuracy in representing variability of values 

obtained from DEM simulations. To ensure that the surrogate model converges to a verifiable X*, 

a minimum R2
 value of 0.75 is considered to be met for all calibration targets. Otherwise, more 

samples are used to train the surrogate model.  

Next, the response optimizer searches for an optimal combination of input variables, X*, that 

jointly meets a set of calibration targets, Y. To find X*  using the surrogate model, the response 

optimizer toolbox available in Minitab [138] is used in the current investigation. 
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Step I. Feasibility

Y =   y1, …, yNy with Ny ≥ 2
Determine calibration targets
(e.g. using laboratory tests)

Feasibility evaluation:
Comparable Y and [Y’] 

for Ny ≥ 2?

Modify 
DEM 

variables 
and 

constants

No

Yes

Direct influence of DEM variables on Y 
for Ny ≥ 2

(e.g. using OVAT)

Significant 
DEM variables

Create new samples to apply a surrogate 
model for My  ≥ 2 

(e.g. using regression techniques)

Comparable Y 
and [Y’] using X*

for My ≥ 2?

F(X*)

Yes

No

X =  x1, …, xNs 

Select DEM (continuous and 
categorical) variables and 

constants

Search variables space using 
DoE methods (e.g. LHD)

[Y ’]: simulated bulk responses

X

DEM
 constants

Y =  y1, …, yMy with My ≥ 2
Modified list of calibration 

targets

Step II. Significant DEM variables

Step III. Surrogate modelling-based optimization

Step IV. Verification

• Searching  for a feasible solution space that covers selected 

bulk responses.

• Using DoE techniques, variables space can be searched 

effectively using a  minimum number of sampling points.

• X is feasible if a satisfactory coverage of solution space is 

reached. 

• A sensitivity analysis to identify significance of DEM 

variables.

• One-variable-at-a-time (OVAT) is the most suitable DoE 

technique for this step.

• To ensure that the definiteness criterion is met, a different 

set of calibration targets is used in this step, compared to 

previous steps.

• F(X) maps relationships between new calibration targets 

and (significant) DEM variables, X. 

Verified X* 

• |e|mean  is used to quantify error.

• The definiteness of  X *  is confirmed if bulk response(s) 

different than the calibration targets are simulated 

successfully.

Definiteness:
Verify X * for various bulk responses

(i.e. |e|mean ≤ 10%)  

 
Figure 5-3. Main steps of the DEM calibration procedure considering feasibility and definiteness 

criteria. 
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The mean of absolute relative differences is used to quantify error in the verification step. If y and 

y’ represent measured bulk responses in the experiment and the simulation, respectively, then 

|e|mean is determined according to Eq. (5.1) for a number of bulk responses, Ne. In the current 

study, an |e|mean ≤ 10% is considered an acceptable outcome during verification. 

 |�|"
�1 � � 100 ��P − �′P�P �U¡
P¢�  (5.1) 

Therefore, in each step of the calibration procedure the variables space is narrowed down to be 

further optimized in the next step. In the final step, a verified parameter set is found by checking 

|e|mean. 

5.2.2. DEM Calibration Targets: Y 

In this chapter, DEM calibration targets are set to values reported in Chapter 3. Bulk property 

variability of cohesive iron ores has been characterized using the following laboratory tests:  

A) Schulze ring shear test;  

B) ledge angle of repose; and,  

C) consolidation-penetration test.  

Additionally, three influencing parameters related to bulk properties were varied in the laboratory 

tests: (1) iron ore sample; (2) moisture content, denoted by MC; and (3) vertical consolidation 

pressure, denoted by σ. The results obtained in the laboratory tests listed above (A, B, and C) are 

used in the current chapter to set DEM calibration targets. During the calibration procedure, two 

out of three influencing parameters, MC and σ, are considered as sources of possible bulk property 

variability. Below characteristics of the selected bulk solid sample as well the measured bulk 

responses are described briefly. 

5.2.3. Bulk solid sample  

The bulk solid sample is a sinter feed type of iron ore from the Carajas mines, one of the largest 

iron ore resources on earth [62]. The average density of the particles is 4500 kg/m3, with a standard 

deviation of 125 kg/m3. The median particle size, d50, is equal to 0.88 mm [64]. The dry-based 

moisture content was determined according to the method described in [65], in which the sample 

is dried using a ventilated oven. This resulted in MC = 8.7%. An overview of measured properties 

of the sample is presented in Table 5-1. 
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Table 5-1. Overview of measured properties of the cohesive iron ore sample (based on measurements of 

Chapter 3). 

Property Symbol Unit Average value 

Dry-based moisture content MC % 8.7 

Particle density ρp kg/m3 4500 

Median particle diameter d50 mm 0.88 

5.2.4. Measured bulk responses 

Table 5-2 displays physically measured bulk responses of the sample using the ring shear and 

ledge angle of repose tests when σpre ≤ 20 kPa and ΔMC = ±2%. Pre-consolidation or pre-shear 

stress, σpre, is a normal confining pressure that is applied initially. In the ring shear test, for 

example, a normal confining pressure of 20 kPa is applied initially during the pre-shear stage, and 

next a normal confining pressure of 2 kPa (σshear) is applied. Figure 5-4 shows the results of shear 

stress measurements in the ring shear test, including one pre-shear stage and one shearing stage. 

In general, σshear is smaller than σpre, which allows us to investigate a stress-history-dependent 

bulk response, such as shear strength in the case of shear tests. The ledge angle of repose test has 

been conducted under no pre-consolidation stress, which represents the free-surface flow of bulk 

solids under gravity force. Maximum and minimum values of physically measured bulk responses 

are shown under ΔMC, up to ±2%, compared to its as-received condition. By considering the 

maximum and minimum measured values of bulk responses, extreme values can be included in 

the feasibility evaluation step of the DEM calibration procedure. In other words, the feasibility is 

evaluated for a range of bulk response values. 

The wall friction was also determined in Chapter 3. The test was done with a σpre equal to 

20 kPa and then the wall friction was measured for eight different levels of σshear between 2 and 

17 kPa. The wall friction measurements resulted in a wall yield locus with an average wall friction 

angle of 19˚ and a negligible adhesion strength of 0.1 kPa. 

Table 5-3 displays measured bulk responses of the sample using the consolidation-

penetration test when σpre ≥ 65 kPa and ΔMC = 0%. To consider the stress-history dependency, two 

levels of σpre are included in the calibration procedure, equal to 65 and 300 kPa, respectively. As 

the first bulk response parameter, accumulative penetration resistance [J] on the wedge-shaped 

penetration tool is determined by integrating the reaction force over penetration depth [8]. The 

secondary measured bulk response in the test is the bulk density after removing σpre. For example, 

after removing σpre of 300 kPa, the bulk density was measured according to the procedure 
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described in [21], which for this sample was equal to 2807 kg/m3 on average for three test 

iterations. 

Table 5-2. Physically measured bulk responses with ΔMC up to ±2% when σpre ≤ 20 kPa (based on 

measurements of Chapter 3). 

Test Bulk response Symbol Unit 
Minimum  

Value 

Maximum 

 value 

Ring shear 

Shear strength in pre-shear stage (σ = 20 kPa) τpre=20 kPa  16.5 19.4 

Shear strength in shearing stage (σ = 2 kPa) τ2:20 kPa 4.2 5.6 

Bulk density in the loose condition ρb,0 kg/m3 1803 1840 

Bulk density after pre-shear of 20 kPa ρb,20 kg/m3 2400 2580 

Ledge angle 

of repose 
Angle of repose (σpre = 0 kPa) αM ° 63 84 

 
Figure 5-4. Schematic shear stress measurements in ring shear test, including pre-shear and shearing 

stages. 

Table 5-3. Physically measured bulk responses when σpre ≥ 65 kPa (based on measurements of Chapter 3). 

Test Bulk response Symbol Unit 
Average 

Value 

Standard 

deviation 

Consolidation

-penetration 

Accumulative penetration resistance at 

80 mm depth when σpre = 65 kPa 
W80,65 J 108 7 

Accumulative penetration resistance at 

70 mm depth when σpre = 300 kPa 
W70,300 J 121 5 

Bulk density after applying σpre = 65 kPa ρb,65 kg/m3 2668 65 

Bulk density after applying σpre = 300 kPa ρb,300 kg/m3 2807 14 
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Therefore, bulk property variability of the cohesive iron ore sample has been determined under 

variation of confining pressure as well as moisture content. This provides a comprehensive set of 

measurement data to be used in the DEM calibration procedure (illustrated in Figure 5-3). 

5.2.5. Initial Sampling Strategy for Step I (Feasibility) Using LHD 

The initial sampling aims at evaluating the feasibility of capturing calibration targets using 

selected DEM input constants and variables. This allows for selecting a suitable solution, 

including levels of categorical variables and constants. Two simulation setups, ring shear and 

ledge angle of repose tests, are used in step I, feasibility. This means that the shear flow in two 

different test setups is simulated for σpre of up to 20 kPa. Three different bulk responses, τpre=20, 

τ2;20, and αM (angle of repose), are analyzed using DEM simulations for various combinations of 

input parameters. 

During a calibration procedure, DEM input parameters, X � �� , … , �U�, are divided into 

two groups: input variables and constants. Level input variables are varied in a range to meet 

calibration targets. Levels of DEM input constants are chosen based on available literature, if 

applicable; otherwise, their level is selected based on rational assumptions, as recommended by 

[25], or by the direct measurement method, as discussed in [11]. For example, modeling the actual 

shape and size distribution of a cohesive iron ore sample leads to a computational time that is 

impractical [139,140]. Thus, a simplified representation of particle shape and size can be used to 

develop a DEM simulation of cohesive iron ore. This technique has been applied successfully by 

[22,29,96] to model bulk solids that have fine particles with irregular shape distribution.  

Nevertheless, the rotational torque between particles needs to be considered; according to 

[105], two options are possible: (a) introducing a certain level of non-sphericity in particle shape; 

and/or (b) suppressing the rotational freedom of particles. In this chapter, option (b) is applied, as 

– compared to using multi-spherical particles – it does not have a negative influence on the 

computational time. The rotational freedom of particles can be suppressed artificially by either 

introducing a rolling friction module [85] or restricting the rotation of the particles [9,29,117]. 

Both techniques are included as a categorical variable in step I, feasibility. The rolling friction 

module is implemented according to [119]. This implementation was classified as “rolling model 

C” by [85], so the rolling friction module as RC in this chapter. The rotation of particles is 

restricted by applying a counterbalance torque in each time-step necessary to prevent rotational 

movement. This leads to an increase in the particles’ resistance to rotational torque. Restricting 

the rotation of particles has been used successfully to resemble realistic material behavior 
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[8,9,105,118]. Additionally, the number of input variables is reduced because, when using the 

restricted rotation (RR) technique, rolling friction coefficient does not play a role in rotational 

torque. 

DEM input variables for RC option 

Table 5-4 displays DEM input variables when the RC option, rolling friction module C, is used. 

Based on the available literature, the coefficient of static friction between particles, µs,p-p, is 

probably the most influential parameter on the internal shear strength of bulk solids [7,28,51-62]. 

Coefficient of rolling friction is also usually considered as an influential variable on shear flow 

[11]. To calibrate the shear flow of cohesive bulk solids, [121] found that a range of 0.2 to 1.0 is 

reasonable for coefficients of static friction and rolling friction when rolling model C is used. 

Particle shear modulus determines the stiffness of the contact spring. Therefore, G, particle shear 

modulus, is included as a continuous DEM variable in the current investigation. A range between 

2.5 to 10 MPa is used for G, which covers values used by other researchers modeling cohesive 

bulk solids using the same elasto-plastic contact model [22,29]. 

Constant pull-off force (f0) and surface energy (Δγ) are included in the calibration to control 

the magnitude of adhesive forces in the contact spring. f0 is varied between -0.0005 and -0.005 N, 

and Δγ between 5 and 50 J/m2. These ranges are expected to be sufficient to capture a realistic 

shear flow based on the DEM calibration done in [29].  

Table 5-4. DEM input variables to model interaction between particles when RC option is used. 

Input variable Symbol Unit Range 

Coefficient of static friction μs,p-p - [0.2 1.0] 

Coefficient of rolling friction  μr,p-p - [0.2 1.0] 

Particle shear modulus G MPa [2.5 10] 

Constant pull-off force -f0 N [0.5 5] e-3 

Surface energy Δγ J/m2
 [5 50] 

Contact plasticity ratio λP - [0.05 0.9] 

DEM input variables for RR option 

Table 5-5 displays DEM input variables when the RR option, rotation restricted, is used. First, 

based on our simulation results reported in [29], the ranges of coefficient of static friction and 

surface energy are changed, compared to the values in Table 5-4. By restricting the rotation of 

particles, their mobility decreases and so lower restrictive forces (e.g. cohesive and friction) can 

be used during the calibration procedure, compared to the case when the RC option is used. The 
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coefficient of static friction is varied between 0.2 and 0.4, while the surface energy variation is 

between 2.5 and 25 J/m2. Second, ranges of other input variables are similar to the case when the 

RC option is used. 

Table 5-5. DEM input variables to model interaction between particles when RR option is used. 

Input variable Symbol Unit Range 

Coefficient of static friction μs,p-p - [0.2 0.4] 

Particle shear modulus G MPa [2.5 10] 

Constant pull-off force -f0 N [0.5 5] e-3 

Surface energy Δγ J/m2
 [2.5 25] 

Contact plasticity ratio λP - [0.05 0.9] 

DEM input constants 

Table 5-6 presents other DEM input parameters that are kept constant during initial sampling for 

step I, feasibility. Particle density is set to 4500 kg/m3, similar to the measured value (Table 5-1). 

As discussed earlier, the representation of particles’ shape and size is simplified. Spherical 

particles are used and the mean particle diameter value is set to 4 mm including a normal particle 

size distribution with a standard deviation of 0.1. In addition to a reasonable computation time 

when spherical particles are used, the coarse graining principles for the elasto-plastic adhesive 

contact model [140] can be applied during the calibration procedure to further minimize the 

computation time. For example, the ledge angle of repose simulations are done using coarse 

grained particles with a scaling factor of SP = 2.25, as per [140]. Constant pull-off force and 

surface energy are scaled with factors of SP
2 and SP to maintain comparable bulk responses with 

the unscaled simulation. For further details of particle scaling rules, please refer to [140]. 

The tangential stiffness multiplier, kt,mult., is recommended as 2/3 [148] for non-linear 

elastic contact springs. According to [149], to maintain simultaneous harmonic oscillatory 

positions between normal and tangential elastic springs, a value of 2/7 is recommended. However, 

no recommendation was found in literature to select kt,mult. when a non-linear elasto-plastic normal 

spring is used. For that reason, a range of kt,mult. bounded to 0.2 to 1 was used in the ledge angle 

of repose simulation. Within this range, no significant influence on the simulation stability and 

simulated bulk responses were found, and therefore kt,mult. is set to 0.4.   

As suggested by [29], if a negligible adhesion strength is measured in the wall friction test, 

the Hertz-Mindlin (no-slip) contact model [150] can be used to describe interaction between 

particles and geometry. µs,p-w, the sliding friction coefficient between particles and wall geometry, 
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is therefore determined directly by Eq. (5.2), which results in µs,p-w = 0.37 for the measured 

average angle of the wall yield locus (] of 19˚. The rolling friction coefficient between particles 

and wall geometry has a negligible influence on simulated shear stress [90], and therefore µr,p-w is 

set to 0.5. 

 £�,/R¤ � tan �(]� (5.2) 

Table 5-6. DEM input constants. 

Particle and geometry input parameter Symbol Unit Value 

Poisson’s ratio υ - 0.25 

Particle density ρp kg/m3 4500 

Mean particle diameter at the reference particle scale  

(SP = 1) 
dp mm 4 

Particle shape Ψp - single sphere 

Coefficient of restitution, particle-particle  Cr,p-p - 0.01 

Normal and tangential contact modules, particle-particle fN,p-p and fT,p-p - EEPA 

Slope exponent n - 1.5 

Tensile exponent χp-p - 1.5 

Tangential stiffness multiplier kt,mult. - 0.4 

Normal and tangential contact modules, particle-wall 
fN,p-w and fT,p-

w 
- 

Hertz-Mindlin 

(no-slip) 

Sliding friction coefficient, particle-wall µs,p-w - 0.37 

Coefficient of restitution, particle-wall  Cr,p-w - 0.01 

Time step ∆t s 1.2e-5 

Initial samples 

Using design of experiments (DoE) techniques, parameter spaces – including their levels and 

possible combinations – can be searched effectively using a minimum number of sampling points. 

A Latin hypercube design (LHD) is constructed in such a way that each of the parameters is 

divided into p equal levels, where p is the number of samples. Based on the ΦP criterion [151], the 

location of levels for each parameter is randomly, simultaneously, and evenly distributed over the 

parameter spaces, maintaining a maximized distance between each point. The LHD is constructed 

according to the algorithm developed in [152], which satisfies the ΦP criterion for up to 6 

parameters. This allows for including up to 6 DEM input parameters in a feasibility evaluation. 

Figure 5-5 displays levels of the 5 continuous DEM input variables at SP = 1 when the RR 

option, restricted rotation, is used. Forty different samples are created using the LHD to simulate 
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ring shear and ledge angle of repose tests. Similarly, using the LHD, 40 different samples are 

created for the 6 continuous DEM input variables (based on Table 5-5) at SP = 1 when the RC 

option, rolling friction module C, is used.  

 
Figure 5-5. Forty different samples for RR option at SP = 1, are created using Latin hypercube design 

for 5 variables. 

In total, 160 simulations are run during step I, feasibility, which cover 2 categorical variables and 

6 continuous variables. 

5.3. Results 

In this section, first the simulation results of the initial samples (step I) are presented. Then, a 

feasible solution is chosen to continue the calibration procedure when executing its next steps. 
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Additionally, new samples are created at the beginning of each new step to meet its specific 

objective. 

5.3.1. Step I: feasibility 

Figure 5-6 displays the simulation results of the 40 initial samples when the RC option, rolling 

friction module C, is used. Three different bulk responses are quantified:  

• shear stress in the pre-shear stage, τpre=20; 

• shear stress in the shearing stage, τ2:20; and,  

• average angle of repose in the ledge test, αM.  

Thus, Ny = 3 in step I, feasibility evaluation. Simulation results are also compared with the 

maximum and minimum values that were measured in the laboratory environment (shown in 

Table 5-2). For example, τexp.max and τexp.min are shown using blue and red dashed lines respectively.  

 
Figure 5-6. Shear strength and angle of repose values captured in 40 samples when RC option is used: 

a) τpre=20; b) τ2:20; c) ledge angle of repose (αM). 

Using the RC option, a range of τpre=20 bounded to 6.2 and 12.3 kPa is captured. This shows that 

the 40 samples created using LHD could vary τpre=20 by around 100%. The maximum simulated 

τpre=20, 12.3 kPa, is around 25% lower than τexp.min. This means that simulating a comparable τpre=20 
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is probably infeasible using the RC option. To confirm whether this conclusion is limited to the 

selected ranges of the 6 DEM input variables, additional simulations using extreme values of 

DEM input variables are conducted. Extreme values are selected outside the selected ranges 

shown in Table 5-4. For example, using sample 32, which produced τpre=20 = 12.3 kPa, an 

additional sample is created by increasing particle shear modulus, G, to 100 MPa. This leads to 

only a marginal increase in simulated τpre=20. Even though the angle of repose, αM, is simulated in 

a range of 43˚ to 90˚, simulating comparable bulk responses is infeasible in the ring shear test. 

Therefore, according to Figure 5-6 an empty solution space is reached when the RC option is used. 

Figure 5-7 displays the simulation results of the 40 initial samples when the RR option, 

rotation restricted, is used. The same list of bulk responses as in Figure 5-6 analyzed here, and 

therefore the feasibility is evaluated for Ny = 3. 

 
Figure 5-7. Shear strength and angle of repose values captured in 40 samples when RR option is used: 

a) τpre=20; b) τ2:20; c) ledge angle of repose (αM). 

First, a range of τpre=20 bounded to 13.9 and 26.6 kPa is simulated; this covers both τexp.max and 

τexp.min. Second, a range of τ2:20 bounded to 2.5 to 6.5 kPa is simulated. This range covers both 

τexp.max and τexp.min. Third, a range of αM bounded to 60˚ and 90˚ is simulated; this covers the 

maximum and minimum values measured in the laboratory environment. Thus, according to 
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Figure 5-7, a non-empty solution space is reached when the RR option is used. However, no 

sample satisfies all three calibration targets jointly. For example, sample 39 seems to be an optimal 

parameter set, however the simulated bulk responses compared to τexp,max(pre=20), τexp,max(2:20) and 

αexp,max have errors, |e|, of 1.13%, 22.53% and 5.88% respectively. By establishing mathematical 

relationships between input variables and each calibration target, such errors can be minimized. 

Therefore, the RR option is used in the next steps as a feasible solution to be optimized further. 

5.3.2. Step II: significant DEM variables 

A one-variable-at-a-time (OVAT) technique is used to create samples that allows for investigating 

the direct effect of each DEM variable, xj, on simulated bulk responses by running a limited 

number of simulations. 

Table 5-7 displays the samples created for this step, including 6 DEM input variables at 

the reference particle scale (SP = 1), when the RR option is used. This results in 60 samples in 

total, to be simulated in the ring shear and ledge angle of repose tests. When one variable is 

changed, the others are maintained at the displayed reference values. Reference values are based 

on one of the samples that was used in step I. In addition to 5 DEM input variables that were 

included in step I, the tangential stiffness multiplier, kt,mult., is also varied in this step. This allows 

for checking whether kt,mult. has any significant influence on the selected bulk responses. A similar 

list of bulk responses including τpre=20, τ2:20, and αM is analyzed in step II. Furthermore, larger 

ranges for the DEM input variables, compared to the previous step, are used to create samples. 

This allows for running a comprehensive sensitivity analysis showing relationships between the 

DEM input variables and the selected bulk responses. 

Table 5-7. Sampling for step II, finding significant DEM variables. 

Variable Unit 
Reference 

value 
Low Step High 

µs,p-p - 0.3 0.1 increase by 0.1 1.0 

G MPa 7.5 1 multiply by 2 1024 

λP - 0.2 0 increase by 0.1 0.99 

-f0 N 1e-3 0 increase by 0.5 e-3 5e-3 

Δγ J/m2 5 0 increase by 2.5 and 5 25 

kt,mult. - 0.4 0.2 increase by 0.2 1.0 

Figure 5-8 displays isolated effects of the 6 DEM input variables at SP = 2.25 on the simulated 

angle of repose. Since the ledge test box is performed in a rectangular container, αM would be 

always equal or smaller than 90˚. By varying coefficient of static friction, the maximum possible 
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angle of repose, αM = 90˚, being reached when µs,p-p ≥ 0.6. As expected based on the Mohr-

Coulomb theory, there is a positive strong correlation between µs,p-p and αM , as shown in Figure 

5-8a. A higher particle-particle friction results in a higher shear strength when normal pressure 

and cohesion strength are constant. By contrast, there is a negative correlation between G and αM, 

as can be seen in Figure 5-8b. By increasing G from 1 to 128 MPa, αM decreases by around 20˚. 

By increasing G, a lower contact overlap, δ, is created. This is expected to result in lower forces 

in the adhesive branch of the contact spring (part III). Increasing G to higher values has negligible 

influence on αM. The ledge angle of repose simulations using λP equal to 0 and 0.99 result in 

unstable simulations, in which the stable situation (as discussed in Section 2.4) is not reached. As 

shown in Figure 5-8c, by increasing λP from 0.1 to 0.5, αM decreases by around 20˚, and further 

increasing λP has a negligible influence on αM. Constant pull-off force and tangential stiffness 

multiplier are found to have negligible effects on αM in the investigated range, as shown in        

Figure 5-8d and Figure 5-8f, respectively. There is a strong positive correlation between Δγ and 

αM, showing a non-linear trend near the extreme values (Figure 5-8e). According to the Mohr-

Coulomb theory, a higher cohesion strength results in a higher shear strength. 
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Figure 5-8. Isolated effects of 6 DEM input variables at SP = 2.25 on the average angle of repose: a) 

coefficient of static friction; b) particle shear modulus; c) contact plasticity ratio; d) constant pull-off 

force; e) surface energy; f) tangential stiffness multiplier. 

Coefficient of static friction, particle shear modulus, surface energy, and plasticity ratio are 

significant DEM variables influencing the angle of repose.  

Figure 5-9 displays the results of the OVAT-based sensitivity analysis for simulated τpre=20. 

According to the Mohr-Coulomb theory, the higher angle of internal friction of bulk material 

results in a higher shear strength when normal pressure and cohesion strength are constant. A 

linear trend seems to exist between these two parameters. The other 5 DEM input variables, 

compared to µs,p-p, have a weaker influence on τpre=20. Particle shear modulus and surface energy 

have positive correlation values with τpre=20. The surface energy contributes in the cohesion 

strength of bulk material, thus contributing in the shear strength too. 
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Figure 5-10 displays the results of the OVAT-based sensitivity analysis for simulated τ2:20. 

Coefficient of static friction has a strong positive correlation with τ2:20, similar to its correlation 

with τpre=20. The surface energy plays a more important role in τ2:20, compared to τpre=20. Increasing 

surface energy, Δγ, from 0 to 25 J/m2 causes an increase of more than 200% in τ2:20. According to 

the Mohr-Coulomb theory, at relatively low vertical pressure values, the cohesion strength, c, has 

a higher contribution to the shear strength, compared to shear flow at high vertical pressure values. 

As expected, based on the results of the ledge of repose simulations, G has a negative correlation 

with τ2:20. This is probably due a lower normal overlap created in the contact spring by increasing 

the value of G. Contact plasticity ratio, λp, also has some level of influence on τ2:20, but not in a 

predictive manner. 

 
Figure 5-9. Isolated effects of 6 DEM input variables on the shear stress in the pre-shear stage (τpre=20): 

a) coefficient of static friction; b) particle shear modulus; c) contact plasticity ratio; d) constant pull-off 

force; e) surface energy; f) tangential stiffness multiplier. 
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In conclusion, only one input variable, kt,mult., has a negligible influence on the investigated bulk 

responses. Therefore, all the other 5 input variables are included in the surrogate modeling-based 

optimization in the next step. 

 
Figure 5-10. Isolated effects of 6 DEM input variables on the shear stress in the shearing stage (τ2:20): a) 

coefficient of static friction; b) particle shear modulus; c) contact plasticity ratio; d) constant pull-off 

force; e) surface energy; f) tangential stiffness multiplier. 

5.3.3. Step III: surrogate modeling-based optimization 

In this step, first the Taguchi method is used to create multi-variate samples to include variations 

of 5 significant DEM input variables when the RR option is used. Second, relationships between 

each calibration target and the DEM input variables are mapped to create F(X). This is done using 

the multiple linear regression technique. As discussed in Section5.1, to consider the definiteness 

criterion, calibration targets are modified by excluding the ledge angle of repose test and by 

including W80,65 and W70,300 measured in the consolidation-penetration test. This means that four 
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calibration targets are included in step III, and therefore My = 4. Additionally, the maximum values 

of shear strength (shown in Table 5-2) are used as calibration targets in the simulation of a ring 

shear test. Third, an optimal set of DEM input parameters is found; these jointly satisfy the four 

selected calibration targets. 

Table 5-8 presents the levels of the 5 significant DEM input variables at SP = 1 that are used 

to create multi-variate samples. Given the adequate simulated bulk responses in step I, the 

coefficient of static friction is bounded to 0.2 and 0.4. For the same reason, levels of G are set to 

2.5, 5, and 7.5 MPa. Three levels are selected for G to capture any possible non-linear relationship 

between G and the DEM calibration targets. λp is bounded to 0.2 and 0.6. This range is expected 

to be enough to capture a wide range of plasticity in the contact spring. Two other parameters, f0 

and Δγ, which control cohesive forces in part III of the contact spring, are confounded. In other 

words, their levels are varied simultaneously in a way that allows us to minimize the number of 

samples. Thus, 4 coded variables are used in the Taguchi design to create samples. In total, 18 

samples are created using the Taguchi method. 

As investigated in [9], the reaction force on the wedge-shaped penetration tool is affected 

by the particle scaling factor. For that reason, the consolidation-penetration simulation is 

calibrated only for level of particle size (SP = 2.25), which is similar to the particle size used in 

the ledge angle of repose simulations. 

Table 5-8. Levels of DEM input variables at SP = 1 in step III: surrogate modeling-based optimization. 

Coded 

variable 

Variable name 

(uncoded) 

Level 

1 2 3 

1 µs,p-p [-]  0.2 0.4 - 

2 G [MPa] 2.5 5.0 7.5 

3 λP [-] 0.2 0.4 0.6 

4 
-f0 [N] 0.5e-3 2.5e-3 5.0e-3 

Δγ [J/m2] 4 8 12 

Next, the matrix of simulated bulk responses, [Y’] , including 4 different bulk responses for 18 

samples, is created. This matrix is used to map relationships between DEM variables, X, and 

simulated bulk responses, Y’. Details of F(X) are presented in Table 5-9, including coefficients of 

the DEM variables in linear regressions fitted on simulated bulk responses, Y’. Cte. stands for the 

constant term in the regression model. Remarkably, in all the fitted linear regression models the 

coefficient of static friction has the highest level of significance. Values of coefficient of 

determination, R2, are also presented; in all the regression models, these are higher than 0.75.  
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Table 5-9. F(X) when i∈∈∈∈My; mapped relationships between DEM variables and simulated bulk 

responses. 

Y’ 

Bulk response 
Symbol Unit 

Coefficients in fitted linear regressions 

R2
 

Cte. 
µs,p-p  

[-]  

G  

[MPa] 

λp 

[-] 

Δγ 

[J/m2] 

Accumulative penetration 

resistance at 80 mm depth 

when σpre = 65 kPa 

W80,65 

 
J -86.7 435 6 22 3 0.77 

Accumulative penetration 

resistance at 70 mm depth 

when σpre = 300 kPa 

W70,300 

 
J -111 550 1 113 4 0.80 

Shear strength in shearing 

stage (σ = 2 kPa) 

τ2:20 

 
kPa 259 6797 -5 -415 143 0.89 

Shear strength in pre-shear 

stage (σ = 20 kPa) 

τpre=20 

 
kPa  3382 41455 171 -385 175 0.97 

Therefore, the multiple linear regression model is found to be adequate for us to continue with 

response optimization. If insufficient values of R2 are reached in this step of the calibration 

procedure, either a higher number of training samples or more advanced surrogate modeling 

techniques can be used. 

Figure 5-11 presents an optimal set of DEM input variables that jointly satisfies four 

different calibration targets in step III with a composite desirability, dcomposite, equal to 0.61. 

Composite desirability, dcomposite, represents the geometric mean of individual desirability values, 

d, as shown in Eq. (5.3) and Eq. (5.4), respectively. 

 ¦��"/��d�
 � � § ¦d
¨©

d¢¨©
��/1 ; X ∈ �� (5.3) 

  ¦ �
⎩⎪⎨
⎪⎧ f�X� − �"d1r� −  �"d1r  , �"d1r < f�x’� < �

�"�]r − f�X��"�]r − �  , � < f�x’� < �"�]r   (5.4) 

where ���� is the predicated bulk response using the linear regression, and � is the target bulk 

response that is measured physically. �"d1r  and �"�]r  respectively represent the lowest and highest 

simulated values of a specific bulk response among all samples in step III. Each row in              

Figure 5-11, except the top one, represents a specific simulated bulk response with its maximum 

possible d value obtained by finding an optimal set of DEM input variables. For example, the last 
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row represents the response optimization for shear strength in the pre-shear stage, τpre=20. For this 

bulk response, the physically measured value, y, is equal to 19.4 kPa. 

Using the mapped relationship between DEM variables and y’, simulated bulk response, a 

combination of variables is found that is predicted to lead to f(X*) = 18.7 kPa. This means that the 

outcome predicted in the simulation of a ring shear test using the current solution, shown in red, 

is a τpre=20 equal to 18.7 kPa, with d = 0.80. 

 
Figure 5-11. Finding an optimal set of DEM input variables that jointly satisfies calibration targets 

using response optimization. 

5.4. Verifying the Calibration Procedure 

This section discusses verification of the calibration procedure, step IV. First, it should be verified 

whether the outcome of surrogate modeling-based optimization is adequate. This is verified by 

running simulations using the optimal set of DEM input parameters and comparing simulated bulk 

responses to predicted values,  f(X*). Second, |e|mean is used to compare simulated bulk responses 
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– using the optimal set – with all the calibration targets, corresponding to the maximum values in 

Table 5-2 and the target values in Table 5-3. Third, the entire yield locus in the ring shear test, 

including 1 level of σpre and 4 levels of σshear, is compared between the calibrated simulation and 

experiment. Fourth, the wall friction test as an independent bulk response is verified for various 

stress states.  

First, ring shear and consolidation-penetration tests are simulated using the optimal set 

found Figure 5-11. In Table 5-10, four different simulated bulk responses are compared with 

values predicted using the surrogate-based optimization.  

 

Table 5-10. Comparing simulated bulk responses using the optimal set with predicted values of 

surrogate modeling-based optimization. 

Test Ring shear 
Consolidation-

penetration 

Parameter τpre=20 τ2:20 W80,65 W70,300 

Unit kPa kPa J J 

y’  

Simulated bulk response 
19.6 4.9 115 130 

f(X *) 

Predicted value 
18.7 4.4 112 121 

|�| � 100 ∗ | �sR��³∗��s  | 4.6 10.0 2.6 6.9 

The relative difference is ≤10% in all cases, and therefore the adequacy of the multiple linear 

regression technique together with the response optimizer is confirmed for our DEM calibration 

problem. If large differences between y’ and f(X*) had been captured, a higher number of samples 

or more advanced regression techniques could have been used to minimize the relative difference. 

Second, |e|mean is used to compare simulated bulk responses – using the optimal set – with all the 

calibration targets, corresponding to the maximum values in Table 5-2 and the target values in 

Table 5-3. In other words, bulk density, shear strength, ledge angle of repose, and accumulative 

penetration resistance values are verified here. Table 5-11 compares 9 different simulated bulk 

responses with their target values, which were measured physically using the laboratory tests. 

Four parameters in the ring shear test are compared, indicating shear strength and bulk density. 
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Table 5-11. Verification of calibration procedure; comparing simulated bulk responses with their 

calibration targets. 

Test Parameter Unit 

y’  

Simulated 

response 

y 

Target value 
|´| � µ¶¶ ∗ | ·sR··s | |e|mean 

Ring shear 

τpre=20 kPa 19.6 19.4 1.0 

5.2 
τ2:20 kPa 4.9 5.6 12.5 

ρb,0 kg/m3 1850 1963 5.8 

ρb,20 kg/m3 2760 2800 1.4 

Consolidation-

penetration 

W80,65 J 115 105 9.5 

4.8 
W70,30 J 130 120 8.3 

ρb,65 kg/m3 2680 2668 0.4 

ρb,300 kg/m3 2830 2807 0.8 

Ledge angle 

of repose 
αM ° 90 84 7.1 7.1 

The shear stress in the pre-shear and shearing stages is simulated with |e| equal to 1% and 12.5% 

respectively. Bulk density values in loose and pre-sheared conditions, ρb,0 and ρb,20, are simulated 

with |e| equal to 5.8% and 1.4%. On average, a relative deviation of 7% is captured in a ring shear 

test including four calibration targets. In the consolidation-penetration test, four different 

calibration targets are evaluated, including accumulative penetration resistance and bulk density 

values measured at two different pre-consolidation levels. In the consolidation-penetration test, 

accumulative penetration resistance parameters, W80,65 and W70,300, are simulated with |e| smaller 

than 10%. Additionally, bulk density values at two different levels of σpre, 65 and 300 kPa, are 

simulated with negligible |e| values (smaller than 1%). This confirms that, using the elasto-plastic 

adhesive contact model, the calibration procedure was successful in capturing history-dependent 

behavior of the cohesive iron ore sample in terms of penetration resistance and bulk density. 

Finally, the ledge angle of repose, which was not used during the surrogate modeling-based 

optimization, is replicated with |e| = 7.1%. Therefore, considering simulated bulk density values 

in four different stress states and αM, the definiteness criterion is met using the optimal set of 

calibrated parameters, X*. 

Third, the entire yield locus is verified for the ring shear test conducted with σpre=20.        

Figure 5-12 compares the results of the ring shear test simulation using the optimal parameter set. 
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Comparable shear stress values are measured in both simulation and experiment, with |e|mean = 

6.7%. This verifies that the calibration procedure is able to replicate shear strength in various 

stress states and is able to capture the non-linear yield locus.  

 

Figure 5-12. Verification of yield locus for σpre=20. 

Finally, wall friction measurements as a bulk response independent of the calibration targets are 

compared in Figure 5-13, including 8 different stress states. The simulated wall yield locus shows 

a linear trend that replicates experimental values, with |e|mean = 5.5%. Since the Hertz-Mindlin 

(no-slip) contact model (without adhesive forces) was used to model particle-wall interactions, 

this linear trend could be expected. This finding is similar to the conclusion of [29], obtained by 

modeling a cohesive coal sample in a wall friction test. 

 

Figure 5-13. Verification of wall friction measurements. 
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5.5. Conclusion 

In this chapter, a reliable and novel DEM calibration procedure is established by incorporating 

two important criteria: feasibility and definiteness. The DEM calibration procedure was applied 

successfully to model cohesive and stress-history-dependent behavior of moist iron ore based on 

an elasto-plastic adhesive contact module. The definiteness of the calibrated parameter set has 

been verified using 20 different bulk response values in four test cases, such as ring shear, 

consolidation-penetration, and wall friction tests. 

• The established calibration procedure can be used to calibrate material models when a high 

number of DEM input variables (e.g. 6) as well as multiple calibration targets (i.e. >2) are 

involved.  

• Both continuous and categorical variables can be used in step I, feasibility. Using the Latin 

hypercube design (LHD) method, it has been shown how a categorical DEM variable (i.e. 

rolling friction module) can be used during calibration. 

• During the calibration procedure, significant DEM variables can be screened using the one-

variable-at-a-time (OVAT) method in step II. For ring shear and ledge angle of repose 

simulations, coefficient of static friction between particles (μs,p-p) was found to be the most 

significant DEM variable. In general terms, this outcome is consistent with findings by other 

researchers [11]. Particle shear modulus (G), surface energy (Δγ), and contact plasticity ratio 

(λP) were the other significant variables when the elasto-plastic adhesive contact module was 

used. 

• It was shown in the current chapter that surrogate modeling-based optimization is applicable 

when a high number (i.e. > 5) of DEM input variables is involved. 

• The combination of Taguchi and multiple linear regression techniques was successful in the 

surrogate modeling-based optimization, with coefficient of determination values larger than 

0.75 for all the calibration targets.  

Next chapter will focus on validating the calibrated model of the cohesive iron ore in simulating 

the grabbing process where all the bulk responses (discussed in Section5.4) play a role.  
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Validating co-simulation of a grab and 

cohesive iron ore∗∗∗∗  

A novel design approach of grabs is to test virtual prototypes of new concepts in interaction with 

bulk solids. To confirm the simulation accuracy of the grabbing process of cohesive and stress-

history dependent iron ore cargo, this chapter develops and validates a full-scale co-simulation. 

The calibrated material model of Chapter 5 is used to set up the co-simulation. 

First, by executing in-situ measurements during the unloading of a vessel, grab-relevant 

bulk properties of the cargo, such as penetration resistance, are determined. Second, full-scale 

grabbing experiments are conducted in the cargo hold, which allows the process to be recorded in 

realistic operational conditions. Third, full-scale co-simulation is set up using the material model 

that has been calibrated in the previous chapter. By applying the particle scaling rules of 

Chapter 4, the co-simulation can be run with a practical computation time. Fourth, the co-

simulation is validated by comparing its predictions to experimental data from various aspects, 

                                                

∗ This chapter corresponds to: M.J. Mohajeri, W. de Kluijver, R.L.J. Helmons, C. van Rhee, D.L. Schott, 

“A validated co-simulation of grab and moist iron ore cargo: replicating the cohesive and stress-history 

dependent behaviour of bulk solids”. Accepted in Advanced Powder Technology, 2021. 
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such as the force in cables and the torque in winches. The grabbing process of cohesive of iron 

ore and free-flowing iron ore (pellets) are compared with each other. The validated co-simulation 

proves that the stress-dependent behaviour of cohesive cargo as it interacts with the grab were 

captured successfully. 

6.1. Introduction on the Validation Method 

The general model of the grabbing process of bulk cargo (i.e. iron ore) using cable-based grabs is 

shown in Figure 6-1a. The crane operator controls the grab using cables that are connected to 

driving winches. In addition to the grab design itself, the dimensions of a ship’s hold, the 

properties of bulk cargo, the crane operator, winches and cables are all contributing elements in 

the grabbing process. Thus, predicting the performance of new design concepts is still challenging 

as it requires consideration of the interaction between multiple contributing elements. 

A novel approach to design grabs is virtual prototyping in interaction with bulk solids 

[8,153,154]. Lommen et al. [9] have developed a real-scale co-simulation between grabs and free-

flowing iron ore material [108]. The co-simulation has been validated for simulating the grabbing 

process of iron ore pellets [155]. As shown in Figure 6-1b, the co-simulation uses the framework 

developed by coupling two solvers, MultiBody Dynamics (MBD) and Discrete Element Method 

(DEM) [6]. The co-simulation requires a virtual crane operator, a CAD model of a grab, and a 

calibrated DEM material model as inputs. 

In contrast to iron ore pellets, the majority of iron ore cargoes exhibit cohesive and stress-

history dependent behaviour [22,108]. Cohesive forces between particles are created due to the 

liquid bridge, and hence the amount of moisture present influences material behaviour and its 

interaction with equipment. Furthermore, as the unloading starts and proceeds to greater depths, 

grabs touch the cohesive material that is pre-consolidated with a higher level of overburden 

pressure [21]. Consequently, during the unloading of a bulk carrier, the bulk responses of cohesive 

iron ore cargo, such as bulk density, shear strength, and bulk stiffness, are expected to vary over 

the cargo depth (z direction) [108]. The cohesive and stress-history dependent behaviours of bulk 

materials are not yet investigated in terms of interaction with grabs. Therefore, a test method first 

needs to be developed to determine the grab-relevant properties of cohesive bulk materials during 

the unloading of a cargo hold; second, a reliable DEM material model for cohesive bulk solids 

needs to be included in the co-simulation to enable the virtual prototyping of grabs.  
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In the previous chapter, DEM parameters were calibrated to simulate the cohesive and 

stress-history dependent behaviour of moist iron ore cargo with an elasto-plastic adhesive contact 

model. The common procedure to assure the validity of the model is to first calibrate with 

laboratory scale experiments [29,156] and next validate DEM simulations with industrial scale 

experiments [9,28,87,88,157–159]. Validation is achieved by comparing the results of the 

simulation and experiment, either in quantitative or qualitative ways [8,28,92–94,127–131]. To 

ensure design concepts can be evaluated under actual operational conditions, validating the model 

in full-scale is required [160,161]. 

 
Figure 6-1. a) General model of the grabbing process (i.e. of iron ore) during unloading bulk carriers, 

b) the co-simulation framework of grabs and bulk solid materials based on [6] 

Figure 6-2 displays the main steps required to develop the validated co-simulation of grabs and 

cohesive iron ore. In the first step, iron ore cargo is characterized during the unloading of a bulk 

carrier, as well as in the laboratory environment. The second step is to record the grabbing process 

under actual operational conditions, including the cargo depth as a variable, thus capturing the 

stress-history dependent behaviour of bulk material. The third step is to create a large-scale co-

simulation of grabs and cohesive bulk solid cargo that has a practical computation time. The forth 

step is to validate that the co-simulation captures the grabbing process of the cargo accurately, 

considering essential outputs such as the static forces, dynamics, and kinematics of equipment.  
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6.2. Bulk Material Characterization and Validation Metho d 

This section describes further the steps required to characterize bulk material and to validate the 

co-simulation modelling of the grabbing process of cohesive iron ore cargo. 

6.2.1. Characterizing bulk solid cargo 

The bulk solid cargo is characterized in both laboratory and ship hold environments. The cargo is 

a sinter feed type of iron ore from the Carajas mines, which is one of the largest iron ore resources 

on earth [62]. The average density of the particles is 4500 kg/m3
, with a standard deviation of 125 

kg/m3. The median particle size, d50, is equal to 0.88 mm. 

Characterizing bulk solid 
cargo

In-situ and laboratory   

Grabbing experiments
In operational conditions   

Setting up a full-scale simulation
A MBD-DEM co-simulation   

Validating the co-simulation
Evaluating the accuracy   

Step 1 Step 2

Step 3 Step 4

The validated co-simulation 
of grabbing process

 

Figure 6-2. Main steps to develop a validated co-simulation of grabbing process 

The objective of in-situ measurements during unloading is to determine the properties of the 

cohesive iron ore cargo over its depth, z. The following bulk properties are relevant to the grabbing 

process [108], and are thus selected: 

• Penetration resistance through initial penetration depth, Δinitial,S66 

• Bulk density, ρb 
• Moisture content, MC 
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Measuring penetration resistance and bulk density during the unloading process allows for 

quantitatively investigating the level to which the cargo is densified over its depth. It is expected 

that moisture content also shows variation over cargo depth [4]. 

A test procedure is designed to determine the penetration resistance and bulk density using 

a single test device. Figure 6-3 displays a schematic view of the designed test device, which is 

named sampling tube & sliding hammer (S66). It consists of two main components, a sampling 

tube (Figure 6-3a and b) and a sliding hammer (Figure 6-3c). The effective length of the sampling 

tube is 260 mm, with an inner diameter of 66 mm, and thickness of 2 mm. The hammer is 400 

mm long with a mass of 0.855 kg, which is connected to a slide with a length of 278 mm. The 

sliding hammer can be fixed to the sampling tube using a connecting head.  

 
Figure 6-3. Schematic view of sampling tube & sliding hammer (S66): a) sampling tube and connecting 

head to hammer, b) cross section view of the sampling tube, and c) the sliding hammer 

Penetration resistance is determined based on a modified version of the Standard Penetration Test 

(ISO 22476-3). The tube is driven into the bulk surface with five consecutive drops of the sliding 

hammer, and next, the initial penetration depth of tube (Δinitial,S66) is recorded. The number of 

hammer drops is sufficient, as more hammer drops may result in a penetration depth greater than 

the effective length of the sampling tube. 

The test continues by driving the sampling tube further into the bulk surface until the 

final penetration depth is reached. Next, the tube is carefully extracted to weigh the collected 

bulk solid specimen. It is ensured that the tube is extracted without losing the bulk specimen. 

Bulk density, ρb, is then determined by Eq. (6.1). 
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 ρ¹ �  ¨º{¡  5º  (6.1) 

where Ms is the weight of the collected specimen. Ls is the final penetration depth of the sampling 

tube that is determined by using the ruler, as shown in Figure 6-3a. Ae is the inner cross-sectional 

area of the tube. The moisture content of samples is also measured in the laboratory using a drying 

oven, according to the method described in [65]. 

During the unloading process of bulk carriers, the bulk responses of fine moist iron ore 

(Δinitial,S66, ρb and MC) are expected to vary, as shown by the trends in Figure 6-4. This hypothesis 

is based on field measurements [20], including the Cone Penetration Test (ASTM D3441), and 

moisture content over cargo depth, z, prior to commencing the unloading process. 

 
Figure 6-4. Expected distribution of grab relevant bulk properties over cargo depth (z) 

Firstly, due to the void between particles, moisture is expected to transfer to greater depths during 

the voyage of bulk carriers. This results in the accumulation of moisture near the bottom of cargo 

holds [4]. Secondly, due to increasing vertical confining pressure over the cargo depth, lower 

initial penetration depth and higher bulk density values are respectively expected to occur by 

increasing z [108]. However, a saturated condition usually occurs at the “wet bottom” of iron ore 

carriers [19], usually for z/zmax ≥ 0.8. 

Verifying the accuracy of the sampling tool (S66) 

It needs to be verified whether the S66 device is accurate in determining bulk density of the 

cohesive iron ore sample. For this purpose, two different test methods, ISO 17828 [81] and S66, 

are used in the laboratory environment. In ISO 17828, bulk density is determined by using a rigid 

cylinder with the inner volume of 5 litres. The bulk density results, including both average and 

standard deviation values, are compared in Table 6-1. Bulk density measurements using 

ISO 17828 are repeated five times, resulting in an average bulk density of 1774 kg/m3 with an 
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acceptable standard deviation of 20 kg/m3. Measurements using the S66 device result in an 

average ρb of 1780 kg/m3 with a standard deviation of 40 kg/m3 in ten test repetitions. 

Table 6-1. Verifying the accuracy of the sampling tool (S66) in determining bulk density 

Measurement method Repetitions 
Average ρb 

[kg/m3] 

SD 

[kg/m3] 

SD  

[%] 

ISO 17828 5 1774 20 1.1 

S66  10 1780 40 2.2 

Comparable average bulk density values can be measured using ISO 17828 and S66, with a minor 

difference in standard deviation values. Therefore, the accuracy of S66 in determining bulk 

density of the cohesive iron ore sample is verified. 

Measurement plan 

A primary variable is considered in the measurement plan: cargo depth (z). Bulk cargo is 

characterized in the in-situ conditions from the top of the cargo pile, z = 0 m, until z/zmax = 0.85. 

As grabs unload the bulk carrier, greater depths (z > 0 m) can be accessed. At each cargo depth, 

the measurement is repeated between three to five times, ensuring test repeatability. Three 

different cargo holds are accessed during the in-situ measurements.  

The cargo depth, z, is determined using a laser ruler (HILTI PD 40). When standing on the 

bulk cargo surface, the hold depth index is read using the laser ruler device. The device is only 

able to measure the distance to the depth index, but unable to measure the laser beam orientation. 

Thus, the distance to three different points are measured for each cargo depth, that allows for 

determining z with a maximum error of 0.5 m. 

It usually takes more than a day to unload an ocean-bound bulk carrier. Therefore, unloading 

continues over a “night shift”. No data can be collected during this time, as the in-hold 

environment is unsuitable for taking such measurements during that period. 

6.2.2. Grabbing experiments 

Figure 6-5 shows five stages of the grabbing process, as introduced in [155]. In this figure, the red 

arrows indicate the cable velocity direction. The grab is lowered onto the bulk surface              

(Figure 6-5a), ending with a certain penetration depth as the grab digs into the material            

(Figure 6-5b). This continues by closing the grab and collecting the bulk solid (Figure 6-5c). Once 

the grab is almost filled with the bulk solid, the hoisting stage commences (Figure 6-5d). During 

experiments, the grabbing process usually ends with the suspension stage (Figure 6-5e), which 
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allows for conducting further measurements, such as weighing the grab and collected mass 

together. 

 
Figure 6-5. The operation of the grabbing process consists of five stages: a) Lowering onto the bulk 

surface, b) Resting with slacked cables, c) Closing by tensioning two cables, d) Hoisting using all cables, 

and e) Suspending the grab if required 

Table 6-2. Measured parameters during the grabbing experiments 

Stage Measured parameter 

All stages Force in cables 

Torque in winches 

Kinematics of geometry 

Suspension Payload 

Average porosity of collected bulk solids 

In-grab bulk sampling 

Table 6-2 presents the list of parameters measured in grabbing experiments. Two different types 

of parameters are measured. The signal type parameters are the following: the force in cables, the 

torque in winches, and the kinematics of grab geometry. Scalar type parameters are also recorded, 

such as payload and average porosity. 

• Force in cables: the grab is operated on four cables and the tensile forces in these cables are 

measured using load cells. The load cells are located adjacent to driving winches of the crane. 

These load cells as well as other sensors are calibrated by the terminal operator on a regular 

basis. The load cells measure force in cables with a frequency of 2 Hz. The payload of grab, 

MDWT can be determined using Eq. (6.2). 

 �	
� � �� − �
 (6.2) 
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where Mt is the total force in cables once the grab is hoisted after collecting bulk solids, and 

Me is the total force in cables before collecting bulk solids. In other words, Me corresponds to 

the weight of an empty grab. 

• Torque in winches: the torque in each winch is determined separately with a frequency of 

100 Hz. 

• Kinematics of geometry: to record kinematics of the grab geometry, a video tracking technique 

similar to [155] is used. Basically, the grab geometry consists of two rigid bodies that revolves 

over a main hinge. For that reason, three markers are used that are sufficient to track the 

geometry movements in X-Z plane. 

• Average porosity of collected bulk solids: once the grab is suspended, 3D-scanning technology 

is used to determine the volume of the collected bulk solids, VDWT. First, point cloud images 

are taken using the Intel RealSense™ depth (SDK) camera. Second, a surface mesh is fitted on 

point cloud images, according to the method described in [162]. Figure 6-6a shows an example 

of generated surface mesh, including the grab that contains collected bulk solids. Third, VDWT 

is determined by importing the mesh surface of collected bulk solids into a 3D CAD model of 

the grab. The porosity of collected bulk solids, nDWT, can then be calculated using Eq. (6.3).  

 '	
� � 1 − �	
�»	
� �� (6.3) 

where ρs, particle solid density is equal to 4500 kg/m3
 [108].  

• In-grab bulk sampling using S66-1000: once the grab is suspended, a sampling tube, S66, with 

the effective length of around 1 m is used to collect samples from the area highlighted in   

Figure 6-6b. The tube is then carefully extracted from the bulk material. The sample is weighed, 

which allows for quantifying the porosity in a similar way compared to Eq. (6.3). The sampling 

using S66-1000 is repeated at least three times, ensuring the repeatability of the test. 
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Figure 6-6. a) generated 3D surface mesh, including grab geometry and collected bulk solid, b) 

schematic cross-sectional view of grab and collected bulk solid, indicating the in-grab sampling area 

Experimental plan 

Two sets of experiments with different consolidation states are defined, of which multiple 

repetitions are performed.  

• In the first experiment set, the process is recorded at the cargo depth of z = 7 m. The first 

experiment set includes: test 1.1, test 1.2 and test 1.3. 

• In the second experiment set, the process is recorded at is z = 2.5 m. The second experiment 

set includes: test 2.1 and test 2.2. 

The crane operator and bulk surface geometry are other possible influencing variables in our 

experiments. The motion of closing and hoisting winches are recorded with a frequency of 100Hz, 

thus a virtual crane operator can be modelled in the co-simulation. To minimize the influence of 

bulk surface geometry, grabbing experiments are executed on an adequately flat bulk surface. 

6.2.3. A full-scale simulation setup 

The co-simulation between MultiBody Dynamic (MBD) and DEM solvers uses the framework of 

[6], as shown schematically in Figure 6-1b. The MBD simulation of the grab is set up in 

ADAMS® using the real dimensions of the grab. In the virtual environment, the operation of the 

grab is simulated using a combination of winches, sheaves and cables [7]. 

A material model of the cohesive iron ore has been calibrated in the previous chapter. The 

calibrated model is used in the current chapter to set up the DEM simulation. By applying the 

particle scaling rules of [140], a mean particle diameter of 55 mm is used in the simulation. The 

surface energy and constant pull-off force needs to be adjusted during the scaling of particles. 

a) b) 
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Table 6-3 presents the main input parameters of the DEM simulation. For other DEM input 

parameters and the calibration procedure refer to the previous chapter. 

To replicate a pre-consolidated condition in the simulation, DEM particles are compressed 

using a pressure-controlled plate. A quasi-static condition, as defined in [140], is maintained 

during compression. Once the desired pressure, i.e. 65 or 200 kPa, is reached, the pressure-

controlled plate is moved upward. Thus, a pre-consolidation condition is replicated in the DEM 

simulation.  

Table 6-3. Main input parameters of DEM simulation 

Parameter Symbol Unit Value 

Particle density ρp kg/m3 4500 

Particle diameter dp mm 55 

Particle shape Ψp - Single sphere 

Normal and tangential contact modules, particle-

particle 
fN,p-p and fT,p-p - EEPA [84] 

Rolling contact module fR - 
Rotation 

restricted 

Coefficient of static friction, particle-particle µs,p-p - 0.31 

Coefficient of static friction, particle-geometry µs,p-w - 0.37 

Constant pull-off force -f0 N -0.2 

Surface energy Δγ J/m2 100 

Plasticity ratio λP - 0.2 

Figure 6-7 displays the DEM simulation environment, including the grab’s geometry components. 

The dimensions of the material bed are selected after running a sensitivity analysis so that the 

grabbing process is not influenced by the boundaries. The in-situ measured winch velocity history 

is used as input in the co-simulation to replicate the grabbing process. In addition, modelling the 

actual distance between the grab and the trolley system of the crane could complicate the 

simulation setup unnecessarily. Thus, only the vertical position of the main hinge is analysed, as 

in the MBD simulation where the grab is positioned in the similar x-y coordinates compared to 

the winches. 

To set up a full-scale DEM simulation of the grabbing process, the grab’s components are 

separated into buckets and knives, as suggested by Lommen et al. [9]. The reaction forces from 

DEM particles on the bucket part is independent of particle size, thus the particle scaling rules of 

[140] can be applied. The penetration resistance against knives depends on the particle size [9], 

thus µs,p-w is adjusted to 0.2 for the interaction between knives and particles. This results in a 
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comparable penetration depth of grab due to its own weight, when the simulation and experimental 

setups are compared. 

 
Figure 6-7. Main components in the DEM simulation, including material bed, the grab’s buckets, and 

the grab’s knives 

6.2.4. Evaluating accuracy of the co-simulation 

For scalar type parameters (e.g. payload, average porosity), the mean of absolute relative 

differences is used to quantify error in the co-simulation. If y and y’ represent measured scalar 

parameters in the experiment and the co-simulation, respectively, then |e|mean is determined 

according to Eq. (6.4) for a number of test repetitions. In the current study, an |e|mean ≤ 10% is 

considered an acceptable outcome for validating the accuracy of the co-simulation. 

 |�|"
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Signal type parameters (e.g. force in cables, torque in winches) are compared between the 

experiments and simulations using the coefficient of determination, R2, as described by Weisberg 

[163]. To validate the force in cables and the torque in winches, Lommen et al. [155] suggested 

that minimum R2 values of 0.9 and 0.8 are required respectively. 

6.3. In-situ and Validation Results 

In this section, the results of in-situ bulk cargo characterization, as well as the validation of the 

DEM-MBD model, are presented. 

6.3.1. Bulk cargo characterization during unloading 

Figure 6-8 presents the outcome of the in-situ measurements on bulk properties over cargo depth, 

including initial penetration depth (Figure 6-8a), bulk density (Figure 6-8b), and level of moisture 
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content (Figure 6-8c). The purple-coloured area indicates the “night shift” period in which no data 

was measured.   

According to Figure 6-8a, Δinitial,S66 in the first 2.5 m of the cargo depth is larger than 

75 mm in all three measurements; while in other data points, when z ≥ 6 m, the initial penetration 

depth of S66 is smaller than 75 mm. A higher deviation in results is observed when z ≤ 2.5 m, 

compared to when z ≥ 6 m. However, a clear trend is that Δinitial,S66 in the later situation (z ≥ 6 m) 

is always smaller than in the former (z ≤ 2.5 m). Some level of increase in Δinitial,S66 is observed 

when z ≥ 8 m, compared to 8 > z ≥ 6, which is probably due the correlation between the penetration 

resistance of material and its moisture content. 

According to Figure 6-8b, bulk density values in the first 2.5 m of the cargo depth is lower 

than 2400 kg/m3, and the bulk density of three out of four data points shows comparable values 

to the laboratory measurements (Table 6-1). In contrast, at greater depths (z ≥ 6 m), the bulk 

density of the cohesive iron ore cargo increases significantly (up to around 3100 kg/m3).  

According to Figure 6-8c, the moisture content is between 8.4% and 9% when z ≤ 6 m, while 

it increases up to 10% when z > 6 m. In general, due to the void between particles, moisture 

transfers to greater depths during the voyage of bulk carriers. Similarly, a non-linear increase in 

moisture content has been observed for other iron ore cargoes [20]. The average moisture content 

of the cargo is 9.1%, with a standard deviation of 0.5%.  

 
Figure 6-8. Grab-relevant properties of cohesive iron ore over cargo depth: a) intial penetration depth, 

b) bulk density, and c) level of moisture content 
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In conclusion, an increasing densification of the cohesive iron ore over the cargo depth is 

observed, which is in line with the expected trends shown in Figure 6-4. This has been supported 

by the considerable changes of Δinitial,S66 and bulk density values over cargo depth that have been 

determined during the unloading of the vessel. Thus, during the lowering stage, grabs penetrate 

into increasingly pre-consolidated bulk solids. To model the grabbing process of cohesive bulk 

solids in a realistic way, the increasing levels of pre-consolidation over the cargo depth needs to 

be replicated in the DEM simulation setup.  

6.3.2. Validating the co-simulation 

Two sets of grabbing experiments are conducted where the dry-based moisture content is 

8.8±0.2%. The DEM material model is calibrated based on the moisture content of 8.7%, which 

is expected to replicate cargo conditions properly. Grabbing experiments are conducted at two 

different cargo depths, which correspond to z equal to 7 and 2.5 m. Due to cargo weight, the 

overburden pressure creates a pre-consolidated condition at mentioned cargo depths [21]. The 

overburden pressure, σpre, can be approximated by multiplying cargo depth and average cargo 

density together; the average cargo density is 2800 kg/m3. For example, in the experiment set 1, 

corresponding to z = 7 m, the historical pressure is equal to approximately 200 kPa. Figure 6-9 

compares the bulk density in simulated pre-consolidated conditions with experimental results of 

[108] on the same iron ore sample. Bulk density values at σpre equal to 65 and 200 kPa are 

adequately replicated in the DEM simulations. 

 
Figure 6-9. The DEM simulation setup adequately replicates the bulk density in pre-consolidation 

situations 

Figure 6-10 shows the simulated grabbing process during four different stages of the operation: 

a) Lowering, b) Rest, c) Closing, and d) Hoisting. The suspension stage is not included in that 

simulation. 
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Experiment set 1: cargo depth of 7 m 

The experimental results of the grabbing process are compared with predictions of the DEM-MBD 

co-simulation. Table 6-4 compares the payload in the experiments, MDWT,exp, when the cargo 

depth is 7 m, to the simulated payload values, MDWT,sim. The corresponding pre-consolidated 

situation is simulated by applying a uniform pressure of 200 kPa on the bulk surface prior to the 

grabbing process.  

Table 6-4. Comparison between simulated payload and experimental measurements in test 1 (z = 7 m) 

Test MDWT,exp 

[ton] 
M DWT,sim 

[ton] 
|e| 

[%] 
1.1 24.9 25.7 3.2 

1.2 25.7 24.2 5.8 

1.3 27.8 27.1 2.5 

Mean 26.1 25.7 1.8 

 
Figure 6-10. The simulated grabbing process in different operation stages: a) Lowering, b) Rest, c) 

Closing, and d) Hoisting 

In the experiment set 1, an average MDWT,exp = 26.1 ton is determined with a standard deviation of 

1.2 ton. The co-simulation replicates the payload values, with an average MDWT,sim = 25.7, with a 

standard deviation of 1.2 ton. The difference between simulated payloads and experimental 
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results, |e|mean, is 1.8%, with the maximum value of |e| = 5.8%. The small error is probably caused 

by idealizing the bulk surface in the simulation and its operational characteristics. Also, Schott et 

al. [155] have validated the simulation of the grabbing process of free-flowing iron ore products 

with values of |e| ≤ 6.0%. Therefore, the payload values for test 1 are simulated adequately, 

compared to reality. 

Test 1.1 is selected for further analysis in terms of the force in cables and the torque in 

winches. Figure 6-11 compares the total force in cables between the experiment and the co-

simulation. The total force during the lowering stage (L) represents the empty weight of grab, Me. 

Once the grab is resting on the bulk solid, cables go slack, thus, the total force drops. By tensing 

the closing cables during the next stage (C), the grab starts to collect the bulk solid. This continues 

by involving the hoisting cables and eventually lifting the grab out of the bulk solid. In test 1.1, 

the crane operator moves the grab toward the quay side, and therefore, no suspension stage (S) is 

present. The force over all stages is predicted accurately with an overall coefficient of 

determination of 0.959. 

To validate the grab’s dynamics, the torque of the closing and hoisting winches during a 

grabbing cycle are compared in Figure 6-12. Similar to the force data (Figure 6-11), the torque in 

the closing and hoisting winches are adequately predicted. Only during the hoisting stage (H) does 

the torque start to deviate slightly from the experimental data, for both closing (Figure 6-12a) and 

hosting (Figure 6-12b) winches. The predicted closing and hoisting winches have the coefficient 

of determination values of 0.947 and 0.934 respectively, for the entire time span. Therefore, the 

results confirm the grab’s dynamics in test 1 are correctly predicted in the co-simulation.  

 
Figure 6-11. Load comparison in test 1.1.; Grab operation consists of lowering of the grab (L), resting 

on the surface (R), closing (C) and hoisting (H) 
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Figure 6-12. Torque comparison in test 1.1., a) closing winch, b) hoisting winch; Grab operation 

consists of lowering of the grab (L), resting on the surface (R), closing (C) and hoisting (H) 

Figure 6-13 displays the three markers that we use to track the movements of the geometry during 

the grabbing process. Left and right markers represent the movement of the left and right grab’s 

buckets respectively. The hinge marker represents the main hinge of the geometry where the 

grab’s two buckets revolve.  

Figure 6-14 compares the position of the markers between the simulation and the 

experiment. The position of the markers is analysed when the grab geometry is within reach of 

the video camera. In other words, the initial part of the lowering stage and the last five seconds of 

the hoisting stage are excluded from the analysis. These excluded areas are not of interest as the 

grab mechanism is not operational (no closing or opening) and there is no dynamic interaction 

with material (lowering and hoisting). For all markers, the desired coefficient of determination, 

R2 > 0.9 is met with values exceeding 0.96. The observed comparisons in Figure 6-14 confirm 

that the co-simulation is capable of predicting the grab’s kinematics for a pre-consolidated 

cohesive bulk solid cargo. 
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Figure 6-13. Three markers are used to quantify kinematics of the grab 

 
Figure 6-14. Comparison between simulating and video-tracking of the three applied markers on the 

grab, on pre-consolidation of 200 kPa in test 1.1. a) X-position of the marker on the left bucket, b) Z-

position of the marker on the left body, c) Z-position of the marker on the main hinge, d) X-position of 

the marker on the right bucket, and e) Z-position of the marker on the right body 

With the aid of 3D-scanning technology, the volume of collected bulk solids, VDWT, in the grab is 

determined for test 1.3, and the average porosity, nDWT, is calculated using Eq. (6.3). Figure 6-15a 
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presents how porosity is distributed in the simulation. The densification is at its lowest level near 

the free surface of bulk material, while due to existing compression forces, the material becomes 

more densified in its central region. The self-weight of bulk material, as well as the force applied 

by the grab geometry, are the acting compressive forces. A sampling tube, S66, is penetrated 0.60 

m into the grabbed material and used to collect samples in the region highlighted in Figure 6-15b. 

The sampling is repeated three times, resulting in the average porosity of 0.468 for the highlighted 

region. The average simulated porosity for the same region is 0.480, indicating that simulated 

porosity distribution replicates reality accurately with |e|  = 2.5%. Table 6-5 presents the 

comparison of MDWT and nDWT. The payload is replicated with a 2.5% difference between the 

simulation and the experiment. VDWT is predicted accurately with |e| = 1%; this results in an 

adequate prediction of the average porosity with |e| = 5.8%.  

 
Figure 6-15. a) Simulated porosity distributon, and b) porosity comparison between experiment and 

simulation 

Table 6-5. Validating mass and porosity of collected bulk solid 

Test 1.3 MDWT 

[ton]  
nDWT 

[-] 
Experiment 27.8 0.375 
Simulation 27.1 0.400 
|e| [%] 2.5 5.8 

Experiment set 2: cargo depth of 2.5 m 

Table 6-6 compares the payload in experiments, MDWT,exp, with the simulated payload, MDWT,sim, 

when the cargo depth is 2.5 m. The corresponding pre-consolidated situation is created by 

applying a uniform pressure of 65 kPa on the bulk surface proceeding the grabbing process. 
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In the experiment set 2, an average MDWT,exp = 26.4 ton is determined with a standard 

deviation of 0.3 ton. The co-simulation replicates payload values accurately, with an average 

MDWT,sim = 26.3 with a standard deviation of 0.7 ton. Negligible differences between simulated 

payloads and experimental results are observed with |e|mean = 0.4%. 

Table 6-6. Comparison between simulated payload and epxerimental measurements in test 2 (z = 2.5 m) 

Test MDWT,exp 

[ton] 
M DWT,sim 

[ton] 
|e| 

[%] 
2.1 26.1 25.7 1.5 
2.2 26.7 27.0 1.1 
Mean 26.4 26.3 0.4 

In addition, test 2.2 is selected to further validate the total force data. Figure 6-16 compares the 

total force in cables between the experiment and the co-simulation. The cables do not go fully 

slack during the rest stage (R), and therefore, the total force does not drop to zero. All four stages 

are replicated accurately in the co-simulation with R2 = 0.957, confirming that the desired 

accuracy is also met when the cargo depth is 2.5 m. 

 
Figure 6-16. Load comparison in test 2.2.; Grab operation consists of lowering of the grab (L), resting 

on the surface (R), closing (C) and hoisting (H) 

The volume of collected bulk solids, VDWT, in the grab is determined for test 2.2 using the 3D-

scan technology, and the average porosity, nDWT. Table 6-7 presents the comparison of MDWT and 

nDWT. The payload is replicated with a 1.1% relative difference between the simulation and the 

experiment. VDWT is predicted with |e| = 5.3%; this results in an adequate prediction of the average 

porosity with the absolute different of 0.029 and |e| = 8.8%. The sampling tube, S66, is penetrated 

0.60 m into the grabbed material and used to collect samples in the region highlighted in         
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Figure 6-17. The sampling is repeated three times, resulting in the porosity of 0.410±0.020 for the 

highlighted region. The simulated porosity for the same region is 0.440±0.010, indicating that 

simulated porosity distribution replicates reality adequately with the absolute difference of 0.030 

and |e| = 8.6%.  

Table 6-7. Validating mass and porosity of collected bulk solid 

Test 2.2 MDWT 

 [ton] 
nDWT  
[-] 

Experiment 26.7 0.340 
Simulation 27.0 0.369 
|e| [%] 1.1 8.8 

 

Figure 6-17. Porosity comparison between experiment and simulation in Test 2.2. 

The grabbing process in two levels of pre-consolidation, corresponding to 65 kPa and 200 kPa, 

are validated. This confirms that the co-simulation is capable of capturing the grabbing processing 

of cohesive and stress-history dependent iron ore cargo. Further analysis on the grabbing process 

can help in gaining insight into the grabbing process of cohesive bulk solids. 

6.4. Discussion of Stress-History Dependency 

In the previous section was shown that the co-simulation can replicate a realistic grabbing process 

of cohesive iron ore, including two different levels of pre-consolidation. To further quantify the 

influence of pre-consolidation, additional simulations are carried out as shown in Table 6-8. The 

grabbing process of the cohesive iron ore, Carajas SF, in five different levels of pre-consolidation, 

is compared with the same process for free-flowing cargo: iron ore pellets. Pre-consolidation does 

not play a role in the grabbing process of iron ore pellets; thus, it is a proper option for our 

comparative analysis on the effect of σpre on the grabbing process. The validated co-simulation of 
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the grab with iron ore pellets is created in [155]. The grab dimensions and other inputs of the 

MBD simulation are kept as constants in the simulation plan, thus, the grabbing process can be 

investigated in comparable conditions. 300 kPa is selected as the highest pre-consolidation level, 

which is sufficient to create a pressure state existing at the cargo depth of around 11 to 14 m. 

Therefore, the grabbing process of cohesive and free-flowing iron ore products is compared for 

an operational range of cargo depths.  

Table 6-8. Variables in the investigation on the effect of pre-consolidation on the grabbing process 

Pre-consolidation levels [kPa] [0 20 65 200 300] 

Bulk materials Carajas SF (cohesive iron ore)  
Pellets (free-flowing iron ore) 

Figure 6-18 compares the footprint when the grabbing process is finished, and the grab has been 

lifted out of the material bed. Figure 6-18a shows the grab’s footprint on the cohesive material 

bed. The cutting trajectory of the grab’s knives can be seen clearly. In addition, the steep slope, 

which is clear at both sides, represents the initial penetration depth of the grab in resting state. A 

similar angle is observed during the grabbing process of cohesive iron ore in the cargo hold 

condition, allowing for the determination of the initial penetration of the grab, Δgrab,initial. At the 

cargo depth of around 7 m, an average Δgrab,initial of 0.39 m, with a standard deviation of 0.05 m, 

is measured for the cohesive cargo. 

Figure 6-18b shows the grab’s footprint on the free-flowing material bed. Due to relatively 

low slope stability, particles flow once the grab has cut the bulk material. This results in a 

disturbed footprint, where the cutting trajectory of the grab’s knives is no longer visible. 

Figure 6-19a displays the effect of pre-consolidation on the initial penetration of the grab 

into bulk material in a resting state. Pre-consolidation does not play a role in Δgrab,initial for free-

flowing cargo. For cohesive cargo, the initial penetration of the grab decreases from 0.67 m to 

0.37 m by increasing the pre-consolidation level from 0 to 300 kPa. A comparable Δgrab,initial is 

measured between the experiments and simulation for σpre = 200 kPa. 

Figure 6-19b displays the effect of pre-consolidation on the maximum cutting depth of the 

grab measured during the closing stage. Δgrab,max is constant for free-flowing cargo, while it 

decreases considerably for cohesive cargo. 

As shown in Figure 6-19c, cohesive cargo densifies under the effect of pre-consolidation, 

which is the reason behind the stress-history dependent behaviour captured for Δgrab,initial and 

Δgrab,max. As expected, the bulk density of free-flowing cargo is constant under the effect of pre-



 Chapter 6 

167 

consolidation. Also, the bulk density of this free-flowing cargo is lower than the cohesive cargo, 

thus a higher grab payload is expected for Carajas SF. 

The grab’s payload under the effect of pre-consolidation is illustrated in Figure 6-20. The 

payload, MDWT, at 0 kPa pre-consolidation is considerably larger for cohesive material compared 

to the free-flowing material. Bulk density and maximum cutting depth are the reasons behind such 

a difference. The stress-history dependent behaviour of the cohesive cargo results in a negative 

correlation between MDWT and σpre, while a constant payload is captured for the free-flowing 

cargo. 

 
Figure 6-18. Footprint of the grabbing process on two types of iron ore: a) Carajas SF, and b) Pellets 
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Figure 6-19. Effect of pre-consolidation on: a) the initial penetration depth of grab, b) the maximum 

cutting depth of grab, and c) the bulk density of cargo prior to the grabbing process 

 
Figure 6-20. Direct effect of pre-consolidation on the grab payload for cohesive and free-flowing iron 

ore cargoes 

6.5. Conclusion 

This chapter successfully developed a validated co-simulation to accurately simulate the grabbing 

process of cohesive and stress-history dependent iron ore. Conducting full-scale grabbing 

experiments in the cargo hold allowed the process to be recorded under realistic operational 

conditions.  

• The predictions of the co-simulation compared well to experimental data in all aspects, 

including force in cables, torque in winches, kinematics of geometry, payload, collected 

volume and average porosity of bulk solid. The used validation procedure can be applied to 

simulate the grabbing process of other materials, such as coal and biomass. 
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• In-situ measurements of bulk density and penetration resistance, using the developed test 

method (S66), quantified an increasing densification over the cargo depth. The co-simulation 

was validated for two different levels of cargo depth to ensure capturing the stress dependent 

behaviour of the bulk material.  

• A negative correlation between pre-consolidation level and payload was observed. Multiple 

grab-relevant factors are affected when a pre-consolidation situation is created for cohesive 

materials; the increasing density of bulk material results in a lower penetration/cutting depth 

of grab, both at rest and closing stages.  

Co-simulation setups allow for analysing the design performance of both free-flowing and 

cohesive iron ore under the effect of consolidation. Valuable information, such as the cutting 

trajectory, porosity distribution, and the volume of collected bulk solids can be extracted from the 

simulation. This can support designers and engineers in gaining insight into and improving grab 

performance. The co-simulation of grabbing process will be used in the next chapter to optimize 

a grab design including the effect of bulk variability, such as level of cohesion and pre-

consolidation. 
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Grabs and bulk cargo variability∗∗∗∗  

Grabs usually handle a broad variety of iron ore cargoes that are different in their properties, such 

as moisture content, pre-consolidation and bulk density. On one hand, a fast and reliable unloading 

process is required to maintain a minimized cost for port operators and to deliver iron ore products 

to customers on time. On the other hand, the variability of bulk solid properties influences the 

grabbing process considerably, and thus, the grab’s efficiency. To design a robust product, the 

consistency in the grab’s efficiency needs to be maintained. The question is that how the bulk 

cargo variation can be included in the design procedure of grabs, thus achieving a maximized, and 

simultaneously, consistent grab’s efficiency. Therefore, a multi-objective optimization framework 

is developed in this chapter to consider bulk cargo variability in the design process of grabs. 

                                                

∗ This chapter is based on the following references: 

A.J. van den Bergh, “Systematic design optimization of grabs handling cohesive materials”. Delft 

University of Technology, 2019.TEL.8363, 2019.  

M.J. Mohajeri, A.J. van den Bergh, J. Jovanova, D.L. Schott, “Systematic design optimization of grabs 

considering bulk cargo variability”. Accepted in Advanced Powder Technology, 2021. 



Grabs and bulk cargo variability 

172 

Discrete Element Method (DEM) is employed to first investigate how a virtual grab 

prototype can be tested considering the bulk cargo variability, including various levels of cohesive 

forces and bulk plastic compressibility. Such a sensitivity analysis allows for selecting bulk 

material classes that create significant deviation in the grab performance. This follows from 

optimizing a virtual prototype to reach a maximized Ψmass in handling a variety of significant bulk 

material classes while the deviation of grab performance is minimized. Multiple surrogate models 

are created to find optimal design settings, which are evaluated in a verification step. 

7.1. Multi-objective optimization framework for includin g bulk cargo variability 

Figure 7-1 shows an overview of how the bulk cargo properties contribute to the grabbing process 

as an uncontrollable input variable. Mohajeri et al. [108] measured grab-relevant bulk properties 

of a broad range of iron ore fines. Cohesive forces (i.e. liquid bridge) between iron ore particles 

are typically created when moisture is introduced [22]. Cohesive forces may influence the bulk 

properties of iron ore fines, such as shear strength and flowability [108]. Bulk compressibility and 

moisture content are also correlated for cohesive iron ore [38,108]. Pre-consolidation stress is 

another grab-relevant bulk property of cohesive iron ore that varies over the cargo depth during 

the unloading process [164]. Due to the increasing overburden pressure, a more consolidated cargo 

is stored at greater depths.  

Bulk cargo variability (uncontrollable input, X),
such as:

Handling process:
grabs Ψ 

Key Performance 
Indicators

(e.g. ratio between grab 
weight and payload)

Cohesive forces
Compressibility  

level
Pre-consolidation 

stress

Controllable inputs: Y

Design parameters
(e.g. bucket dimensions)

Operation parameters
(e.g. cable velocity)

 

Figure 7-1. Contributing parameters in the grabbing process: controllable and uncontrollable inputs 
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Figure 7-2. Quantifying a performance indicator, [Ψ], for a combination of controllable, Y, and 

uncontrollable, X, types of input 

A multi-optimization framework is developed to incorporate the bulk cargo variability into the 

grab design process. Both controllable and uncontrollable types of input are included in the 

framework. A matrix, [Ψ], containing performance indicator values can be quantified for a 

combination of uncontrollable and controllable inputs, as shown in Figure 7-2. The primary aim 

is to minimize the undesirable effect of variability of X on Y. Thus, for an optimal design 

configuration, Yopt, a maximized performance, Ψmean, is reached on average, while its standard 

deviation, ΨSD, is minimized. The optimization framework is designed in four sequential steps 

where the output of each step is used in the next step as illustrated in Figure 7-3. This allows grab 

designers to follow a straightforward procedure when a new concept is being developed.  

7.1.1. Step I. Sensitivity of the grab performance to bulk cargo variability 

Reference material model of the cohesive iron ore - Xref 

A DEM material model of a cohesive iron ore cargo, named Carajas Sinter Feed (CSF), has been 

validated for the grabbing process in Chapter 6. In the current chapter, that validated material 

model is used as a reference material model, Xref, to create a bulk cargo variability. To model 

interaction between particles in the reference material model, the elasto-plastic adhesive contact 

spring, EEPA [84], was used. 

In the EEPA contact spring, the cohesive forces can be adjusted by varying the constant 

pull-off force (f0) and surface energy (Δγ). Sensitivity studies on the dependency of bulk behavior 

(e.g. angle of repose, shear strength, bulk density) on the variation of f0 and Δγ have been 
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documented in [29,140,165]. For f0 and Δγ, reference values of -0.2 N and 100 J/m2 are used 

respectively. 

The plasticity ratio (λP) controls the contact stiffness during unloading and reloading of the 

spring and, thus, this parameter controls the bulk compressibility. The plasticity ratio, λP, controls 

the ratio between stiffness in branch II (k2) and stiffness in branch I (k1), which shows the 

influence of plasticity ratio at contact scale. This means that by increasing the plasticity ratio, a 

higher level of plastic overlap occurs during contact and, thus, a higher level of bulk 

compressibility. For λP, a reference value of 0.2 is used. 

The EEPA contact spring is able to capture a stress-history-dependent behaviour 

[118,164,166] and, therefore, no input parameters need to be adjusted in the material model for 

this purpose. A pre-consolidated situation can be simulated by applying a specific amount of 

pressure on the bulk surface and then releasing that pressure, as described in [165]. The reference 

material model has been validated in operational conditions for two different levels of pre-

consolidation: 65 and 300 kPa. The grabbing process of the cohesive iron ore for various levels 

of pre-consolidation has been investigated in the previous chapter, which shows the negative 

effect of pre-consolidation on the grab performance. 

Bulk cargo variability - [X] 

This sensitivity analysis evaluates whether the variability of cohesive forces and bulk 

compressibility influences the grabbing process or not. The effect of a variable is considered 

significant if varying its level by ±100%, compared to its reference level, creates ±5% deviation 

in the mass indicator. As displayed in Table 7-1, a bulk variability, [X] , based on the reference 

material model is created.  
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Step I. Sensitivity of the grab performance to
bulk cargo variability

Y0 =   y1, …, yNg

Define a grab 
design

Evaluate performance of 
grabs, [Ψmass] for [Y] in [X *]

[Ψmass,mean] and [Ψmass,SD] 
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[X * ]: significant material classes

[X]: bulk cargo variability

Step II. Random sampling from 
design space

Step III. Multi-objective optimization using
surrogate modelling

Step IV. Verifying the optimal design

• A specific grab, Y0, is used. 

Operational parameters are 

fixed.

• Output is a set of bulk 

materials that have 

significant influence on the 

inconsistency of the grab 

performance.

• Performance of random 

design samples is evaluated 

on significant bulk material 

classes, [X*].

• A surrogate model is created to map 

relationships between grab design 

parameters and the mass indicator.

• An optimal grab design is selected 

that performs adequately when bulk 

material variability is included.

Verified optimal grab design: 
Yopt 

• The performance of the optimal grab 

design is considered as satisfactory if 

the difference between predicted 

value of the surrogate model and the 

simulated value is < 5% in average.

Y =   y1, …, yNg

Generate grab 
design samples

[Y]

f(Y): map relationship 
between Y, [X*] and Ψmass

Y’: predicted optimal grab design

 

Figure 7-3. A systematic optimization framework to include the bulk variability in the grab design 

procedure 
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The relative cohesion term, as defined in Chapter 4, is used to vary the level of cohesive forces 

when the EEPA contact spring is applied. The relative cohesion, Cbulk, distinguishes between the 

expected levels of bulk cohesion in a qualitative way. To create a low relative cohesion, f0 and Δγ 

are decreased by 50% compared to the reference material model. An increase of 100% is also 

applied to create a high relative cohesion. Cbulk is set to “non” in bulk materials 1, 2, and 3, by 

setting both f0 and Δγ to 0. 

The EEPA model behaves like an elastic spring if the plasticity ratio is set to 0, while using 

values close to 1 the model behaves like a plastic spring. In an elastic spring there is no residual 

overlap once the force drops to zero. Any values between 0 and 1 result in a certain level of plastic 

compressibility in the contact spring. The reference material has a plasticity ratio of 0.2, which 

we correspond to low relative plastic compressibility, λbulk. Medium and high levels of relative 

plastic compressibility are defined by using 0.55 and 0.9 for λP respectively. If λP, f0 and Δγ are 

all set to zero, then the material model behaves like a non-cohesive elastic bulk solid. The grabbing 

process of non-cohesive elastic iron ore has been already investigated in [155,164] and is, 

therefore, excluded from the current sensitivity analysis. 

Table 7-1. Simulation plan to analyse the grabbing process for a bulk variability, [X] 

Bulk 

material 

λbulk 

Relative plastic 

compressibility 

λp 

[-] 

Cbulk 

Relative 

cohesion 

f0 

[N] 

Δγ 

[J/m2] 

1 Low 0.2 

Non 
0 

 

0 

 
2 Medium 0.55 

3 High 0.9 

4 Low 0.2 

Low -0.05 50 5 Medium 0.55 

6 High 0.9 

7 Low 0.2 

Medium -0.1 100 8 Medium 0.55 

9 High 0.9 

10 Low 0.2 

High -0.2 200 11 Medium 0.55 

12 High 0.9 
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Simulation setups 

Grab-relevant behavior of all 12 bulk materials are evaluated in the following simulation setups:  

• Angle of repose 

• Uni-axial consolidation 

• Penetration test 

These preliminary simulations are executed to verify that the created virtual bulk variability 

represents various states of bulk cohesion and compressibility. Next, the grabbing process is 

simulated at full-scale, thus evaluating how the bulk variability influences the process. The 

particle diameter of the validated material model is relatively large (55 mm in diameter), 

compared to particle sizes used in typical laboratory scale DEM simulations. Therefore, relatively 

large domains are also created to fit enough numbers of particles without undesirable boundary 

effects. 

The angle of repose is simulated by pouring particles from a specific height. The simulation 

setup is shown in Figure 7-4. Particles are created in a factory 1.5 meter above the bottom plate; 

due to the force of gravity, particles drop on the bottom plate to form an angle of repose over time. 

2500 particles are created with a total mass of around 800 kg. Once the simulation is finished, a 

stable angle of repose is formed, and the position of particles that are on the slope is analyzed. A 

linear regression is then fit on the data points to determine the angle of repose. The angle of repose, 

αM, is therefore the measurement objective of the simulation. 

 

Figure 7-4. A simulation setup to measure the angle of repose 
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The uni-axial consolidation process, including loading and unloading, is simulated in four stages 

to evaluate the bulk compressibility as well as bulk density. The simulation domain is 

1x1x2 meter. A block of material is created using a particle factory that moves upward. This kind 

of technique minimizes the impact force during the particle generation (Figure 7-5a). Next, the 

particles are allowed to settle for 2 seconds, and a low kinetic energy in the bulk material (i.e. 

≤ 1e-4 J) is reached (Figure 7-5b). Next, the bulk material is consolidated by applying a uniform 

pressure (i.e. 65 kPa) on its surface by means of a geometry plate for 2 seconds (Figure 7-5c). The 

pressure is unloaded by moving the geometry plate upward with a velocity of 1 cm/s (Figure 7-5d). 

The initial bulk density, ρb,0 is quantified when the particles relax in the second stage. The 

compressed bulk density, ρb,c is measured at the end of loading in the third stage. The final bulk 

density, ρb,end is quantified when the unloading is finished and a pre-consolidated situation is 

created. 

The penetration resistance of the bulk material is the third grab-relevant property that is 

investigated here. The penetration resistance is an influential bulk property in the grabbing process 

[108], as a lower resistance to penetration of grabs into the bulk solids results in a higher payload 

generally. The penetration process is simulated for a material block that is pre-consolidated with 

a vertical pressure of 65 kPa, as shown in Figure 7-6a. A cube-shaped geometry with the volume 

of 8 m3 is used to contain the material block.  

 
Figure 7-5. Uni-axial consolidation simulation consists of four stages: a) stage 1, particle generation, b) 

stage 2, particles relaxing, c) stage 3, uni-axial loading, d) stage 4, unloading. (The arrow indicates the 

direction of geometry kinematics) 

In general, ship unloader grabs have wedge-shaped knives with a blunt tip to tradeoff between the 

penetration resistance and amount of wear. The wedge-shaped penetration tool has a width of 40 

mm and its tip is 20 mm wide. That makes the cross-section of the penetration tool similar to the 
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setups used in [108,118,165] that focused on the grab application too. This tool (I) is driven into 

the pre-consolidated bulk material (II) with a constant velocity of 0.1 m/s. A plane contact 

2000 mm in length is created during the penetration, which replicates the grab dimensions 

adequately. The reaction force on the penetration tool is quantified as the measurement objective. 

  
Figure 7-6. a) Simulation setup of the penetration test, b) Cross-section of the penetration tool (I) 

Once the outcome of preliminary simulations confirms that an adequate bulk variability is 

achieved, the grabbing process can be simulated for the 12 bulk materials. The DEM simulation 

of the grabbing process is run on a combination of CPU and GPU. This allows for reducing the 

computation time of a MBD-DEM co-simulation by around 6 times, compared to a CPU-based 

co-simulation. NVIDIA Quadro GP100 is used as the graphics card in this study.  

Once the co-simulation is finished, the grab performance is quantified for the 12 different 

bulk materials. The mass indicator, Ψmass. is used to evaluate the sensitivity of the grab 

performance to the bulk variability. The outcome of Step I is [X*], bulk material classes with 

significant influence on the grab performance.  

7.1.2. Step II. Random sampling from design space (LHD) 

Once the significant bulk material classes are created, a parametric variation of the grab design 

can be investigated. In Step II of the optimization framework, design space is searched effectively 

to create randomized variations of grab configurations. If all the possible combinations of 

variables with the design space are considered, a full factorial design is thus created. For each 

parameter, a series of levels, or values, Ns, is defined. When every possible combination is tested, 

the total number of samples, N’, is given by Eq. (7.1). 
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where Ng is the number of parameters. Even with a small number of parameters and levels, the 

number of samples can result in an extreme computation time. For example, if five design 

parameters are tested, each at three different levels, a total number of 35 samples need to be 

simulated. With an average computation time of 3.5 hours per grab simulation, this would result 

in about 35 days of computing for each bulk material. 

Fractional factorial designs can offer more effective sampling methods compared to a full 

design, in terms of offering an affordable computation time [165]. The Latin Hypercube Design 

(LHD) method is selected in this chapter, as it allows for searching a parameter space effectively 

using a minimum number of sampling points [167]. A set of sampling points is constructed in 

such a way that each of the parameters is divided into p equal levels, where p is the number of 

samples. This is illustrated in Figure 7-7 using two examples and for two parameters. In example 

1, the samples are constructed with an extremely poor space filling quality, while example 2 has 

a better filling quality with a fine filling of the design space. 

 

Figure 7-7. Examples of LHD including two parameters: a) poor filling of a design space, and b) 

reasonable quality of filling a design space 

The LHD is constructed according to the algorithm developed in [152]. The ΦP criterion was 

defined, as shown in Eq. (7.2), to measure the performance of a LHD-based sampling.  
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where p is a positive integer, dij is the inter-point distance. In the current study, p = 50 is used 

following the recommendation of Jin et al. [168]. By minimizing the ΦP criterion [151], the 

location of levels for each parameter is randomly, simultaneously, and evenly distributed over the 
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parameter space. Maintaining a maximized distance between each two points allows for satisfying 

the ΦP criterion. 

In total, five design variables are included in the optimization, referred here as D1, D2, D3, 

D4, D5. The variables and the range of variations are selected based on a previous parametric 

study [155] as well as in consultation with grab designers. For example, Schott et al. [155] 

demonstrated that the length of the grab bucket, D1, plays an important role in the grab 

performance. Also, the radius of a bucket, D2, is a significant design parameter as it influences 

the bucket shape, and, thus, its volume.  

The construction of the LHD-based samples for D1 and D2 is visualized in Figure 7-8. 

Samples for three other design variables are randomly created in a similar way, thus, minimizing 

ΦP for five variables. A range of 1650 mm to 2000 mm is considered for D1, as it is a typical 

range for such a grab prototype. For the same reason, D2 is also varied between 1200 mm and 

2000 mm. Therefore, 25 different grab designs, N’ = 25, are created, including 5 variables, Ng. 

 

Figure 7-8. Sampling randomly generated for design variables D1 and D2 using Latin Hypercube 

Design. 

7.1.3. Step III. Multi-objective optimization using surrogate modelling 

A surrogate model is a computationally affordable mathematical model that can replace the actual 

simulation or experiment. Surrogate models approximate a function based on a set of available 

data points and can then predict the function at new points [13]. A surrogate model offers a faster 

computation time, compared to the actual DEM-MBD co-simulation, to predict performance of a 

new grab configuration. Surrogate models can be also used to obtain trends and identify the 
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influence of specific parameters on the grab performance. Three different types of regression-

based surrogate models are tested in the current chapter: 

• Linear regression 

• Linear Support Vector Machine Kernel 

• Polynomial Support Vector Machine Kernel 

The linear regression model is the most widely used regression model. In general, this type of 

regression model is a linear function between variables, response of the system, and constant 

coefficients [169], as shown in Eq. (7.3). 

 �P � � ÃÀ
U½

À¢�  �À  (7.3) 

where f is the regression model, β is a constant coefficient, and y is a (design) variable. A surrogate 

model can be created by fitting a regression function, fk, for each bulk material. Therefore, f(Y) 

maps the relationship between the grab design variables, bulk materials, and the selected response 

of the system, which is the mass indicator, Ψmass, in the current study. 

Kernel models transform variables using kernels. The transformed variables are measures 

for similarity or correlation between the data points. Multiplying the transformed variables with 

weights (constant coefficients), as with the linear models, gives an estimate of the output. The 

predictor function for a kernel-based regression is given by: 

 �P � � Ãd
1Á

d¢� ¾��r − �d� � Ä (7.4) 

where βi is the weight factor corresponding to data point i, and y’ indicates a vector of variable (at 

its new location) and yi is an available data point. b is a constant to minimize the fitting error, ε. 

One difference between a linear regression model and a kernel model is that the latter has a number 

of coefficients, βi, corresponding to data points rather than variables. Φ is the kernel function that 

transforms data points into another space to handle the non-linearity. Linear and polynomial 

functions are used for Φ in the current study. 

The support vector machine (SVM) regression uses a kernel function to first estimate the 

correlation between data points before fitting coefficients (Figure 7-9). The advantage of SVM is 

that it allows for an error between observations and predictions [170]. The cost function is not 

increased until the specified amount of error, ε, between observation and prediction is reached, 
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which forms an ε-tube around the prediction function. Outside the tube, the cost function increases 

and forces the prediction function to a specific range of data points. 

 

Figure 7-9. A tube with the radius of ε is fitted to data points in the SVM regression model [171] 

As discussed earlier, two objectives are considered in the current optimization: a maximized 

average mass indicator (Ψmass,mean) and a minimized standard deviation for mass indicator 

(Ψmass,SD) measured in different bulk materials. The unloading frequency of a certain cargo is also 

considered in the optimization. For example, if a grab unloads a specific cargo 20% of time, and 

another cargo 80% of time, the second cargo should have a higher weighting factor in the 

optimization for maintaining an adequate productivity. The distance between origin mine and 

customer, production capacity of mine, and technical demands of customer are among the 

influencing factors on the frequency of receiving a specific bulk cargo at destination. The 

unloading frequency can usually be obtained by analyzing available databases of customers. 

Therefore, to consider the frequency distribution of bulk variability, weighting factors with ∑ ÆPU∗P¢� � 1 are defined. ÆP is the weighting factor of material k in the optimization.  

Once different grab samples, Y, are simulated, one can select a design configuration that 

may jointly satisfy the optimization objectives. However, a response optimizer can find better 

design configurations, compared to the simulated samples, by using the surrogate models. 

Creating surrogate models allows for predicting the response of the system without the necessity 

of running a DEM-MBD co-simulation. Once a surrogate model is created, the optimal design can 

be found by selecting a combination of design variables that jointly satisfy the optimization 

objectives [165]. The NSGA-II genetic algorithm [172] is a proper tool to solve DEM-based 

optimization problems [15,26,27,132], and is therefore used in the current chapter to search for 

the optimal solution within the design range. 
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7.1.4. Step IV. Verifying the optimal design 

The selected optimal design is verified by running conforming simulations. This allows for 

quantifying the error of surrogate models as well. The prediction error is quantified using 

Eq. (7.5).  

 |�|"
�1 � � 100 ��Pr − �P�Pr �U∗

P¢�  (7.5) 

where |e|mean is the mean of absolute relative differences for the grabbing process in N* different 

bulk materials. fk is the prediction for system response, Ψmass in the current study. fk’  is the 

simulated response of the optimal design solution for bulk material k. The acceptable error of 

|e|mean is considered to be 5% multiplied by N*
. In other words, on average a prediction error of 

5% for each bulk material is considered to be adequate. If the prediction error is not acceptable, 

the number of data points in step 2 can be increased to improve the accuracy. Additionally, based 

on the prediction error, the performance of the different surrogate models can be compared. The 

optimization ends with a verified optimal design configuration, Yopt.  

7.2. Results and Discussion 

This section presents and discusses the outcome of four steps of the optimization in a sequential 

manner.  

7.2.1. Results of step 1, sensitivity to cargo variability  

Step I aims to identify a bulk material variability that has a significant influence on the grab 

performance. First, results of preliminary simulations are discussed. Second, the grab performance 

in handling the 12 different material models is analyzed. Third, a matrix, [X*] , containing the 

significant bulk material classes is created. 

Angle of repose 

Figure 7-10 shows the angle of repose results including two variables; relative cohesion (Cbulk) 

and relative plastic compressibility (λbulk). The angle of repose depends on the relative cohesion 

significantly. Increasing cohesive force values, f0 and Δγ, results in a higher angle of repose. The 

relative plastic compressibility, also influences αM. When a non-cohesive material is used, the 

relative plastic compressibility has a positive correlation with αM. However, when the cohesive 

forces are present, the relative plastic compressibility has a negative correlation with αM. 
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Figure 7-10. Angle of repose results including two variables: relative cohesion and relative plastic 

compressibility 

In case of non-cohesive materials, a higher contact plasticity results in a larger contact area upon 

unloading, thus increasing the required sliding distance of particles relative to each other. 

However, when cohesive forces are active, a higher relative plastic compressibility results in a 

denser pile of material. Since the particle density is constant, a denser packing of material results 

in a heavier failure wedge in the slope, thus a lower angle of repose could be expected with 

increasing the contact plasticity. The effect of contact plasticity on the packing is discussed further 

in the uni-axial consolidation simulation setup. 

Uni-axial consolidation 

Figure 7-11 displays initial, compressed, and final bulk density values that are quantified for the 

12 different bulk materials under 65 kPa pre-consolidation pressure. Results are presented in three 

separate graphs, each showing the outcome for a certain level of λbulk. All bulk density parameters 

decrease when cohesive forces increase, independent of the contact plasticity value.  
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Figure 7-11. Bulk density values in the uni-axial consolidation simulation, including two variables: 

relative cohesion (Cbulk) and relative plastic compressibility (λbulk) 

The higher the cohesive forces, the larger the restrictive forces between particles to fill the voids; 

consequently, a lower bulk density is created. Furthermore, by increasing the contact plasticity, 

the residual overlap in contact spring increases [22], thus a smaller difference between ρb,c and 

ρb,end might be expected. Therefore, both variables, λbulk and Cbulk, have significant influence on 

the bulk compressibility and the bulk density. 

Penetration resistance 

W500, the accumulative reaction force (in Joules) on the wedge-shape tool is quantified at the 

penetration depth of 500 mm. That is similar to the penetration depth that occurs in the grabbing 

process of the CSF cargo under 65 kPa pre-consolidation pressure [164]. The outcome of the 

penetration test simulations is shown in Figure 7-12, including two variables: λbulk and Cbulk. 

 

Figure 7-12. Effect of bulk variability on the penetration resistance 
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There is a positive correlation between the relative plastic compressibility, λbulk, and W500. A 

higher contact plasticity results in a denser packing, thus, a higher resistance against the 

penetration of the wedge-shaped tool. There is no clear relationship between the relative cohesion 

and the penetration resistance. Therefore, only λbulk is a significant bulk variable influencing the 

penetration resistance. 

The influence of each variable on the grab-relevant bulk properties is shown above. The 

relative cohesion has a significant influence on the angle of repose and bulk density, while the 

relative plastic compressibility plays a significant role in the angle of repose, bulk compressibility, 

and the penetration resistance. 

Grabbing process 

Figure 7-13 displays the influence of λbulk and Cbulk on the grab performance. The influence of 

relative plastic compressibility on the grab performance is significant. That could be expected, 

based on the penetration simulations. The relative cohesion also plays a role in the grabbing 

process, especially when a low λbulk is used.  

Although the effect of the pre-consolidation pressure is not investigated in the current 

analysis, it is known that the pre-consolidation plays a significant role in the grabbing process of 

cohesive iron ore [164]. Three different bulk materials are selected for further optimization of the 

grab design, as presented in Table 7-2. Material IO-1* is a non-cohesive iron ore with no relative 

plastic compressibility which its DEM material model was developed within the Transport 

Engineering and Logistic section of Delft University of Technology [9]. Due to lack of 

compressibility of IO-1*, pre-consolidation is omitted. Material IO-2* is a cohesive iron ore with 

a low Cbulk and a high λbulk that is pre-consolidated with a relative high pressure of 200 kPa. By 

contrast, material IO-3* has a high Cbulk and a low λbulk, that is pre-consolidated with a relative low 

pressure of 40 kPa. Such pressure is expected at a cargo depth of around 1.5 m to 2 m. By 

analyzing an available database of a grab customer, the weighting factors are selected for each 

bulk material. Summarizing, three different bulk material classes with significant variability for 

the grabbing process are selected as the outcome of step I. 
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Figure 7-13. The grab performance under variation of relative cohesion and relative plastic 

compressibility 

Table 7-2. [X*]: three different bulk material classes with significant influence on the grabbing process  

Bulk 

material 

class 

λbulk 

Relative plastic 

compressibility 

Cbulk 

Relative 

cohesion 

σpre [kPa] 

Pre-consolidation 

stress 

w 

Weight factor of the 

unloading frequency 

IO-1* Non Non Not applicable 0.1 

IO-2* Low High 40 0.4 
*3-IO High Low 200 0.5 

7.2.2. Results of Step II, performance indicators of random design samples 

The 25 different grab design samples are simulated in three significant bulk material classes, [X*] , 

thus, 75 simulations are executed. The performance of grabs are analyzed using the mass indicator 

Ψmass, and the outcome is illustrated in Figure 7-14. The horizontal axis represents the mean value 

of Ψmass for a grab handling the three significant material classes, thus showing the performance 

of a design sample on average. The vertical axis represents the standard deviation value of Ψmass 

in handling [X*] , thus an indication for the performance consistency. 
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Figure 7-14. Performance of random grab design samples in three different bulk materials, [X*] 

The mean Ψmass values are distributed between 2.05 and 2.54. A variation of around 24% in the 

performance of different design samples is captured. Next, surrogate models are fitted on the 25 

data points.  

7.2.3. Results of Step III, multi-objective optimization using surrogate modelling 

Three different surrogate models are fitted on the available data points: linear regression, linear 

SVM kernel, and polynomial SVM kernel. Next, optimal solutions using the NSGA-II genetic 

algorithm are found for each surrogate model. The outcome is illustrated in Figure 7-15, indicating 

that different optimal solutions (red line) are found using different surrogate models. The available 

data points are shown in blue. The polynomial SVM kernel predicts optimal solutions that are 

better than the predictions of two other surrogate models. The non-linear relationships between 

optimization objectives and design variable were captured well using the polynomial SVM kernel.  
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Figure 7-15. Optimal solutions are compared for three different surrogate models 

7.2.4. Results of Step IV, verified optimal design 

It needs to be verified whether the predications of the surrogate models and the optimization 

algorithm are sufficiently accurate. Therefore, the “knee-point” in the line presenting optimal 

solutions is selected, as recommended in [173]. Co-simulations are executed for each optimal 

solution in three significant bulk material classes, [X*] ; the outcome is shown in Table 7-3. 

Table 7-3. Comparing simulated Ψmass in [X*] with predictions of the optimization algorithm  

Bulk 

material 

Linear 

regression 

Linear SVM 

kernel 

Polynomial 

SVM kernel 

IO-1* 2.50 2.52 2.51 

IO-2* 2.65 2.70 2.76 

IO-3* 2.31 2.32 2.39 

mass,meanΨ 2.49 2.51 2.56 

[%] meane|| 4.7 1.6 1.1 

All three surrogate models have a prediction error smaller than 5% for Ψmass,mean. The polynomial 

SVM kernel shows the highest grab performance as well as the lowest prediction error, while the 

linear regression model shows the opposite. Therefore, the polynomial SVM kernel can be 

recommended as a surrogate model to find design configurations of an optimal grab, including 

the bulk cargo variability. 

7.3. Conclusion 

In this chapter, a sequential multi-objective optimization framework was established to include 

multiple grab design variables as well as a variety of bulk material properties in the design process. 
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A wide range of bulk material properties was used in the optimization, from a non-cohesive 

incompressible iron ore to a cohesive compressible cargo that is pre-consolidated. A maximized 

grab performance, Ψmass,mean, was achieved, while a minimized value for the performance 

deviation was maintained. The established optimization framework offers a straightforward and 

reliable tool for designing grabs and other similar equipment, including the bulk cargo variability. 

• A bulk variability was created to consider various levels of cohesion and compressibility of 

iron ore products. Three preliminary simulations were performed to verify that a realistic bulk 

variability is replicated using DEM. The outcome of simulations show that the relative 

cohesion has a significant influence on the angle of repose and bulk density, while the relative 

plastic compressibility plays an important role in the angle of repose, bulk compressibility, and 

the penetration resistance. The simulations of the grabbing process using a range of virtual bulk 

variability show that the relative plastic compressibility has a larger influence on the product 

performance, compared to the relative cohesion. 

• 25 different random grab designs were created using the Latin Hypercube Design sampling 

method, including 5 different geometrical variables. A variation of 24% in the grab 

performance was captured using the random design samples, indicating the adequacy of the 

sampling method. Comparing the average mass indicator values, Ψmass,mean, as well the 

corresponding standard deviation values allows for assessing performance of different grab 

designs. 

• Three different surrogate models were created using linear regression, linear support vector 

machine kernel and polynomial supper vector machine kernel models. The outcome of the 

optimization was most promising and accurate when the surrogate model is constructed using 

a polynomial SVM kernel model, as it captures the non-linear relationships between variables 

and objectives. 

Once a specific design concept is selected for handling iron ore, the bulk cargo variability can be 

included by following steps II, III and IV of the optimization framework. If a design concept needs 

to be optimized for a different type of cargo (e.g. coal), it is recommended that all steps of the 

optimization framework are followed in a sequential manner. 
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Conclusions and recommendations 

8.1. Conclusions 

A reliable and accurate DEM-MBD co-simulation was developed and utilised for optimizing the 

grabbing process of cohesive iron ore products. The grabbing process simulation was validated 

by full-scale grabbing experiments in the cargo hold under actual operational conditions. Both 

cohesive and stress-history dependent behaviour of moist fine iron ore were captured using the 

validated material model. Moreover, a novel multi-objective optimization framework was 

established that offers an affordable computation time to enhance design concepts in various 

operational conditions of varying bulk cargo properties.  

The main findings regarding the main research questions of this dissertation are described below. 

1. How can the effect of stress-history dependency of cohesive iron ore on the grabbing process 

be evaluated using a laboratory experimental setup? 

• A consolidation-penetration test method was successfully developed to investigate the effect 

of consolidation stress on the penetration resistance. In this setup, a wedge-shaped tool 

penetrates into a moist sample of iron ore fine, that replicates the penetration process of grabs 

into bulk cargoes.  
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• A non-linear positive relationship between the pre-consolidation and the penetration resistance 

was found. Therefore, a strong link between the stress-history dependency of cohesive iron ore 

and the grabbing process was quantified. 

2. What are variability and interdependency of iron ore properties and their interactions with 

equipment in realistic transport and storage conditions? 

• Based on a range of experiments with three iron ore samples, it was shown that three bulk 

properties - type of cargo, moisture content, and pre-consolidation - are responsible for the 

variations of the dependent bulk properties: bulk density, angle of repose, penetration 

resistance, and shear strength.  

• The tested iron ore samples are categorized as very cohesive to cohesive based on the ring 

shear test results. The angle of repose of these samples were measured using the ledge method; 

the test results are in the range of 55° to 70°, expect for Carajas SF sample (I2) at the highest 

level of moisture content that resulted in angle of repose of 84° in average . The mentioned 

range is consistent with measurements of other researchers on moist iron ore samples using a 

similar test method.  

• The dependent bulk properties of cohesive iron ore samples are highly sensitive to the history 

of the applied stress, σpre. This phenomena was observed in both ring shear and consolidation-

penetration tests, in which high correlations between pre-consolidation and respectively 

flowability and accumulative penetration resistance are found. Therefore, choosing appropriate 

range of pre-consolidation in the design of equipment for handling cohesive iron ore is crucial.  

• According to the obtained experimental results, it is expected that the variability of influencing 

bulk properties (type of cargo, moisture content and pre-consolidation) plays an important role 

in the performance consistency of transport and storage equipment, such as grabs.  

3. How to minimize the computation cost for a large scale co-simulation of grabs and cohesive 

bulk solids? 

• A hybrid particle-geometric scaling approach for DEM simulations of cohesive materials was 

developed and verified that allows for isolating the effects of varying particle size and 

geometric dimensions on bulk properties. Additionally, proper particle scaling rules were 

developed by extending the coarse graining technique to incorporate two important aspects of 

bulk materials, their elasto-plastic behaviour and their cohesive forces. It was demonstrated 

that the constant pull-off force, f0, and the surface energy, Δγ, should be scaled by the squared 

of the scaling factor and the scaling factor respectively.  
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• To apply the hybrid particle-geometric scaling approach for simulating a cohesive and stress-

history dependent bulk solid for using in an entirely different simulation scale, the following 

steps were required to be followed subsequently: 

o Step I is to conduct the laboratory tests to characterize complex behavior of cohesive and 

elasto-plastic materials for various bulk responses.  

o Step II is to calibrate the DEM simulation replicating the laboratory tests at a scale of 1:1, 

which is a common calibration procedure.  

o Step III is to vary the geometry scale by maintaining constant particle size and contact 

settings. Values of bulk responses are expected to be affected by geometric scaling.  

o Step IV is to vary the particle scale and to compare bulk responses with outcome of step III.  

Steps III and IV can be repeated until the desired trade-off between computational time and 

accuracy is reached. Once a scaled up simulation with a reduced computational time is 

developed, validation should be achieved using in-situ experiments. 

• The scaling rules resulted in a reduction from 103 hours of computation time for around 8 

million particles, to just under 4 hours for around 600 000 particles. This is sufficiently a short 

computation time to allow design optimisation of grabs. 

4. What is a reliable calibration procedure to develop a realistic material model of cohesive iron 

ore for the grabbing process? 

• To develop a realistic material model the following challenges in calibrating a DEM material 

model for complex bulk solids, such as cohesive and stress-history dependent iron ore, should 

be addressed:  

o Identifying proper contact modules that ensure multi-bulk responses can be captured 

properly: in this work, the Latin Hypercube Design technique was applied successfully to 

search for a non-empty solution space. 

o Including both types of input variables, categorical and continuous, in a multi-variable 

multi-objective calibration procedure: a categorical variable, rolling friction module, was 

included in the feasibility step of the calibration procedure. Once the level of categorical 

variable is set, levels of continuous variables, such as the coefficient of static friction, were 

optimized using the surrogate modelling. 

o Including a high number of DEM input variables in an optimization-based calibration 

procedure: by simply adjusting input parameters, numerous simulations should be run with no 

guarantee of finding a parameter set to fit the multi-bulk responses. The calibration procedure 

demonstrates how Design of Experiment techniques can be used in an effective way to create 
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samples for multiple DEM input variables (i.e. 6 continuous variables), while the number of 

required simulations is minimized.  

• The calibration procedure addresses how a reliable procedure can be applied when the 

complexity of multi-bulk responses is included. It was shown that the surrogate modelling-

based optimization is applicable when a high number (i.e. ≥ 5) of DEM input variables and a 

number of calibration targets (i.e. >2) are involved. The established calibration procedure can 

be applied to any type of unsaturated bulk materials, such as coal.  

5. What is the accuracy of the MBD-DEM co-simulation of grabs and cohesive iron in replicating 

the actual process? 

• The co-simulation of cohesive and stress-dependent iron ore was developed and validated 

successfully with full-scale grabbing experiments in the cargo hold. This allowed the process 

to be recorded under realistic operational conditions and ensured capturing the stress dependent 

behaviour of the bulk material at two different levels of cargo depth.  

• The predictions of the co-simulation compared well to experimental data in all aspects, 

including force in cables, torque in winches, kinematics of geometry, payload, collected 

volume and average porosity of bulk solid.  

• Using the co-simulation setup, a negative correlation between pre-consolidation level and 

payload was confirmed. When a pre-consolidation situation is created for cohesive materials, 

the increasing density of bulk material results in a lower penetration/cutting depth of grab, both 

at rest and closing stages. 

6. How can bulk cargo variation be included in the design procedure of grabs? 

• To include a variety of bulk material properties as well as multiple grab geometric variables in 

the design process, a sequential multi-objective optimization framework was established. A 

wide range of bulk material properties was used in the optimization, from a non-cohesive 

incompressible iron ore to a cohesive compressible cargo that is pre-consolidated. The 

optimization framework aimed successfully at a maximized grab performance (in terms of the 

mass indicator), and simultaneously, a maximized performance consistency. With the aid of 

this optimization framework, realistic operational conditions can be included in the design 

process of grabs. 

• Three different surrogate models were created using linear regression, linear support vector 

machine kernel and polynomial supper vector machine kernel models. The outcome of the 

optimization was most promising and accurate when the surrogate model is constructed using 
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a polynomial SVM kernel model, as it captures the non-linear relationships between variables 

and objectives.  

8.2. Recommendations 

The developed and presented simulation-based optimization framework in this work is beneficial 

to grab manufacturers, terminal operators and other stakeholders of the grab industry:  

Grab manufacturers should use the validated co-simulation to test the virtual prototypes 

of grabs as they interact with bulk solid cargoes, rather than the traditional approach of physical 

prototyping. Also, the simulation-based optimization framework offers application-driven design 

of grabs where the customer’s specific requests, such as the list of cargoes being handled 

frequently, leads to a custom-made grab design.  

Terminal operators can use the presented validated co-simulation to obtain valuable data 

regarding the grab performance under realistic operational conditions, and using obtained data in 

their logistic planning. In this dissertation, a surrogate model was created to include various design 

samples and bulk cargo properties. A more comprehensive surrogate model should be created in 

future work, capturing other aspects of operational conditions, such as bulk surface geometry. 

Once such a surrogate model is made more comprehensive, design and operational scenarios can 

be optimized without the necessity of running co-simulations. This allows for finding an optimal 

solution in near real-time. Various optimization targets can be included, such as unloading time 

of a bulk carrier, environmental impact, energy consumption, and fatigue of grab structure, 

therefore supporting the stakeholders in modernizing material handling systems. 

Crane operators can utilize an automated monitoring system linked to a robust control 

system that enables the possibility of the operating grabs with a minimized unloading time. The 

developed co-simulation should be used for optimizing the control system in the grabbing process. 

The optimized control system requires near-real time data of bulk cargo and its interaction with 

equipment to be recorded in a remote way. The current common practice is using limited 

quantitative data, and by relying on visual observations and experience of the crane operator for 

controlling the grabs as well as laboratory-based measurements of similar cargoes. 

The approach presented in this work can be implemented for other bulk solids and other 

handling equipment. Defining key performance indicators that take into consideration the impact 

of each piece of equipment on the entire chain of a bulk handling system can bring us closer 

towards revolutionizing the bulk material handling supply chain. The DEM material model 
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developed in this work was aimed for the grab application, which was simulated accurately. For 

a system approach, other applications, such as transfer chutes, that have flow regimes different 

than the grabbing process, require different material states to be considered. Therefore, a universal 

material model of a bulk solid independent of the flow regime should be established. 
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Nomenclature 

In this dissertation the following symbols have been used: 

Symbol Unit Description 

A m2 Area 

µr - Coefficient of rolling friction 

µs - Coefficient of static friction 

|e| - Absolute relative difference 

β - Constant term in regression model 

Cbulk - Relative bulk cohesion 

CR - Coefficient of restitution 

d50 mm Median particle size 

dcomposite - Composite desirability, geometric mean of individual 
desirability values 

δn m Normal contact overlap 

E* Pa Equivalent Young's modulus 

fadh N Normal adhesive force 

fN N Normal contact force 

fT N Tangential contact force 

f0 N Constant pull-off force 

G Pa Shear modulus 

g m/s2 Gravitational constant 

H m Height 

ηgrab - Grab's efficiency 
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Symbol Unit Description 

kadh N/m Adhesive stiffness of contact spring 

kn N/m Normal stiffness of contact spring  

kt N/m Tangential stiffness of contact spring  

kt,mult  - Tangential stiffness multiplier in the EEPA contact model 

Ls m Final penetration depth of the sampling tube 

Me ton Grab's weight when it is empty 

MC % Dry-based moisture content 

MDWT ton Weight of collected bulk solid 

nDWT - Porosity of collected bulk solid 

nKeppler - Theoretical limit of minimum porosity for rigid sphere 

r m Moment arm 

R* m Equivalent radius 

ρb kg/m3 Bulk density in moist state 

ρd kg/m3 Bulk density in dry state 

ρf kg/m3 Fluid density 

R2 - Coefficient of determination 

Rp m Particle radius 

τ Pa Shear stress 

τR N.m Rotational contact torque 

U m Perimeter 

V m/s Velocity 

wk - Weighting factor 

Wz J Accumulated penetration resistance at penetration depth of z 

αM Degree Angle of repose 

Δinitial,S66  m Penetration resistance quantified through initial penetration 
depth of S66 tube 

ΔMC % Moisture content variation 

Δγ  J/m2 Surface energy 

λbulk - Relative bulk compressibility 

λP - Contact plasticity ratio 
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Symbol Unit Description 

σ Pa Normal stress 

σ1 Pa Consolidation stress 

σc Pa Unconfined yield strength 

σpr Pa Pre-consolidation stress 

τa Pa Adhesion (shear) strength 

τc Pa Cohesion (shear) strength 

τw Pa Wall shear stress 

ϕ lin Degree Linear internal friction 

φx Degree Wall friction angle 

χ - Tensile exponent 

ψP - Particle shape 

ω degree/s Angular velocity 
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Samenvatting 

Wegens de grote vraag naar ijzerertsproducten in de staalindustrie hebben deze per jaar het 

grootste aandeel in de handel in droge bulkgoederen, groter dan kolen en graan. Ongeveer 9000 

capesize-vrachtschepen met een draagvermogen tot 400 000 ton vervoeren jaarlijks ijzererts naar 

havens van bestemming. Voor het lossen van ijzererts uit scheepsruimen worden veelal grijpers 

gebruikt. Een snel en betrouwbaar losproces is nodig om de kosten voor havenexploitanten zo 

laag mogelijk te houden en om ijzerertsproducten op tijd bij de klanten te kunnen afleveren. In de 

praktijk zijn er vele factoren, zoals vocht, materiaaleigenschappen die variëren met de 

ladingdiepte, en de dynamische eigenschappen van de grijper, die het moeilijk maken om het 

losproces efficiënt te laten verlopen. Een oplossing voor een beter losproces is om met behulp van 

op simulatie gebaseerde methoden het ontwerp van grijpers te verbeteren. Hierdoor kan er per 

grijpercyclus een grotere massa ijzererts worden verwerkt, waardoor de totale lostijd van een 

bulkvrachtschip tot een minimum wordt beperkt. 

Het gebruik van virtuele prototypes van grijpers (virtual prototyping) is een nieuwe 

simulatiemethode waarmee het ontwerp op een betaalbare manier kan worden geëvalueerd. 

Cosimulatie van een virtueel prototype van een grijper en de werking op het bulkmateriaal wordt 

op ware grootte uitgevoerd door twee verschillende oplossers aan elkaar te koppelen: Discrete 

Element Method (DEM) en MultiBody Dynamics (MBD). Voor de cosimulatie zijn als input 

vereist een virtuele kraanmachinist, een CAD-model van een grijper die met een kraan is 

verbonden, en een gekalibreerd DEM-materiaalmodel. In het afgelopen decennium zijn er 

betrouwbare DEM-kalibratieprocedures ontwikkeld voor het modelleren van vrij stromende vaste 

bulkstoffen, zoals ijzerertspellets, zand en grind. Als gevolg van het vochtgehalte vertonen de 

meeste ijzerertsproducten echter gedrag dat afhangt van cohesie en belastingsgeschiedenis; bij de 

kalibratieprocedure moet daarmee rekening worden gehouden. Bovendien is, gezien de 

deeltjesgrootte en -vorm van dergelijke fijne ijzerertsproducten, de extreem lange rekentijd van 



 

220 

DEM-simulaties een uitdaging die moet worden opgelost. Verder wordt een grijper vaak gebruikt 

voor een grote verscheidenheid aan ijzerertsladingen met bijvoorbeeld verschillende 

vochtgehaltes, schuifsterktes en bulkdichtheden. De variabiliteit van de eigenschappen van de 

bulkgoederen beïnvloedt het grijpproces aanzienlijk, en daarmee ook de efficiëntie van de grijper. 

Het hoofddoel van dit proefschrift is een nauwkeurige cosimulatie van grijper en cohesief 

ijzererts ontwikkelen en deze gebruiken om virtuele prototypen te optimaliseren. Als de 

eigenschappen van een ijzerertsproduct in interactie met de apparatuur eenmaal zijn 

gekarakteriseerd, moeten met behulp van een betrouwbare multivariabele kalibratieprocedure de 

verschillende invoerparameters van een DEM-materiaalmodel worden vastgesteld, inclusief 

continue en categorische variabelen. Zodra de juiste schalingsregels op de DEM-simulatie zijn 

toegepast, kan een modelsimulatie van grijper en materiaal op ware grootte worden 

geconfigureerd en gevalideerd. Vervolgens moeten de optimale instellingen van de 

ontwerpvariabelen worden bepaald, zodat het effect van variatie in de bulklading op het 

rendement van de grijper kan worden geminimaliseerd. Dit is de basisstrategie van robuust 

grijperontwerp. Exploitanten van bulkterminals hebben graag grijpers die geoptimaliseerd zijn 

voor meerdere doelstellingen, zoals een maximaal rendement bij een minimale afwijking. 

Een consolidation-penetration-testmethode is ontwikkeld om te onderzoeken of het 

belastingsgeschiedenisafhankelijke gedrag van ijzererts belangrijk is voor de werking van de 

grijper. In deze laboratoriumtest wordt de spanning gerepliceerd die wordt verwacht vóór de 

zetting (consolidation) in een stapel bulkgoed tijdens het grijpen. Vervolgens worden voor de 

grijper relevante eigenschappen van een reeks ijzerertsproducten gekarakteriseerd met behulp van 

laboratoriumtestmethoden, zoals consolidation-penetration, ring shear, wall friction en ledge 

angle of repose. Met de verkregen gegevens wordt een realistisch materiaalmodel gekalibreerd. 

De statische wrijvingscoëfficiënt, de oppervlakte-energie en de schuifmodulus van de deeltjes 

blijken de meest significante continue variabelen te zijn voor de gesimuleerde processen, en de 

rolweerstand blijkt een significante categorische variabele. Vervolgens wordt het DEM-

materiaalmodel van cohesief ijzererts opgesteld met behulp van een betrouwbare multivariabele 

kalibratieprocedure met meerdere doelstellingen. De gekalibreerde DEM-parameterset en de 

‘definitiviteit’ ( definiteness) worden geverifieerd aan de hand van 20 verschillende 

bulkresponswaarden. 

Zodra het materiaalmodel is gekalibreerd, worden schalingsregels voor het gekozen 

contactmodel toegepast om de rekentijd van de cosimulatie te minimaliseren. De schalingsregels 
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worden geverifieerd voor diverse deeltjesgroottes, geometrische afmetingen, testinrichtingen en 

cohesiekrachten. De geometrische afmetingen moeten los van de deeltjesgrootte worden 

geschaald om de bulkmassa en de volumehoeveelheden constant te houden. De cosimulatie van 

grijper en cohesief ijzererts is geconfigureerd met behulp van opgeschaalde deeltjes met een 

gemiddelde diameter van 55 mm. De schalingsregels leidden tot een vermindering in rekentijd, 

van 103 uur voor ongeveer 8 miljoen deeltjes tot iets minder dan 4 uur voor ongeveer 600 000 

deeltjes. 

Het gesimuleerde grijpproces wordt gevalideerd door middel van grijpexperimenten op 

ware grootte in het vrachtruim. Hierdoor kon het proces onder realistische 

bedrijfsomstandigheden worden vastgelegd. De cosimulatie wordt gevalideerd door de 

voorspellingen te vergelijken met experimentele gegevens over diverse aspecten, zoals de 

kinematische en dynamische eigenschappen van de grijper. De voorspellingen van de cosimulatie 

kwamen goed overeen met de experimentele gegevens op alle aspecten: de kracht in kabels, het 

koppelmoment in lieren, de kinematische eigenschappen van de geometrie, het laadvermogen, het 

verwerkte volume en de gemiddelde porositeit van het bulkgoed. De gevalideerde cosimulatie 

bewijst dat het belastingsafhankelijke gedrag van cohesieve lading tijdens de interactie met de 

grijper met succes is gemodelleerd. 

Ten slotte is er een optimaliseringskader met meerdere doelstellingen opgesteld om in de 

ontwerpprocedure rekening te houden met de variatie in de bulklading. In het 

optimaliseringskader zijn twee doelstellingen opgenomen: een maximale gemiddelde prestatie 

van de grijper en een minimale afwijking van de gemiddelde prestatie. Om de relaties tussen 

geometrische ontwerpparameters en de genoemde doelstellingen in kaart te brengen, worden 

verschillende virtuele prototypen van grijpers gesimuleerd voor een breed scala aan 

ijzerertsladingen. Vervolgens wordt er een op surrogaatmodellen gebaseerde optimalisatie 

toegepast en wordt er een optimaal ontwerp van de grijper gemaakt. Het optimale grijperontwerp 

wordt vervolgens getest met behulp van de cosimulatie, waarbij wordt nagegaan in hoeverre de 

voorspellingen van het surrogaatmodel overeenkomen met de gesimuleerde respons. Het aldus 

opgestelde optimaliseringskader voorziet in directe stappen voor het ontwerpen van grijpers voor 

diverse bulkladingeigenschappen. 

De gehele keten van een systeem voor de afhandeling van bulkladingen, vooral voor 

cohesieve materialen, kan nauwkeurig op ware grootte worden gesimuleerd, zodat de efficiëntie 

van het gehele systeem kan worden gemaximaliseerd. Hiertoe kan de in dit werk gepresenteerde 
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methode worden toegepast voor andere vaste bulkgoederen en ook voor andere 

bulkverwerkingsapparatuur dan grijpers. Bovendien kunnen er op basis van de gevalideerde 

cosimulatie van grijper en cohesief ijzererts innovatieve ontwerp- en exploitatieconcepten worden 

bedacht, zodat de tijd en energie die nodig zijn voor het lossen van ijzerertsvrachtschepen verder 

worden geminimaliseerd. 
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