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Abstract— This paper presents recent innovation in the field of 
the Synchronized Measurement Technology. An advanced, low 
complexity algorithm for synchrophasor estimation and the 
processing platform running embedded Linux are used to develop 
a cost-efficient Phasor Measurement Unit (PMU) prototype. The 
Smart Discrete Fourier Transform (SDFT) is adapted for the 
purpose of synchrophasor estimation, being implemented by 
using Python programming language. The developed prototype 
sends synchro-measurements according to the IEEE Standard 
C37.118 specifications. The prototype performance 
characteristics are evaluated by using RTDS power system 
simulator as hardware-in-the-loop. The obtained results suggest 
further algorithm improvements to fully comply with the IEEE 
Standard C37.118.1a-2014 specified requirements. The developed 
prototype offers an affordable PMU solution for improving the 
grid observability.  

Index Terms—Phasor Measurement Unit, Discrete Fourier 
Transform, embedded platform, real-time measurements, 
enhanced grid monitoring. 

I.  INTRODUCTION 
This paper presents an advanced technique for synchrophasor 
estimation and the design and application of a PMU prototype. 
Typically, a PMU device is used to monitor power system 
dynamics by providing voltage and current synchrophasors, 
frequency and rate-of-change-of-frequency measurements with 
50 frames per second reporting rate. Despite significant benefits 
of PMU measurements compared to typical SCADA type of 
measurements, PMUs are still not massively deployed in the 
grid. 

The commercially available PMUs are typically based on a 
modular design, composed of a processor board, transformer 
boards, GPS time synchronization and communication 
modules. The choice of the implemented estimation technique 
and the final product performance depend on the main 
processor performance (measured with respect to the clock 
frequency and multi-core processing possibilities) and the 
accuracy of the remaining components. To provide an 
affordable solution without jeopardizing the performance 
capabilities, in this research, the time synchronization is 
realized in the platform hardware instead of software.  For  

waveforms sampling, a multi-channel time-synchronized 
analogue to digital converter (ADC) board is used. For 
algorithm processing and implementation, an affordable power-
efficient ARM CPU boards (Raspberry-Pi [1] like, the family 
of embedded single board computers) are selected, with the 
embedded Linux operating system. 
      The main challenge is to choose an efficient and accurate 
synchrophasor estimation algorithm in order to obtain the best 
possible results accuracy, meanwhile guaranteeing real-time 
processing on the applied embedded hardware. So far, many 
algorithms were used by different authors, utilizing variable 
window length [2] and variable sampling rate [3] based 
algorithms, interpolated-iterative DFT techniques [4] and 
techniques that relay on estimated system frequency. Generally, 
the complexity of the algorithms differs based on the applied 
mathematical approach. Besides, the algorithm should be 
computationally efficient and should provide accurate estimates 
under different grid conditions. In [5], a Smart Discrete Fourier 
Transform (SDFT) computationally efficient method for 
precise calculation of power system frequency is introduced. 
Additionally, it was shown that the frequency estimates can be 
further used to recalculate the phasor values. In this way, less 
erroneous results are obtained  when frequency deviates from 
the nominal value. In [6], the improvements of the proposed 
SDFT were investigated for synchrophasor applications by 
implementing the SDFT based PMU model in a real-time 
simulator. 

The aim of this work is to implement the enhanced version 
of SDFT into the processing platform and investigate its 
performance capabilities according to the IEEE Standard 
C37.118.1a-2014 requirements.  In the first step, the efficiency 
of the basic SDFT is verified according to the standard 
requirements under different testing conditions, by using 
MATLAB simulation environment. In next step, the Python 
programming language is used to implement the enhanced 
SDFT algorithm on the processing platform. In order to keep 
within the processing resources limitations of the embedded 
platform, a number of code optimization is performed.   



II. PROCEDURE FOR ALGORITHM DEVELOPMENT AND 
VERIFICATION 

 
A.  Smart Discrete Fourier Transform 

SDFT method for phasor estimation is based on a 
mathematical approach, that efficiently solves limitations of the 
standard DFT method. The method relies on frequency 
estimation obtained by three consecutive DFT fundamental 
components. By using an estimated frequency, one SDFT 
phasor is obtained, having significantly higher accuracy than 
previously estimated DFT phasors. The SDFT algorithm 
requires additional computational steps compared to the 
standard DFT, but the benefits of reduced filtering requirements 
outweigh additional processing expenses. The following 
equations shortly illustrate the flow of SDFT [5], [6]:       ݔ(݇) = ܺ௠ cos ቀଶగ௙௞ே௙బ +  ߶ቁ                  (1)     

being: ݔ(݇)  a pure sinusoidal signal sampled at discrete 
instants, ܺ௠ the input signal amplitude, ݂ the signal frequency, ߶ the initial phase angle, ݂ ଴ the nominal signal frequency and N 
the sampling rate in samples/cycle. 

 The main frequency component in DFT spectrum of ݔ(݇), 
evaluated at the ݎ௧௛ sample is given as:     

  
ො௥ݔ  =  ଶே ∑ ݇)ݔ + ௝మഏೖಿேିଵ௞ୀ଴ି݁(ݎ                                           (2) 

If we consider the system frequency deviation to be ݂߂: 

       ݂ =  ଴݂ +  (3)                                                                  , ݂߂ 

and parameters  ݔො௥  and  ܽ  as:                                                             ݔො௥ = ௥ܣ  + ܽ                                                                                 ௥                                        (4)ܤ = ݁௝మഏ(೑బశ೩೑)ೝಿ೑బ  ,                                                               (5)                                                   
the following relations can be obtained:        ݓ = ܽ  +  ܽିଵ = 2 ݏ݋ܿ ଶగ(௙బା௱௙)ே௙బ  ,                                    (6)                                                                                                 

௥ܣ        = ௑೘ே ௦௜௡ഏ೩೑೑బ௦௜௡ഏ೩೑ಿ೑బ ݁௝ቀమഏ(೑బశ೩೑)ೝಿ೑బ ାഏ(ಿషభ)೩೑ಿ೑బ ାథቁ
    .                    (7) 

while ܤ௥  can be neglected, since the ݂߂ is small.                   

The frequency deviation Δf can be derived as:        ݂߂ = ே௙బଶగ ଵିݏ݋ܿ ℜ ቀ௪ଶ ቁ − ଴݂ ,                                      (8) 

and the amplitude ܺ௠ and the phase  ߶ can be extracted:         ܺ௠ = |ݎܣ| ே ௦௜௡ഏ೩೑ಿ೑బ௦௜௡ഏ೩೑೑బ                                                            (9) 

        ߶ = (௥ܣ)݈݁݃݊ܽ − గ(ேିଵ)௱௙ே௙బ .                                            (10) 

The derived expressions for the parameters ݓ and ܣ௥ are:           ݓ = ௫ොೝା௫ොೝశమ௫ොೝశభ                                                                          (11) 

௥ܣ       = ௔௫ොೝశభି ௫ොೝ௔మିଵ  .                                                                 (12) 

Finally, after calculating the values of ݎܣ, and ݂߂, the value 
of the estimated SDFT phasor can be obtained.  

B. SDFT Based PMU Algorithm 
As stated in [6], the simulations with a PMU model based on 
SDFT shows numerical oscillations in estimated frequency. In 
order to get more accurate values, the estimate ݓ is filtered by 
using a mean filter with an order of 1.5N. 
 
C. Verification of SDFT in MATLAB 
The performance of the SDFT algorithm is verified through the 
set of test conditions according to the IEEE Standard 
C37.118.1-2011 and IEEE Standard C37.118.1a-2014. At this 
point the mean filter is not implemented. Developed MATLAB 
script can be presented with the following pseudo-code: 
 
Step 1 - perform sliding DFT algorithm for the complete 
duration of the input signal (80 samples/cycle).   
Step 2 - by taking three consecutive DFT fundamental 
components, estimate the frequency and recalculate the 
phasor for a complete input signal.  
Step 3 -  calculate TVE and errors for the estimated frequency 
by considering the reference and estimated values. 

Different test conditions are simulated by changing the input 
signal model and corresponding reference phasor: 

Test 1 - Nominal and Off-nominal input signal frequency 
Test 2 - Frequency ramp 
Test 3 - Input signal magnitude modulation (Test 3.1)  

and phase modulation (Test 3.2)  
Test 4 - Step changes in input signal magnitude and phase 
 
The simulation results are partially shown in Fig. 1 through 
Fig. 9. It can be noticed that oscillations occurring in frequency 
estimations (Fig. 6) affect the phase estimation accuracy (Fig. 
7). Additionally, under the condition of modulated phase, the 
limit of frequency estimation error (0.3Hz) was violated by 
0.2Hz (Fig. 9). However, the TVE is within the limitations for 
all simulated cases being less than 1% for (quasi) steady-state 
conditions (Fig. 1) and less the 3% for dynamic conditions 
(Fig. 5) [7].  
 
D. SDFT Implementation using Python 
Following the SDFT validation in MATLAB, the code is 
optimized for real-time implementation in the embedded 
platform. 

The post signal processing (block processing) approach is 
used by default in MATLAB implementation. For embedded 
systems, Python implementation is restricted by real-time 
constraints, requiring the usage of state variables, loop control 
and direct stream-processing of the arrived samples in order to 
meet the algorithm requirements within limited processing 
resources. 



 In order to achieve CPU time and network bandwidth 
efficiency, multiple samples (40 in this case) are sent in one 
message introducing an initial measurement delay of 0.01s. In 
order to utilize the available processing power, many 
optimization steps are taken.  Initially, the A/D sampling rate 
is set to 4kHz. The data window is chosen to be 80 samples 
long (one cycle of the input signal at 50 Hz). The flow of DFT 
and SDFT calculations and the loop control is explained in [8]. 
Non-recursive approach for DFT calculations is initially 
performed, causing that the CPU utilization is significantly 
increased affecting the performance of the sampling module 
and introducing a delay in real-time processing of samples. 
Many different ways for minimizing the CPU utilization are 
considered such as decreased precision in the calculations and 
decreased number of redundant calculations by using constant 
variables. For the purpose of implementation the recursive 
DFT method is used to further reduce the CPU utilization. The 
new parameter named max_recursions is introduced to define 
the number of recursive DFT calculations performed between 
two non-recursive DFT calculations. The frequency estimation 
and calculation of SDFT phasors appeared to be 
computationally demanding when considering each DFT in a 
sliding way. Therefore, frequency and SDFT phasors are 
estimated and reported only 10, 20 or 50 times/s. Due to the 
availability of frequency values only at reporting moments, the 

mean filter could not be implemented because of the 
significant delay that would be introduced in that way.  
After performing the set of test experiments, it is noticed that 
the frequency estimates oscillate around the mean value, 
affecting the phasor estimation accuracy. Also,  the recursive 
DFT calculation causes numerical oscillations in the estimated 
magnitude in case of off-nominal input signal frequencies. 

The solution is found in a decreased number of samples 
considered in calculations. Each forth value is taken, that is 
equivalent to the reduction of ADC sampling rate to 1 kHz. 
The size of the array is decreased to 40 and window length is 
set to 20. All other state variables are scaled accordingly. In 
this way, CPU utilization is significantly decreased enabling 
the following features: 
 The number of non-recursive DFTs can be increased 
 Frequency and phasor estimation can be calculated for 

each new DFT value.  
 The mean filter of the 1.5 N order can be implemented. 

2.5N + 1 frequency estimates are used to estimate a 
phasor. The time tag is set at the middle of the window.  
 

The final optimization step is the hardware reduction of the 
sampling rate of A/D converter from 4 kHz to 1 kHz, resulting 
in the most efficient CPU utilization of the embedded platform. 

 
                 Fig 1. TVE (Test 2)                                               Fig 2. Frequency estimation (Test 2)                      Fig 3. Phase estimation (Test 2) 

 
            Fig 4.  Magnitude estimation (Test 2)                         Fig 5.  TVE (Test 3.1)                                        Fig 6. Frequency estimation (Test 3.1) 

 
              Fig 7. Phase estimation (Test 3.1)                        Fig 8. Magnitude estimation (Test 3.1)                  Fig 9. Estimated frequency (Test 3.2) 



As a result, following two implementation versions of SDFT 
are realized: 
Basic SDFT (b-SDFT): The sampling rate of the ADC is 4 
kHz. The algorithm makes use of a recursive DFT approach. 
The frequency and SDFT phasors are estimated in reporting 
moments. The mean filter is not implemented. 
Enhanced SDFT (e-SDFT): The sampling frequency is 
reduced to 1kHz. The number of non-recursive DFT 
calculations is increased. The algorithm includes the mean 
filter for frequency estimates.  

The detailed implementation codes can be found in [8]. 
 
E. PyPMU Library and PMU Connection Tester  
The estimates are reported in a data format according to the 
IEEE C37.118 - 2005 standard for Data Transfer, by using 
pyPMU Python Library [9]. PMU Connection Tester is used to 
validate, test and troubleshoot connections and data streams 
from the voltage processing platform and graphically visualize 
the synchophasor estimates in real-time [10].   
 

III.  EMBEDDED PLATFORM 
The embedded platforms, developed at Smart State Technology 
(SST) [11], [12], provide open access to synchronized real-time 
grid measurements in order to easily experiment with new 
algorithms in the LV grid for future intelligent distribution 
networks. 

The platforms have variable sampling rates that can go up 
to 128 kHz, 3 phase-voltage measurement ranges that can go up 
to 600V and 4-phase current measurement ranges that can go 
up to 600A. The 4-phase current measurements allow for 
measuring the 3 phases and the neutral, which can be beneficial 
in networks with high impedance earthing. In order to cope with 
the variation in measurement ratings, the system allows to use 
different split-core CT’s (and/or Rogowski coils) each with its 
own rating.  Because of these features the platform has a 
sufficient basis for the PMU prototype described in this paper. 
In order to obtain high sample synchronization at various 
measurement locations, the system utilizes dedicated time 
beacon transmitters (TBT) as it is shown in Fig. 10. The TBT 
has an embedded GPS receiver for receiving accurate GPS time 
information. It transmits the Pulse Per Second (PPS) time 
information wirelessly to all platforms within its measurement 
cluster. The transmission delay is sub-microsecond range and 
introduces constant time-synchronization error.  

Besides, the embedded platform can also receive the PPS 
information directly from the GPS receivers or PTP supported 
time sources, which makes them suitable for various 
measurement scenarios and topologies. At the platform side the 
received PPS information is used within a dedicated closed 
control loop (see Fig. 11) to synchronize the analogue to digital 
converter (ADC) with global time. This means that ADC 
sampling is in lock with the GPS time and thus the  acquired 
samples (samples with similar indexes) from different 
platforms can be correlated to the same time instance. In order 
to avoid loss of time synchronization in the platform, in case of 
losing wireless PPS information, the control loop implements a 
PPS-tracking-estimator algorithm that uses additive time 
information from the embedded computer. 

 
 
Fig 10. Synchronization of various platform clusters using Time 
Beacon and GPS. GPS PPS information is broadcast wirelessly with 
the measurement cluster 

 
 

Fig 11. The architecture of the platform with an embedded control 
loop for ADC sample synchronization. 1) wireless PPS receiver, 2) 
embedded microcomputer which implements the time synchronization 
control loop, 3) digital controlled oscillator, 4) analogue to digital 
converter, 5&6) signal sensing, filters and amplifiers, 7) embedded 
computer board 
 

The PPS-tracking-estimator algorithm calculates the 
frequency and phase deviation between the PPS and the 
computer time and it can extrapolate accurate future PPS arrival 
times when the frequency and phase deviations are stable. The 
measurement time information comes from the embedded 
platform processor board which synchronizes time with 
Network Time Protocol (NTP) or Precision Time Protocol 
(PTP, IEC 1588) over Ethernet. This time information is 
usually accurate enough for synchronization since the PPS 
pulse information is  used. When the kernel time of two 
platforms is not more out-off sync than 0.5 seconds, the samples 
can be lined up using the sample sequence number ݊ݏ, which is 
reset to 0 at the PPS pulse by the kernel module that reads the 
ADC. The GPS/UTC sample-time ݐ can be derived by using the 
kernel timestamp ݏݐ with the following formula: 
ݐ                         = ݎ݋݋݈݂ ቀݏݐ + 0.5 − ௦௡ிೞ ቁ +  ௦௡ிೞ  ,                  (13) 

 
where ܨ௦ is sampling frequency. 
 



The embedded platform is an Arm-core, raspberry-Pi (like) 
computer board [13]. The software framework and drivers on 
the platform take care of sampling rate configuration of the 
ADC. The real-time platform information and calculated values 
such as raw samples, estimated phasors and frequency are made 
available in a flexible and distributed manner using ZeroMQ 
messaging [14], such that this information can easily be used 
both on the platform and on other (embedded) computers in the 
same network.  
 

IV. RESULTS 
The testing of the PMU prototype is realized by using RTDS, 
real-time power system simulator [15]. Different testing 
conditions are simulated by the PMU Test Utility Tool for 
RTDS. However, the complete testing is not done in this tool 
at this point. Instead, the estimated values are extracted from 
the embedded platform to MATLAB and graphically plotted. 
The part of the test setup is shown in Fig. 12. 

 

 
 

Figure 12. Test Setup – Connection of the embedded platform to the 
amplifier. 

 
A. Testing under the nominal frequency conditions 
The testing of the estimation accuracy obtained by PMU 
prototype started by applying a pure voltage sine wave at 
50Hz, with the magnitude of 100Vrms and phase of 0 radians, 
to the low voltage processing platform. In Fig. 13,  estimated 
magnitudes for all three phases are shown. It can be seen that 
the most precise estimate is obtained for phase1, while phase2 
and phase3 experience an offset of maximum 0.5 Vrms from 
the nominal value. The estimates are obtained by running the 
basic (b-SDFT) algorithm in the duration of 7s.  

After introducing the enhancements in the algorithm, by 
decreasing the number of recursive DFTs and implementing 
the mean filter, the accuracy of the estimated magnitudes is 
improved. The maximum error is decreased to 0.05 Vrms, 
particularly present in the phase3 (Fig. 14). The estimates are 
obtained for the time period of 12s.  

As it can be seen in Fig. 15, the estimated phases are shifted 
by 120 degrees (since 120 degrees equals 2.0994). The phase 
value depends on the sample sequence when the e-SDFT starts. 
However, by choosing the phase1 as a reference with the initial 

phase 0, two other phases would get the values equal to -120 
and -240 (120 degrees) respectively.  
The result of frequency estimation is given in Fig. 16. The 
errors of almost 0.03 Hz caused by a basic algorithm are well 
suppressed by introducing the mean filter.  

 
B. Testing under the off-nominal frequency condition 
The testing conditions are changed by setting the frequency to 
52 Hz. As a result of the frequency estimation (b-SDFT), the 
frequency experiences oscillations around 52 Hz, with the 
greatest deviation of 0.5 Hz.  However, with the e-SDFT 
algorithm, the maximum error is suppressed to 0.03 Hz (Fig. 
17). Due to the recursive DFT approach,  numerical 
oscillations in the magnitude estimation based on b-SDFT can 
be seen. The values vary significantly from the reference value 
of 100 Vrms (Fig. 18). By reducing the sampling rate to 1 kHz, 
it was ensured that CPU can handle non-recursive DFT 
calculations. In this way, the numerical oscillations are 
avoided and accurate magnitude estimates are obtained. The 
existing error is reduced from 8 Vrms to 0.3 Vrms. As a result 
of the increased input signal frequency, the estimated phasors 
are rotating in the complex plane with the frequency equal to 
the deviation from the nominal value (Fig. 19).  
The results of the phase estimation are shown in Fig. 20. Since 
the frequency is higher than the nominal, the phase estimation 
has a positive slope. The slight improvement is obtained by 
running the enhanced version of SDFT.   
 
C. The results of the synchrophasor estimation algorithm 

under the dynamic condition of the frequency ramp from 
48Hz to 52Hz 

Fig. 21 and Fig. 22 show the results of the frequency estimation 
when the input signal frequency linearly varies from 48 Hz to 
52 Hz for a duration of 4 s, for b-SDFT and e-SDFT, 
respectively. The improved accuracy of the e-SDFT is 
noticeable for all three parts of the signal at different 
frequencies: nominal start frequency, the frequency ramp and 
off-nominal stop frequency. The estimated magnitude during 
the frequency ramp is presented in Fig. 23. Clearly, the 
estimation accuracy is deteriorated during the transition period 
of 4 s. The deviations from nominal value vary from 0.05 to 
0.5 Vrms. 
 
D. The results of the synchrophasor estimation algorithm 

under the dynamic conditions-modulated input signal 
magnitude and phase 

In order to check the performance of the algorithm when the 
input signal has a modulated magnitude, the magnitude is 
adjusted to vary with the modulation index of +/- 10 % at a 
frequency of 2 Hz. In Fig. 24, it is shown that during the period 
of 1 s, the estimated magnitude value varies from 90 to 110 
Vrms.  
Fig. 25 indicates the presence of sinusoidal oscillations around 
the referent value of 50 Hz. The deviations are small with a 
maximum value of only 0.005 Hz. 
 



  

            
            Figure 13. Magnitude estimation (Test A)                           Figure 14. Magnitude estimation with filter (Test A)            Figure 15. Phase estimation (Test A) 

              
         Figure 16. Frequency estimation (Test A)          Figure 17. Frequency estimation (Test B)                                 Figure 18. Magnitude estimation (Test B) 
  

                        
           Figure 19. Phase rotation (Test B)                                   Figure 20. Phase estimation (Test B)                                Figure 21. Frequency estimation (Test C) 

                                
         Figure 22. Frequency estimation, with filter (Test C)          Figure 23. Magnitude estimation (Test C)                           Figure 24. Magnitude estimation  (Test D) 

    
         Figure 25. Frequency estimation (Test D)                              Figure 26. Frequency estimation                                Figure 27. Magnitude estimation  (Test E)              

(Test D, phase modulation)     

 



Similarly as for the magnitude modulation, in the frequency 
estimation during the phase modulation (+/- 10 %), oscillations 
occur around the referent value of 50 Hz. However, this time, 
oscillations are more significant, reaching a maximum value of 
0.2 Hz (Fig. 26). 

 
E. The results of the synchrophasor estimation algorithm 

under the step in the magnitude of the input signal 
The final test represents the step in the magnitude of the input 
signal. The test starts with applying the magnitude step of 10% 
and tracking the algorithm response. Fig. 27 shows the result 
of estimation and the maximum error occurs at around 
11:54:28, when the magnitude error reaches 0.9 Vrms.  
 

V. CONCLUSIONS 
This paper presents the optimization and implementation of the 
SDFT algorithm for the synchrophasor estimation on the cost-
efficient processing platform. 
The utilization of the mean filter and increased number of non-
recursive DFTs in the implementation of the enhanced SDFT 
(e-SDFT) result in significantly higher accuracy of the results 
compared to the basic SDFT (b-SDFT).  
In the future work, besides the processing platform for the 
purpose of voltage sampling, the developed code will be 
implemented in the processing platform for the current 
sampling. Furthermore, the complete testing of the prototype 
performance according to IEEE Standard C37.118.1a-2014 
will be performed with PMU Utility Tool in RTDS and further 
algorithm improvements will be suggested. 
Additionally, other higher performance programming 
languages and/or parallel processing will be considered and the 
code will be further optimized.  
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