

Delft University of Technology

Smart DFT Based PMU Prototype

Radević, Isidora; Naglic, Matija; Mansour, Omar; Bijwaard, Dennis; Popov, Marjan

DOI
10.1109/SGSMA.2019.8784477
Publication date
2019
Document Version
Final published version
Published in
2019 International Conference on Smart Grid Synchronized Measurements and Analytics, SGSMA 2019

Citation (APA)
Radević, I., Naglic, M., Mansour, O., Bijwaard, D., & Popov, M. (2019). Smart DFT Based PMU Prototype.
In 2019 International Conference on Smart Grid Synchronized Measurements and Analytics, SGSMA 2019
(pp. 1-7). Article 8784477 (2019 International Conference on Smart Grid Synchronized Measurements and
Analytics, SGSMA 2019). IEEE. https://doi.org/10.1109/SGSMA.2019.8784477
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/SGSMA.2019.8784477
https://doi.org/10.1109/SGSMA.2019.8784477

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

978-1-7281-1607-5/19/$31.00 ©2019 European Union

Smart DFT Based PMU Prototype

Isidora Radevic(1), Matija Naglic(1), Omar Mansour(2), Dennis Bijwaard(2), Marjan Popov(1)

(1) Delft University of Technology, Delft, The Netherlands

(2) Smart State Technology, Hengelo, The Netherlands

e-mail address: i.radevic@tudelft.nl

Abstract— This paper presents recent innovation in the field of
the Synchronized Measurement Technology. An advanced, low
complexity algorithm for synchrophasor estimation and the
processing platform running embedded Linux are used to develop
a cost-efficient Phasor Measurement Unit (PMU) prototype. The
Smart Discrete Fourier Transform (SDFT) is adapted for the
purpose of synchrophasor estimation, being implemented by
using Python programming language. The developed prototype
sends synchro-measurements according to the IEEE Standard
C37.118 specifications. The prototype performance
characteristics are evaluated by using RTDS power system
simulator as hardware-in-the-loop. The obtained results suggest
further algorithm improvements to fully comply with the IEEE
Standard C37.118.1a-2014 specified requirements. The developed
prototype offers an affordable PMU solution for improving the
grid observability.

Index Terms—Phasor Measurement Unit, Discrete Fourier
Transform, embedded platform, real-time measurements,
enhanced grid monitoring.

I. INTRODUCTION
This paper presents an advanced technique for synchrophasor
estimation and the design and application of a PMU prototype.
Typically, a PMU device is used to monitor power system
dynamics by providing voltage and current synchrophasors,
frequency and rate-of-change-of-frequency measurements with
50 frames per second reporting rate. Despite significant benefits
of PMU measurements compared to typical SCADA type of
measurements, PMUs are still not massively deployed in the
grid.

The commercially available PMUs are typically based on a
modular design, composed of a processor board, transformer
boards, GPS time synchronization and communication
modules. The choice of the implemented estimation technique
and the final product performance depend on the main
processor performance (measured with respect to the clock
frequency and multi-core processing possibilities) and the
accuracy of the remaining components. To provide an
affordable solution without jeopardizing the performance
capabilities, in this research, the time synchronization is
realized in the platform hardware instead of software. For

waveforms sampling, a multi-channel time-synchronized
analogue to digital converter (ADC) board is used. For
algorithm processing and implementation, an affordable power-
efficient ARM CPU boards (Raspberry-Pi [1] like, the family
of embedded single board computers) are selected, with the
embedded Linux operating system.
 The main challenge is to choose an efficient and accurate
synchrophasor estimation algorithm in order to obtain the best
possible results accuracy, meanwhile guaranteeing real-time
processing on the applied embedded hardware. So far, many
algorithms were used by different authors, utilizing variable
window length [2] and variable sampling rate [3] based
algorithms, interpolated-iterative DFT techniques [4] and
techniques that relay on estimated system frequency. Generally,
the complexity of the algorithms differs based on the applied
mathematical approach. Besides, the algorithm should be
computationally efficient and should provide accurate estimates
under different grid conditions. In [5], a Smart Discrete Fourier
Transform (SDFT) computationally efficient method for
precise calculation of power system frequency is introduced.
Additionally, it was shown that the frequency estimates can be
further used to recalculate the phasor values. In this way, less
erroneous results are obtained when frequency deviates from
the nominal value. In [6], the improvements of the proposed
SDFT were investigated for synchrophasor applications by
implementing the SDFT based PMU model in a real-time
simulator.

The aim of this work is to implement the enhanced version
of SDFT into the processing platform and investigate its
performance capabilities according to the IEEE Standard
C37.118.1a-2014 requirements. In the first step, the efficiency
of the basic SDFT is verified according to the standard
requirements under different testing conditions, by using
MATLAB simulation environment. In next step, the Python
programming language is used to implement the enhanced
SDFT algorithm on the processing platform. In order to keep
within the processing resources limitations of the embedded
platform, a number of code optimization is performed.

II. PROCEDURE FOR ALGORITHM DEVELOPMENT AND
VERIFICATION

A. Smart Discrete Fourier Transform

SDFT method for phasor estimation is based on a
mathematical approach, that efficiently solves limitations of the
standard DFT method. The method relies on frequency
estimation obtained by three consecutive DFT fundamental
components. By using an estimated frequency, one SDFT
phasor is obtained, having significantly higher accuracy than
previously estimated DFT phasors. The SDFT algorithm
requires additional computational steps compared to the
standard DFT, but the benefits of reduced filtering requirements
outweigh additional processing expenses. The following
equations shortly illustrate the flow of SDFT [5], [6]: ݔ(݇) = ܺ௠ cos ቀଶగ௙௞ே௙బ + ߶ቁ (1)

being: ݔ(݇) a pure sinusoidal signal sampled at discrete
instants, ܺ௠ the input signal amplitude, ݂ the signal frequency, ߶ the initial phase angle, ݂ ଴ the nominal signal frequency and N
the sampling rate in samples/cycle.

 The main frequency component in DFT spectrum of ݔ(݇),
evaluated at the ݎ௧௛ sample is given as:

ො௥ݔ = ଶே ∑ ݇)ݔ + ௝మഏೖಿேିଵ௞ୀ଴ି݁(ݎ (2)

If we consider the system frequency deviation to be ݂߂:

 ݂ = ଴݂ + (3) , ݂߂

and parameters ݔො௥ and ܽ as: ݔො௥ = ௥ܣ + ܽ ௥ (4)ܤ = ݁௝మഏ(೑బశ೩೑)ೝಿ೑బ , (5)
the following relations can be obtained: ݓ = ܽ  +  ܽିଵ = 2 ݏ݋ܿ ଶగ(௙బା௱௙)ே௙బ , (6)

௥ܣ = ௑೘ே ௦௜௡ഏ೩೑೑బ௦௜௡ഏ೩೑ಿ೑బ ݁௝ቀమഏ(೑బశ೩೑)ೝಿ೑బ ାഏ(ಿషభ)೩೑ಿ೑బ ାథቁ
 . (7)

while ܤ௥ can be neglected, since the ݂߂ is small.

The frequency deviation Δf can be derived as: ݂߂ = ே௙బଶగ ଵିݏ݋ܿ ℜ ቀ௪ଶ ቁ − ଴݂ , (8)

and the amplitude ܺ௠ and the phase ߶ can be extracted: ܺ௠ = |ݎܣ| ே ௦௜௡ഏ೩೑ಿ೑బ௦௜௡ഏ೩೑೑బ (9)

 ߶ = (௥ܣ)݈݁݃݊ܽ − గ(ேିଵ)௱௙ே௙బ . (10)

The derived expressions for the parameters ݓ and ܣ௥ are: ݓ = ௫ොೝା௫ොೝశమ௫ොೝశభ (11)

௥ܣ = ௔௫ොೝశభି ௫ොೝ௔మିଵ . (12)

Finally, after calculating the values of ݎܣ, and ݂߂, the value
of the estimated SDFT phasor can be obtained.

B. SDFT Based PMU Algorithm
As stated in [6], the simulations with a PMU model based on
SDFT shows numerical oscillations in estimated frequency. In
order to get more accurate values, the estimate ݓ is filtered by
using a mean filter with an order of 1.5N.

C. Verification of SDFT in MATLAB
The performance of the SDFT algorithm is verified through the
set of test conditions according to the IEEE Standard
C37.118.1-2011 and IEEE Standard C37.118.1a-2014. At this
point the mean filter is not implemented. Developed MATLAB
script can be presented with the following pseudo-code:

Step 1 - perform sliding DFT algorithm for the complete
duration of the input signal (80 samples/cycle).
Step 2 - by taking three consecutive DFT fundamental
components, estimate the frequency and recalculate the
phasor for a complete input signal.
Step 3 - calculate TVE and errors for the estimated frequency
by considering the reference and estimated values.

Different test conditions are simulated by changing the input
signal model and corresponding reference phasor:

Test 1 - Nominal and Off-nominal input signal frequency
Test 2 - Frequency ramp
Test 3 - Input signal magnitude modulation (Test 3.1)

and phase modulation (Test 3.2)
Test 4 - Step changes in input signal magnitude and phase

The simulation results are partially shown in Fig. 1 through
Fig. 9. It can be noticed that oscillations occurring in frequency
estimations (Fig. 6) affect the phase estimation accuracy (Fig.
7). Additionally, under the condition of modulated phase, the
limit of frequency estimation error (0.3Hz) was violated by
0.2Hz (Fig. 9). However, the TVE is within the limitations for
all simulated cases being less than 1% for (quasi) steady-state
conditions (Fig. 1) and less the 3% for dynamic conditions
(Fig. 5) [7].

D. SDFT Implementation using Python
Following the SDFT validation in MATLAB, the code is
optimized for real-time implementation in the embedded
platform.

The post signal processing (block processing) approach is
used by default in MATLAB implementation. For embedded
systems, Python implementation is restricted by real-time
constraints, requiring the usage of state variables, loop control
and direct stream-processing of the arrived samples in order to
meet the algorithm requirements within limited processing
resources.

 In order to achieve CPU time and network bandwidth
efficiency, multiple samples (40 in this case) are sent in one
message introducing an initial measurement delay of 0.01s. In
order to utilize the available processing power, many
optimization steps are taken. Initially, the A/D sampling rate
is set to 4kHz. The data window is chosen to be 80 samples
long (one cycle of the input signal at 50 Hz). The flow of DFT
and SDFT calculations and the loop control is explained in [8].
Non-recursive approach for DFT calculations is initially
performed, causing that the CPU utilization is significantly
increased affecting the performance of the sampling module
and introducing a delay in real-time processing of samples.
Many different ways for minimizing the CPU utilization are
considered such as decreased precision in the calculations and
decreased number of redundant calculations by using constant
variables. For the purpose of implementation the recursive
DFT method is used to further reduce the CPU utilization. The
new parameter named max_recursions is introduced to define
the number of recursive DFT calculations performed between
two non-recursive DFT calculations. The frequency estimation
and calculation of SDFT phasors appeared to be
computationally demanding when considering each DFT in a
sliding way. Therefore, frequency and SDFT phasors are
estimated and reported only 10, 20 or 50 times/s. Due to the
availability of frequency values only at reporting moments, the

mean filter could not be implemented because of the
significant delay that would be introduced in that way.
After performing the set of test experiments, it is noticed that
the frequency estimates oscillate around the mean value,
affecting the phasor estimation accuracy. Also, the recursive
DFT calculation causes numerical oscillations in the estimated
magnitude in case of off-nominal input signal frequencies.

The solution is found in a decreased number of samples
considered in calculations. Each forth value is taken, that is
equivalent to the reduction of ADC sampling rate to 1 kHz.
The size of the array is decreased to 40 and window length is
set to 20. All other state variables are scaled accordingly. In
this way, CPU utilization is significantly decreased enabling
the following features:
 The number of non-recursive DFTs can be increased
 Frequency and phasor estimation can be calculated for

each new DFT value.
 The mean filter of the 1.5 N order can be implemented.

2.5N + 1 frequency estimates are used to estimate a
phasor. The time tag is set at the middle of the window.

The final optimization step is the hardware reduction of the
sampling rate of A/D converter from 4 kHz to 1 kHz, resulting
in the most efficient CPU utilization of the embedded platform.

 Fig 1. TVE (Test 2) Fig 2. Frequency estimation (Test 2) Fig 3. Phase estimation (Test 2)

 Fig 4. Magnitude estimation (Test 2) Fig 5. TVE (Test 3.1) Fig 6. Frequency estimation (Test 3.1)

 Fig 7. Phase estimation (Test 3.1) Fig 8. Magnitude estimation (Test 3.1) Fig 9. Estimated frequency (Test 3.2)

As a result, following two implementation versions of SDFT
are realized:
Basic SDFT (b-SDFT): The sampling rate of the ADC is 4
kHz. The algorithm makes use of a recursive DFT approach.
The frequency and SDFT phasors are estimated in reporting
moments. The mean filter is not implemented.
Enhanced SDFT (e-SDFT): The sampling frequency is
reduced to 1kHz. The number of non-recursive DFT
calculations is increased. The algorithm includes the mean
filter for frequency estimates.

The detailed implementation codes can be found in [8].

E. PyPMU Library and PMU Connection Tester
The estimates are reported in a data format according to the
IEEE C37.118 - 2005 standard for Data Transfer, by using
pyPMU Python Library [9]. PMU Connection Tester is used to
validate, test and troubleshoot connections and data streams
from the voltage processing platform and graphically visualize
the synchophasor estimates in real-time [10].

III. EMBEDDED PLATFORM
The embedded platforms, developed at Smart State Technology
(SST) [11], [12], provide open access to synchronized real-time
grid measurements in order to easily experiment with new
algorithms in the LV grid for future intelligent distribution
networks.

The platforms have variable sampling rates that can go up
to 128 kHz, 3 phase-voltage measurement ranges that can go up
to 600V and 4-phase current measurement ranges that can go
up to 600A. The 4-phase current measurements allow for
measuring the 3 phases and the neutral, which can be beneficial
in networks with high impedance earthing. In order to cope with
the variation in measurement ratings, the system allows to use
different split-core CT’s (and/or Rogowski coils) each with its
own rating. Because of these features the platform has a
sufficient basis for the PMU prototype described in this paper.
In order to obtain high sample synchronization at various
measurement locations, the system utilizes dedicated time
beacon transmitters (TBT) as it is shown in Fig. 10. The TBT
has an embedded GPS receiver for receiving accurate GPS time
information. It transmits the Pulse Per Second (PPS) time
information wirelessly to all platforms within its measurement
cluster. The transmission delay is sub-microsecond range and
introduces constant time-synchronization error.

Besides, the embedded platform can also receive the PPS
information directly from the GPS receivers or PTP supported
time sources, which makes them suitable for various
measurement scenarios and topologies. At the platform side the
received PPS information is used within a dedicated closed
control loop (see Fig. 11) to synchronize the analogue to digital
converter (ADC) with global time. This means that ADC
sampling is in lock with the GPS time and thus the acquired
samples (samples with similar indexes) from different
platforms can be correlated to the same time instance. In order
to avoid loss of time synchronization in the platform, in case of
losing wireless PPS information, the control loop implements a
PPS-tracking-estimator algorithm that uses additive time
information from the embedded computer.

Fig 10. Synchronization of various platform clusters using Time
Beacon and GPS. GPS PPS information is broadcast wirelessly with
the measurement cluster

Fig 11. The architecture of the platform with an embedded control
loop for ADC sample synchronization. 1) wireless PPS receiver, 2)
embedded microcomputer which implements the time synchronization
control loop, 3) digital controlled oscillator, 4) analogue to digital
converter, 5&6) signal sensing, filters and amplifiers, 7) embedded
computer board

The PPS-tracking-estimator algorithm calculates the
frequency and phase deviation between the PPS and the
computer time and it can extrapolate accurate future PPS arrival
times when the frequency and phase deviations are stable. The
measurement time information comes from the embedded
platform processor board which synchronizes time with
Network Time Protocol (NTP) or Precision Time Protocol
(PTP, IEC 1588) over Ethernet. This time information is
usually accurate enough for synchronization since the PPS
pulse information is used. When the kernel time of two
platforms is not more out-off sync than 0.5 seconds, the samples
can be lined up using the sample sequence number ݊ݏ, which is
reset to 0 at the PPS pulse by the kernel module that reads the
ADC. The GPS/UTC sample-time ݐ can be derived by using the
kernel timestamp ݏݐ with the following formula:
ݐ = ݎ݋݋݈݂ ቀݏݐ + 0.5 − ௦௡ிೞ ቁ + ௦௡ிೞ , (13)

where ܨ௦ is sampling frequency.

The embedded platform is an Arm-core, raspberry-Pi (like)
computer board [13]. The software framework and drivers on
the platform take care of sampling rate configuration of the
ADC. The real-time platform information and calculated values
such as raw samples, estimated phasors and frequency are made
available in a flexible and distributed manner using ZeroMQ
messaging [14], such that this information can easily be used
both on the platform and on other (embedded) computers in the
same network.

IV. RESULTS
The testing of the PMU prototype is realized by using RTDS,
real-time power system simulator [15]. Different testing
conditions are simulated by the PMU Test Utility Tool for
RTDS. However, the complete testing is not done in this tool
at this point. Instead, the estimated values are extracted from
the embedded platform to MATLAB and graphically plotted.
The part of the test setup is shown in Fig. 12.

Figure 12. Test Setup – Connection of the embedded platform to the
amplifier.

A. Testing under the nominal frequency conditions
The testing of the estimation accuracy obtained by PMU
prototype started by applying a pure voltage sine wave at
50Hz, with the magnitude of 100Vrms and phase of 0 radians,
to the low voltage processing platform. In Fig. 13, estimated
magnitudes for all three phases are shown. It can be seen that
the most precise estimate is obtained for phase1, while phase2
and phase3 experience an offset of maximum 0.5 Vrms from
the nominal value. The estimates are obtained by running the
basic (b-SDFT) algorithm in the duration of 7s.

After introducing the enhancements in the algorithm, by
decreasing the number of recursive DFTs and implementing
the mean filter, the accuracy of the estimated magnitudes is
improved. The maximum error is decreased to 0.05 Vrms,
particularly present in the phase3 (Fig. 14). The estimates are
obtained for the time period of 12s.

As it can be seen in Fig. 15, the estimated phases are shifted
by 120 degrees (since 120 degrees equals 2.0994). The phase
value depends on the sample sequence when the e-SDFT starts.
However, by choosing the phase1 as a reference with the initial

phase 0, two other phases would get the values equal to -120
and -240 (120 degrees) respectively.
The result of frequency estimation is given in Fig. 16. The
errors of almost 0.03 Hz caused by a basic algorithm are well
suppressed by introducing the mean filter.

B. Testing under the off-nominal frequency condition
The testing conditions are changed by setting the frequency to
52 Hz. As a result of the frequency estimation (b-SDFT), the
frequency experiences oscillations around 52 Hz, with the
greatest deviation of 0.5 Hz. However, with the e-SDFT
algorithm, the maximum error is suppressed to 0.03 Hz (Fig.
17). Due to the recursive DFT approach, numerical
oscillations in the magnitude estimation based on b-SDFT can
be seen. The values vary significantly from the reference value
of 100 Vrms (Fig. 18). By reducing the sampling rate to 1 kHz,
it was ensured that CPU can handle non-recursive DFT
calculations. In this way, the numerical oscillations are
avoided and accurate magnitude estimates are obtained. The
existing error is reduced from 8 Vrms to 0.3 Vrms. As a result
of the increased input signal frequency, the estimated phasors
are rotating in the complex plane with the frequency equal to
the deviation from the nominal value (Fig. 19).
The results of the phase estimation are shown in Fig. 20. Since
the frequency is higher than the nominal, the phase estimation
has a positive slope. The slight improvement is obtained by
running the enhanced version of SDFT.

C. The results of the synchrophasor estimation algorithm

under the dynamic condition of the frequency ramp from
48Hz to 52Hz

Fig. 21 and Fig. 22 show the results of the frequency estimation
when the input signal frequency linearly varies from 48 Hz to
52 Hz for a duration of 4 s, for b-SDFT and e-SDFT,
respectively. The improved accuracy of the e-SDFT is
noticeable for all three parts of the signal at different
frequencies: nominal start frequency, the frequency ramp and
off-nominal stop frequency. The estimated magnitude during
the frequency ramp is presented in Fig. 23. Clearly, the
estimation accuracy is deteriorated during the transition period
of 4 s. The deviations from nominal value vary from 0.05 to
0.5 Vrms.

D. The results of the synchrophasor estimation algorithm

under the dynamic conditions-modulated input signal
magnitude and phase

In order to check the performance of the algorithm when the
input signal has a modulated magnitude, the magnitude is
adjusted to vary with the modulation index of +/- 10 % at a
frequency of 2 Hz. In Fig. 24, it is shown that during the period
of 1 s, the estimated magnitude value varies from 90 to 110
Vrms.
Fig. 25 indicates the presence of sinusoidal oscillations around
the referent value of 50 Hz. The deviations are small with a
maximum value of only 0.005 Hz.

 Figure 13. Magnitude estimation (Test A) Figure 14. Magnitude estimation with filter (Test A) Figure 15. Phase estimation (Test A)

 Figure 16. Frequency estimation (Test A) Figure 17. Frequency estimation (Test B) Figure 18. Magnitude estimation (Test B)

 Figure 19. Phase rotation (Test B) Figure 20. Phase estimation (Test B) Figure 21. Frequency estimation (Test C)

 Figure 22. Frequency estimation, with filter (Test C) Figure 23. Magnitude estimation (Test C) Figure 24. Magnitude estimation (Test D)

 Figure 25. Frequency estimation (Test D) Figure 26. Frequency estimation Figure 27. Magnitude estimation (Test E)

(Test D, phase modulation)

Similarly as for the magnitude modulation, in the frequency
estimation during the phase modulation (+/- 10 %), oscillations
occur around the referent value of 50 Hz. However, this time,
oscillations are more significant, reaching a maximum value of
0.2 Hz (Fig. 26).

E. The results of the synchrophasor estimation algorithm

under the step in the magnitude of the input signal
The final test represents the step in the magnitude of the input
signal. The test starts with applying the magnitude step of 10%
and tracking the algorithm response. Fig. 27 shows the result
of estimation and the maximum error occurs at around
11:54:28, when the magnitude error reaches 0.9 Vrms.

V. CONCLUSIONS
This paper presents the optimization and implementation of the
SDFT algorithm for the synchrophasor estimation on the cost-
efficient processing platform.
The utilization of the mean filter and increased number of non-
recursive DFTs in the implementation of the enhanced SDFT
(e-SDFT) result in significantly higher accuracy of the results
compared to the basic SDFT (b-SDFT).
In the future work, besides the processing platform for the
purpose of voltage sampling, the developed code will be
implemented in the processing platform for the current
sampling. Furthermore, the complete testing of the prototype
performance according to IEEE Standard C37.118.1a-2014
will be performed with PMU Utility Tool in RTDS and further
algorithm improvements will be suggested.
Additionally, other higher performance programming
languages and/or parallel processing will be considered and the
code will be further optimized.

 ACKNOWLEDGMENT
This study was financially supported by the Dutch Scientific
Council NWO-STW, under the project 408-13-025 within the
program of Uncertainty Reduction of Smart Energy Systems
(URSES)

 REFERENCES

[1] Teach, Learn, and Make with Raspberry Pi:

http://www.raspberrypi.org/.
[2] D. Hart, D. Novosel, Yi Hu, B. Smith and M. Egolf,

"A new frequency tracking and phasor estimation
algorithm for generator protection," in IEEE
Transactions on Power Delivery, vol. 12, no. 3, pp.
1064-1073, July 1997.

[3] I. Carugati, C. Orallo, P. Donato, S. Maestri and D.
Carrica, "Three-phase harmonics measurement
method based on mSDFT," in IEEE Latin America
Transactions, vol. 12, no. 7, pp. 1250-1257, Oct.
2014.

[4] P. Romano and M. Paolone, "Enhanced Interpolated-
DFT for Synchrophasor Estimation in FPGAs:
Theory, Implementation, and Validation of a PMU
Prototype," in IEEE Transactions on Instrumentation
and Measurement, vol. 63, no. 12, pp. 2824-2836,
Dec. 2014.

[5] Jun-Zhe Yang and Chih-Wen Liu, "A precise
calculation of power system frequency," in IEEE
Transactions on Power Delivery, vol. 16, no. 3, pp.
361-366, July 2001.

[6] D. R. Gurusinghe, D. Ouellette, A. D. Rajapakse,
Implementation of Smart DFT-based PMU Model in
the Real-Time Digital Simulator, in the Proceedings
of the International Conference on Power Systems
Transients, Seoul, Republic of Korea June 26-29,
2017.

[7] IEEE Standard for Synchrophasor Measurements for
Power Systems, IEEE Std., C37.118.1-2011,
December 2011.

[8] I. Radević: SDFT Based PMU Prototype, MSc thesis,
July 2018, available on: https://repository.tudelft.nl

[9] S. Šandi, B. Krstajić and T. Popović, "pyPMU - Open
source python package for synchrophasor data
transfer," 24th Telecommunications Forum
(TELFOR), Belgrade, 2016, pp. 1-4.

[10] https://github.com/GridProtectionAlliance/PMUCon
nectionTester

[11] Solutions for intelligent distribution grids, Horizon
2020 project, European Commission, 2017-2021.

[12] https://www.smartstatetechnology.nl/
[13] http://www.orangepi.org/
[14] P. Hintjens: ZeroMQ - Messaging for Many

Application, O'Reilly Media, March, 2013.
[15] https://www.rtds.com/about/downloads/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

