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Abstract: To improve communication during emergencies, this research introduces an agent-based
modeling (ABM) method to test the effect of psychological emergency communication strategies
on evacuation performance. We follow a generative social science approach in which agent-based
simulations allow for testing different candidate solutions. Unlike traditional methods, such as
laboratory experiments and field observations, ABM simulation allows high-risk and infrequent
scenarios to be empirically examined before applying the lessons in the real world. This is essential,
as emergency communication with diverse crowds can be challenging due to language barriers, con-
flicting social identities, different cultural mindsets, and crowd demographics. Improving emergency
communication could therefore improve evacuations, reduce injuries, and ultimately save lives. We
demonstrate this ABM method by determining the effectiveness of three communication strategies
for different crowd compositions in transport terminals: (1) dynamic emergency exit floor lighting
directing people to exits, (2) staff guiding people to exits with verbal and physical instructions, and
(3) public announcements in English. The simulation results indicated that dynamic emergency exit
floor lighting and staff guiding people to exits were only beneficial for high-density crowds and those
unfamiliar with the environment. Furthermore, English public announcements actually slowed the
evacuation for mainly English-speaking crowds, due to simultaneous egress causing congestion at
exits, but improved evacuation speed in multicultural, multilingual crowds. Based on these results,
we make recommendations about which communication strategies to apply in the real world to
demonstrate the utility of this ABM simulation approach for risk assessment practice.

Keywords: agent-based model; crowd management; crowd simulation; emergency communication

1. Introduction

Ineffective emergency evacuations can lead to casualties, particularly when people
delay escaping or remain in dangerous situations. Effective emergency preparedness is
therefore important to help people perceive dangerous incidents more accurately and
guide their evacuation in accordance with procedures. Existing emergency communication
and crowd management guidelines indicate that messages should be clear, reliable, and
prompt [1–6]. However, these guidelines rarely address cultural aspects, such as language
barriers, cultural background, nationality, and social and demographic factors [7] that can
influence the understanding of, and compliance with, evacuation instructions [8–12]. In
this research, we focus specifically on cultural factors and language differences.

Human experiments to test the effectiveness of evacuation communication can be
costly and ethically problematic as they may distress participants. Other approaches to

Sustainability 2021, 13, 4623. https://doi.org/10.3390/su13094623 https://www.mdpi.com/journal/sustainability

https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-0010-8447
https://orcid.org/0000-0003-2702-5059
https://doi.org/10.3390/su13094623
https://doi.org/10.3390/su13094623
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/su13094623
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su13094623?type=check_update&version=2


Sustainability 2021, 13, 4623 2 of 24

examining emergency communications and evacuation behavior include interviews and
surveys with emergency survivors and experts to create formal risk analysis models [13–17].
However, simply reviewing best practice and real-life failures in this way does not yield
sufficient data to test emergency communication effectiveness systematically. Moreover,
interviews with survivors of emergencies can also be unreliable as they depend on memory
and accurate recall, which is known to be flawed especially after trauma [18,19]. Analysis of
real-world emergency videos is one promising approach with high ecological validity [20],
but this is still correlational rather than experimental.

Evacuation researchers have also used egress drills to collect data, and these have
been a convenient laboratory. However, given the nature of drills, they typically limit
the control that researchers can maintain over the conditions present (preventing true
experiments), limit the types of scenario that can be examined (given ethical concerns),
and limit the number of repetitions (given financial and fatigue concerns). Virtual reality
(VR) and “serious games” are now being used to combat these concerns, providing a
much more controlled, inexpensive environment [21]. However, there are still concerns
about the representativeness of the conditions faced and of the decisions made in such
conditions [22].

Consequently, to address these methodological limitations, we show here how agent-
based modeling can be used to test various theoretically derived hypotheses regarding
evacuee response using simulations of different scenarios. While such theories were often
originally derived from conventional experiments, it is necessary to go beyond this original
method to examine the array of scenarios necessary to test the robustness of the theory
credibly and comprehensively. We show how theories can be embedded within ABM—of
sufficient scope, refinement, and representativeness—to examine how reflective they are
of real-world conditions. Our key concern here is to examine and differentiate between
different theories, rather than definitively state the impact of a specific theory, however, to
identify good candidate solutions for further analysis.

ABM is a scientific methodology that can explain observed meta-level phenomena
from the behavior of micro-level actors [23,24]. The aggregate level patterns are called
emergent effects that cannot be predicted directly from the individual behaviors or action
selections, but rather emerge through interaction between individual actors [25]. ABM
explains these emergent effects and also tests hypotheses about how they emerged. It
integrates both quantitative and qualitative information from different disciplines and can
distribute these stochastically to cope with ambiguities in our understanding and changes
in the initial conditions.

ABM experiments are run in silico to approximate real life and can easily be repeated
multiple times to collect more data or test different experimental conditions. Although
the results are estimations, this article attempts to assess the credibility of the model by
(1) including credible real-world factors, (2) representing their impact at an individual
level (albeit in a simplified manner based on current theory and empirical evidence), and
(3) comparing the aggregate outcomes with real-world expectations. Of course, by defini-
tion, such testing is partial and provisional, requiring continued testing efforts enabling
more refined insights, increased confidence through repetition, and expanding the scenar-
ios examined (e.g., [26]). As with all models, further real-world data are necessary for a
more thorough validation. We employ ABM here to simulate emergent effects arising from
different emergency communication strategies in various simulation scenarios [24].

Using ABM is still relatively novel in behavioral science, partly due to the interdis-
ciplinary expertise needed for such an approach [27]. As a non-traditional approach to
theory development, it must overcome skepticism. Both qualitative and quantitative in-
formation from different disciplines—such as concepts like social identity, languages, and
risk probabilities—need to be integrated into one computational and temporal model to
dynamically predict outcomes for different crowd compositions.

Here, we try to simulate the effectiveness of emergency communications through
agent-based simulations. Although ABM has previously been used to study emergency
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communication response [28–30] and risk analysis [31], this ABM work is particularly novel
as it examines socio-cultural aspects in emergency communication with multi-cultural
crowds, which would not be practical to explore in sufficient detail and scope with tra-
ditional methods. This approach also allows us to specify and refine which (expensive)
human experiments to conduct in future, with each method feeding on and off the other in
an iterative and integrated manner [25].

Based on the most feasible proposed strategies for large transport terminals from a
previous literature review [32], we chose to test the effectiveness of the following three
communication strategies in a simulated environment: (1) dynamic emergency exit floor
lighting directing people to the exit, (2) staff located at exits giving verbal and physical
evacuation instructions, and (3) a clear spoken English public announcement to evacuate
calmly to the nearest exit. For each communication strategy, our research question is:
what is the effect of the emergency communications on the total evacuation time and
number of falls? Total evacuation time was chosen to compare our model’s outcomes with
a benchmark from previous work [33] and measured as the time from the onset of danger
until the moment all agents have evacuated the building. Number of falls was chosen as
it was of interest to our stakeholders so they could relate falls to age and groups. Total
number of falls was measured as the sum of all falls in a single simulation run, each fall
for each agent counting toward the total number of falls. Other metrics could also have
been examined. We tested this with structured agent-based simulations for different crowd
compositions, as outlined next in the Method section. These simulations would present a
challenging and expensive set of experimental tests using human participants but become
more viable and cost-efficient when using the approach employed here.

1.1. Solutions for Emergency Communications

We are specifically investigating emergency communication in large buildings where
multicultural crowds gather and have therefore selected international transport terminals
as our context here. Fridolf et al. [34] indicated that passengers usually wait for staff
instructions before evacuating (a role–rule model); usually form groups, evacuate using
familiar exits, and prefer remaining in familiar places (an affiliative model); evacuate more if
others do so (an informational social influence model); and seek environmental information
to interpret the situation, to decide on and initiate actions (a behavior sequence model).

Complementing these observations, in [34–36] it is claimed that inappropriate staff
responses could even induce long evacuation delays while positive staff actions facilitate the
evacuation. These potentially risky behaviors during evacuation could be prevented with
emergency communication solutions for multicultural crowds. For example, emergency
floor lighting directed at the exit can compensate for language issues that might undermine
the effectiveness of text instructions. [37,38]. Typically, such lighting uses light emitting
diodes (LED) in lines on the floor that strobe dynamically to trace a direct path to the
appropriate emergency exit (e.g., as examined in [39]).

1.2. Socio-Cultural Factors

Cultural factors in crowd management should be considered to prepare effectively
for different risk scenarios [40]. For example, due to various backgrounds, language
proficiencies, and educational levels, people might not understand verbal emergency
instructions or signs and therefore not respond appropriately [41].

Another example is that people might be used to staying together in groups or be
unfamiliar with the environment, such as when family groups or tourists travel or visit
an event [42]. In emergencies, it is important that people understand instructions, can
make individual decisions, and do not block the flow of other people evacuating [43].
It is also important, for example, to prepare for families or other groups waiting for, or
collecting, their members during evacuations or moving at their own pace, instead of
assuming everybody will immediately evacuate (e.g., [44]).
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Additionally, research suggests that cultural factors, such as social identity, can play an
important role not only in the way people behave within crowds [45], but also in emergency
evacuation situations [46] due to factors such as different risk attitudes linked to gender or
culture [47]. Comprehension of signs can also vary due to age, literacy, or education [48,49].

Five key socio-cultural issues from the research literature relevant for emergency
communication with crowds are shown in Table 1 [50]. We define culture here as “the
collective programming of the mind that distinguishes the members of one group or
category of people from another” [50]. While identity can correspond to nationality,
Hofstede [51] believes this definition also applies to collectives such as regions, ethnicities,
occupations, organizations, or even ages and genders.

Table 1. Overview of key socio-cultural issues in crowd management, and associated recommendations for emergency
communication, table reproduced with permission of the authors [50].

Category Summary of Cultural Factors and Recommendations

Social identity

Encouraging a united crowd identity will stimulate more cooperation and helping of fellow in-group
members [21].
Crowd management staff should engage with crowd members to get them on their side and encourage
cooperation (e.g., [44,52]).

Language Communication with passengers should use simple and widely understood languages to: (1) decrease
response time, (2) reduce crowd density, and (3) discourage the use of familiar yet dangerous routes.

Signage Messages and instructions on signs should be universally understood, using clear symbols where possible
(e.g., [53]).

Landmarks Clear landmarks should be used to guide multi-cultural passengers in unfamiliar environments (e.g., [54]).

Communication Message content and crowd management procedures should be adapted to crowd demographics.
Communication should be tailored to different subgroups, adjusting content and tone [55].

1.3. Related Work

There are many different approaches for modeling building evacuations, such as
microscopic models (e.g., cellular automata, social force, agent-based models), or macro-
scopic models (e.g., fluid dynamics) [56]. Templeton et al. [57] reviewed crowd models
and concluded that current crowd simulations do not include psychological factors and
therefore cannot accurately simulate the collective behavior that has been found in ex-
tensive empirical research on crowd events. Kuligowski [58] reviewed 28 egress models
and categorized them into behavior or movement models, where either evacuee decision-
making was modeled or where the focus was on movement out of a building. In [7], social
and psychological factors incorporated into evacuation simulation models were reviewed.
Some models (e.g., FIRESCAP, EXODUS, MASCM) simulate group decision making, while
other models (e.g., EGRESS, SIMULEX, EXIT89) focus more on physical constraints and
factors such as walking speed and stairways to find the optimal flow in the evacuation
process. Even when evacuation models have parameters such as gender, age, and individ-
ual walking speeds, they can lack socially interactive characteristics such as monitoring
others, directing, collective evaluation, and collective agreement on appropriate responses.
According to [7], from a social science perspective, the ideal simulation modeling approach
for realistic crowd models should seek the development of sub-models that posit an active,
investigative, socially-embedded agent that assesses the state of other agents (people) and
forms a definition of the situation in cooperation with others. It would recognize that group
dynamics is an essential dimension that must be considered, such as in emergent norm
theory. Addressing these two recommendations [7], it was decided to use the IMPACT
model in this project [33], as it models group decision making, including emotional and in-
formational social influence. Other evacuation models do not include collective agreement
based on emotions and information in the evacuee decision-making process.
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2. Materials and Methods

Based on reviews of crowd simulations, to enable important processes to be repre-
sented and emergent properties to be captured, a model should include psychological
factors and social factors (enabling group dynamics), and allow for agents to make de-
cisions based on the existence and actions of those around them [7,56–58]. Accordingly,
we selected the agent-based IMPACT model for our evacuation simulations, which in-
corporates these social dimensions [33]. As part of the validation process, the IMPACT
model was compared against a credible physical benchmark—the application of the EX-
ODUS evacuation model—of a real-world evacuation on a ship with multiple decks and
different escape routes [59,60]. The IMPACT model covers more social dimensions than
the benchmark EXODUS model (e.g., group decision-making, social, and informational
interactions); therefore, different versions of the IMPACT model—with and without social
influence—were compared to the benchmark, to enable a fair comparison—especially of
its capacity to reasonably represent physical conditions. For the IMPACT model without
social influence, a selection of the model’s variables, such as response time and speed,
were fixed to the benchmark settings, while in the “IMPACT model with social influence”
condition, these were calculated according to the IMPACT model itself.

Results of these comparisons showed that both versions of the IMPACT model—with
and without social influence—were capable of accurately simulating the assembly curves
and total evacuation times compared to the EXODUS model, as they stayed within the
approved boundaries given by the validation dataset [60]. Moreover, the IMPACT model
results showed that for this ship evacuation, the passenger agents evacuated faster when
social influences were modeled versus when they were not, which was explained as a
result of the group decision making processes influencing response times and route choices.
Other what-if scenarios were simulated with the IMPACT model, and sensitivity analyses
showed that certain social dimensions—namely social spread of emotions and information,
travelling in groups, and familiarity with the environment—can have a significant effect
on the model outcomes, reducing evacuation time by up to 30%. The specific impact will
vary according to the scenario conditions. These results show the importance of including
social dimensions in evacuation simulation models.

The design of the IMPACT model was informed by the agent-based belief–desire–
intention (BDI) and network-oriented modeling approaches [61,62]. Here, group decision
making is modeled as the social influence of cognitive and emotional states, and the effect
of beliefs and emotions on individual decision making (e.g., influenced by the identity of
surrounding agents). The model incorporates the following social dimensions: familiarity,
response time, helping behavior, culture, falls, gender, and age. Familiarity represents how
familiar an agent is with the environment, which influences the exit choice. Response time
represents the pre-evacuation delay, starting from observing the danger or hearing the
alarm until starting to move toward an exit. Helping behavior was modeled as passenger
agents assisting another fallen passenger agent to stand up (given that they had fallen).
Culture was modeled as each agent belonging to a cultural cluster, which influenced the
English proficiency of the agent, which in turn influenced their understanding of English
public announcements. Falls, gender, and age were modeled as the ability of agents to
stand back up after falling, which was influenced by their age and gender. In this instance,
these are assumptions that might be modified according to new insights, information, and
scenario conditions.

2.1. Brief Overview of ABM Implementation of Emergency Communications and
Evacuee Response

In previous research [54], the IMPACT model simulated crowd members evacuating
from an empty room without environmental effects, and examined the effects of each
social and cultural parameter (independent variables) on the evacuation time (dependent
variable). This previous, first version of the IMPACT evacuation model is the domain
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model, which has been validated against real world data [33] and was implemented in the
NetLogo programming language, version 5.3.3.

Our current research builds upon this earlier work, using the domain model as our
methodological platform, extending it by now incorporating environmental effects (e.g.,
different emergency communications) on the behavior of the agents. The domain IMPACT
model has been extended with new rules and states that make it possible for agents to
react to new environmental communication features (public announcements, emergency
lighting, and staff members at exits). This represents a methodological development of the
original model, that is then used to test the hypotheses reported here.

When running simulations with the IMPACT evacuation model, the user can specify
the following settings for the characteristics of the agents (representing people) during
an evacuation simulation: (1) age group (children, adults, or elderly); (2) gender (male or
female); (3) compliance level (modeled as a number between 0 and 1, depending on age
and gender, based on [63,64] and having an amplifying effect on the desire to evacuate);
(4) cultural group (modeled as belonging to one of the 11 cultural clusters [60]); (5) number
of groups, comprising 2, 3, or 4 members; (6) number of people who do not belong to a
group; (7) environmental familiarity (on or off); (8) falls (on or off); and (9) social influence,
which represents the spread of emotions and information through the crowd (on or off).
The settings of the current experiments are shown in Tables A1 and A2.

The IMPACT evacuation model can generate a set of outputs, which are operational-
ized as follows.

Individual evacuation time: Elapsed time (ticks) from the onset of danger until the
moment the living agent evacuates the room.

Total evacuation time: Elapsed time (ticks) from the onset of danger until the moment
the last living agent evacuates the room.

Individual response time: Represents pre-evacuation delay, which can be measured
as the time from the start of the danger or the perception of danger until the start of
movement towards an exit. For each agent, this can be measured as starting at the start of
the danger, when first observing the danger, when first being informed of the danger by
another agent, or when perceiving the alarm, and ending at the moment the agent starts
moving toward an exit.

Average response time: The average of all individual response times.
Total number of falls: The total number of falls of all agents. Each fall is counted.
Number of evacuees per exit: Number of evacuated agents per exit, plotted over time

for each time step of the simulation run.
Egress rate through each exit: Number of agents leaving via a particular exit, plotted

over time for each time step of the simulation run.
Average speed of individual agents: The average walking speed of an agent, plotted

over time during each time step of the simulation run.
Individual fear level: The level of fear (operationalized in the model as a number

within the range 0 to 1), plotted over time for each time step of the simulation run.
Average intention to evacuate. The level of intention to evacuate (operationalized in

the model as a number within the range 0 to 1), plotted over time for each time step of the
simulation run.

The configurable environmental characteristics for our current simulations are as
follows: (1) population (total number of people); (2) number of staff members per exit
(0, 1, 2, 3, or 4); (3) incident location (any location in the grid, a minimum of 4 m away
from an exit, to allow agents to reach the exit); (4) number of exits (2 or 4); (5) type of
environment (square or rectangular room, or own imported room shape); (6) presence of
alarm (present or absent); (7) start time of alarm; (8) lighting guidance (on or off); and (9)
public announcements (on or off). Some of these features are set on the graphical interface
(see Figure 1), while others are configured in a config file. The IMPACT model can be
run in different environments, such as for different buildings and with multiple floors, as
was done in the validation study with a ship environment with multiple decks. In these
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experiments, we chose single rooms with multiple exits. In this way, we were able to
determine the pure effects of different communications on evacuation behaviors, without
interaction effects of the environment, such as stairs, hallways, and multiple floors.
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started to evacuate, grey agents are deceased, the red square represents a danger, blue rectangles represent exits.

In summary, the observations of other agents (information and emotion), signs of
danger (information from others, alarm, the danger itself), and internal states (levels of
fear, beliefs about how dangerous the situation is, and intention to evacuate) together lead
to the agent moving toward an exit, or not.

Figure 2 shows the activity diagram of the simulation, focusing on the internal model,
system updates, internal states, and actions of each agent. The simulation starts with setting
up the environment and agents, then each agent observes its environment, calculates its
internal states and is able to fall or help a fallen agent. Next, the agent decides between
moving randomly or evacuating; the system controls the egress at the exits so that only a
certain number of agents can evacuate per time step and the environment is updated. At
the same time, through the user interface, the environment can be updated as well through
a feature of NetLogo, where a user can change settings through buttons or sliders, such as
starting the incident or sounding the alarm, which will happen in real-time. Then statistics
are updated, it is checked whether agents are dead or still alive and the cycle starts again.
After the simulation has run, the model finalizes the cycle and updates the statistics. The
simulation stops when all agents have either evacuated or are not able to evacuate. At any
moment, the user can change the parameters available on the interface and influence the
environment or agents.

For all of our experiments, we simulated an environment with a square layout
(20 × 20 m) with four exits (top, down, left, right; main exit = down), representing a
general building such as a transport terminal. The simulation scenario represented a fire in
a transport terminal that is present from the first second (tick) in the simulation. After 3 min,
the evacuation alarm sounds in the simulated environment. The socio-cultural factors influ-
encing the evacuation time are: (1) environmental familiarity, (2) social influence, (3) crowd
density, (4) gender, (5) age, and (6) grouping behavior. The following three communication
solutions were systematically introduced across the different experimental conditions:
(1) dynamic emergency exit floor lighting directing people towards the emergency exits,
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(2) staff at exits guiding people out, and (3) a public evacuation announcement in English.
We experimentally examined the effect of each of these three emergency communication
strategies (independent variables) on the total evacuation time and number of falls (depen-
dent variables). We provide more details of the parameter settings for the simulations in the
next sub-section, but first we explain how we implemented the emergency communication
solutions in our model.
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ABM Implementation of New Emergency Communications

First, we extended the model from van der Wal et al. [33] with new concepts and
relations. Figure 3 shows the original model in white and dark grey nodes and the extended
part of the model in light grey nodes. The diagram shows the network-oriented modeling
approach in which nodes are concepts and the arrows represent the relationships between
them. All concepts are modeled as a number with range 0 to 1, where 0 means the state is
minimal and 1 means the state is maximal. For example, the state belief_dangerous repre-
sents the agent’s belief about whether the situation is dangerous or not, and is calculated
as a weighted combination of the agent’s three observation states: (1) observation_alarm,
(2) observation_fire, and (3) observation_others_belief_dangerous. For a more extensive
and detailed explanation of the model’s development, see [33] and its validation in [65].
The light grey and dark grey nodes and linking arrows represent the extended part of the
model for the emergency communication solutions. Light grey nodes are new concepts
(see Table 2), and dark grey nodes are existing concepts in the domain model (nationality,
environmental familiarity, move to exit).

Next, we created IF-THEN rules to define relationships between concepts, a standard
feature of ABM (e.g., [25]), needed for the hypotheses we wanted to test. These rules are
listed in Table 3 in pseudo-code—an accessible verbal translation of the programming code.
We implemented these rules in the model using the NetLogo programming language.

Dynamic emergency exit floor lighting. The first IF-THEN rule in Table 3 is for the
dynamic emergency exit floor lighting guiding people to the exits. Whenever an agent sees
these dynamic emergency exit floor lighting LED strips, the agent will take the nearest exit
indicated by the lighting. This rule was based on studies determining that 38% of people
see standard emergency signs while 77% of people see a dynamic emergency sign, and
when people see either sign, 100% follow it [66]. Research has shown that even in a virtual,
smoky tunnel environment, 100% of participants noticed the continuous LED strips and
they had a positive impact on evacuation time and walking patterns [67]. Accordingly,
the agents in our simulated environment must be in close vicinity of the dynamic lighting
to see it and then follow it to the exit. Close vicinity was modeled as the dynamic light
strip being in the current grid cell (patch) that the agent is standing on, or in one of
its eight neighboring grid cells, corresponding to a distance of 1 m. An example of a
simulation run including emergency lighting is shown in Figure 4. In the simulations,
once an agent notices the lighting, it will follow the lights until the exit, even if it knows
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another exit, as it assumes that the lighting will guide it to the nearest exit. Note that the
compliance with lighting instructions is different from the general compliance level in the
model. The general compliance level of the passenger agents was modeled as a number
between 0 and 1, having an amplifying effect on the desire to evacuate. The level depends
on the agent’s gender and age (e.g., males are less compliant than females, based on data
from [63]), modified for different age groups using data from [64]. Therefore, this general
compliance level already incorporates variation in whether agents decide to evacuate or
not. Then, once an agent is evacuating, the agent is 100% compliant with following the
emergency lighting if they have observed it, as based on empirical studies. As mentioned
previously, these responses can be modified to reflect new data and understanding.
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Table 2. Implemented concepts necessary for the IF-THEN rules (Table 3).

Type Concept Value Meaning

Event public_ann 0 or 1 0 = no announcement; 1 = clear public English announcement.
Event lighting 0 or 1 0 = no lighting; 1 = emergency lighting on the floor indicating exits.
Event staff_instr 0 or 1 0 = no staff at exit; 1 = staff at each exit instructing evacuation.

Perception obs_p_ann 0 or 1 0 = not observed; 1 = observed.
Perception obs_lighting 0 or 1 0 = not observed; 1 = observed.
Perception obs_staff_instr 0 or 1 0 = not observed; 1 = observed.

Table 3. IF-THEN rules implemented in the agent-based model (pseudo-code).

No. Rule

1 IF emergency lighting is on AND a passenger can see the emergency lighting
THEN he will follow it to the exit

2 IF staff are present at the exits to give instructions AND a passenger can see a staff member
THEN he will follow the instructions and evacuate through the indicated exit

3a

IF a public announcement is made
AND a passenger has nationality X

AND the English proficiency of that nationality is probability Y
THEN the passenger understands the public announcement with probability Y

3b IF the passenger has understood the public announcement
THEN set the environmental familiarity of the passenger to 1, in order to take the nearest exit
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Staff member guidance. The second IF-THEN rule in Table 3 is for the staff mem-
ber agents present at the exit. The implementation is based on research by Shields and
Boyce [36], indicating that staff members have a positive impact on evacuation time and
compliance with instructions. Specifically, they found that, on average, 50% of evacuees
received their first indication of an emergency from being told by staff, rather than hear-
ing the alarm, seeing others moving towards the exits, or being told by other shoppers.
Furthermore, the participants’ exit choices were dependent on staff instructions (25%),
selecting the nearest (50%) or most familiar exit (20%), or by following others (5%). We
translated these results as the passenger agent seeing the staff member agent when in close
vicinity and then always following their instructions. Close vicinity was modeled as within
a radius of 5 grid cells (patches), which represents 5 m. The staff member agent is always
within 2 grid cells (patches) of an exit, which represents 2 m.

Public announcements. Finally, the third IF-THEN rule is for the last emergency
communication solution strategy: the public announcement. It represents a public an-
nouncement made in English that tells passengers to “please stay calm and evacuate
through the nearest exit”. The probability of an agent understanding the message depends
on the average English proficiency of the cultural cluster the agent belongs to. For each
cultural cluster from Ronen and Shenkar [68], the English proficiency was calculated based
on the EF English Proficiency Index [69] that rates countries by the average level of En-
glish language skills. Once the agent understands the message, it complies with it. The
announcement was made 20 s after the fire alarm sounded and then repeated every 60 s.

2.2. Simulation Experiments

After developing our ABM, we then used it to perform a series of structured experi-
ments to examine the effect of the emergency communication. Although we performed
these experiments as simulations using our ABM rather than with human participants,
we still refer to them as experiments as we are using the scientific method by systemat-
ically manipulating features of emergency communication (our independent variables),
to examine their effect on types of evacuee response (our dependent variables), using the
agents in the model to represent crowd members. As such, they are experiments using
a simulation model rather than a human model (with real participants employed in an
artificial scenario, such as a laboratory experiment or evacuation drill). Nevertheless, for
clarity, we refer to our experiments as simulation experiments specifically here to avoid
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potential confusion among readers from social sciences whose experiments would almost
always involve human participants.

2.2.1. Research Questions and Expected Outcomes

We ran simulation experiments to test the effectiveness of the three communication
strategies (our independent variables). Our first research question is, what is the effect
of dynamic emergency exit floor lighting guiding people towards exits on the evacuation
time and number of falls? The expected outcomes, based on empirical research, are (1) that
evacuation time will be faster with dynamic emergency exit floor lighting than without
(because lighting helps people see/find exits faster); (2) environmental familiarity will
decrease evacuation time, in comparison with environmental non-familiarity; and (3) there
will be no difference in the number of falls whether emergency lighting is present or not, as
we have no a priori indications of this.

Our second research question is, what is the effect of staff guiding people towards exits
on the evacuation time and number of falls? The expected outcomes, based on empirical
research, are (1) the more staff, the shorter the evacuation time will be; (2) this decrease
in evacuation time could be linear or non-linear; and (3) there will be no difference in the
number of falls between when staff are guiding people or not.

Our third research question is, what is the effect of an English public announcement
on the evacuation time and number of falls? The expected outcomes, based on empirical
research, are that (1) English public announcements will reduce evacuation time when
people understand the announcement, because people will start evacuating sooner and
choose the nearest exit; (2) no differences in the number of falls are expected between
English announcements or not.

2.2.2. Outcome Measurements

There are two outcome measurements (our dependent variables): (1) evacuation time,
measured as the elapsed time from the onset of the fire until the last agent evacuates the
room; and (2) total number of falls, measured as all falls in a single simulation run. Falling
was implemented as follows. If an agent accelerates beyond its typical walking speed and
reaches faster than 3 m per second (m/s), and there are more than four agents in the same
square meter, then there is a 5% chance of falling for each new movement. Otherwise, the
agent does not fall. This is an assumption and can be modified to examine the sensitivity
of the number of falls generated to this parameter in conjunction with the other conditions
present. When an agent falls, it takes 30 s before it stands up and moves again. We could
not find any empirical data on the exact time it takes; therefore, we performed a pilot study
ourselves that showed an average of 30 s to stand up. If another agent is helping, this is
implemented as the agent waiting next to the fallen agent until it stands up. This represents
the helper in real life assisting the fallen agent to stand up. Currently, it is possible for
multiple agents to help a fallen agent at the same time, but due to the low probability it
rarely happens in simulation runs.

As stated in the introduction, these outcome measurements were chosen to compare
our model’s outcomes with a benchmark from our previous work [33], and as it was of
interest to our stakeholders. In addition, by choosing only two outcome measurements, it
allowed us to manage multiple analyses and make comparisons across various parameters
influencing these outcomes. We did consider other outcome measurements, however,
including speed and the number of people reaching a safe zone, but they are less suitable
for measuring our observed parameters’ effects. For instance, defining a safe zone is not
simple, as once it becomes congested, it could become hazardous (e.g., crushing) or even
become a potential terrorist target. Furthermore, speed is also influenced by environmental
features not present in our scenarios, such as barriers, walls, or flows in corridors.



Sustainability 2021, 13, 4623 12 of 24

2.2.3. Parameter Settings

In each simulation experiment, certain factors are systematically varied (our indepen-
dent variables), to examine their impact on the outcome measurements (our dependent
variables). All experiments vary crowd density from low to medium to high, representing
2, 4, or 6 people per square meter, resulting in 800, 1600, or 2400 people in total, respec-
tively, at the beginning of the simulation. All other factors and levels are shown in the
Appendix A, in Table A1. The demographics are set to reflect the standard European popu-
lation composition, namely 15% children, 15% elderly, and 70% adults [70]. In Experiments
1 and 2, the population is divided evenly across all 11 cultural clusters [68]. In Experi-
ment 3, the crowd composition is varied by four different cultural cluster settings: 1 = all
passengers from the Anglo cluster (95.39% English Proficiency); 2 = all passengers from
the Eastern Europe cluster (16.28% English Proficiency); 3 = 50% of the passengers from
the Anglo cluster and 50% from the Eastern Europe cluster; and 4 = an even distribution
between the 11 clusters [68].

The agent environment for the simulations was a square (20 × 20 m2) layout of a
building with four exits (top, down, left, right; main exit = down), representing a generic
transport terminal. Environmental features such as stairs, slopes, corners, and counterflow
passages were not included, to allow a more pure measurement of human behavior. Factors
such as door width, gender, age, and compliance level were kept constant across all
simulations (see Appendix A, Table A2).

The IMPACT model is a non-deterministic model. Observations and actions of a
single agent (e.g., detecting the danger or not, finding the exit), and interactions between
agents (e.g., through the spread of information, or emotion, and traveling in groups), lead
to variations in the outcomes of simulation runs for the same scenario. To determine the
number of simulation repetitions for each condition, we selected an evacuation scenario that
we had found to generate maximum variability in the evacuation time output. Specifically,
we used the default settings from the simulation experiments, for the largest environment,
with the most exits, and largest number of passengers. We then ran this scenario 100 times
to determine the exact number of repetitions required. First, we inspected the cumulative
averages and variances in evacuation time to detect the number of repetitions at which
evacuation time stabilized (which we verified). Second, we used Equation (1) to find the
minimum number of repetitions (56) to guarantee that the error in the outcome result of one
simulation run was within 5% of the maximum error of all runs with a 95% confidence level.
Therefore, we chose 60 simulation repetitions for each condition, and then averaged the
outcome results. We checked all simulations and they indeed stabilized after 60 repetitions.

n ≥ [100·Z·s/r·x]2 = 56.61599→ 60 samples (1)

whereby, Z = confidence interval of 95%; s = standard deviation = 53.4287; r = maximum
error of 5%; x = evacuation time average of 100 samples.

3. Results

For each of the three evacuation communication strategies, we now show the results
addressing the research question, what is the effect of the emergency communication on
the evacuation time and total number of falls?

3.1. Simulation Experiment 1: Effectiveness of Dynamic Emergency Exit Floor Lighting

First, a 3 × 2 independent ANOVA was performed on evacuation time, with crowd
density (low, medium, and high), and emergency lighting (on, off) as between factors. The
main effect and interaction effects were significant (see Table 4). Post hoc tests with Tukey
HSD corrections for multiple comparisons show that, between conditions, the high level
of crowd density differed significantly from low and medium: low-medium, p = 0.517;
medium-high, p < 0.001; low-high, p < 0.001.
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Table 4. Results simulation experiment 1: effectiveness of dynamic emergency exit floor lighting.

Factor df F p

Effects of crowd density and emergency lightin on evacuation time, 3 × 2 ANOVA

Crowd density 2 24.30 0.000
Emergency lighting 1 6.73 0.010

Crowd density × Emergency lighting 2 4.40 0.013

Effects of environmental familiarity and emergency lightin on evacuation time, 2 × 2 ANOVA

Environmental familiarity 1 140.98 0.000
Emergency lighting 1 7.54 0.006

Environmental familiarity × Emergency lighting 2 8.94 0.003

Effects of crowd density and emergency lighting on evacuation time, 3 × 2 ANOVA

Crowd density 2 330.49 0.000
Emergency lighting 1 78.99 0.000

Crowd density × Emergency lighting 2 41.81 0.000

Efefcts of environmental familiarity and emergency lighting on total number of falls, 2 × 2 ANOVA

Environmental familiarity 1 146.06 0.000
Emergency lighting 1 49.80 0.000

Environmental familiarity × Emergency lighting 2 57.48 0.000

These statistically significant results in Table 4 show that the emergency lighting (short
for dynamic emergency exit floor lighting) decreased evacuation time in both medium and
high crowd densities (see Figure 5). In high crowd density, crowd congestion appeared
around the exits, but was relieved by the emergency lighting. The passengers followed the
emergency lighting, which led to less variation in walking patterns and fewer falls. In the
low crowd density condition, however, there was little crowd congestion, so the emergency
lighting did not have an effect.
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Next, a 2 × 2 independent ANOVA was performed on evacuation time with environ-
mental familiarity (0%, 100%) and emergency lighting (on, off) as between factors. The
main and interaction effects were significant (see Table 4). A 3 × 2 independent ANOVA
was performed on total number of falls, with crowd density (low, medium, and high)
and emergency lighting (on, off) as between factors. The main and interaction effects
were significant (see Table 4). Post hoc tests with Tukey HSD corrections show that all
levels of crowd density differed significantly between conditions: low-medium, p = 0.001;
medium-high, p < 0.001; low-high, p < 0.001. A 2 × 2 independent ANOVA was performed
on total number of falls, with environmental familiarity (0%, 100%) and emergency lighting
(on, off) as between factors. The main and interaction effects were significant (see Table 4).

These statistically significant results in Table 4 show that the emergency lighting led
to a greater decrease in evacuation time for crowds unfamiliar with the environment than
for crowds with environmental familiarity (see Figure 5). This is logical, because agents
familiar with the environment would have already had more knowledge of where the
nearest exits were. The total number of falls increased when crowd density increased,
for both lighting conditions, but significantly less steeply when emergency lighting was
on, and then especially for high crowd density (see Figure 5). The total number of falls
followed the same pattern as evacuation time for environmental familiarity. When agents
were not familiar with the environment, the emergency lighting significantly decreased the
total number of falls. When agents had environmental familiarity, that itself decreased the
total number of falls, leaving no room for an additional effect of emergency lighting.

To conclude, emergency lighting seemed only to decrease evacuation times in medium
to high crowd densities and for crowds unfamiliar with the environment. Emergency
lighting also seemed to decrease the total number of falls, mainly for high crowd density
and for a crowd unfamiliar with the environment.

3.2. Simulation Experiment 2: Effectiveness of Staff at Exits

A 3 × 4 independent ANOVA was performed on evacuation time, with crowd density
(low, medium, and high) and staff members per exit (0, 1, 2, 3) as between factors. The
main and interaction effects were significant (see Table 5). Post hoc tests with Tukey
HSD corrections show that, between conditions, the high level of crowd density differed
significantly from low and medium: low-medium, p = 0.690; medium-high, p < 0.001;
low-high, p < 0.001. For staff members, between conditions, only 0 versus 2 or 3 staff
members per exit differed significantly: 0–1, p = 0.190; 0–2, p = 0.009; 0–3, p = 0.004; 1–2,
p = 0.651; 1–3, p = 0.509; 2–3, p = 0.996.

These statistically significant results in Table 5 indicate that the presence of staff
members at exits seemed to decrease the evacuation time (given the assumptions made),
but only for the medium and high crowd density conditions. For low crowd density, the
influence of staff members was not statistically significant (see Figure 6). It is important
to note, however, that staff members were located close to exits, so the results could have
differed if they had been guiding people all around the room.

Next, a 2 × 4 independent ANOVA was performed on evacuation time, with envi-
ronmental familiarity (0%, 100%) and staff members per exit (0, 1, 2, 3) as between factors.
The main and interaction effects were significant (see Table 5). Post hoc tests with Tukey
HSD corrections show that, between conditions, only 0 versus 2 or 3 staff members per
exit differed significantly: 0–1, p = 0.170; 0–2, p = 0.007; 0–3, p = 0.003; 1–2, p = 0.631; 1–3,
p = 0.486; 2–3, p = 0.996.

A 3 × 4 independent ANOVA was performed on total number of falls, with crowd
density (low, medium, and high) and staff members per exit (1, 2, 3, 4) as between factors.
The main and interaction effects were significant (see Table 5). Post hoc tests with Tukey
HSD corrections show all levels of crowd density differed significantly between conditions:
low-medium, p < 0.001; medium-high, p < 0.001; low-high, p < 0.001. For staff members,
between conditions, only 0 versus 1, 2, or 3 staff members per exit differed significantly:
0–1, p < 0.001; 0–2, p < 0.001; 0–3, p < 0.001; 1–2, p = 0.255; 1–3, p = 0.112; 2–3, p = 0.977.
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Table 5. Results of simulation experiment 2: effectiveness of staff at exits.

Factor df F p

Effects of crowd density and staff members on evacuation time, 3 × 4 ANOVA

Crowd density 2 79.28 0.000
Staff members 3 4.79 0.003

Crowd density × Staff members 6 5.29 0.000

Effects of environmental familiarity and staff members on evacuation time, 2 × 4 ANOVA

Environmental familiarity 1 244.21 0.000
Staff members 3 5.05 0.002

Environmental familiarity × Staff members 3 9.68 0.000

Effect of crowd density and staff members on total number of falls, 3 × 4 ANOVA

Crowd density 2 926.51 0.000
Staff members 3 23.75 0.000

Crowd density × Staff members 6 11.32 0.000

Effect of environmental familiarity and staff members on total number of falls, 2 × 4 ANOVA

Environmental familiarity 1 284.36 0.000
Staff members 3 12.51 0.000

Environmental familiarity × Staff members 3 17.32 0.000
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A 2 × 4 independent ANOVA was performed on total number of falls, with environ-
mental familiarity (0%, 100%) and staff members per exit (0, 1, 2, 3) as between factors. The
main and interaction effects were significant (see Table 5). Post hoc tests with Tukey HSD
corrections show that, between conditions, only 1 versus 3 and 2 versus 3 staff members
per exit did not differ significantly: 0–1, p = 0.001; 0–2, p < 0.001; 0–3, p < 0.001; 1–2, p < 0.01;
1–3, p = 0.361; 2–3, p = 0.991.

These statistically significant results in Table 5 show that, when looking at the in-
teraction effect of staff member agents and environmental familiarity on number of falls,
the presence of staff member agents was only beneficial to passenger agents who were
unfamiliar with the environment. This is because agents familiar with the environment
would have already moved to the nearest exit and naturally passed the staff member agents.
The presence of staff member agents seemed to decrease the total number of falls, but this
effect diminished beyond the presence of one staff member agent (see Figure 6). When
looking at the interaction effect of staff member agents and environmental familiarity, it
again seemed that staff member agents were only decreasing the total number of falls
when all passenger agents were unfamiliar with the environment. Again, there did not
seem to be a difference in the increase in total number of falls between one, two, or three
staff member agents. When all passenger agents were familiar with the environment, the
presence of staff member agents had no effect.

3.3. Simulation Experiment 3: Effectiveness of Public Announcement

A 3 × 4 independent ANOVA was performed on evacuation time, with crowd density
(low, medium, and high) and cultural cluster distribution (1, 2, 3, 4) as between factors.
The main and interaction effects were significant (see Table 6). Post hoc tests with Tukey
HSD corrections show all levels of crowd density differed significantly between conditions:
low-medium, p < 0.001; medium-high, p < 0.001; low-high, p < 0.001. For cultural clusters,
between conditions, all differed significantly except clusters 1 versus 3 and 3 versus 4: 1–2,
p < 0.001; 1–3, p = 0.273; 1-4, p < 0.001; 2–3, p < 0.001; 2–4, p < 0.001; 3–4, p = 0.186.

Table 6. Results of simulation experiment 3: effectiveness of public announcement.

Factor df F p

Effects of crowd density and cultural cluster distribuion on evacuation time, 3 × 4 ANOVA

Crowd density 2 174.14 0.000
Cultural cluster distribution 3 28.91 0.000

Crowd density × cultural cluster distribution 6 11.36 0.000

Effects of crowd density and cultural cluster distribution on total number of falls, 3 × 4 ANOVA

Crowd density 2 17019.09 0.000
Cultural cluster distribution 3 221.74 0.000

Crowd density × cultural cluster distribution 6 93.34 0.000

A 3 × 4 independent ANOVA was performed on total number of falls, with crowd
density (low, medium, and high) and cultural cluster distribution (1, 2, 3, 4) as between
factors. The main and interaction effects were significant (see Table 6). Post hoc tests with
Tukey HSD corrections show all levels of crowd density differed significantly between
conditions: low-medium, p < 0.001; medium-high, p < 0.001; low-high, p < 0.001. All
cultural clusters also differed significantly between conditions: 1–2, p < 0.001; 1–3, p < 0.001;
1–4, p < 0.001; 2–3, p < 0.001; 2–4, p < 0.001; 3–4, p < 0.001.

The statistically significant simulation results show that cluster 2 (Eastern Europe) and
4 (even mix) had the fastest evacuation times for the majority of situations (see Figure 7).
Although this is unexpected, even with a positive effect of public announcement and social
influence, there is a third aspect that plays a negative role in the dynamics of the evacuation.
The negative impact can be explained by an emergent phenomenon named the faster-is-
slower effect [71]. This proposes that in evacuations, moving at higher speed (e.g., trying to
push your way through a crowded doorway) can sometimes actually increase evacuation
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time given local conflicts. In our simulations, it resulted in more variety in arrival times
at the exits, which reduced the evacuation time in certain scenarios. In cluster 2 and
especially cluster 4, agents showed a staggered response given the differences in agent’s
understanding of the announcement, first the agents that understood English, and then the
agents influenced by other agents’ behaviors, leading to a phased exit and faster evacuation.
In clusters 1 (Anglo) and 3 (50–50), however, most of the passenger agents spoke English,
and therefore had more chance of understanding the public announcements immediately
and therefore taking the nearest exit sooner and together. This created crowd congestion
(bottlenecks) at the exit doors and led to slower evacuation. However, this was not the only
factor influencing evacuation time, as cluster 4 was not always the fastest to evacuate and
cluster 2 was not always the second fastest. In summary, English proficiency and social
influence interacted with the faster-is-slower effect to either decrease or increase evacuation
time, as detailed above. On top of these effects, the flow capacity of the doors influenced
the final evacuation time when the faster-is-slower effect was present.

Sustainability 2021, 13, x 18 of 26 
 

agents spoke English, and therefore had more chance of understanding the public an-
nouncements immediately and therefore taking the nearest exit sooner and together. This 
created crowd congestion (bottlenecks) at the exit doors and led to slower evacuation. 
However, this was not the only factor influencing evacuation time, as cluster 4 was not 
always the fastest to evacuate and cluster 2 was not always the second fastest. In sum-
mary, English proficiency and social influence interacted with the faster-is-slower effect 
to either decrease or increase evacuation time, as detailed above. On top of these effects, 
the flow capacity of the doors influenced the final evacuation time when the faster-is-
slower effect was present. 

Evacuation times were generally lower for medium crowd density than for low or 
high densities. This could indicate that while social influence was beneficial for evacuation 
time, as shown in the medium crowd density condition, this effect was canceled out by 
the congestion in high crowd densities. The opposite was observed for the total number 
of falls (see Figure 7), however. Total number of falls was lower for clusters 1 (Anglo) and 
3 (50–50) than for cluster 2 (Eastern Europe) and cluster 4 (even mix). This effect can be 
explained by the crowd congestion that happened for clusters 1 and 3 reducing passenger 
agents’ movement speed, and therefore creating fewer falls than in clusters 2 and 4, where 
the movement speed was higher due to the lower congestion of the phased evacuation. 

 
(a) (b) 

Figure 7. Interaction plots for the effects of crowd density and cultural clusters on (a) evacuation 
time; and (b) total number of falls. 

4. Discussion 
4.1. Discussion of Results 

The findings of the first experiment show that dynamic emergency exit floor lighting 
can decrease evacuation time, but only for medium and high crowd densities. These find-
ings are consistent with other research showing that environmental familiarity only af-
fects evacuation time in high-density crowds [33]. For high-density crowds, the doors be-
come bottlenecks as passengers unfamiliar with the environment must wait longer to exit 
as they mostly use the main door. This is consistent with real world observations regard-
ing people’s tendencies to exit through the door they entered through, even in emergency 
situations [72]. However, those who know the environment use a larger number of exits 
and often therefore avoid bottlenecks. This is contrary to research concerning place scripts 
(i.e., ingrained cognitive schema for movement and behavior in familiar locations), which 
suggests that such scripts persist even in emergencies, with people still following their 
usual habitual route through an environment and exiting the way they entered [73]. Ac-
cordingly, an important recommendation would be to make the main entrance door very 
wide to enable rapid exit, and possibly also strategically place columns or pillars to sepa-
rate flows, reduce crowd pressure, and speed egress (see [74]). 

Figure 7. Interaction plots for the effects of crowd density and cultural clusters on (a) evacuation time; and (b) total number
of falls.

Evacuation times were generally lower for medium crowd density than for low or
high densities. This could indicate that while social influence was beneficial for evacuation
time, as shown in the medium crowd density condition, this effect was canceled out by
the congestion in high crowd densities. The opposite was observed for the total number of
falls (see Figure 7), however. Total number of falls was lower for clusters 1 (Anglo) and
3 (50–50) than for cluster 2 (Eastern Europe) and cluster 4 (even mix). This effect can be
explained by the crowd congestion that happened for clusters 1 and 3 reducing passenger
agents’ movement speed, and therefore creating fewer falls than in clusters 2 and 4, where
the movement speed was higher due to the lower congestion of the phased evacuation.

4. Discussion
4.1. Discussion of Results

The findings of the first experiment show that dynamic emergency exit floor lighting
can decrease evacuation time, but only for medium and high crowd densities. These
findings are consistent with other research showing that environmental familiarity only
affects evacuation time in high-density crowds [33]. For high-density crowds, the doors
become bottlenecks as passengers unfamiliar with the environment must wait longer to exit
as they mostly use the main door. This is consistent with real world observations regarding
people’s tendencies to exit through the door they entered through, even in emergency
situations [72]. However, those who know the environment use a larger number of exits
and often therefore avoid bottlenecks. This is contrary to research concerning place scripts
(i.e., ingrained cognitive schema for movement and behavior in familiar locations), which
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suggests that such scripts persist even in emergencies, with people still following their usual
habitual route through an environment and exiting the way they entered [73]. Accordingly,
an important recommendation would be to make the main entrance door very wide to
enable rapid exit, and possibly also strategically place columns or pillars to separate flows,
reduce crowd pressure, and speed egress (see [74]).

The second emergency communication that was tested was the presence of staff at
exits. In the evacuation scenario, the presence of staff at exits decreased the evacuation time
only in the high crowd density condition and for crowds unfamiliar with the environment.
Additionally, one or two staff members per exit created significant reductions in evacuation
time and were sufficient in this scenario. Having more than two staff members did not
significantly reduce the evacuation time any further, though. However, the number of falls
did not decrease when all passengers were familiar with the environment. Accordingly, it
appears that staff members’ presence in front of the doors is only beneficial for high-density
crowds unfamiliar with the environment. This result is consistent with the emergency
lighting results and the results in van der Wal et al. [33], showing familiarity only affects
evacuation time in high-density crowds.

Furthermore, it seems that the location of staff has an important effect on evacuation
time, as investigated by Formolo et al. [75]. Their results showed a more consistent
influence of staff in guiding people to the nearest exit, stimulating a faster evacuation.
Furthermore, their research found that the quantity, location, and professionalism of staff
are important factors for a successful evacuation. The outcome of this work similarly
reflects the positive impact of increasing the number of staff members. A cost-effective
recommendation, therefore, is only to use emergency lighting and staff members at exits
of very busy terminals, as they have little effect on medium to low crowd densities. One
explanation for the effectiveness of floor lighting in high crowd densities would be that
the crowd blocks people’s line of vision (e.g., a very tall person in front), so they cannot
see the usual signs and exits that people in lower density crowds can. This should be
interpreted with caution, however, as the simulations were based on a ‘neutral’ scenario,
without environmental features such as walls, pillars, and gradients. In a more complex
environment, results may differ.

The third emergency communication strategy that was tested was the English spoken
public announcement that requests people to stay calm and evacuate through the nearest
exit. The results of simulations evaluating the effectiveness of this public announcement
showed that those clusters where fewest people speak English (clusters 2 and 4) have, in
general, the fastest evacuation times for the tested scenarios. When looking at the number
of falls, the opposite is true in that a lower total number of falls is observed for clusters 1 and
3, where more than half speak English. Both effects were unexpected, as at an individual
level, understanding public announcements should lead to quicker evacuation. However,
at a group level it shows different emergent patterns, likely due to the faster-is-slower
effect [71], where the distribution of different nationalities (and therefore different English
comprehension levels) created a phased evacuation process, in which passengers evacuated
one group after another, thereby preventing bottlenecks. Indeed, the clusters with most
English speakers were the slowest due to the bottlenecks created by the simultaneous exit.
This implies that multicultural crowds could reduce evacuation time in buildings with
restricted exit room where bottlenecks may occur.

Although this faster-is-slower effect may occur in simulations, it is also important in
real life to consider the delay between those who evacuated first (due to understanding
the announcement) and those who evacuated second (by following the first group even
though they did not understand the announcement). While a small delay may reduce
crowding and therefore reduce overall evacuation time, too long a delay between these two
groups could well increase overall evacuation time—in other words, a phased exit could
easily become a slow exit if the second group does not realize what the first group is doing.
Finally, we should note that if an agent does not understand the public announcement, it
can still decide to evacuate. In such cases, the agent keeps walking randomly, until it either
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receives enough social influence (perception of fear beliefs from other agents), or sees the
fire itself, to decide to evacuate.

4.2. Strengths and Limitations

The strength of this work is its novelty that arose from the inclusion of socio-cultural
aspects in emergency communication and its examination by using agent-based simulation
of emergencies with multi-cultural crowds. The simulations can estimate the effectiveness
of new emergency communication solutions and inform policymakers and emergency
managers about risky situations and possible solutions, assuming that it sufficiently repre-
sents reality and is credible. We propose this work can be subjected to validation tests via
virtual reality experiments (e.g., [21]), where the effects of different emergency communica-
tions can be examined on participants from different cultures. The characteristics of the
evacuating crowd, building, and emergency communications can be varied more easily
than in the real world.

There are several limitations of this work, however. First, the agent-based model that
was used for the implementation of the emergency communications [33] only includes a
sub-set of the socio-cultural, cognitive, and emotional parameters identified during the
development of the model. Conversely, as the number of modeled parameters increases,
the analysis of the results becomes more complex and challenging. Second, the results
of the simulations should only be used as an indication. We have attempted to make
this indication as credible as possible (by basing assumptions on background literature,
empirical research, and stakeholders interactions); however all models are significant sim-
plifications of real-world conditions. Third, these outcomes cannot be directly generalized
to complex environments, where the environmental characteristics (such as stairways and
hallways) will interact with the human behaviors under examination. This work limits
itself to making projections about the influence of emergency communication and human
behavior on the evacuation process. All the emergency communications were tested in
an empty room with four exits. In real life, however, these effects would be combined
with the influences of the environment itself, such as corridors, number of exits, stairs, and
obstacles. This research could therefore be extended by investigating the combined effect of
these elements with the environment (e.g., [76]), but would require the model to be suitably
updated to capture these interactions. Finally, although we have modeled evacuation
following a fire, we have not included specific hazards related to fires in our model, such
as smoke and heat and their effects on human perception and health (e.g., [77]). We chose
not to do so here to manage the complexity and interpretability of our simulations, and
also because our primary focus here was on understanding human evacuation behavior.
So, the fire in our model is currently a generic example of an incident that may necessitate
evacuation (e.g., fire, terrorism, accidents), but future research could explore such specific
hazards in more detail.

4.3. Implications for Theory and Practice

There are a number of implications arising from this work. First, we hope this research
shows the potential for testing emergency communications with computer simulations
before examining their performance in real-world settings. Simulation allows for greater
opportunities, including more repetitions, more explorations, a broader scope of experi-
mental conditions, fewer costs, and fewer ethical concerns. It can help in both preparing
for different emergency scenarios as well as predicting the effectiveness of emergency
communications under different conditions. Second, transport operators and crowd man-
agement professionals could use agent-based models to test in silico competing approaches
for crowd management, thereby choosing the best solution proactively. Third, simulations
could also support periodic safety and security risk assessments, resulting from, for ex-
ample, changes in the environment, procedures, new communication measures and/or
technologies [78]. Fourth, policymakers could also use these models to help identify new
regulations and standards for emergency communication [79].
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5. Conclusions

Evacuation preparedness is essential to reduce common risky behaviors, ensure faster
evacuations, and increase the probability of survival. Here, we demonstrated that agent-
based modeling can be used to explore various hypotheses regarding evacuee response,
testing competing theories, and identifying strategies for further analyses (e.g., real-world
experiments and implementation). This research focused on socio-cultural differences
in multicultural crowds that are currently unaddressed in evacuation preparations [7].
Three emergency communication strategies were implemented within an existing ABM
evacuation model named IMPACT: (1) dynamic emergency exit floor lighting guiding
people to exits, (2) staff at exits giving verbal and physical instructions to evacuate, and
(3) an English spoken public announcement to evacuate using the nearest exit. Simulation
results indicate that (1) dynamic emergency exit floor lighting can decrease evacuation time,
but only for medium and high crowd densities; (2) the presence of staff at exits decreased
the evacuation time only in the high crowd density condition and for crowds unfamiliar
with the environment, whereby one or two staff members per exit created significant
reductions in evacuation time and were sufficient in this scenario; and (3) cultures where
the fewest people speak English had the fastest evacuation times for the English spoken
announcement, which was unexpected but can be explained by this creating a more phased
evacuation to avoid congestion in environments constrained by capacity. The strength of
this work is its inclusion of socio-cultural aspects in emergency communication and its
examination by using agent-based simulations. The limitations concern generalizing these
outcome results to more complex environments, where the environmental characteristics,
such as stairways and hallways, will interact with the human behaviors under examination.
In conclusion, this work shows the potential of testing emergency communications with
computer simulations before examining their performance in real-world settings, and
helping safety practitioners prepare for different emergency scenarios.
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Appendix A

Table A1. Factors and levels in the simulation experiments.

Parameter Setting Meaning

Environmental Familiarity 50%
When not specified in the experiment, it is assumed that 50% of the people are

familiar with the environment and will take the nearest exit, while the remaining
50% will take the main exit.

Help Off People do not help other people that fall.
Falls On People are able to fall.

Contagion model On There is social influence of fear and beliefs.

%children 15 15% of the passengers are children, because we chose a ratio of 70/15/15 for
adults/children/elderly, respectively.

%elderly 15 15% of the passengers are elderly.

%adults 70 70% of the passengers are adults (this is not set directly, but is calculated as 100%
with the % of children and elderly subtracted).

https://doi.org/10.6084/m9.figshare.14410388.v1
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Table A1. Cont.

Parameter Setting Meaning

%people travelling alone 50 50% of the people are travelling alone, the remaining 50% in groups.
Group ratios 50-30-20 We assume more people travel in groups of 2 (50%) than 3 (30%) or 4 (20%).

%females 50 50% are females, 50% are males.
Cultural Clusters 11 Represent the 11 clusters from Ronen and Shenkar [59].

Crowd congestion threshold 5 Crowd congestion starts from 5 people/m2, where people cannot maintain their
own pace of movement anymore.

Public announcement 60 Every 60 s, there is one announcement.
Fire alarm 60 Every 60 s, there is one alarm.

Start first time fire alarm 180 180 s after the fire started, the alarm starts.
Start first time public announcement 20 20 s after the fire alarm, the public announcement starts.

Fire present Always At the first second.

Fire location Random Randomly chosen, but always a minimum of 3 m away from an exit for a fair
comparison of simulations.

Cultural cluster distribution 9.09 People evenly divided over all 11 clusters: 9.09% per cluster.
Fire radius 3 3 m.

Communication distance 5 5 m, because public distance is 12–25 feet (3.7–7.6 m), assuming voice as the main
modality of communication among people (see [80,81]).

Protocol distance 2 2 m: staff walk randomly around the exit to give instructions, within 2 m from the
exit.

Initial value fear, belief, desire,
intention. 0

Initial position agent Random Randomly chosen from all patches in the environment.
Initial heading agent Random Randomly chosen from 360 degrees.

Maximum amount of people per
square meter 8 Based on Still [82].

Congestion speed factor Speed × factor
When there is congestion, agents slow down their speed as follows: [speed × 0.625

(8 people); speed × 0.75 (7 people); speed × 0.875 (6 people); speed × 0.95
(5 people)].

Helping behavior Rule
People can only help 1 person at the same time. When a person helps, they are

‘waiting’ next to the fallen person until this person stands up, then they continue
moving too.

Group membership and behavior Rule

There is always one leader, NOT a child, that decides where the group will move to.
The whole group moves together on the same square meter. Only the leader will

decide to help or not. The rest will ‘wait’ with him/her while helping. If the leader
dies, then the group ‘splits up’, so the others do not ‘wait’ for the leader to continue,

but continue by themselves.
Group formations Evenly divided Children, elderly, females/males are evenly divided between all groups.

Length of fall 30 30 s.

Egress flowrate at each exit 5.4667
The maximum is 6 people per meter per second, based on the egress flowrate of

82 people per minute per meter, which is 1.3667 people/meter/second × 4 (doors
are 4 m wide) = 5.4667 people per exit door per second [82].

Table A2. General parameter settings for all simulation experiments.

Experiment 1: Dynamic Emergency Exit Floor Lighting

Independent Variable Levels

Crowd density (1) Low, (2) Medium, (3) High
Environmental familiarity (1) 0%, (2) 100%

Emergency lighting (1) On, (2) Off

Experiment 2: Staff at Exits

Independent Variable Levels

Crowd density (1) Low, (2) Medium, (3) High
Environmental familiarity (1) 0%, (2) 100%

Number of staff at exits (1) 0, (2) 1, (3), 2, (4), 3

Experiment 3: Public Announcements

Independent Variable Levels

Crowd density (1) Low, (2) Medium, (3) High

English Proficiency
(1) 100% from Anglo cluster (95.39% EP), (2) 100% from Eastern Europe
cluster (16.28% EP), (3) 50% Anglo and 50% Eastern Europe, (4) 9.09%

from each of the eleven clusters (even mix)
Notes. Number of simulation runs: Experiment 1: 3 × 2 × 2 × 60 = 720 simulation runs; Experiment 2:
3 × 2 × 4 × 60 = 1440 simulation runs; Experiment 3: 3 × 4 × 60 = 720 simulation runs.
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