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Reducing fuel consumption and related emissions through optimal sizing of 
energy storage systems for diesel-electric trains 

Marko Kapetanović a,*, Alfredo Núñez b, Niels van Oort a, Rob M.P. Goverde a 

a Department of Transport and Planning, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, the Netherlands 
b Section of Railway Engineering, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, the Netherlands   

H I G H L I G H T S  

• Optimal Lithium-ion battery sizing for hybrid diesel-electric train is presented. 
• Bi-level optimization approach integrates optimal sizing and control levels. 
• Two energy management strategies are developed and compared. 
• Trade-off between fuel savings and hybridization cost is analyzed. 
• Fuel savings and CO2 emissions reduction of up to 34.5% is obtained.  

A R T I C L E  I N F O   
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Hybridization cost 

A B S T R A C T   

Hybridization of diesel multiple unit railway vehicles is an effective approach to reduce fuel consumption and 
related emissions in regional non-electrified networks. This paper is part of a bigger project realized in collab
oration with Arriva, the largest regional railway undertaking in the Netherlands, to identify optimal solutions in 
improving trains’ energy and environmental performance. A significant problem in vehicle hybridization is 
determining the optimal size for the energy storage system, while incorporating an energy management strategy 
as well as technical and operational requirements. With the primary requirement imposed by the railway un
dertaking to achieve emission-free and noise-free operation within railway stations, we formalize this as a bi- 
level multi-objective optimization problem, including vehicle performance, the trade-off between fuel savings 
and hybridization cost, influence of the energy management strategy, and other constraints. By deriving a Li-ion 
battery parameters at the cell level, a nested coordination framework is employed, where a brute force search 
finds the optimal battery size using dynamic programming for full controller optimization for each feasible so
lution. In this way, the global minimum for fuel consumption for each battery configuration is achieved. The 
results from a Dutch case study demonstrated fuel savings and CO2 emission reduction of more than 34% 
compared to a standard vehicle. Additionally, benefits in terms of local pollutants (NOx and PM) emissions are 
observed. Using an alternative sub-optimal rule-based control demonstrated a significant impact of the energy 
management on the results, reflected in higher fuel consumption and increased battery size together with cor
responding costs.   

1. Introduction 

Air pollution is of great concern in politics, the scientific community, 
industry, and society in general. The global warming effect caused by 
greenhouse gasses (GHG) and especially carbon dioxide (CO2) emissions 
from anthropogenic sources led to various international treaties, such as 

the Kyoto Protocol [1] and the follow-up Paris Agreement [2], resulting 
in recommendations and defined targets to reduce the emissions. 
Particularly, the transport sector is one of the most significant contrib
utors to GHG emissions and therefore targets have been defined for 
transportation systems at all levels. In the case of the railway sector, 
targets were set in 2008 by the International Union of Railways (UIC) 
and the Community of European Railway and Infrastructure Companies 
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Nomenclature 

Abbreviations 
AC alternating current 
ATS after-treatment system 
BEMU battery-electric multiple unit 
CER Community of European Railway and Infrastructure 

Companies 
CO2 carbon dioxide 
DC direct current 
DE diesel-electric 
DHD diesel-hydrodynamic 
DHM diesel-hydromechanic 
DLC double layer capacitor 
DMU diesel multiple unit 
DP dynamic programming 
DPF diesel particulate filter 
EFCM equivalent fuel consumption minimization 
EGR exhaust gas recirculation 
EM electric motor 
EMR energetic macroscopic representation 
EMS energy management strategy 
EMU electric multiple unit 
EoL end-of-life 
ESS energy storage system 
EV electric vehicle 
FCMU fuel cell multiple unit 
G generator 
GHG greenhouse gasses 
ICE internal combustion engine 
NOx nitrogen oxides 
NRMM Non-Road Mobile Machinery 
PM particle matter 
RB rule-based 
RU railway undertaking 
SCR selective catalytic reduction 
sLFP super Lithium Iron Phosphate 
SoC state-of-charge 
UIC International Union of Railways 

Subscripts/indexes 
i state-of-charge index, i ∈ {1,⋯, I}
j control variable index, j ∈ {1,⋯,M}

k time index, k ∈ {0,⋯,K}

Parameters 
amax maximum acceleration 

[
m/s2]

amin maximum deceleration 
[
m/s2]

Ccell,nom nominal capacity of battery cell [As]
dw wheel diameter [m]

Eelaux,stop,max maximum energy required for supplying electrical 
auxiliaries during stops [Ws]

Ecell,max maximum energy of battery cell [Ws]
g gravitational acceleration 

[
m/s2]

iag constant gear ratio [-]
mcell mass of battery cell [kg]
mESS,max maximum allowed battery mass [kg]
mpax total weight of passengers [kg]
mtare empty vehicle mass [kg]
mv total vehicle mass [kg]
Pcell,cont,ch maximum continuous charging power of battery cell [W]

Pcell,cont,dch maximum continuous discharging power of battery cell 
[W]

Pelaux electrical auxiliaries power [W]

PEM,max electric motor maximum power [W]

PICE,max scaled internal combustion engine maximum power [W]

PICE,max0 original internal combustion engine maximum power used 
in scaling [W]

pmaux ratio of the internal combustion engine output power used 
for mechanical auxiliaries [-]

Rcell internal resistance of battery cell [Ω]

Rcell,ch internal battery cell resistance during charging [Ω]

Rcell,dch internal battery cell resistance during discharging [Ω]

r0 Davis equation coefficient (constant term) [N]

r1 Davis equation coefficient (linear term) [N/(m/s) ]

r2 Davis equation coefficient (quadratic term) 
[
N/(m/s)2

]

Sv vehicle cross-sectional surface 
[
m2]

T total trip duration [s]
TEM,max maximum torque of the electric motor [Nm]

TG,max maximum torque of the generator [Nm]

Ucell,max maximum voltage of battery cell [V]
Ucell,min minimum voltage of battery cell [V]
vmax maximum velocity [m/s]
εCO2 CO2 emission factor [kg/l]
ηag axle gear efficiency [-]
λ rotating mass factor [-]
ρ fuel density [kg/l]
σmax maximum battery state-of-charge [-]
σmin minimum battery state-of-charge [-]
σmin,run battery state-of-charge lower limit during motion [-]
σmin,stop battery state-of-charge lower limit during stops [-]
σnom nominal battery state-of-charge [-]
ωEM,max maximum rotational speed of the electrical motor [rad/s]
ωG,max maximum rotational speed of the generator [rad/s]
ωw,max maximum rotational speed of the wheel [rad/s]

Dynamic variables 
a vehicle acceleration 

[
m/s2]

B total fuel consumption [l]
B* optimal cost-to-go 
Bπ total cost-to-go of applying control policy π 
CESS,nom battery nominal capacity [As]
C0 Willans lines approximation coefficient [kg (Ws)− 1] 
C1 Willans lines approximation coefficient [kg (Ws) − 1 (Nm) 

− 1] 
C2 Willans lines approximation coefficient [kg (Ws) − 1 (Nm) 

− 2] 
ECO2 total CO2 emissions [kg]
ENOx total NOx emissions [kg]
EPM total PM emissions [kg]
fk transition cost function fk defined as the fuel consumption 

during one step 
fK terminal cost function for the resulting state in the last 

stage of the horizon 
Fw tractive/braking effort at the wheel [N]

Icell battery cell current [A]
IESS battery current [A]
J objective function (weighted sum of fuel consumption and 

hybridization cost) [-]
J1 lowest possible fuel consumption [l]
Jnom

1 nominal (largest possible) value of J1[l]
J2 hybridization cost [EUR]
Jnom

2 nominal (largest possible) value of J2[EUR]
lt tunnel length [m]

nESS battery size, nESS =
[
npar nser

]

n*
ESS optimal battery size 

Nfeasible
ESS set of feasible battery sizes, Nfeasible

ESS =
[
npar nser

]S
∈ Z2 ×
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(CER). A short-term target is to decrease specific average CO2 emissions 
by 2020 by 30% compared to the 1990 base year level. Medium and 
long-term targets are further decreased by 50% in 2030, and carbon-free 
train operation by 2050 [3]. Additionally, local pollutants such as ni
trogen oxides (NOx) and particle matter (PM) gained increasing atten
tion in the railway community over recent years. This is mainly due to 
the introduction of the EU Non-Road Mobile Machinery (NRMM) 
Directive in 2016 to diesel rail vehicles and the application of the Stage 
IIIB emission limits. Addressing the limits of local pollutants raises sig
nificant challenges such as new considerations of vehicle design and 
manufacturing, reliability of new equipment in terms of produced 
emissions, and new assessments of life cycle costs, including explicitly 
the effects of emissions [4]. 

Emerging automotive powertrain technologies for electric vehicles 
(EVs) are considered as a viable solution in reducing environmental 
footprints from the predominant road transport sector [5]. Continuous 
advancements on propulsion systems for EVs offer flexible design, 
improved vehicle performance and safety [6]. For the railway sector, 
synergetic electrification of railway lines [7,8] and an increase of 
renewable sources in electricity production [9] is recognized as one of 
the most effective measures in improving energy efficiency and reducing 
GHG emissions. The share of electrified versus non-electrified railway 
lines has increased from less than 30% in 1975 to up to more than 60% 
in 2008 in the EU-28 countries. However, this share remained relatively 
constant over the years 2008–2015 [10]. High capital investments 
[11,12] with the significant environmental impact of the electrification 
process [13] and the emergence of new traction options for railways 
such as alternative fuels [14] and hybrid propulsion systems [15,16], 
indicate that non-electrified railways will continue to play an essential 
role in passengers transport. Hence, there is a constant need to improve 
their performance in terms of energy efficiency, fuel consumption, and 
emissions. This especially concerns regional railway networks that are 
often characterized by non-electrified lines due to high investments 
required for electrification and a low transport demand (low utilization) 
compared to the main corridors. 

Several emission-free alternatives to diesel multiple units (DMU), as 
predominant vehicles employed in non-electrified regional transport, 
are being developed in recent years. Battery-electric multiple units 
(BEMU) and fuel cell multiple units (FCMU) are identified as suitable 
long-term solutions [17]. However, existing limitations related to the 
range, flexibility, supporting infrastructure requirements, as well as 
techno-economic immaturity of these technologies [18], stipulate 
further development and exploitation of internal combustion engines 
(ICE). Beatrice et al. [19] analyzed a number of emerging ICE technol
ogies and exhaust after-treatment systems (ATS) for on-road heavy-duty 
ICEs that are transferable to the rail sector. The results indicate the great 
potential of waste heat recovery in improving ICE fuel efficiency. 
Moreover, combining different ATSs, such as exhaust gas recirculation 
(EGR), diesel particulate filter (DPF), and selective catalytic reduction 
(SCR) technologies, can contribute in meeting the most stringent emis
sion requirements imposed for the rail sector [20]. 

Since previous technologies relate mainly to the introduction of new 
rolling stock, and having in mind the long cycle life of DMUs reaching up 
to 30 years, transport companies are seeking suitable transition solu
tions towards emission-free operation, mainly through improving en
ergy efficiency. As identified in [21], the reduction of energy 
consumption from railway operation can be achieved in several ways: 
more energy-efficient rolling stock, minimizing energy consumption of 
auxiliary systems during stabling periods, optimization of the rolling 
stock deployment based on capacity and demand, energy-efficient 
timetabling and energy-efficient train control. This paper focuses on 
the first two options, in particular on the assessment of potential fuel 
savings and emissions reduction from hybridization of existing DMU 
vehicles, that would enable the utilization of regenerated energy, as well 
as (partial or temporal) electrification of auxiliary systems. Several 
hybrid railway vehicles from major manufacturers (e.g. Siemens [22], 
Hitachi [23,24], Alstom [25,26]) being tested or already in service, as 
well as European research projects (e.g. ULEV-TAP 2 [27], CleanER-D 
[28], DfTRG/0078/2007 [29,30]), have demonstrated significant ben
efits reflected in fuel savings up to ~40%, depending on the technology 

ZS 

npar number of battery parallel branches 
n*

par optimal number of battery parallel branches 
nser number of battery cells per branch 
n*

ser optimal number of battery cells per branch 
PDC total requested electrical power at the DC link [W]

PEM electrical power of the electric motor [W]

PG mechanical input power of the generator [W]

PICE mechanical output power of the internal combustion 
engine [W]

PICE,G electrical output power of the generator [W]

R total resistances [N]

Rc curve resistances [N]

RESS battery internal resistance [Ω]

Rg grade resistances [N]

Rl line resistances [N]

Rt tunnel resistances [N]

Rv vehicle resistances [N]

s distance traveled [m]

SICE scaling factor [-]
St tunnel cross-sectional surface 

[
m2]

t time [s]
tk discretized time variable, tk ∈ {t0,⋯, tK}[s]
TEM torque at the mechanical output of the electric motor [Nm]

TG torque at the mechanical input of the generator [Nm]

Tw torque at the wheel [Nm]

Ucell battery cell terminal voltage [V]

UESS battery terminal voltage [V]
UESS,max maxium battery terminal voltage [V]
UESS,min minimum battery terminal voltage [V]
UOC battery open circuit voltage [V]
UOC,cell battery cell open-circuit voltage [V]
v vehicle velocity [m/s]
x control variable, x ∈ [− 1,1]
xj discretized values of the control variable, xj ∈ {x1,⋯, xM}

α weight representing preference towards lower 
hybridization cost over lower fuel consumption, α ∈ [0, 1]

γ track gradient [rad]
εNOx NOx emission rate [kg/s]
εPM PM emission rate [kg/s]
ηEM efficiency of the electric motor [-]
ηG efficiency of the generator [-]
π control policy, π = {x(σ(tk), tk )|k ={0,⋯,K − 1} }
π* optimal control policy 
σ battery state-of-charge, σ ∈ [σmin, σmax][-]
σi discretized values of the state variable, σi ∈ {σ1,⋯, σI}[-]
σi,j resulting state obtained by applying the control variable xj 

to the state σi 
ϕ track curve radius [m]

ψ specific fuel consumption [kg/Ws]
ωEM rotational speed of the electric motor [rad/s]
ωICE rotational speed of the internal combustion engine [rad/s]
ωw rotational speed of the wheel [rad/s]
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and operational characteristics. 
Focusing on a case study of regional railway services provided by 

Arriva on the Northern lines in the Netherlands, this paper proposes an 
integrated optimization of energy storage system (ESS) size and energy 
management strategy (EMS), considering conventional DMU vehicles 
from the Dutch network converted to their hybrid counterpart. The 
primary requirement for the hybridization defined by the railway un
dertaking (RU) is achieving emission-free and noise-free operation 
within railway stations by switching off diesel engines and powering 
auxiliary systems solely by ESS. This especially concerns terminal sta
tions, characterized by extended stabling periods. Expected benefits are 
reflected in total fuel consumption reduction by utilizing brake energy, 
an increase of overall ICE efficiency by avoiding low load engine oper
ation, and support for the ICE during high-power demand (acceleration) 
phases. 

1.1. Related work 

The reduction of fuel consumption and related emissions of DMUs 
can be achieved by their hybridization, i.e., by adding an on-board ESS. 
In this section, we review the literature on rail vehicle hybridization, 
focusing primarily on passenger diesel-driven vehicles. We will not 
consider freight locomotives as they represent a different use case, nor 
catenary-fed vehicles (e.g., trams, electric multiple-units – EMUs) since 
they are not per definition hybrid vehicles [31]. For a comprehensive 
overview of different measures for energy consumption reduction in the 
case of urban rail transportation, readers are referred to [32]. An 
overview focusing on strategies and ESS technologies for optimal 
regenerative braking usage in urban rail transportation systems can be 
found in [33]. We analyze the literature covering the main hybridization 
aspects, starting from the modeling approaches for hybrid propulsion 
systems and further investigating different design levels. 

Reliable mathematical and simulation models are required to assess 
potential benefits from hybridization in terms of fuel savings and 
emissions reduction. Widely used models that can support the assess
ment of environmental impact in railway operations, such as ARTEMIS 
[34], EcoTransit [35], or EcoPasssenger [36], calculate the fuel con
sumption and emissions based on mechanical energy using mostly one- 
lumped efficiency and fixed fuel consumption and emission factors. 
These models provide predictions for conventional railway vehicles. The 
case of hybrid vehicles requires more detailed models that include in
dividual components of the powertrain and their interactions. Hybrid 
vehicle models based on physical relations between the components of 
the system can be divided into two categories: forward and backward 
models [37–39]. Forward simulation models follow the physical power 
flow in the powertrain, starting from the engine, and then to the 
transmitted and reflected torque to the wheels. They offer realistic 
control-oriented modeling by capturing driver input/speed control; 
however, they are usually very complex and characterized by slow 
execution time and high computer memory. Backward simulation 
models consider the reverse power flow by computing the tractive 
contribution required at the wheels and the order of evaluating the 
system components backward through the system towards the engine, 
offering a reliable evaluation of vehicle energy consumption based on 
drive cycle and detailed vehicle-specific data available beforehand. 
They are also characterized by fast execution times compared to the 
forward models [39–41]. Depending on the aim of the study, data 
availability, and the purpose of the simulation model, the adequate type 
should be selected. Regarding the hybrid DMU railway vehicles, a for
ward simulation approach is usually used in assessing the potential fuel 
savings for different driving strategies and styles [42], while backward 
simulations are performed using mostly typical speed profiles and duty 
cycles, c.f. [43–47]. In addition to the previous physical models, the 
energetic macroscopic representation (EMR) is an effective graphical 
modeling approach in the systemic description of complex propulsion 
systems [48]. A recent study [49] demonstrated the effectiveness of 

using EMR in reverse engineering of railway vehicles to describe power 
flows behavior and deriving models for the key propulsion system 
components, disregarding in-depth knowledge of the train energetic 
devices and sub-systems. It can be particularly useful in case of lack of 
detailed vehicle-specific parameters due to, e.g. confidentiality aspects 
or sub-systems provided by subcontractors, by fitting the energetic 
behavior of the vehicle with the available test data [50]. Furthermore, 
the approach can be successfully exploited to perform model-based 
development of suitable energy management strategies [51]. 

Vehicles hybridization can be considered a multi-objective design 
optimization problem, with multiple parameters distributed over mul
tiple levels (topology, technology, size, and control). When this opti
mization problem is solved sequentially (level by level), it is by 
definition sub-optimal due to coupled dynamic parameters and non- 
linear effects [52]. In the case of DMU vehicles, topology level refers 
to the system architecture in terms of the type of the propulsion system, 
i.e., diesel-electric (DE), diesel-hydrodynamic (DHD), or diesel- 
hydromechanical (DHM) [53], which directly influences the way the 
ESS can be integrated into the system. Comparative assessment of the 
three propulsion systems in terms of integrating different ESS technol
ogies, both mechanical and electrical [16], indicated that DE systems 
lead to fewer additional physical components for ESS integration. 
Compared to the DHD and DHM, the DE system enables relatively simple 
hybridization by adding a proper ESS directly into the electric power 
transmission system [54]. Since the electric transmission is the only 
system currently in use on the Northern lines, we limit the analysis to 
only this particular case in this paper. 

The selection of suitable ESS technology is the next step in the DMU 
hybridization process. Different ESS technologies have emerged in the 
transport sector for brake energy harvesting [55]. For railway applica
tions, three technologies are being found to be especially suited: batte
ries, double-layer capacitors (DLCs), and flywheels [56]. Due to their 
high energy density (energy per unit of mass), rapid technology devel
opment and increasing availability on the market, Li-ion batteries are 
the most represented ESS technology in hybrid DMU-related literature 
[15]. Compared to Li-ion batteries, DLCs are characterized by both low 
energy density and high power density. This makes DLCs suitable in 
applications aimed at high peak power shaving and maximizing the 
utilization of regenerative braking energy. Although flywheels offer a 
number of advantages reflected in fast charging and discharging pro
cesses and long life cycle, several drawbacks hinder their extensive use 
in railway applications, related primarily to safety issues, relatively high 
weight, and high self-discharge rates [33]. In particular cases, 
combining the advantages of different technologies, typically Li-ion 
battery and DLC, in a single hybrid ESS, can bring additional benefits 
compared to a single-technology ESS [47,57]. Considering the main 
hybridization requirement in our case – emissions-free and noise-free 
operation within station areas, characterized by low power demand 
and high energy required, which sums up over time, Li-ion batteries are 
considered by the RU as the most suitable ESS technology. 

While topology and ESS technology choices in the DMU hybridiza
tion process are mainly conditioned to the available DMU fleet and main 
hybridization requirements, thus making these decisions relatively easy, 
optimal sizing and control of the ESS are complex tasks, which are in 
most cases treated separately. Taking into account that oversizing of the 
ESS might unnecessarily increase total ESS mass and volume, as well as 
total costs, whereas an undersized ESS might lead to considerable energy 
waste, a detailed analysis is needed to determine an optimal design, 
while the sizing method depends upon its main function [33]. In 
particular, a different approach is required if the main intended function 
of the ESS is, for instance, supporting auxiliaries during stabling periods, 
maximizing utilization of braking energy, or converting a DMU to a 
catenary-free EMU. The need for co-design, i.e. integrating the two 
design optimization levels, has been addressed in hybridization-related 
literature in general [58], confirming the importance of co-optimization 
in achieving the best configurations. A recent study [59] proposed an 
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advanced co-optimization method for fuel cell hybrid vehicles. The two 
aspects addressed by this co-optimization method are the design of the 
powertrain affecting the sizing of the system components, and the 
control of such systems affecting the performance of the system, leading 
to a trade-off between performance and system sizing. Determination of 
the component sizing for the fuel cell-battery hybrid energy system for a 
locomotive application is presented in [60], with the influence of the 
EMS on the primary design problem addressed by incorporating the two 
rule-based controls in the optimization framework using particle swarm 
optimization. Furthermore, adopting the previous approach in [61], the 
authors provide a set of alternative solutions with different component 
sizes, from which a planner can select a solution according to its capital 
and operational expenditure budgets. Although strong interdependence 
between the optimal ESS sizing and control levels has been widely 
recognized and established, most of the studies on hybrid DMU railway 
vehicles focus only on the optimal control, assuming ESS size given 
beforehand, or roughly estimated before determining the optimal EMS. 
As a rare example, simultaneous optimization of hybrid ESS (Li-ion 
battery and DLC) size and energy management strategy for a DE railway 
vehicle is presented in [47]. The authors used the frequency manage
ment approach based on a low-pass filter coupled with dynamic pro
gramming as the optimal control method. The existence of multiple ESS 
technologies, and the solution approach that considers approximations 
of mixed-integer and discontinuous variables, in this case, raised sig
nificant challenges in terms of computation time and errors. 

Optimal control strategies aim at minimizing the fuel and/or energy 
consumption by managing the power flows of different energy sources in 
place (e.g., ICE and ESS), in particular by determining the optimal 
moments for charging/discharging the ESS. The control strategies can be 
classified into three general groups [62]: dynamic programming (DP), 
rule-based (RB) approaches, and methods based on the equivalent fuel 
consumption minimization (EFCM). Additionally, from the computa
tional complexity and practical applicability perspective, they can be 
grouped in off-line and on-line approaches. DP is a widely used global 
optimization method for off-line controller optimization in DMU vehi
cles. Assuming an ideal case, i.e. perfect information on the future duty 
cycle, DP is used in obtaining fuel-optimal (combined) driving and en
ergy management strategy in [44]. Using a simplified version of the EMR 
model from [49], a DP-based optimization of EMS for a regional train 
hybridized with Li-ion battery is proposed in [63]. The comparative 
assessment for three different degrees of hybridization (battery size) and 
two realistic mission profiles for a regional railway route indicated po
tential fuel savings reaching a significant level up to 18%. Control 
strategies based on DP typically serve as a benchmark for evaluating 
other (real-time) algorithms. Such an algorithm based on a sensitivity 
analysis and bisection method for a DMU equipped with a Li-ion battery 
is presented in [43], showing promising benefits in performance and 
especially computational cost compared to the DP method. The same 
algorithm is used in [45], with the analysis extended to DLC as alter
native ESS technology. DP is also used as a benchmark in finding optimal 
dispatch (power distribution between ICEs) strategies [64,65], with fuel 
savings up to 7% compared to typical operation. In RB algorithms, 
event-triggered Boolean rules are derived from, for instance, heuristics 
or fuzzy rules based on experts’ knowledge [46]. Due to their easy 
implementation and low computational times, these algorithms have 
been widely used in on-line ESS control applications [57,66]. However, 
unlike DP-based control, they cannot guarantee optimality. EFCM 
method is based on the conversion of electrical power into equivalent 
fuel consumption. Compared to RB approaches, it offers an explicit 
formulation of the optimization problem to minimize the instantaneous 
equivalent fuel consumption using equivalence factors. It is mostly 
combined with the optimization approaches such as DP and predictive 
control in defining causal controllers, where the supporting optimiza
tion techniques are used for defining the control reference values. EFCM 
as an on-line causal control is implemented in Siemens LMS Imagine.Lab 
Amesim simulation software used for the performance assessment of 

hybrid DMUs with DE and DHM propulsion system, hybridized with Li- 
ion battery, DLC, or flywheel as ESS in [42]. 

Although the scientific literature on DMUs hybridization provides 
established models and comprehensive analyses of different hybrid 
system configurations and operational conditions, literature regarding 
the optimal sizing of ESS is rather scarce. The literature focuses pri
marily on the optimal control of the ESS with its size and configuration 
given beforehand or roughly estimated based on some main criteria, 
such as maximization of expected recuperated energy or electrification 
of auxiliaries, while neglecting the influence of the control strategy in 
place on the optimal size of the ESS. Studies in the automotive industry 
summarized in a recent review [52] have shown that by integrating 
these optimization levels, fuel-consumption benefits are obtained, 
which go beyond the results achieved with solely optimal control for a 
given topology. Additionally, practical and/or detailed implementations 
on real-life cases will face additional challenges reflected in consider
ation of numerous operational constraints and requirements, as well as 
in detailed data availability. 

1.2. Paper contribution 

In this paper, we propose a method to support the conversion deci
sion of standard DMU vehicles to their hybrid counterpart by incorpo
rating an optimally sized Li-ion battery-based ESS, while taking into 
account the trade-off between lower fuel consumption and hybridization 
cost. Using a detailed DMU powertrain simulation model, we then 
conduct the comparative assessment of fuel consumption and produced 
emissions of conventional and hybrid DMU vehicles. The presented 
research is part of a bigger project realized in collaboration with Arriva, 
the largest regional RU in the Netherlands. The results of this research 
will be used by the RU in the planning of future rolling stock and 
operations. 

Based on the knowledge gaps presented in Section 1.1, the following 
are defined as the contribution of this paper:  

1) A bi-level multi-objective optimization approach for determining the 
optimal size for the battery-based ESS by integrating the ESS sizing 
and control optimization levels, while at the same time incorporating 
emission-free and noise-free operation in stations in the problem 
formulation.  

2) Two different power flow controls: (i) a non-causal optimal control 
based on dynamic programming that yields the absolute largest po
tential in fuel consumption reduction and global optimum for the 
primary optimization problem, and (ii) a causal sub-optimal rule- 
based control for emission-free and noise-free operation in stations 
and prolonged battery life by preventing frequent switches in 
charging/discharging cycles.  

3) Application of the proposed method in a case study of two-coach 
DMU vehicles operating on a regional non-electrified railway 
network in the Netherlands, demonstrating potential benefits in 
terms of fuel savings and hybridization costs. 

The paper is organized as follows. Section 2 presents the modeling of 
a hybrid DMU vehicle. The mathematical formulation of a bi-level 
optimization problem is given in Section 3. The application of the pro
posed methodology on a Dutch case study is provided in Section 4, 
followed by the discussion in Section 5. Section 6 concludes this paper 
with final remarks and future research directions. 

2. Modeling of standard and hybrid DMU 

The powertrain of standard diesel-electric multiple units consists of 
an internal combustion engine (ICE) directly connected to an AC electric 
generator (G), which is further connected via the rectifier and inverter to 
an AC electric motor (EM) located on the driveshaft. In the case of 
braking, the EM acts as the generator. The ICE supplies the mechanical 
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auxiliaries (e.g., hydraulic pump), while the electrical auxiliaries are 
connected to the existing DC link via a DC/AC inverter. The braking 
energy is, in this case, dissipated through the resistor, which is con
nected to the DC link via a DC/DC converter. Hybridization of diesel- 
electric DMU can be achieved by adding the appropriate ESS on the 
DC link, as shown in Fig. 1. 

Compared to road transport, or even to railway freight transport, 
railway passenger transport is characterized by fixed routes with pre
determined stops and timetables, which also enable forecasts of typical 
driving behavior, speed profiles and duty cycles. Since the main aim of 
this paper is the analysis of the powertrain dynamics under typical 
operation conditions, rather than to assess the impact of different 
driving styles and traffic conditions, a backward quasi-static simulation 
approach [45,67] is adopted, following the system architecture shown 
in Fig. 1. The simulation model is developed with the MATLAB®/ 
Simulink© tool and OPEUS Simulink library [68]. In Fig. 2, the simu
lation structure following the system architecture from Fig. 1 is depic
ted, where the individual blocks represent the components of the model 
for the hybrid system. Corresponding to the backward simulation 
approach, the inputs of the simulation model are the DMU vehicle ve
locity and track geometry profiles, and the outputs are total fuel con
sumption with related emissions and ESS state-of-charge (SoC). The 
arrows indicate the numerical evaluation order of the model compo
nents, opposed to the direction of the physical power flow. 

The following sub-sections provide the description of the compo
nents of the simulation model in Fig. 2, following the order of their 
numerical evaluation. For simplicity, the converters are assumed to have 
high constant efficiency; thus, their dynamics are not captured with this 
model. It is also assumed that electrical auxiliaries are characterized by a 
constant power demand Pelaux[W]. According to the control strategy 
implemented in the control unit, the total requested power for tracking 
the duty cycle is distributed between the ICE and the ESS (see Sections 
3.2 and 4.3.3). A rheostat is used for converting the excess braking en
ergy into heat, and it is used to keep the balance of energy in the model. 

2.1. Vehicle 

For the longitudinal vehicle dynamics, the tractive or braking effort 
at the wheel Fw[N] can be expressed as 

Fw(v(t) ) = mv⋅a(t) + Rv(v(t) ) + Rg(γ(s(t) ) ) + Rc(ϕ(s(t) ) ) + Rt(lt(s(t) ), v(t) )

with

Rv(v(t) ) = r0 + r1⋅v + r2⋅v2

Rg(γ(s(t) ) ) = mv⋅g⋅sin(γ)

Rc(ϕ(s(t) ) ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

mv⋅0.03 if ϕ < 272m

mv⋅
6.5

ϕ − 55
if ​ 272m ≤ ϕ < 2000m

0 if ϕ ≥ 2000m,

Rt(lt(s(t) ), v(t) ) = 5⋅
lt

St/Sv − 1
⋅(0.036⋅v)2

,

(1)  

where t[s] is the time; v[m/s] is the vehicle velocity; s[m] is the distance 

traveled pre-calculated as s =
∫t

0
v(τ)dτ; a

[
m/s2] is the acceleration pre- 

calculated as the derivative of vehicle velocity to time, i.e., a = dv/dt; 
mv[kg] denotes the total mass of the vehicle which takes into account the 
rotary inertia of the powertrain and the passengers weight, i.e. mv = (1+

λ)⋅mtare + mpax, with λ denoting the dimensionless rotating mass factor, 
mtare[kg] the vehicle tare weight, and mpax[kg] the total weight of pas
sengers; Rv[N] represents the vehicle resistances during motion, 
including roll resistance and air resistance, modeled as a quadratic 
function of the vehicle velocity using the Davis equation [69,70], where 

non-negative coefficients r0[N], r1[N/(m/s) ] and r2

[
N/(m/s)2

]
are tuned 

based on the characteristics of the vehicle; Rg[N] is the grade resistance, 
with g = 9.81

[
m/s2] representing the gravitational acceleration, and 

γ[rad] the track gradient [71]; Rc[N] denotes the curve resistance which 
depends on the radius of the curve ϕ[m], calculated using the approach 
of Hamburger Hochbahn AG [72] adopted by a number of European 
railways, and with these resistances set to zero for curves with radius 
higher than 2000 m; and Rt[N] is the tunnel resistance which depends on 
the vehicle cross-sectional surface Sv

[
m2], tunnel length lt[m] and tunnel 

cross-sectional surface St
[
m2] [73,74], and with its value equal to zero 

for the tracks outside the tunnels. 
Depending on the wheel diameter dw[m] and the train speed v, the 

torque at the wheel Tw[Nm] and the rotational speed of the wheel 
ωw[rad/s] can be calculated as [45] 

Tw = Fw⋅
dw

2
(2)  

ωw = 2⋅
v

dw
. (3)  

2.2. Axle gear 

The axle gear transmits the power from the shaft to the wheels. With 
the constant gear ratio iag, the torque TEM[Nm] and the rotational speed 
ωEM[rad/s] at the mechanical input of the axle gear can be computed by 
[45] 

TEM =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Tw

iag⋅ηag
if Tw ≥ 0

Tw⋅ηag

iag
if Tw < 0

(4)  

ωEM = ωw⋅iag, (5)  

where ηag represents the efficiency of the gearbox, assumed to be con
stant. 

2.3. Electric motor 

The electric motor drive (EM) represents an induction machine, used 
either as a traction motor to move the train or as electro-dynamic brakes 
(generator mode), enabling the recuperation of the braking energy. 
Depending on the direction of the power flow (motor or generator 
operation mode), the electric power of the electric motor PEM[W] can be 
computed by [45] 

PEM =

⎧
⎨

⎩

TEM⋅ωEM

ηEM
if TEM ≥ 0

TEM⋅ωEM⋅ηEM if TEM < 0,
(6) 

Fig. 1. Simplified schematic representation of hybrid system architecture for 
diesel-electric multiple unit. 

M. Kapetanović et al.                                                                                                                                                                                                                          



Applied Energy 294 (2021) 117018

7

where the efficiency ηEM = fEM(TEM,ωEM) is determined by a linear 2D- 
interpolation in the efficiency map of the EM. 

2.4. Internal combustion engine – Electric generator set 

The ICE, which is directly connected to the electric generator (G), is 
the primary traction source of the system architecture. The main output 
of the simulation model is the fuel consumption of the ICE, predicted by 
a measured static map. In the simulation model, the optimal ICE rota
tional speed ωICE[rad/s] is pre-calculated using the Nelder-Mead simplex 
method [75] for different possible levels of requested power and 
considering the generator’s efficiency, mechanical auxiliaries power, 
and ICE specific fuel consumption. Physical separation of ICE-G set from 
the EM by a DC link enables the optimal working speed of the ICE for the 
requested power, irrespectively of the EM speed. With the given 
requested power PICE,G[W], which represents the electrical output power 
of the generator, the mechanical input power of the generator PG[W] is 
computed by 

PG = TG⋅ωICE =
PICE,G

ηG
, (7)  

with the efficiency ηG = fG(TG,ωG) determined by a linear 2D-interpola
tion in the efficiency map of the generator. Note that in the case of a 
standard DMU vehicle, the output power of the generator is equal to the 
total requested power for traction and powering electrical auxiliaries, i. 
e. PICE,G(t) = PEM(t)+ Pelaux, while in the case of a hybrid DMU it de
pends on the power split ratio between the two power sources, i.e. ICE-G 
set and ESS (see below). The mechanical auxiliaries power in this paper 
is assumed to be directly proportional to the ICE output power. With 
pmaux representing a constant ratio of the ICE output power used for the 
mechanical auxiliaries, the total demanded power from the ICE PICE[W]

is calculated by 

PICE(t) =
PG(t)

(1 − pmaux)
. (8) 

With the obtained simulation inputs, the angular velocity ωICE, and 
the requested ICE power PICE, the specific fuel consumption ψ = ff(PICE,

ωICE)[kg/Ws] is computed using a 2D-interpolation of the static engine 
map. The total fuel consumption B[l], from time instant 0 to t, for the ICE 
becomes [45]: 

B(t) =
∫t

0

PICE(t)⋅ψ(τ)
ρ dτ, (9)  

where ρ[kg/l] denotes the density of the fuel. In addition to the total fuel 
consumption, the produced emissions are included as additional per
formance indicators. The CO2 emissions ECO2[kg] depend on the amount 
and the type of fuel consumed and are calculated as [68] 

ECO2(t) = B(t)⋅εCO2, (10)  

where εCO2[kg/l] represents the CO2 emission factor for the fuel in use. 
The NOx and PM emissions depend on the physical and operational 
characteristics of the engine (i.e., engine technology, angular velocity 
ωICE, and the requested power PICE). These are calculated similarly to the 
total fuel consumption by computing the emissions rate εNOx =

fNOx(PICE,ωICE)[kg/s] and εPM = fPM(PICE,ωICE)[kg/s] using a 2D-interpo
lation of the static engine maps [68] 

ENOx(t) =
∫t

0

εNOx(τ)dτ (11)  

EPM(t) =
∫t

0

εPM(τ)dτ. (12)  

2.5. Energy storage system 

Lithium-ion battery is considered as the ESS in this paper. The 
simplified model of the battery is implemented for the equivalent elec
trical circuit shown in Fig. 3. It consists of a SoC-controled voltage 
source (open circuit voltage) UOC[V] in series with a constant internal 
resistance RESS[Ω], which represents ohmic losses and depends on the 
direction of the ESS current IESS[A] (i.e., whether the battery is being 
charged or discharged). The ESS terminal voltage is denoted as UESS[V]. 

With a given ESS SoC σ ∈ [0, 1], open circuit voltage UOC and an in
ternal resistance RESS, the current charging/discharging the ESS is 
governed by [76] 

IESS(t) =
UOC(σ(t) ) −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

UOC(σ(t) )2
− 4⋅PESS(t)⋅RESS(IESS(t) )

√

2⋅RESS(IESS(t) )
, (13)  

where PESS[W] represents the power profile at the ESS. Note that the 
open-circuit voltage UOC depends on the ESS SoC, and that the internal 

Fig. 2. Structure of the backward-looking simulation model for the hybrid diesel-electric multiple unit propulsion system.  

Fig. 3. Equivalent electrical circuit for the Li-ion battery-based energy stor
age system. 
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resistance depends on the direction of the power flow. With the ESS 
nominal capacity CESS,nom[As], the derivative of SoC to time is given by 

dσ
dt

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

UOC(σ(t) )2
− 4⋅PESS(t)⋅RESS(IESS(t) )

√

− UOC(σ(t) )
2⋅RESS(IESS(t) )⋅CESS,nom

. (14) 

Based on the ESS current, the terminal voltage UESS is given by: 

UESS(t) = UOC(σ(t) ) − RESS(IESS(t) )⋅IESS(t). (15) 

With the ESS parameters (open-circuit voltage, internal resistance 
and nominal capacity) provided at the battery cell level, for the battery 
consisting of npar parallel branches with nser cells in series per branch 
their values at the ESS level can be determined by [45,67] 

UOC = nser⋅UOC,cell (16)  

RESS =
nser

npar
⋅Rcell (17)  

CESS,nom = npar⋅Ccell,nom, (18)  

where UOC,cell, Rcell, and Ccell,nom are the open-circuit voltage, internal 
resistance, and nominal capacity of one cell, respectively. The maximum 
charging/discharging power is limited by the maximum current while 
keeping the limits of the SoC [σmin, σmax] as well as of the battery voltage 
[
UESS,min,UESS,max

]
, with SoC and voltage assessed using (14) and (15), 

respectively. Additionally, to prevent overheating of the battery, the 
maximum charging and discharging power provided by the manufac
turer have to be met. In this paper, the maximum continuous power 
PESS,cont of the battery, which depends on the SoC and power direction (i. 
e., charging or discharging) is defined, thus not allowing short phases 
where power peaks exceed this threshold. 

3. Optimal ESS sizing and control 

This section presents an integrated ESS sizing end control, formalized 
as a bi-level multi-objective optimization problem. Using a nested co
ordination architecture, for each possible ESS size, an optimization of 
the energy management strategy (EMS) is done by dynamic program
ming. In this way, the lowest possible fuel consumption for the given ESS 
configuration (size) is guaranteed and the influence of the EMS choice 
on the primary optimization problem solution is removed. 

3.1. Optimal ESS sizing methodology 

With the battery-based ESS derived at the cell level, as described in 
Section 2, the size of the ESS can be represented with the variable nESS =
[
npar nser

]
, where npar denotes the number of battery parallel branches 

and nser the number of cells per branch. The weighted sum of fuel con
sumption and hybridization cost [77] is used in defining the objective 
function J(nESS) for the primary optimization problem: 

J(nESS) = (1 − α)⋅J1(π*, nESS)

Jnom
1

+ α⋅
J2(nESS)

Jnom
2

, (19)  

with α ∈ [0, 1] representing the assigned weight, J1(π*, nESS) is the lowest 
possible fuel consumption given the parameters nESS and the optimal 
control strategy π* (see below), and J2(nESS) is the total cost of hybrid
ization. The nominal (largest possible) values Jnom

1 and Jnom
2 are used to 

normalize J1(π*, nESS) and J2(nESS), respectively. Specific Li-ion battery 
cost of 200 EUR/kWh is assumed in this paper considering [78], thus 
resulting in the following hybridization cost function: 

J2(nESS) = 0.2⋅npar⋅nser⋅Ccell,nom⋅Ucell,max. (20) 

The objective is finding nESS that minimizes the objective function 
J(nESS) subject to a number of constraints that guarantee a required level 
of performance and satisfy the practical limitations. In this case, 

inequality constraints are set based on the main hybridization re
quirements given in Section 1, and on an additional requirement of the 
sustenance of the battery SoC. SoC sustenance is achieved by including a 
constraint on the equality of battery SoC at the beginning and at the end 
of the duty cycle (see below). This constraint accounts for the vehicle 
circulation according to the periodic timetable, and at the same time, 
allows for a fair comparison with the conventional DMU. The resulting 
constraints are given as follows, 

npar⋅nser⋅Pcell,cont,dch(σnom) ≥ Pelaux (21)  

npar⋅nser⋅
(
Ecell,max(σmax) − Ecell,max(σnom)

)
≥ Eelaux,stop,max (22)  

nser⋅Ucell,min ≥ UESS,min (23)  

nser⋅Ucell,max ≤ UESS,max (24)  

npar⋅nser⋅mcell ≤ mESS,max, (25)  

where Pcell,cont,dch represents the maximum continuous discharging power 
of one cell, σnom is the nominal value for the battery SoC, Ecell,max is the 
maximum energy of one cell, Eelaux,stop,max is the maximum energy 
required for supplying electrical auxiliaries during stops, corresponding 
to the maximum dwell/turnaround time, Ucell,min and Ucell,max are the 
voltage limits of one cell, mcell is the mass of one cell, and mESS,max is the 
maximum allowed mass for the ESS. Constraints (21) and (22) ensure 
that the ESS can provide enough power and energy for supplying elec
trical auxiliaries during stops when the ICE is switched off. Constraints 
(23) and (24) are related to the ESS voltage limits conditioned by, for 
instance, DC link operating voltage, converter characteristics, etc. 
Finally, constraint (25) imposes the maximum allowed ESS mass, con
strained by vehicle axle load limits, required traction performance, etc. 

The parameters n*
ESS =

[
n*

par n*
ser

]
represent the solution of the optimi

zation problem, determined by minimizing the cost function: 

n*
ESS = arg

(

min
nESS

{J(nESS) }

)

(26) 

Deriving ESS at the cell level enables straightforward discretization 
of the search space, compared to the case of continuous decision vari
ables where the choice of the discretization approach influences the 
quality of the solution. Due to a relatively low number of feasible so
lutions, the present approach also allows for the employment of an 
exhaustive (brute force) search algorithm instead of meta-heuristic ap
proaches commonly used in case of continuous decision variables, thus 
guaranteeing to find a global optimum for the given optimization 
problem in a reasonable amount of time. 

3.2. Optimal energy management strategy 

The optimal energy management strategy aims at minimizing the 
total fuel consumption B (and related CO2 emissions ECO2) of the ICE by 
adjusting the power flows at the DC link, in particular by separating the 
total demanded power at the DC link between the ICE-G set and the ESS, 
while at the same time ensuring the sustenance of the ESS SoC, repre
sented by 

σ(T) = σ(0) = σnom, (27)  

where T[s] denotes the total duration of the trip and the final time 
instant. The total demanded power at the DC link PDC represents the sum 
of the required traction power PEM and electrical auxiliaries power Pelaux: 

PDC(t) = PEM(t) + Pelaux. (28) 

In order to determine the optimal operating strategy, a control var
iable x(t) ∈ [ − 1,1] is introduced, representing the split of the total 
requested power PDC(t) between the ICE (via G) and the ESS. Based on 
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the instantaneous values of the control variable x, the total requested 
power PDC, and the vehicle velocity v given as the main simulation 
input, the power flow from the ICE-G set and ESS is given by the 
following equations: 

PICE,G(v,PDC,x)=

⎧
⎨

⎩

(1 − x)⋅Pmax,1+
(
PDC − Pmax,1

)
if v>0,PDC >0,x∈[0,1]

− x⋅Pmax,2+PDC if v>0,PDC >0,x∈[− 1,0)
0 if v=0∨PDC ≤0

(29)  

PESS(v,PDC, x) =

⎧
⎪⎪⎨

⎪⎪⎩

x∙Pmax,1 if v > 0,PDC > 0, x ∈ [0, 1]
x⋅Pmax,2 if v > 0,PDC > 0, x ∈ [− 1, 0)
Pmax,3 if v > 0,PDC ≤ 0
PDC if v = 0,

(30)  

where Pmax,1 = min
{
PDC, PESS,max,dch

}
, Pmax,2 = min

{(
PICE,G,max − PDC

)
, −

PESS,max,ch
}

and Pmax,3 = max
{
PDC,PESS,max,ch

}
, with PESS,max,dch and 

PESS,max,ch denoting the maximum ESS discharging and recuperation 
(charging) power, respectively. In the case of x = 1 and 
PDC ≤ PESS,max,dch, the ESS provides the total requested power PDC (“pure 
electrical mode”), while for x = 0 the total power demand PDC is pro
vided solely by ICE (“pure ICE mode”). The so-called “power boost 
mode,” where the total requested power is provided by ICE and ESS 
together, represents the case of 0 < x < 1 or the case of x = 1 and 
PDC > PESS,max,dch. In “load level increase mode” with negative values of 
x, the ICE provides more than the requested power PDC, where the excess 
power is used for recharging the ESS. Note that during stops (v = 0), the 
ICE is switched off and the ESS provides the total requested power, while 
in case of negative values of total requested power (PDC ≤ 0), the ICE 
operates with no load at idling speed and the ESS is being recharged 
(“recuperation mode”). 

In order to obtain a fuel-optimal operating strategy, the DP approach 
according to Bellman [79] is used, following the methodology presented 
in [45] and [80], and with respect to the current system architecture and 
operation characteristics. First, the continuous optimization problem 
had to be converted into a multi-stage decision process through dis
cretization, allowing for a numerical solution. Time, as an identifier of 
the optimization horizon, is discretized into t ∈ {tk|k = 0,⋯,K} with K 
regular time intervals and discretization interval (step length) equal to 
Δt = (tK − t0)/K = T/K. The state variable is discretized into σ ∈

{σi|i = 1,⋯, I} for each discrete time with I equally distributed values for 
the ESS SoC over the interval [σmin, σmax], and with σ1 = σmin and σI =

σmax. In this way, the discretized state-time space is defined with a fixed 
grid, see Fig. 4. 

The control variable x(σ(tk), tk ) ∈ X =
{
xj|j = 1,⋯,M

}
, applied to 

each state in the given state-time space, is discretized into M equally 
distributed values for the power split ratio over the interval [ − 1,1], 
with x1 = − 1 and xM = 1. 

With given vehicle and ESS parameters, as well as precalculated 
velocity v(tk) and total demanded power PDC(tk) for each time step tk, the 
dynamics of the system are given by 

σ(tk+1) = fσ(σ(tk), x(σ(tk), tk ); v(tk),PDC(tk) ), k = 1,⋯,K − 1, (31)  

with σ(tk+1) representing the resulting state (ESS SoC) one step ahead of 
σ(tk), obtained by applying the control variable x(σ(tk), tk ) to the state 
σ(tk), where the transition function fσ consists of a sequence of equa
tions, i.e., (30) and (14), describing the given evolution from the initial 
to the resulting state. 

Let π = {x(σ(tk), tk )|k ={0,⋯,K − 1} } denote a control policy. 
Further, let the total cost-to-go Bπ(σ(t0) ) of applying π with initial state 
σ(t0) = σnom be 

Bπ(σ(t0) ) =
∑K− 1

k=0
fk(σ(tk), x(σ(tk), tk ); v(tk),PDC(tk) ) + fK(σ(tK) ), (32) 

with the transition cost function fk defined as the fuel consumption 
during one step, when the control variable x(σ(tk), tk ) is applied to the 

state σ(tk), given by the sequence of equations (29), (7)–(9), and 
fK(σ(tK) ) denoting the terminal cost for the resulting state σ(tK) in the 
last stage of the horizon, defined in the way that forces constrained final 
state (27), and given by 

fK(σ(tK) ) =

{
0 if σ(tK) = σ(t0) = σnom
Inf otherwise, (33)  

where Inf is a big number representing the penalty. The objective is to 
find the optimal control policy π* that minimizes the right-hand side of 
(32), i.e., that leads to the optimal total cost-to-goB*(σ(t0) )

Based on the optimality principle [81], the DP algorithm evaluates 
the optimal cost-to-go function B*(σ(tk) ) backwards in time at every 
node of the discretized state-time space σ(tk) ∈ {σi|i = 1,⋯, I}. With the 
remaining minimum costs starting from the state σ(tk+1) up to the final 
stage tK known, the optimization problem can be rewritten as the 
recursion from k = K − 1 down to k = 0, 

B*(σ(tk) ) = min
x(σ(tk ),tk )∈X

{fk(σ(tk), x(σ(tk), tk ); v(tk),PDC(tk) ) + B*(σ(tk+1) ) },

(34)  

where σ(tk+1) is calculated using (31). If the resulting state σ(tk+1) is not 
equal to one of the I discrete values of the state σi, the remaining min
imum costs B*(σ(tk+1) ) are determined by an interpolation between the 
two closest states. 

By backward iteration in time and using (34), the optimal control 
given by an argument that minimizes the right-hand side of (34) for all 
the states in the horizon can be found, with the output of the algorithm 
given in the form of an optimal control map. With the given optimal 
control map, by forward simulation starting from the initial state σ(t0) =
σnom and using (31), the optimal control sequence and the optimal state 
trajectory for the entire horizon can be derived. Since the optimal con
trol in the map is only given for the discrete points in the state-time 
space, it is therefore interpolated when the actual resulting state does 
not coincide with the discrete points in the state space [80]. Note that 
since all the states in the last time step tK except one state (i.e., σ(tK) =

σnom) have an extremely high cost (i.e., Inf), any control sequence which 
leads to any other final state, results in a high total fuel consumption and 
is neglected [82]. The resulting optimal ESS control is characterized by 
frequent switches in the power split ratio [45]. This characteristic of a 
DP-based control, together with the required computation time, hinders 
its on-line applicability. However, the obtained results can be regarded 
as the global optimum. The obtained minimum total cost B*(σ(t0) )
represents the lowest possible fuel consumption J1(π*, nESS) related to 
the given ESS size, further implemented in (19). 

Fig. 4. Discretized state-time space for the application of dynamic program
ming algorithm. 

M. Kapetanović et al.                                                                                                                                                                                                                          



Applied Energy 294 (2021) 117018

10

3.3. Bi-level optimization methodology 

The optimization problem is solved using the following methodol
ogy. First, the feasible discrete search space is determined based on the 
constraints (21)–(25) that guarantee the required level of performance 
and satisfy technical and physical limitations. The feasible search space 
is given by a vector of pairs representing feasible battery configurations 
in terms of number of parallel branches and number of cells per branch, 
i.e. by Nfesible

ESS =
[
npar nser

]S, with S denoting the number of feasible 
battery configurations. Using the exhaustive (brute force) search, for 
each point in the feasible search grid (ESS configuration), the fuel- 
optimized speed trajectory that comply with the given timetable and 
track and vehicle parameters (including the maximum tractive effort 
(see Fig. 8), and the additional mass of the ESS which influences ac
celeration/braking characteristics) is generated using the algorithm 
described in [83]. The algorithm is based on optimizing switching points 
between cruising and coasting using a bisection method. In this way, the 
influence of different driving styles on the results is eliminated. Based on 
the generated speed trajectory, the power profile at the DC link repre
senting the total requested power is computed by evaluating simulation 
blocks located on the left side of the control unit in the simulation model 
in Fig. 2. The optimal control strategy is then determined using DP, and 
the fuel consumption and hybridization costs are evaluated. This 
sequence is repeated until all feasible solutions are evaluated. The 
optimal size of the ESS is then determined by solving the problem in 
(26). The algorithm for the presented bi-level optimization problem 
based on the nested architecture is illustrated in Fig. 5. 

4. Case study of regional railway services in the Northern 
Netherlands 

The methodology proposed in the previous section is applied to a 
case study of DMUs from the RU Arriva, operating on the Dutch regional 
railway network. In the following sub-sections, the input parameters are 
first defined for the selected railway line and the DMU vehicle, followed 
by an analysis of different scenarios. 

4.1. Track parameters 

We analyze the railway passenger services provided on the non- 
electrified regional lines in the Northern part of the Netherlands, in 
the provinces of Friesland and Groningen. For this study, we selected the 
train services provided on the 54 km long main railway line, which 
connects the cities Leeuwarden and Groningen. Two different types of 
services are being provided by the RU on this line – stopping and ex
press, with the corresponding stops shown in Fig. 6a. In this study, 
optimal ESS size and energy management strategy are determined for 
the vehicles employed on the stopping services with seven intermediate 
stops. 

Due to the difference in line resistances as well as maximum speed 
limits for the two opposite directions, the vehicle round trip is analyzed, 
which is based on the current periodic timetable and vehicle circulation 
plan for the given railway line. In order to include relevant factors 
affecting the vehicle dynamics, track geometry parameters were 
extracted. Fig. 6b shows the track height profile compared to the Normal 
Amsterdam Level (in Dutch, Normaal Amsterdams Peil, NAP), and Fig. 6c 
the location of the curves with a radius lower than 2000 m. There are no 
tunnels on this part of the network. The maximum allowed speed in both 
directions is shown in Fig. 6d. Table 1 shows an example of the vehicle 
round trip with given departure times from each stop. Dwell time of 30 s 
is assumed at intermediate stops. According to the timetable, layover 
times at the terminal stops are 11 min in Leeuwarden and 12 min in 
Groningen. 

Fig. 5. Flowchart for the proposed bi-level optimization algorithm based on 
nested architecture. 
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4.2. Vehicle parameters 

The RU Arriva currently provides the services on the network with a 
fleet of 22 two-coach GTW 2/6 and 29 three-coach GTW 2/8 DMUs from 
the Swiss manufacturer Stadler. The GTW 2/6 DMU (Fig. 7) has been 
selected for the analysis in this paper. The vehicle parameters provided 
by the RU are shown in Table 2. 

Since the additional mass of ESS affects both vehicle acceleration and 
braking performance, it is essential that the velocity profile, which is the 
main simulation input, complies with the maximum available traction 
force. The maximum tractive effort curve for GTW 2/6 DMUs is shown in 
Fig. 8a, where the negative values are assumed for braking. It consists of 
a constant maximum tractive effort part for the vehicle velocities 
v ≤ 27 km/h, and a constant maximum power hyperbola for 
v ≥ 27 km/h. Note that in the case of a conventional DMU, braking 
power is dissipated at the resistors. 

Due to the unavailability of detailed characteristics for GTW’s 
powertrain components (EM, G, and ICE), available sources that provide 
the data on the powertrain components with similar maximum power/ 
torque are used. The European project CleanER-D [86] reported speci
fications for the powertrain components in different railway vehicles. 
Available data include detailed and validated efficiency, fuel 

Fig. 6. Railway line Leeuwarden – Groningen: (a) schematic representation with indicated stops for stopping and express services, (b) track height compared to 
Normal Amsterdam Level, (c) curves with radius lower than 2000 m, and (d) maximum allowed speed for the two opposite directions. 

Fig. 7. Graphical representation of Stadler GTW 2/6 diesel-electric multiple 
unit [84]. 

Fig. 8. (a) Tractive effort vs. speed diagram, and (b) reconstructed electric motor efficiency map for Stadler GTW 2/6 diesel-electric multiple unit.  
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consumption and emissions maps. Thus, this source is used in deriving 
and reconstructing parameters for the DMU analyzed in this paper. The 
efficiency map of GTW’s EM with maximum power PEM,max = 400kW is 
derived using the normalized efficiency map ηEM = fnorm

EM
(
ωEM/ωEM,max,

TEM/TEM,max
)

provided in [87]. The resulting efficiency map as a func
tion of torque and angular speed is given in Fig. 8b. 

In order to derive the input parameters for the GTW’s ICE-G set, data 
provided in the same source [87] are used, wherein the maximum 
power/torque characteristics, generator’s normalized efficiency map 
ηG = fnorm

G
(
ωG/ωG,max,TG/TG,max

)
, ICE specific fuel consumption map 

ψ = fψ (ωICE,PICE), as well as NOx and PM emissions rate maps εNOx,PM =

fNOx,PM(ωICE, PICE) are given for various ICE sizes (with a maximum 
power of 360, 560 and 1000 kW). The available 360 kW ICE is very 
similar to the one found in GTW DMU, as both represent adaptations of a 
heavy-duty truck ICE, complying with Stage IIIA standard. As the 
maximum power of the ICE found in GTW DMU (390 kW) differs from 
the ICEs found in the given source, the ICE static maps had to be 
reconstructed. For this, a scaling methodology based on so-called Will
ans lines is employed [88–90]. A second-order polynomial approximates 
the engine specific fuel consumption for each ICE operating speed, while 
the ICE torque is scaled linearly with a scaling factor SICE. The approx
imation of specific fuel consumption can be written as 

ψ(ωICE,TICE) = C0(ωICE)⋅SICE + C1(ωICE)⋅TICE + C2(ωICE)⋅
T2

ICE

SICE
. (35) 

The scaling factor represents the ratio between scaled engine 
maximum power PICE,max and the original ICE maximum power PICE,max0. 
The accuracy of this approach increases as the size of the approximated 
ICE is closer to the size of the original ICE [78]; thus, the ICE with a 
maximum power of 360 kW is chosen, resulting in the scaling factor 

SICE =
PICE,max

PICE,max0
= 1.0833. (36) 

The second-order polynomial approximation coefficients C0, C1 and 
C2 are first calculated by numerically solving a system of equations for 
each TICE vs. ωICE data point from the original ICE specific fuel con
sumption map using the least-squares method while setting the scaling 
factor SICE = 1 in (35). Then, by inserting the obtained polynomial co
efficients (Fig. 9a) into (35), and by scaling the torque with the scaling 
factor SICE given in (36), the ICE specific fuel consumption for GTW DMU 
is reconstructed (Fig. 9b). The efficiency map for G is obtained in the 
same way as for EM, while the torque is scaled with the scaling factor 
SICE. 

Fuel density ρ = 825g/l and CO2 emission factor εCO2 = 3.175kg/l 
for diesel fuel is adopted from [68]. The Willans line technique is also 
applied in reconstructing the ICE NOx and PM emissions rate maps for 
GTW DMU, shown in Fig. 9c and d. In this paper, NOx and PM emissions 
are included in the analysis as the additional indicators to the primary 
indicator of total fuel consumption. However, with the available emis
sion rate maps, they can easily be included in the optimization problem 
as additional terms of the objective functions (19), which is left for 
future research. 

The Saft Ion-OnBoard® Regen Li-ion commercial battery based on 
sLFP (Super Lithium Iron Phosphate) chemistry [91] is considered to 
define the parameters for the ESS sizing and energy management 
problem. The parameters are extracted at the cell level by scaling down 
the values provided for this particular battery in [92] with respect to the 
number of its cells. The resulting values are given in Table 3, and the 
resulting cell open-circuit voltage as a function of SoC is shown in 
Fig. 10. In order to account for battery aging effects, end-of-life (EoL) 
values for nominal cell capacity, maximum energy and internal resis
tance are adopted. 

4.3. Results 

All numerical simulations/calculations are performed in MATLAB®/ 
Simulink© environment, on a PC with Intel® Core™ i7-8650U 1.9 GHz 
CPU and 8 GB of RAM. A fixed time step Δt = 1s is adopted in all ex
periments, with the ode3 (Bogacki-Shampine) solver used for numerical 
integration. The results in terms of resulting fuel consumption and 
related emissions are compared with the conventional DMU without an 
ESS. Estimation of the fuel consumption and related emissions of con
ventional DMU is done by evaluating the model in Fig. 2, with the total 
requested power provided by ICE. 

4.3.1. Optimal ESS size and resulting fuel consumption and emissions 
In order to determine optimal ESS size for the hybridized DMU, the 

feasible search space representing possible ESS configurations is deter
mined first, such that it satisfies the limitations on requested power from 
electrical auxiliaries Pelaux = 45kW, maximum required energy from ESS 
for supplying the auxiliaries in terminal stops Eelaux,stop,max = 9kWh, 
corresponding to the layover time of 12 min in Groningen, ESS voltage 
limits UESS,min = 500V and UESS,max = 1000V, and maximum allowed 
mass for ESS mESS,max = 2.5t. Fig. 11 shows the resulting feasible region 
of the discrete search space for the ESS sizing problem, bounded by the 
five inequality constraints (21)–(25), which contains 228 possible ESS 
configurations (orange dots in the grid). Lower and upper boundary 
lines for the number of cells per branch (nser), reflect the constraints on 
the ESS voltage. The lower boundary line for the total number of cells, i. 
e. nESS = npar⋅nser, is derived from the constraint on the required energy 

Table 1 
Departure times for the vehicle round trip on the line Leeuwarden-Groningen.  

Stop Departure time (hh:mm) 

From Leeuwarden to 
Groningen 

From Groningen to 
Leeuwarden 

Leeuwarden hh : 51 hh + 2 : 40 (arrival) 
Leeuwarden 

C. 
hh : 54 hh + 2 : 35 

Hurdegaryp hh + 1 : 01 hh + 2 : 30 
Feanwalden hh + 1 : 05 hh + 2 : 25 
De Westereen hh + 1 : 08 hh + 2 : 20 
Buitenpost hh + 1 : 16 hh + 2 : 15 
Grijskerk hh + 1 : 23 hh + 2 : 06 
Zuidhorn hh + 1 : 30 hh + 2 : 01 
Groningen hh + 1 : 39 (arrival) hh + 1 : 51  

Table 2 
Main input parameters for Stadler GTW 2/6 diesel-electric multiple unit.  

Parameter Value Unit Description 

mtare  70.4 t Empty massa 

λ  0.05 – Rotating mass factorb 

mv  77 t Total mass including passengersb 

r0  1001 N Davis equation coefficient (constant term)b 

r1  22.3 N/(km/h) Davis equation coefficient (linear term)b 

r2  0.1 N/(km/ 
h)2 

Davis equation coefficient (quadratic 
term)b 

vmax  140 km/h Maximum velocityc 

amax  1.05 m/s2 Maximum accelerationb 

amin  − 1 m/s2 Maximum decelerationb 

PICE,max  2 × 390 kW Diesel engine maximum powera 

PEM,max  2 × 400 kW Electrical motor maximum powera 

dw  0.86 m Wheel diameterc 

iag  1.7218 – Constant axle gear ratiod 

ηag  97 % Gear box efficiencye 

Source: aGiro Batalla & Feenstra [84]; bProvided by Arriva; cStadler Bussnang 
AG [85]; dDetermined from the ratio between the maximum rotational speed of 
the electrical motor ωEM,max = 1487rpm given in [84] and the maximum rota
tional speed of the wheel corresponding to the maximum vehicle speed vmax =

140km/h, as iag = ωEM,max/ωw,max; eAdopted from Prohl [68]. 
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ESS should be able to provide during stops, while the maximum number 
of cells is limited by the maximum allowed mass for the ESS. The 
constraint reflecting the minimum required ESS power is, in this case, 
already fulfilled with the energy-related requirement and does not 
restrict the search space. 

For the application of the DP algorithm, the optimal control problem 
is discretized into K = 7200 regular time steps, with the corresponding 
time step length equal to 1 s, I = 401 values for the SoC σi,

i ∈ {1,⋯, 401}, equally distributed over the interval [0.1, 0.9], and M =

201 values for the power split ratio xj, j ∈ {1,⋯, 201}, equally distrib
uted over the interval [ − 1,1]. The ESS SoC at the beginning and the end 
of the round trip is set to σnom = 0.5. The computationally efficient 
generic DP function [93] is used in determining optimal ESS control, 
providing a significant reduction of computation time and numerical 
errors. Optimal control and corresponding fuel consumption were ob
tained in about 3 min on average per feasible ESS configuration. The 
weight α in (19) is set to 0.2 to reflect a moderate preference towards 
lower fuel consumption over total hybridization cost. Following the 
methodology given in Section 3, the obtained optimal ESS consists of 
n*

par = 2 parallel branches with n*
ser = 231 cells in series per branch. The 

corresponding hybridization costs are 5898.82 EUR. Fig. 12 shows the 
simulation results for the hybrid DMU with optimally sized ESS, 
including the vehicle velocity profile, power split between the ICE and 
ESS, and the ESS SoC during the trip. As shown, the ESS provides the 
total requested power during stops with the ICE switched off, thus 
satisfying the primary hybridization requirement (emissions-free and 

Fig. 9. (a) Rotational speed-dependent coefficients of the polynomial approximation of specific fuel consumption, (b) specific fuel consumption map, (c) NOX 
emissions rate map, and (d) PM emissions rate map of GTW 2/6 internal combustion engine. 

Table 3 
Li-ion battery cell parameters.  

Parameter Value Unit Description 

σmax  90 % Maximum SoC 
σnom  50 % Nominal SoC 
σmin  10 % Minimum SoC 
Ucell,max  3.8 V Maximum cell voltage 
Ucell,min  2.5 V Minimum cell voltage 
Rcell,ch  0.002700 Ω Internal cell resistance during charging 
Rcell,dch  0.002716 Ω Internal cell resistance during discharging 
Ccell,nom  16.8 Ah Cell nominal capacity 
Pcell,cont,dch(σmax) 0.626310 kW Cell maximum continuous discharging 

power at maximum SoC 
Pcell,cont,dch(σnom) 0.569312 kW Cell maximum continuous discharging 

power at nominal SoC 
Pcell,cont,dch(σmin) 0.490697 kW Cell maximum continuous discharging 

power at minimum SoC 
Pcell,cont,ch(σmax) − 0.384697 kW Cell maximum continuous charging 

power at maximum SoC 
Pcell,cont,ch(σnom) − 0.534478 kW Cell maximum continuous charging 

power at nominal SoC 
Pcell,cont,ch(σmin) − 0.599807 kW Cell maximum continuous charging 

power at minimum SoC 
Ecell,max(σmax) 0.050974 kWh Cell maximum energy at maximum SoC 
Ecell,max(σnom) 0.027133 kWh Cell maximum energy at nominal SoC 
Ecell,max(σmin) 0.005254 kWh Cell maximum energy at minimum SoC 
mcell  2.122500 kg Cell mass  

Fig. 10. The open-circuit voltage of one Li-ion battery cell as a function of 
state-of-charge. 
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noise-free operations during stops). At the same time, the request for SoC 
sustenance is achieved, despite the significant ESS discharge in terminal 
railway stations. 

The resulting fuel consumption and related emissions for both con
ventional and hybrid DMU are given in Table 4. Compared to the con
ventional DMU vehicle, its hybridized counterpart with optimally sized 
and controlled ESS offers fuel savings and CO2 emissions reduction of 
29.9%. For the additional indicators representing local pollutant emis
sions, the simulation results show a 6.1% reduction in NOx emissions 
and a 22.4% reduction in PM emissions. 

4.3.2. Trade-off between lower fuel consumption and hybridization 
cost 

In order to further investigate the influence of the weight α on the 
trade-off between better fuel economy and lower hybridization cost, 
additional analysis was conducted by changing the weight value be
tween 0 and 1, representing the most fuel and cost-efficient solutions, 
respectively. The results of the analysis are given in Fig. 13 and Table 5. 
The results indicate that the increase in fuel consumption across α (i.e., 
between fuel consumption for α = 0 and α = 1) is 7.5%, giving the fuel 
savings compared to the conventional DMU vehicle (Table 4) ranging 
from 34.5% down to 29.6%. The total cost of hybridization is, at the 

same time, reduced by 54.6%. 
Compared with the previous case (α = 0.2) further reduction of fuel 

consumption of about 5% would require a significant increase in total 
hybridization cost of more than 30%. However, by considering the cu
mulative fuel savings and the vehicle life cycle duration, the investment 
return period would be relatively short. Results also indicate that the 
proposed optimization approach excluded the possibility of oversizing 
the ESS, as would be the case of the only criterion for hybridization 
being the maximum possible ESS size, conditioned with the mass limi
tation. In this way, further increase for 25% of total hybridization cost 
without any improvement of fuel economy is prevented. 

Fig. 11. The feasible region of the discrete search space for optimal energy storage system sizing problem.  

Fig. 12. Simulation results for hybrid diesel-electric multiple unit with optimally sized energy storage system according to the dynamic programming-based control 
(α = 0.2): (a) vehicle speed profile, (b) total requested power and power provided by internal combustion engine and energy storage system, and (c) energy storage 
system state-of-charge. 

Table 4 
Fuel consumption and produced emissions for conventional and hybrid diesel- 
electric multiple unit with optimally sized energy storage system.  

Indicator Unit Conventional DMU Hybrid DMU Savings (%) 

B  liter  116.7103  81.8187  29.9 
ECO2  kg  370.5552  259.7744  29.9 
ENOx  kg  1.4972  1.4059  6.1 
EPM  kg  0.0858  0.0666  22.4  
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4.3.3. Influence of the control strategy 
The influence of the control strategy on the optimal solution is 

investigated in this section. For this aim, a causal and implementable 
rule-based strategy is defined. The flowchart of the rules for this 
controller is presented in Fig. 14. In order to ensure fulfillment of the 
main hybridization requirement of emissions-free and noise-free oper
ation during stops, a piecewise lower limit of ESS SoC is introduced, 
where σmin,stop represents the SoC lower limit during stops, set to a value 
that satisfies the following condition: 

npar⋅nser⋅Pcell,cont,dch
(
σmin,stop

)
≥ Pelaux, (37)  

and σmin,run is the SoC lower limit during motion, set to a value that 
satisfies the following condition: 

npar⋅nser⋅
(
Ecell,max

(
σmin,run

)
− Ecell,max

(
σmin,stop

) )
≥ Eelaux,stop,max. (38) 

Since the condition (37) is satisfied for all possible SoC lower limits 
for all 228 ESS configurations, it is set to σmin,stop = 10% as in the pre
vious case, while the lover limit during motion is set to σmin,run = 40%. 
The upper limit remains the same as in the previous case, i.e. σmax =

90%. According to the defined algorithm, during stops (v = 0) the ESS 
provides complete requested power, and the ICE is switched off. If the 
ESS discharges to σmin,stop before the departure (caused by delayed de
parture, for instance), the ICE is started and supplies the total demanded 
power. In case of negative power demand, generally occurring when the 
vehicle is braking, the braking energy is used for recharging the ESS, and 
ICE operates with no load. In case of high power demand, in our case set 
to a value exceeding 60% of the maximum available power from the ICE- 
G set, the ESS provides maximum available power for supporting the 
ICE. This typically occurs during vehicle acceleration. For the lower 
levels of demanded power (i.e., during cruising or coasting phases), the 
ESS provides support for the ICE limited to the electrical auxiliaries 
power demand. This operation mode is sustained until σmin,run is reached. 
Once this occurs, the controller switches to “load level increase” mode, 
where the ICE provides additional power used for recharging the ESS. In 
order to prevent frequent switching between ESS charging and 

discharging, and at the same time from excessive usage of ICE instead of 
braking power for charging the ESS, a 5% hysteresis for the SoC is 
considered during this phase of low power demand. 

The same approach for determining the ESS optimal size described in 
Section 3 is conducted by using the defined RB control instead of DP. 
Compared to the DP-based control, simulation time for the entire trip 
with implemented RB control takes less than 2 s on average per feasible 
ESS configuration. The overall results are given in Table 6. The increase 
in fuel consumption across α, in this case, is 15.2%, while the total cost 
of hybridization is reduced by 65.8%. Compared to the standard DMU, 
fuel savings range from 19.2% for the most fuel-efficient solution down 
to 7% for the most cost-efficient solution. Regarding the ESS size and 
configuration, achieving the most fuel-efficient solution, in this case, 
requires significant ESS size and related cost increase compared to the 
solution obtained with the implemented DP controller. The differences 
in results from the two control strategies are emphasized in Fig. 15, 
where the fuel consumption level for all 228 ESS configurations and 
related costs is plotted. The fuel consumption is normalized with the 
results obtained for the standard DMU for overall comparison. 

Fig. 16 shows the total requested power split and SoC of optimally 
sized ESS at a weight α = 0.2, which contains n*

par = 2 parallel branches 
with n*

ser = 202 cells per branch. As can be seen, the proposed RB 
controller ensures fulfillment of the main hybridization requirement 
imposed by the RU; however, its main drawback is the inability to 
guarantee the ESS SoC sustenance, caused primarily by its causal nature. 
The following round trip would start with significantly discharged ESS, 
considering the given periodic timetable and corresponding vehicle 
circulation plan. This would result in higher fuel consumption than the 
given results, thus implying its significant impact and biased input for 
the primary optimization problem. 

Regarding the local pollutants, emissions results are diverse (see 
Fig. 17). Depending on the ESS size and configuration, simulation results 
for DMU with DP controller demonstrated a decrease of NOx emissions 
ranging from 3.5% up to 11.8% compared to the standard DMU emis
sions level, while RB control resulted in an increase of 20.3% up to 
34.1%. For PM emissions, both controls demonstrated a reduction 
compared to the standard DMU ranging between 60.3 and 61.2% for DP 
control and between 14.9 and 21.3% for RB control. 

5. Discussion 

The detailed analysis presented in the previous section showed sig
nificant potential benefits from hybridization of a DMU vehicle. These 
benefits are reflected primarily in the reduction of fuel consumption and 
resulting CO2 emissions, theoretically reaching almost 35% compared to 
the conventional DMU. Although the focus of this study was on a specific 
case study in the Netherlands, the presented methodology can be 
applied to other regional railway networks and DMU vehicles, regard
less of the geographical context. In addition, the proposed optimization 
algorithm allows for fair generalization and relatively easy adaptation to 
other railway vehicles and types of services. Moreover, straightforward 
determination of feasible ESS configurations based on existing tech
nologies allows for a direct implementation of the solution. 

Fig. 13. The trade-off between lower fuel consumption and lower hybridiza
tion cost. 

Table 5 
Optimization results for different values of weight α with implemented dynamic programming-based control.  

Indicator Unit α  

0 0.05 0.1 0.2 0.3 0.5 1 

J*  – 0.9305 0.9213 0.9109 0.8609 0.8006 0.6702 0.3404 

J1  liter 76.4661 76.4852 76.5853 80.3508 81.8187 82.1773 82.1773 
J2  EUR 11235.84 11133.70 10827.26 5898.82 5183.81 5107.20 5107.20 

n*
par  cell 4 4 4 2 2 2 2 

n*
ser  cell 220 218 212 231 203 200 200  

M. Kapetanović et al.                                                                                                                                                                                                                          



Applied Energy 294 (2021) 117018

16

Due to its non-causal nature (i.e., assuming perfect information on 
future driving conditions), frequent switches in ESS control, as well as 
required computation time (i.e., 3 min on average in this case), the DP- 
based EMS cannot be directly implemented in a real-time controller. 
However, having in mind the main aim of this study – determining the 
optimal size of ESS, which represents a strategic decision, the presented 
approach identifies ESS parameters that yield the absolute largest po
tential in reducing fuel consumption, regardless of the EMS in place. 

The main advantages of the presented RB controller are its 
straightforward implementation in real-time energy management, at the 
same time satisfying the main requirement of providing enough power 
and energy for supplying auxiliaries during stabling periods. Due to 
implemented hysteresis, it prevents frequent switches in ESS charging/ 
discharging, thus improving its life cycle durability. However, the 
inability to guarantee ESS SoC sustenance and significantly decreased 
performance compared to the DP controller make the ESS sizing 

Fig. 14. Flowchart for the proposed rule-based controller.  
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problem obtained with RB control biased. 
This research stresses the importance of synthesizing and practical 

implementation of real-time energy management that would lead to an 
optimum or near-optimum performance in terms of energy consump
tion. In this context, DP-based control can be used either to obtain a 
reference fuel consumption or to obtain optimal power split trajectories 
that can later be used in defining implementable real-time control 
strategies. Heuristic RB controls or combining the EFCM method with 
DP or optimal control theory [94,95] are promising approaches in this 
regard. The development of such algorithms, coupled with advanced 

power management hardware technologies, requires significant effort 
from the whole industry, and especially from the vehicle manufacturers. 

Regarding the local pollutants emissions, results indicate a signifi
cant influence of the choice of EMS, with a negative impact on NOx 
emissions obtained in case of sub-optimal rule-based control. Even 
though these emissions are not included in the optimization problem but 
only as additional indicators, the simulation results with a characteristic 
mapping of Stage IIIA ICE found in the analyzed vehicle show that hy
bridization as an instrument could not lead to the fulfillment of Stage 
IIIB emissions limits. Significant specific reduction requirements 
imposed by the legislation, especially for PM emissions, reaching almost 
90% reduction from Stage IIIA to IIIB, together with the fact that the 
legislation is focusing only on specific load points of ICE [96], stipulate 
the necessity of using advanced exhaust ATSs. 

6. Conclusions 

This paper presented a method to support the decision in the con
version of standard diesel-electric multiple units to their hybrid coun
terpart by adding an optimally sized Li-ion battery-based energy storage 
system. The proposed bi-level multi-objective optimization approach 
based on a nested coordination framework includes relevant design as
pects, such as the requirement of achieving emissions-free and noise-free 
operation in stations, the preference between lower fuel consumption 
and hybridization cost, technical constraints related to battery voltage 
and maximum allowed mass, and the influence of the energy manage
ment strategy. The case study of selected two-coach diesel multiple unit 
and railway line demonstrated fuel savings and CO2 emissions reduction 
ranging between 29.6% and 34.5% with optimal dynamic 
programming-based control, and from 7% to 19.2% for sub-optimal 
rule-based control, compared to the conventional vehicle, depending 
on the ESS size and configuration. At the same time, the implementation 
of optimal control allowed for preventing ESS oversizing and avoiding 

Table 6 
Optimization results for different values of weight α with implemented rule-based control.  

Indicator Unit α 

0 0.05 0.1 0.2 0.3 0.5 1 

J*  – 0.8530 0.8602 0.8645 0.8530 0.7893 0.6613 0.3404 

J1  liter 94.2559 94.2559 96.5694 108.3127 108.3127 108.5326 108.5326 
J2  EUR 14938.56 14338.56 11695.49 5158.27 5158.27 5107.20 5107.20 

n*
par  cell 5 5 4 2 2 2 2 

n*
ser  cell 234 234 229 202 202 200 200  

Fig. 15. Relative fuel savings for hybrid diesel-electric multiple unit as a 
function of energy storage system size and implemented control, compared to 
the conventional vehicle. 

Fig. 16. Simulation results for hybrid diesel-electric multiple unit with optimally sized energy storage system according to the rule-based control (α = 0.2): (a) total 
requested power and power provided by internal combustion engine and energy storage system, and (b) energy storage system state-of-charge. 
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additional costs. Additionally, a non-linear dependence between hy
bridization cost and potential fuel savings was identified. The influence 
of energy management is even more evident in the case of local pol
lutants, especially NOx emissions, where the negative impact compared 
to a standard vehicle is obtained. 

The presented research aimed to provide the basis for further 
developing a wider-scope tool, coined “CO2 Barometer”. The aim of the 
CO2 Barometer is to enable dynamic monitoring and prediction of 
overall emissions from regional railway services provided on the 
Northern lines in the Netherlands, and at the same time to offer a de
cision support tool for the railway undertaking in the analysis of po
tential future traction options, by capturing the technical innovation and 
different technological, operational and policy measures. Future appli
cations of the present research will include other types of rolling stock in 
the fleet, while considering remaining lines and services on the network. 
Special focus will be on further testing and validation of the proposed 
method in real-world operation, within the ongoing rolling stock 
refurbishment program of Arriva. Further extensions to the current work 
will include the development of a causal control strategy with respect to 
the system architecture in place that would be able to provide results 
that converge to the global optimum. Additionally, analysis of other 
energy storage and propulsion systems based on supercapacitors and 
hydrogen fuel cells, as well as the environmental impact of using 
alternative fuels such as hydrotreated vegetable oil will be conducted, 
while extending the research scope to well-to-wheel and life cycle 
perspective. 
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M. Kapetanović et al.                                                                                                                                                                                                                          

https://doi.org/10.23919/ECC.2019.8795720
https://doi.org/10.1504/IJVD.2012.047382
https://doi.org/10.1504/IJVD.2012.047382
https://doi.org/10.1016/j.energy.2019.02.144
https://doi.org/10.1016/j.energy.2019.02.144
http://refhub.elsevier.com/S0306-2619(21)00484-0/h0395
https://doi.org/10.2516/ogst/2009020
https://doi.org/10.2516/ogst/2009020
http://refhub.elsevier.com/S0306-2619(21)00484-0/h0405
http://refhub.elsevier.com/S0306-2619(21)00484-0/h0405
https://doi.org/10.1016/j.trc.2017.09.010
https://doi.org/10.1016/j.trc.2017.09.010
http://refhub.elsevier.com/S0306-2619(21)00484-0/h0420
http://refhub.elsevier.com/S0306-2619(21)00484-0/h0420
https://www.stadlerrail.com/media/pdf/garr1008e.pdf
http://www.cleaner-d.eu/deliverables.htm
http://www.cleaner-d.eu/deliverables.htm
http://refhub.elsevier.com/S0306-2619(21)00484-0/h0440
http://refhub.elsevier.com/S0306-2619(21)00484-0/h0440
http://refhub.elsevier.com/S0306-2619(21)00484-0/h0440
https://doi.org/10.1109/TVT.2013.2240326
https://doi.org/10.1109/TVT.2013.2240326
https://doi.org/10.3182/20140824-6-ZA-1003.02375
https://doi.org/10.3182/20140824-6-ZA-1003.02375
https://doi.org/10.1109/CCA.2009.5281131
https://doi.org/10.1109/CCA.2009.5281131
https://doi.org/10.1109/TVT.2009.2027709
https://doi.org/10.1109/TVT.2009.2027709
https://doi.org/10.4271/2019-01-1207
https://dieselnet.com/standards/cycles/iso8178.php

	Reducing fuel consumption and related emissions through optimal sizing of energy storage systems for diesel-electric trains
	1 Introduction
	1.1 Related work
	1.2 Paper contribution

	2 Modeling of standard and hybrid DMU
	2.1 Vehicle
	2.2 Axle gear
	2.3 Electric motor
	2.4 Internal combustion engine – Electric generator set
	2.5 Energy storage system

	3 Optimal ESS sizing and control
	3.1 Optimal ESS sizing methodology
	3.2 Optimal energy management strategy
	3.3 Bi-level optimization methodology

	4 Case study of regional railway services in the Northern Netherlands
	4.1 Track parameters
	4.2 Vehicle parameters
	4.3 Results
	4.3.1 Optimal ESS size and resulting fuel consumption and emissions
	4.3.2 Trade-off between lower fuel consumption and hybridization cost
	4.3.3 Influence of the control strategy


	5 Discussion
	6 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgment
	References


