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A B S T R A C T   

As the push towards more sustainable ways to produce energy and chemicals intensifies, efforts are needed to 
refine and optimize the systems that can give an answer to these needs. In the present work, the use of neural 
networks as modelling tools for lignocellulosic biomass pyrolysis main products yields estimation was evaluated. 
In order to achieve this, the most relevant compositional and reaction parameters for lignocellulosic biomass 
pyrolysis were reviewed and their effect over the main products yields was assessed. Based on relevant literature 
data, a database was set up, containing parameters and experimental results from 32 published studies for a total 
of 482 samples, including both fast and slow pyrolysis experiments performed on a heterogeneous collection of 
lignocellulosic biomasses. The parameters that in the database configured as best predictors for the solid, liquid 
and gaseous products were determined through preliminary tests and were then used to build reduced models, 
one for each of the main products, which use five parameters instead of the full set for the estimation of yields. 
The procedures included hyperparameter optimizations steps. The performances of these reduced models were 
compared to those of the ones obtained using the full set of parameters as inputs by using the root mean squared 
error (RMSE) as metric. 

For both the char and gas products, the best results were consistently achieved by the reduced versions of the 
network (RMSE 5.1 wt% ar and 5.6 wt% ar respectively), while for the liquid product the best result was given by 
the full network (RMSE 6.9 wt% ar) indicating substantial value in proper selection of the input features. In 
general, the char models were the best performing ones. Additional models for the liquid and gas product 
featuring char as additional input to the system were also devised and obtained better performance (RMSE 5.5 wt 
% ar and 4.9 wt% ar respectively) compared to the original ones. Models based on single studies were also 
included in order to showcase both the capabilities of the tool and the challenges that arise when trying to build a 
generalizable model of this kind. 

Overall, artificial neural networks were shown to be an interesting tool for the construction of setup-unspecific 
biomass pyrolysis product yield models. The obstacles standing currently in the way of a more accurate 
modelling of the system were highlighted, along with certain literature discrepancies, which hinder reliable 
quantitative comparison of experimental conditions and results among separate studies.   

1. Introduction 

The increasing concern regarding environmental change, the loom-
ing depletion of conventional fossil fuel reserves together with the also 
increasing need for energy self-reliance and the global concern sur-
rounding their use, lead to the employment of alternative and sustain-
able resources for heat and power generation, fuels and chemicals 
production. Biomass constitutes a potentially clean and renewable fuel, 

which is also readily available worldwide, being the third most abun-
dant fuel source after coal and oil. Biomass thermochemical conversion 
is a candidate for the production of heat, power, chemicals and fuels 
production, with pyrolysis, torrefaction, gasification, combustion and 
hydrothermal liquefaction constituting the majorly employed thermo-
chemical conversion methods [1]. 

Pyrolysis can be defined as the thermochemical process of biomass 
decomposition, either in the absence of an oxidation medium, or with a 
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Table 1 
Implementation of ANNs for the description of biomass thermochemical conversion processes in literature.  

# Thermochemical 
process 

Biomass Type Architecture Number of 
hidden 
layers 

Transfer 
function 

Training 
algorithm 

Output 
type* 

Data sets 
– Data 
sources** 

Model inputs Model outputs Accuracy Ref. 

1 Pyrolysis Cattle manure FF 2 n.d. n.d. MISO 33 Pyrolysis temperature, heating 
rate, holding time, moisture 
content, sample mass 

Biochar yield R2 = 0.804 [5] 

2 Pyrolysis Pine sawdust FF 1 logsig, 
purelin 

BP/LM MIMO 14*** Space velocity, pyrolysis 
temperature, particle size 

H2, CO, CH4 and 
CO2 selectivity 

R2 = 0.999 [24] 

3 Pyrolysis Lignocellulosic 
biomass (from 
literature) 

FF 1 tansig, 
purelin 

BP/LM MISO 150− 28 Cellulose, hemicellulose and 
lignin content 

Pre-exponential 
factor, activation 
energy and reaction 
order 

n.a. [21] 

4 Pyrolysis Durian rinds, Banana 
peels 

FF 2,1 tansig, 
purelin 

BP/LM MISO 176 Pyrolysis temperature, time Weight loss R2 = 0.999 [17, 
18] 

5 Pyrolysis Olive oil residue, 
lignocellulosic forest 
residue 

FF 1,2 tansig, 
logsig 

BP/LM MISO, 
MIMO 

8000 Heating rate, temperature Weight loss n.a. [19] 

6 Pyrolysis Algal mat FF 1 tansig BP/LM MISO n.d. Instantaneous temperature, 
target temperature, heating 
rate 

Weight loss R2 > 0.97 [20] 

7 Pyrolysis Various (from 
literature) 

FF 1 tansig n.d. MIMO 163 Cellulose, hemicellulose and 
lignin content, heating rate 

Pre-exponential 
factor, activation 
energy and reaction 
order 

R2 > 0.81 [6] 

8 Pyrolysis Various (from 
literature) 

FF, CF 2 logsig BP/LM MIMO 72 – 44 Moisture, volatile, fixed 
carbon, ash, C, H, O, N 
contents, HHV, heating rate, 
temperature 

Char, liquid and gas 
products 

RMSE = 5.71–9.16 [22] 

9 Pyrolysis Cotton, tea, olive and 
hazelnut 

FF 1 logsig, 
tansig 

BP/ Gradient 
descent with 
adaptive 
learning 

MIMO 18 Lignin, cellulose, 
hemicellulose, fixed carbon, 
volatile, moisture and ash 
contents, temperature 

Char, liquid and gas 
products 

R2 = 0.99 [23] 

10 Pyrolysis 
(carbonization) 

Various (from 
literature) 

FF 1 tansig, 
purelin 

BP/LM MISO 168− 20 C, H, O content, fixed carbon, 
volatile matter and ash 
content, carbonization 
temperature and time, 
activation temperature, time 
and steam to biochar ratio 

Activated carbon 
yield and BET 
surface area 

R2 > 0.92 [25] 

11 Combustion MSW – coal mixture FF 1 tansig, 
purelin 

BP/LM MISO 2200 Feeding rate, temperature, 
change rate of temperature, 
outlet gas temperature, steam 
flow, temperature and 
pressure, primary and 
secondary air flow 

Heating value n.a. [36] 

12 Combustion Various (from 
literature) 

FF 1 tansig, 
purelin 

BP/LM MISO 100− 34 Fixed carbon, volatile and ash 
contents, O2 concentration and 
equivalence ratio 

Pre-exponential 
factor, activation 
energy and reaction 
order 

R2 > 0.94 [29] 

13 Gasification Woody biomass (from 
literature) 

FF 1 tansig, 
purelin 

BP/LM MISO 18, 36 – 2, 
4 

Moisture, ash, C, H and O 
content, gasification 
temperature and equivalence 
ratio 

Product gas 
composition (CO, 
CO2, CH4 and H2) 
and total gas yield 

R2 > 0.98 [30] 

14 Gasification n.d. n.d. n.d. n.d. Gaussian curve 
membership 
function 

MISO, 
MIMO 

600**** Fuel flow, air flow, time from 
last fuel supply and syngas 
temperature 

Temperature and 
product gas 

n.a. [26] 

(continued on next page) 
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Table 1 (continued ) 

# Thermochemical 
process 

Biomass Type Architecture Number of 
hidden 
layers 

Transfer 
function 

Training 
algorithm 

Output 
type* 

Data sets 
– Data 
sources** 

Model inputs Model outputs Accuracy Ref. 

composition (CO, 
CO2, CH4 and H2) 

15 Gasification Poplar sawdust, pine 
saw-dust, comminuted 
sugar cane bagasse and 
cotton stem 

FF 1 logsig, n. 
d. 

Chemotaxis 
algorithm 

MISO 7 or 6  
***** 

Bed temperature and 
gasification time 

Product gas 
composition (CO, 
CO2, CH4 and H2) 
and total gas yield 

n.a. [37] 

16 Gasification n.d. FF,CF 1,2 tansig, 
logsig, 
purelin 

BP/LM MISO 213 C, H, O, moisture and ash 
content, equivalence ratio, 
reaction temperature, steam/ 
biomass ratio and bed material 

Product gas 
composition (CO, 
CO2, CH4 and H2) 
and total gas yield 

R2 = 0.9394 – 
0.9734 

[33] 

17 Gasification Sawdust, coconut 
shell, coffee husk, 
sugarcane bagasse and 
ground nutshell 

FF 1 tansig, 
purelin 

BP/LM MIMO 70 C, H, O, moisture and ash 
content, equivalence ratio and 
reaction temperature 

Product gas 
composition (CO, 
CO2, CH4 and H2) 

R2 = 0.987 [38] 

18 Gasification Wood sawdust FF 1 tansig, 
tansig 

BP/LM MISO, 
MIMO 

n.d. Equivalence ratio, steam to 
biomass ratio and axial 
position in the reactor (only 
for the temperature model) 

Gasification 
temperature and 
product gas 
composition (N2, 
CO, CO2, CH4 and 
H2) 

R2 = 0.968 [27] 

19 Gasification n.d. FF 1 tansig, 
purelin 

BP/LM MISO 63 – 18 C, H, O, moisture and ash 
content and reduction zone 
temperature 

Product gas 
composition (N2, 
CO, CO2, CH4 and 
H2) 

R2 > 0.98 [39] 

20 Gasification MSW FF 2 tansig, 
logsig, 
purelin 

BP/LM MISO, 
MIMO 

67 C, H, O, N, S, moisture and ash 
content, equivalence ratio and 
gasification temperature 

LHV and LHVp of 
product gas and 
product gas yield 

R2 > 0.98 [40] 

21 Gasification MSW FF 1 tansig, 
logsig, 
purelin 

n.d. MIMO 91 Percentages of wood, paper, 
kitchen garbage, plastic and 
textile in the samples, 
equivalence ratio, temperature 

LHV of gas, LHV of 
gasification 
products, gas yield 

Relative error: 
8.7–22.3 %****** 

[41] 

22 Gasification Various (from 
literature) 

FF 1 tansig n.d. MISO, 
MIMO 

181 – 21 Moisture, ash, volatile, C, H 
and O content, equivalence 
ratio, steam/biomass ratio, 
temperature and gasification 
agent 

H2, CO, CH4, CO2 

and C2Hn yields 
Pearson R – 
correlation: 0.98 – 
0.99 

[31] 

23 Gasification Pinecone, wood FF, CF, Time- 
delay, Elman, 
NARX 

1 tansig BP/LM MIMO 3831 Temperature distribution, 
Equivalence ratio, air flow 
rate, C, H, O, N, Moisture, 
Volatile, Fixed Carbon, Ash 
contents 

CO, CO2, CH4, H2 

yields and LHVgas 

R2 > 0.98 [34] 

24 Gasification Various (from 
literature) 

FF 1,2 tansig, 
logsig, 
purelin 

BP/LM MISO 120 – 16 C, H, O, moisture and ash 
contents, equivalence ratio, 
temperature 

Total tar 
concentration 
(including benzene) 

R2 > 0.96 [28]  

* The output type refers to multiple input – multiple output (MIMO) or multiple input – single output (MISO) models. 
** In case the data were obtained from literature, the data sources number corresponds to the number of studies used. The data sets include the training, validation and testing sets. 
*** The number of data sets was not explicitly mentioned in the study. It was calculated by the authors by adding the data points of each input variable (5, 6 and 3 respectively). 
**** Experimental data from five gasification experiments were used for a total time of 60 min with a sampling interval of 30 s. 
***** Separate models were built for each biomass specie and each gaseous compound studied. 
****** The relative error was calculated as the predicted value minus the experimental value, all divided by the experimental value. 
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minor amount that does not enable gasification to an appreciable extent 
[2]. The main products of pyrolysis are char, bio-oil and gases and their 
quality and quantity are dependent on the reactor’s operational condi-
tions. Furthermore, pyrolysis is a sub-process of gasification and tar 
formation therein. Primary and secondary pyrolysis reactions occur 
during gasification among other reactions such as the water – gas shift 
and char oxidation [3]. Pyrolysis and gasification processes can be 
modelled or simulated using a variety of different models such as ther-
modynamic equilibrium models, kinetic models, computational fluid 
dynamics (CFD) models or machine learning techniques [4]. The 
important developments in the computer science and data analysis fields 
have led to an increase in the implementation of machine learning 
techniques for biomass thermochemical conversion processes and 
especially gasification. Artificial neural networks (ANNs) are widely 
used for this purpose (Table 1), as well as other machine learning models 
like the support vector machine (SVM) [5] or the random forest (RF) 
method [6]. However, the present work focuses exclusively on ANNs. 

Artificial Neural Networks (ANNs) can be defined as structures 
comprised of densely interconnected adaptive simple processing ele-
ments (artificial neurons or nodes), capable of performing massively 
parallel computations for data processing and knowledge representa-
tion. Constituting drastic abstractions of their biological counterparts, 
ANNs employ the functionality of the biological networks in the effort to 
solve complex problems, rather than replicating their operation [7]. 
ANNs have several features that make them an attractive option for 
predictive tasks. To begin with, in contrast with traditional model-based 
methods, ANNs are data-driven self-adaptive methods, which do not 
include, at least to an appreciable extent, a priori assumptions regarding 
the problem under study. Additionally, the generalization capabilities of 
ANNs allow them to infer the unseen part of the sample data correctly, 
even if significant noise exists, given the obtained right training pa-
rameters and data. Furthermore, the ANNs are universal function 
approximators, a characteristic that allows them to approximate any 
continuous function to a desired accuracy, no matter how complex or 
non-linear [8]. However, the use of ANNs comes with some inherent 
disadvantages, such as the limitation to identify possible causal re-
lationships between inputs and outputs explicitly. ANNs are actually a 
“black box”. Furthermore, ANNs are often computationally expensive 
and sometimes prone to overfitting, while model development is 
somehow empirical and methodological issues remain to be resolved 
[9]. 

Several studies employing ANN models for the prediction of biomass 
thermochemical conversion processes product yields or behaviour in 
general can be found in the literature. As can be seen in Table 1, the 
majority of the cases concerns biomass gasification, however substantial 
work has been also performed regarding pyrolysis. Despite that fact, 
important lessons can be learned from the implementation of ANNs in 
biomass gasification processes modelling also concerning their use in 
pyrolysis models. Additionally, it is interesting to note that a substantial 
amount of work has been dedicated to the prediction of biomass higher 
heating value using ANN models [10–16]. Regarding pyrolysis ANN 
models, researchers appear to focus mostly on the use of thermogravi-
metric analysis (TGA) results aiming either to the prediction of the 
weight loss [17–20] or to the determination of the kinetic parameters 
(activation energy, pre-exponential factor, reaction order) [6,21]. Fewer 
studies deal with the pyrolysis products composition [22,23] or pyrol-
ysis gas composition in particular [24], while char yield and its char-
acteristics have also been investigated [5,25]. The overview of the 
gasification ANN models is much more one sided, since the vast majority 
of the studies focuses on the prediction of the product gases yield and 
composition (Table 1). Interestingly, in some of these studies the gasi-
fication temperature [26,27] is introduced as a prediction of the model, 
while Serrano et al. [28] aimed exclusively to the prediction of the total 
tar yield. In general, the inherent ability of ANN models to process large 
amounts of data has led to the development of quite a few models that 
employ data available from multiple literature sources for pyrolysis [6, 

21,22,25], combustion [29] and gasification [28,30,31]. Nevertheless, 
the most common approach in ANN development remains the employ-
ment of one reactor setup for the generation of the data. In the studies 
where literature data were employed, biomass composition in terms of 
major constituents (cellulose, hemicellulose, lignin) [6,21] or proximate 
and ultimate analysis [22,25,28–31] were the main model inputs. 
Depending on the process and the desired outputs, operational param-
eters were also introduced as inputs but they were limited in the tem-
perature [22] and heating rate [6] for pyrolysis and in temperature, 
equivalence ratio [28,30,31], gasification agent and steam/biomass 
ratio [31] for gasification. On a final note, it is interesting to mention 
that the increasing interest on ANNs within the biomass thermochemical 
conversion field is manifested by the fact that the majority of the rele-
vant studies was published after 2015. 

The artificial neuron is the base unit of ANNs, in which an array of 
inputs is fed along with a scalar weight and a bias resulting in a scalar. 
This scalar is subsequently passed on using an output function. The most 
common classes of output functions are step, linear (purelin) and 
sigmoidal (logistic – logsig or hyperbolic tangent – tansig). Multiple 
neurons can be arranged to generate complex and different architec-
tures. Often, neurons are arranged in layers, where they are placed in 
parallel, receiving the same inputs but producing different outputs based 
on the individual weights, biases and transfer functions. The multilayer 
feedforward (FF) network (MFNN) is a series of neuron layers of which 
the outputs are used sequentially as inputs to the next layer. Depending 
on the definition, the inputs of the model can be considered as a layer, 
while the model outputs constitute the output layer. Any number of 
layers in the middle are the hidden layers and in general, a network with 
more than one layer is defined as an MFNN [32]. MFNNs are almost 
exclusively used in biomass thermochemical conversion ANNs as can be 
observed in Table 1. Alternative architectures are used in some cases 
[22,33,34] with the cascade forward (CF) operation being the most 
prominent one. In a CFNN, each neuron layer is connected to all the 
neurons of the previous layers [33]. In terms of network training, su-
pervised training by the means of the Levenberg – Marquardt (LM) 
backpropagation (BP) method is mostly applied in the context of 
biomass thermochemical conversion ANNs. The BP algorithm firstly 
propagates the input forward through the network, secondly propagates 
also the sensitivities backward through the network (last up to the first 
layer) and finally updates the weights and the biases using the approx-
imate steepest descent rule [35]. 

In this work, ANNs were employed for the prediction of the solid, 
liquid and gas yields from pyrolysis processes. A database was con-
structed using literature data from pyrolysis experiments, focused solely 
on batch type reactors. In this context, a wide range of input parameters 
was selected (lignocellulosic, ash and moisture content, pyrolysis tem-
perature, heating rate, gas residence time, holding time, particle and 
sample size) and their effect on each product type prediction capabilities 
as well as the ability of the ANNs to successfully learn the expected 
trends were evaluated. As it can be also extracted from Table 1, ANN 
models for the prediction of pyrolysis products based on multiple studies 
from different researchers are scarce in the literature. According to the 
authors knowledge, the only attempt similar to the one presented in this 
study was by Merdun et al. [22], since other literature based pyrolysis 
ANN models focus either on the estimation of kinetic parameters 
through TGA data or on the char product specifically. However the study 
of Merdun et al., used a smaller amount of samples and the literature 
data were limited only on studies conducted in Turkey. Therefore, the 
applicability of ANNs for a condensed and simplified description of a 
pyrolysis process is going to be investigated, in terms of both accuracy 
and scientific meaningfulness using a large amount of input data and 
parameters. 
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2. Methods 

2.1. Database development 

The experimental data required for the development of the ANN 
model within this work, were extracted from literature studies focused 
on biomass pyrolysis according to the following two criteria. Firstly, 
most of the selected parameters (Table 2) need to be reported in the 
study. Secondly, parameters necessary for the database, but not reported 
in the study can be reasonably estimated through data from the study 
itself or external sources. An example of the latter was the derivation of 
the cellulose, hemicellulose and lignin content from the Phyllis2 data-
base [42] when they were not reported in the selected study. Gas resi-
dence time is another parameter, that although it plays a significant role 
in a pyrolysis process, it is seldom reported in the relevant studies. For 
this purpose, when necessary, its value was calculated based on the 
reported reactor volume and the gas flow rate of the purging gas. Of 
course, in this case the impact of the release of volatiles during pyrolysis 
was neglected. 

The parameters reported and therefore extracted from the literature 
sources, are summarized in Table 2, along with their respective range. 
The complete database is provided in the supplementary information. 

From Table 2, it is apparent that a wide range of biomass feedstocks 
as well as experimental conditions was studied. This choice was made in 
order to evaluate the (inherent) applicability of ANN models for a wide 
range of biomass feedstocks and operating conditions. With respect to 
the latter, as it is evident from the ranges of the heating rates, gas 
residence and holding times, both slow and fast pyrolysis processes were 
taken into consideration. When it comes to the reactor type, the only 
type that was explicitly excluded from the investigation were continuous 
feeding reactors, thus such reactor based studies were removed from the 
database. The significant differences in the definition of the aforemen-
tioned parameters (e.g. heating rate, holding time, etc.), would render 
the introduction of such setups problematic for the development of the 
ANN model. Some operational parameters are either not applicable in a 
continuous process or their estimation would require delving into un-
certain assumptions regarding transport phenomena and devolatiliza-
tion behaviour in a system. For example, the heating rate, in most cases 
is irrelevant for continuous processes operating in a steady state tem-
perature and it concerns mostly the heating rate of each particle. The 
holding time, can also not be easily defined in a continuous pyrolysis 
process, since it required extensive knowledge of a feedstocks devola-
tilization behaviour. To correctly define or assume values of such 

operational parameters, the knowledge of additional parameters such as 
the particle size and the residence time distributions would also be 
required. Furthermore, the amount of data available for batch – type 
setups was significantly larger compared to continuous systems. The 
inclusion of continuous setups would be possible if certain operational 
parameters were removed. However, the choice was made to rather 
differentiate between the two reactor categories, although this way high 
throughput systems are excluded from the study (large scale reactors are 
typically continuous). Regarding the average particle size, this value 
was calculated (when not reported explicitly) according to the upper 
and lower values of the sieves used. The selected studies along with the 
respective biomass types are presented in Appendix A– Table A1. Each 
study was assigned an ID number with which they will be referred with 
in this work. The database includes in total 482 data points. 

The char, liquid and gas yield of the pyrolysis process, were selected 
as the outputs of the ANN model. The char yield refers to the solid 
residue of the pyrolysis process, therefore including ash if present. The 
liquid yield, in the context of the present database and model, includes 
all the condensable pyrolysis products including water. For this purpose, 
when the water produced from the pyrolysis was mentioned separately 
in a study it was added to the total liquid product. Otherwise, it was 
considered part of it unless explicitly mentioned. Finally, the gas yield 
refers to the total amount of non-condensable gases produced from the 
pyrolysis process. All the respective yields were converted to a wt% ar 
basis, according to the data provided in each study. 

At this point, it should be mentioned that significant discrepancies 
might arise from the incorrect employment of different bases (ar, db and 
daf) and conversion between them, in the expression of experimental 
pyrolysis product yields. This particular issue was encountered in the 
construction of the present database, but it can also have important 
implications for the comparability of different literature studies that 
focus on the determination of pyrolysis product yields both in terms of 
classes (gas, liquid, solid) and specific compounds (tars, gases, etc.). 
Such discrepancies reduce the scientific accuracy and therefore the 
value of a number of studies and hinder significantly the development of 
a comparative review or of a predictive model for biomass pyrolysis. 

The use of different bases of analysis, is typically meant for the 
expression of the composition of a fuel in an as – received (ar), air – dry, 
total – dry (db) or dry and ash – free (daf) basis. This allows the easier 
comparison of different fuels with respect to their volatile matter and 
fixed carbon content. The problem arises when such bases are used for 
the expression of the product yields of in this case pyrolysis. When the 
gravimetrically or volumetrically measured products are expressed on a 
db or daf basis without the simultaneous subtraction of the moisture and 
regarding daf also ash content from the respective products, the mass 
balance closure values have to add up to more than 100 %. This issue 
does not often manifest for two particular reasons. Firstly, incomplete 
experimental mass balance closures, which are often the case, can 
compensate for the overestimation of these products. Secondly, another 
common practice in the literature, the calculation of a product class by 
difference when the other two classes’ yields are measured also masks 
such discrepancies. In the context of the present work, only two studies 
in which the mass of ash and moisture of the initial sample were 
explicitly subtracted from the solid and the liquid product respectively, 
were found [43,44]. This particular method assumes that all of the ash of 
the initial sample ends up in the solid product, as does the moisture in 
the liquid and in general can be viewed as a fair assumption. However, 
one should keep in mind that depending on the temperature, volatile ash 
can also end up in the liquid product [45], while moisture could remain 
in the vapour phase and be collected along with the gases. 

The ambiguities arising from the abovementioned different ap-
proaches regarding the expression of pyrolysis product yields can easily 
be bypassed by the authors stating firstly the calculation procedure 
followed for the conversion to db or daf basis as done for example by 
Park et al. [43] and Lee et al. [44]. Furthermore, it is essential for the 
authors to always provide the moisture and ash values necessary for the 

Table 2 
Biomass pyrolysis experimental parameters obtained from literature sources, 
which were included in the database, serving as inputs and outputs of the 
developed ANN model respectively.  

Inputs 

Parameter Range 

Cellulose content (wt % a.r.) 0–90.5 
Hemicellulose content (wt % a.r.) 0–95.3 
Lignin content (wt % a.r.) 0–93 
Ash content (wt % a.r.) 3–21 
Moisture content (wt % a.r.) 0.1–23.5 
Pyrolysis temperature (oC) 227–1129 
Heating rate (Ks− 1) 0.12–10000 
Gas residence time (s) 0–4803 
Holding time (s) 0–3600 
Average particle size (mm) 0.035–17.5 
Sample size (mg) 0.2–250000  

Outputs 

Parameter Range 

Char yield (wt % a.r.) 0–98.9 
Liquid yield (wt % a.r.) 0–81.5 
Gas yield (wt % a.r.) 1–69.5  
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conversion to the basis used. Surprisingly, these values are frequently 
not provided [45–50]. Finally, closing the mass balances by difference 
often masks intrinsic mass losses of the apparatus used, but this can also 
lead to incorrect conclusions and misplaced amounts of mass in certain 
product yields. This practice was noted in literature more widely, 
especially for the gas yield [48,51–55], and can have a negative influ-
ence on model development but also scientific accuracy. 

2.2. ANN development 

Keras, a high level Python based neural network application pro-
gramming interface (API), was chosen as the main tool for the design of 
the ANN model. Keras’ high degree of flexibility and ease of use were the 
main reasons behind this choice. TensorFlow was used as backend, 
handling low level operations such as tensor products, convolutions, etc. 
For the training of the models Adam was used, which is a back-
propagation algorithm for first-order gradient-based optimization of 
stochastic objective functions [56]. Adam performed better than other 
algorithms tested (RMSprop and the stochastic gradient descent) and, in 
general, it is well suited for large data and parameter applications. 
Furthermore, hyperparameters (the model parameters controlling the 
learning process) have intuitive interpretations leading to fewer tuning 
requirements. With respect to the testing set, it consisted of studies that 
were excluded from the training of the network, representing a wide 
range of input space. In particular, the references with IDs 6, 17, 28, 30, 
36, 37 and 38 were used, which in total contribute to 11 % of the entire 
dataset. In general, in the samples selected for the sensitivity analysis 
there is a lower contribution of fast pyrolysis samples. Sample 17 is 
indeed corresponding to fast pyrolysis, as well as 28 and 30, however the 
latter two are rather on the limit with slow pyrolysis. Unfortunately, this 
is representative of the amount of fast pyrolysis studies present in the 
total database itself, which is indeed somewhat lower compared to slow 
pyrolysis. It should also be mentioned that it is not possible to take 
specific samples out of a study and use them as part of the testing set as 
this would skew the analysis by making us obtain artificially good 
performance. 

In total, three different ANN models were developed, each corre-
sponding to each pyrolysis product class studied (char, liquid and gas 
yield), following a MISO approach. Each of the ANN models developed 
was a feedforward network consisting of three layers: the input layer, 
one hidden layer and the output layer. The number of neurons in the 
hidden layer of each model was determined through a trial and error 
optimization process. The transfer functions employed were hyperbolic 
tangent. In order to prevent overfitting, Gaussian noise was added to the 
connection weights of the inputs during training. As long as the amount 
of added noise is contained, it can lead to better generalization, since the 
network becomes less prone to memorization of the data points [57,58]. 
For the same purpose, dropout was also employed. The key idea of this 
technique is to randomly drop neurons (along with their connections) 
from the network during training. During testing, the full network is 
used, albeit with the connection weights scaled down by the retention 
probability for the related unit, in order to compensate for the higher 
number of neurons [59]. Both the noise standard deviation (σ) and the 
dropout probability (p) were determined during the optimization of the 
network’s hyperparameters. 

Features of the database, namely the inputs: heating rate, gas resi-

dence time, holding time, average particle size and sample size, have 
values that span over multiple orders of magnitude. In order to 
emphasize the order of magnitude of the features and avoid non- 
meaningful representation, the features were passed through a base 10 
logarithmic function (Eq. (1)), modified to account for the possibility of 
0 values. In Eq. (1), x is the original value of the feature and xlow is the 
lowest value in the dataset for this specific feature, excluding zero. 

f (x) =

{
log10(x), for x ≥ xlow

log10(xlow) − 1, for x = 0 (1) 

The first step was the scaling of the database input and output values 
to zero mean and unit variance using Eq. (2), where x stands for each 
value of the feature, μ is the average of the feature being scaled and σ is 
its standard deviation. This equation is also used for the inverse trans-
formation of the outputs, by solving for x. 

z =
x − μ

σ (2) 

The scaling operation, although not necessary, prevents the network 
from having to learn how to adjust the weights of the connections to 
cope with the different magnitudes of the features described [60]. The 
weights of the connections are randomly initialized by selecting them 
from a normal distribution with zero mean and 0.05 standard deviation. 
Scaling provides a tangible performance boost, by reducing the amount 
of epochs required by the model. 

Concerning the input layer of the ANN model, the high degree of 
correlation between heating rate and sample size, led to the decision for 
the removal of the latter from the list. This choice was made using 
mostly qualitative criteria, since the meaningfulness of the correlations 
was not evaluated using hypothesis – testing methods. This particular 
correlation is presented and analysed in Section 3.1 more extensively. 
This choice limits the flexibility of the model in possible future iterations 
with additional data; however, it is appropriate in the context of the 
present database. In general, there is a trade-off when the inputs of an 
ANN model are selected. A high number of inputs and therefore a high 
number of free parameters, makes overfitting more likely to occur. On 
the other hand, reducing the amount of inputs may lead to loss of in-
formation and consequently impaired prediction capability. In this 
work, two different approaches regarding the input features of the 
model were followed. The first one was to include all the possible (10, 
excluding the sample size) pyrolysis parameters as inputs of the model. 
The second one was to build a “reduced” inputs model, including only 
the parameters that showed the highest influence on the network. This 
selection was carried out by performing two kinds of tests (hereby called 
powerset and sequential), as described in [60]. From this procedure, only 
temperature was excluded, since it was considered a fundamental pre-
dictor both in a conceptual way (related to the pyrolysis process) but 
also due to its high degree of correlation with the products as it was 
evident by the analysis of the database (Section 3.1). 

A powerset, which is the set of all the possible subsets of the database 
features, was used to test every possible input combination for each the 
three networks (char, liquid and gas). To perform this test, five ANN 
models were trained for each combination of inputs and then tested on 
different portions of the database according to a five-fold cross valida-
tion procedure. The mean squared error of the validation set, which was 
selected as the performance metric, was averaged and recorded for each 
input combination. From this analysis, the heating rate emerged as a 
strong predictor for the models, scoring consistently low MSE values, 
followed by the particle size. This result was highly expected, given the 
heating rate’s primary role in a pyrolysis process. In the sequential test, 
temperature and heating rate were considered as fundamental pre-
dictors, meaning that they were always included in the network’s inputs. 
For this testing, the remaining candidate inputs were introduced one by 
one, cyclically to the list of inputs. Five ANN models were trained in the 
same way as it was described for the powerset test. For each cycle, the 
MSE for the inclusion of each input was recorded and the one that scored 

Table 3 
Results of the sequential test. The parameters are reported in descendent order of 
strength as predictors.  

Char Liquid Gas 

Parameter Score Parameter Score Parameter Score 

Lignin 152 Lignin 170 Gas residence time 170 
Ash 112 Particle size 124 Moisture 130 
Particle size 100 Cellulose 79 Particle size 110  
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the lowest was added to the list of inputs. The cycle was repeated until 
the depletion of the input candidates. The results of the sequential test 
were evaluated using a simple order-to-score assignment. The three top 
scoring parameters for each one of the three networks were selected for 
the reduced versions of the ANNs along with the temperature and the 
heating rate and they are presented in Table 3. The values of the 
hyperparameters used in both the powerset and sequential tests are 
mentioned in Appendix B. 

Lignin (content) was found to be the strongest predictor for both the 
char and the liquid ANN models. Lignin can be considered as the main 
source of char formation for biomass materials pyrolysis as it has also 
been reported in the literature [61,62]. However, the effect of lignin in 
the prediction of the liquid yield can be viewed as an indirect effect of its 
influence on the char yield. Ash content, which is the second stronger 
predictor for the char model, is also positively correlated with char 
formation due to its presence in the solid residue in general. Particle size 
was a strong predictor for all three models. A small value of particle sizes 
favouring volatile production, has the opposite effect on char production 

and is in general a crucial factor in a pyrolysis process due to its effects 
on heat and mass transport phenomena [63,64]. The cellulose content of 
biomass mainly contributes to volatiles formation [65], so its presence in 
the list of strong predictors for the liquid model can be explained. Gas 
residence time scored higher than all parameters for the gas model. Long 
gas residence times, favour secondary tar cracking thus yielding higher 
gas yields [2]. However, the qualification of moisture as a strong pre-
dictor for the gas model can be viewed as a surprise. Moisture, on the one 
hand, can contribute to the formation of smaller molecules via hydro-
lysis and reforming reactions, however other parameters such as the 
lignocellulosic content for example, were expected to have a bigger 
impact on the gas yield. A possible explanation could be that the model 
sees an indirect correlation between the liquid yield and moisture and 
this is passed on to the gas model. Nevertheless, as it was also mentioned 
in the previous chapter, the calculation of the gaseous yield by differ-
ence, adds a certain degree of unreliability to parts of the database that 
correspond to these particular measurements. 

Fig. 2. Logarithmic plot of sample size over heating rate. Linear regression along with 95 % confidence interval is shown (R = 0.9293).  

Fig. 1. Char yield (left), gas yield (middle) and liquid yield (right) over temperature for the pyrolysis experiments database, excluding reference with ID 34 for the 
liquid product. Linear regression along with 95 % confidence interval is shown for char and gas (R = 0.5226 and R = 0.5376 respectively) and a locally weighed 
linear regression for the liquid. 
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3. Results and discussion 

3.1. Analysis of literature data 

In order to identify trends in the available data regarding both input 
and output parameters, 2D scatter plots of all the possible combinations 
were generated. Additionally, the Pearson’s correlation coefficient (R) 
values of the distributions were calculated. The purpose of this process 
was to validate the database by identifying trends known from the 
literature, as well as provide some feedback for the development of the 
ANN model. It should be noted, that while high R values do identify 
correlations, low R values do not exclude them in the particular case 
studied. During biomass pyrolysis a wide variety of parameters have an 
effect on the process and its yields, therefore the correlation between 
just two of them may not always be direct. Finally, as it was also 
mentioned in Section 2, hypothesis – testing methods need to be 
employed in order to fully evaluate the quality of the correlations. 

Regarding correlations between inputs and outputs, the one between 
char yield and gas yield with temperature was the most obvious. Fig. 1 
shows that with increasing temperatures the char yields decrease, in 
contrast to the gas yield. Both trends have been well established in 
literature [66–68]. As for the relationship between temperature and the 
liquid yield, the correlation becomes more evident with the removal of 
part of the dataset and in particular of the values corresponding to ID 34 
[69]. In this work, a wide set of conditions is studied, with temperatures 
ranging between 300 and 1100 ◦C and heating rates between 100 and 
10,000 Ks− 1. Along with the large amount of data points from this study 
(97), this wide range of conditions on the one hand helps to expand the 
input domain of the database and the corresponding ANN model. On the 
other hand though, it does not allow this particular 2D visualization by 
skewing it significantly. By removing reference ID 34 from the data set 
and using a locally weighed linear regression fit, a trend showing the 
liquid yield increasing until a temperature of 550 ◦C before decreasing 
emerges. This behaviour is consistent with secondary tar cracking as it 
has been described in literature [66,70,71]. 

From this analysis of the database interesting correlations can also 
arise between inputs. An example is presented in Fig. 2, where the 
sample size is plotted against the heating rate with a high value of R 

(0.9293). The trend shown does not represent a causal relationship be-
tween the two parameters, but it rather shows that usually fast pyrolysis 
experiments are conducted with small samples sizes, while the contrary 
holds for slow pyrolysis experiments. This observation has a two-fold 
effect on the ANN model development. Firstly, it assists in defining 
the boundaries of the input space since by showing that the network has 
little or no information on how to behave in the case of slow pyrolysis 
with small sample sizes or fast pyrolysis with big sample sizes. 
Furthermore, the strong correlation between the two parameters in-
dicates that they contain the same redundant information in the context 
of the database. Similar correlations were found between heating rate 
and particle size and gas residence time, although to a lesser extent (R 
values of 0.6615 and 0.4587, respectively). 

3.2. ANN results 

3.2.1. Full and reduced models performance 
The optimal values of the hyperparameters obtained through the 

optimization process are presented in Appendix B, while the values of 
weights and biases for the hidden and output layers are included in the 
supplementary information. Furthermore, the analysis and presentation 
of the results was performed with root mean square error (RMSE) as a 
metric. However, in order to facilitate comparison with other models, 
the corresponding R2 values are also presented in Appendix D. 

The reduced char model (Fig. 3), using temperature, heating rate, 
lignin content, ash content and particle size as input parameters, per-
formed better compared to the full model in the prediction of the char 
yield (root mean square value of 5.1 wt% ar versus 5.9 wt% ar). In 
general, char constituted the product for which the best estimations 
were achieved for both types of models used. The fact that the reduced 
model performed better, supports the argument that a reduced repre-
sentation of data can lead to better results due to improved general-
ization capabilities. Among the data points used in this ANN’s testing, 
38a1 appears to be the main outlier. The high magnitude of the error for 
this point can be attributed to the combination of an especially large 
particle size (10 mm), a very low pyrolysis temperature (300 ◦C) along 
with a value of heating rate which lies in the margin between slow and 
fast pyrolysis (80 Kmin− 1). This combination makes this particular point 

Fig. 3. Performance of the reduced char ANN over the test set. Predictions of the networks are shown alongside the targets for each single sample in the test set. 
Indicative boundary lines are shown ±5 wt% ar around the zero line. 
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stand out among the rest, making it difficult for the ANN to successfully 
predict the value. Similar high error values were obtained for this data 
point also in the full char ANN. 

In order to evaluate the influence of each parameter on the best 
performing networks behaviour, a sensitivity analysis was performed by 
varying each one while keeping the rest unaltered. The purpose of this 
sensitivity analysis is mostly to signify the importance of analysing the 
performance of an ANN not only in terms of the RMSE values obtained 
but also on whether it is able to indeed “learn” the required scientific 
correlations from the inputs. For this analysis, eight specific samples 
from the testing set were used, each representing different conditions 
and combinations. In particular, 17a1 corresponds to a sample with a 
high ash content that underwent fast pyrolysis at a very high heating 
rate (1000 ◦C s− 1), while 28a1 and 28a4 differ in terms of pyrolysis 
temperature (700 ◦C and 1000 ◦C, respectively). Samples 36a1 and 36c1 
correspond to low pyrolysis temperature (377 ◦C) with different particle 
sizes (0.3 mm versus 5 mm). Finally, 37b3 has a lower lignin and higher 
cellulose content than 37c1 and 37c3, while the latter two differ in terms 
of heating rate (0.25 Ks− 1 versus 0.5 Ks− 1). The results of this analysis 
are presented in Fig. 4 and as can be observed, char yield values decrease 
with increasing temperature. An increase of the lignin and ash content 

also appears to lead to an increase of the char yield, as it is the case for 
increasing particle sizes, although to a lesser extent. The latter can be 
seen as a surprise, since a more intense correlation was expected be-
tween char yield and particle size. A positive correlation between the 
heating rate and the char yield was also established. Although it is 
difficult to examine the effect of heating rate irrespectively of the rest of 
the pyrolysis conditions, generally slower heating rates favour char 
production [72]. However, faster heating rates can also be linked to 
lower conversion levels, thus leading to an increase of the solid residue 
yield, which apart from char can also contain some unreacted volatiles, 
which rather contradicts the previous statement. Of course, it is difficult 
to say whether the ANN shows this behaviour due to the aforementioned 
reason. In general, it appears that the reduced char ANN reproduces the 
trends established by literature successfully. Similar trends were 
observed also in the corresponding analysis of the full char ANN, how-
ever some overfitting behaviour was presented for the cases of ash 
content and particle size. 

In the case of the liquid model, the full version (Fig. 5) performed 
significantly better (RMSE of 6.9 wt% ar) compared to the reduced one 
(RMSE of 9.3 wt% ar) with temperature, heating rate, lignin and cellu-
lose content and particle size as inputs. For the liquid models, being the 

Fig. 4. Predictions of the reduced char ANN for varying values of lignin (a), ash (b), heating rate (c), temperature (d) and average particle size (e) for specific 
test samples. 
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worst performing ones among the three, the loss in generalization per-
formance by the addition of the extra inputs in the full model was 
compensated by the amount of information added. The same kind of 
analysis as in the case of the reduced char model presented above, was 
also conducted for the full liquid model, using the same samples from 
the database. As can be seen in Fig. 6, the full liquid ANN was able to 
learn correctly the correlation between temperature and liquid product 
yield. For each of the samples tested, the liquid product maximum yield 
was obtained in the temperature range 400–600 ◦C. The behaviour of 
the heating rate was diverse on the other hand. Fig. 6b shows that all the 
samples apart from 36a1 and 36c1 point to a positive correlation be-
tween heating rate and liquid yield. Similar results were obtained also 
for the rest of the parameters used as inputs for the liquid model, with 
possible overfitting being encountered for some of them. 

Regarding the gas prediction models, the reduced version (temper-
ature, heating rate, moisture content, gas residence time and particle 

size) produced a RMSE of 5.6 wt% ar (Fig. 7), which was slightly better 
compared to the full version (RMSE of 6 wt% ar). In Fig. 7, for the 
reference with ID 36, the variation of the gas yield values due to the 
heating rate alternating between 0.4 Ks− 1 and 0.8 Ks− 1 was correctly 
predicted. However, this behaviour was not successfully generalized as 
apparent from reference ID 37. For this reference, data points a1, a2, a3, 
b1, b2, b3, c1, c2, d1 and d2 correspond to a heating rate of 0.25 Ks− 1 

while the rest relate to 0.5 Ks− 1. From the results, it can be concluded 
that the heating rate variation does not affect the prediction signifi-
cantly. Furthermore, by observing Fig. 8b, it is apparent that while for 
slow heating rates the positive correlation with gas yields is properly 
established, the trend stops and reverses for faster heating rates. This 
probably indicates the need for the inclusion of more fast pyrolysis ex-
periments in the database. Another interesting observation can be made 
for the poor performance of samples 30b1 and 30c1, which correspond 
to pure cellulose and lignin pyrolysis experiments, respectively. This 

Fig. 5. Performance of the full liquid ANN over the test set. Predictions of the networks are shown alongside the targets for each single sample in the test set. 
Indicative boundary lines are shown ±5 wt% ar around the zero line. 

Fig. 6. Predictions of the full liquid ANN for varying values temperature (a) and heating rate (b) for specific test samples.  
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Fig. 7. Performance of the reduced gas ANN over the test set. Predictions of the networks are shown alongside the targets for each single sample in the test set. 
Indicative boundary lines are shown ±5 wt% ar around the zero line. 

Fig. 9. Predictions of the full liquid (left) reduced gas (right) ANN for varying char values for specific test samples.  

Fig. 8. Predictions of the reduced gas ANN for varying values temperature (a) and heating rate (b) for specific test samples.  
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poor prediction stems from the fact that lignocellulosic content is not an 
input for the reduced gas network. For sample 30a1 (pure xylan), the 
good prediction can be attributed partly to chance and also to the fact 
that hemicellulose in general is not predominantly linked to the for-
mation of particular product classes, contrary to cellulose and lignin 
[73]. It is interesting to note, that despite the fact that the full network 
performed slightly worse overall, it was more successful at the predic-
tion of the ID 30 samples. This observation shows that despite the 
reduced accuracy of the full gas model, the inclusion of certain param-
eters leads to correct learning behaviour. Finally, through Fig. 8a, it is 
possible to affirm that the expected behaviour of the gas yield rising for 
increasing temperatures was correctly predicted, at least qualitatively. 

On a general note, the superior performance of the char models can 
be attributed to the higher reliability of the char yield measurement 
from a slow or fast pyrolysis lab scale experiment. The char yield typi-
cally consists of the residual mass in the reactor after the completion of 
the experiment, along with what is captured in a particle separator, 
cyclone or filter if one of this methods is employed [74]. It can be 
therefore argued, that there is a higher consistency and intrinsic accu-
racy in the measurement of the char yield compared to the gaseous and 
liquid yields, for which several different methods are employed in the 
literature. Especially in the measurement of the liquid products, several 
methods exist in the literature for its quantification. The various 
methods employed include different sampling train configurations, 
solvents (and solvent evaporation methods) used, temperatures under 
which the sampling takes place, as well as different types of detectors 
used for the detection and quantification of certain compounds [74,75]. 
The lack of robust guidelines for the measurement in the liquid product 
from small scale pyrolysis experiments, as is the tar protocol for larger 
setups [76], can lead to significant discrepancies between studies. 
Additionally, the previously mentioned approach of calculating one of 
the product classes’ yield by difference can lead to similar results. Lastly, 
it should be mentioned, that the networks that have been obtained in 
this work, are mutually independent and possess no information 
regarding the mass balance over the three products. Therefore, the sum 
of the predictions of the three models do not add up to 100 %. However, 
it is possible to add the average mass closure of the training set in the 
model, by normalizing the results of each product with it. This can lead 
to marginal improvement of the predictions for the liquid and gas 
products, but not for the char. The description of these ANNs was 
omitted for brevity. 

3.2.2. Char as an input feature 
From the previously presented results, it became obvious that the 

char models were the best performing ones among the ANNs developed. 
This fact, along with the higher inherent accuracy of char measurements 
from pyrolysis experiments, led to the decision of the inclusion of char as 
an input to the liquid and gas ANN models. For this purpose, the full 
liquid and the reduced gas ANN were trained with char (experimentally 
derived) as an additional input. It should be mentioned, that for the 
generalization and refinement of the conclusions derived from this 
particular approach the powerset and sequential tests would have to be 
repeated. Furthermore, correlations between the char yield and inputs 
such as the temperature and the heating rate might exist that make the 
use all of them redundant in the context of the information fed into the 
ANN models. However, such an investigation was outside the context of 
the present work. 

This move led to significantly improved predictions for both models. 
More specifically the RMSE of the full liquid ANN improved from 6.9 wt 

% ar to 5.5 wt% ar and the reduced gas ANN from 5.6 wt% ar to 4.9 wt% 
ar. As it can be seen in Fig. 9, the variation of both yields over the char 
yield, shows a negative correlation between them. This was certainly 
expected, since increasing char yields are usually accompanied by 
decreasing volatile production in thermochemical processes in general. 
The results obtained from those models fall very consistently within ±
25 % accuracy boundaries and the difference between the measured and 
predicted yields is also consistently less than 10 wt% ar, making them 
comparable to the results of Neves et al. [74]. In the aforementioned 
work, a model for the prediction of pyrolytic volatiles was developed 
employing a system of equations where elemental and energy balances 
are combined with empirical parameters. For this work char was also 
used as an input parameter, however only the results of one study were 
used for the testing of the model. 

3.2.3. Single study ANNs 
In general, pyrolysis regression ANN models for single sets of 

experimental results are described in the literature (e.g. [5,18,24,38]). 
In order to investigate the behaviour of the ANN models for single 
studies, references with ID 34 and ID 12 were examined. The first one, 
which is a study by Nik-Azar et al. [69] with beech wood, has a signif-
icant amount of data points (97) and only particle size, heating rate and 
temperature were varied experimentally. The second study by Aysu and 
Küçük [52] had a smaller amount of data points (27) and the tempera-
ture, the heating rate and the gas residence time were varied. Therefore, 
two ANN models for each reference were developed, with only the 
corresponding data points constituting the training and testing sets in 
each case. The figures containing the results of these models are pre-
sented in the Appendix C. The char ANN for ID 34 resulted in an RMSE of 
1.9 wt% ar and the liquid ANN an RMSE of 1.5 wt% ar. The results for ID 
12 were even better (RMSEs of 0.43 wt% ar for char and 0.63 wt% ar for 
gas), showing that not many data points are required from the model, 
especially for narrower ranges of experimental conditions. It should be 
mentioned that optimization of the hyperparameters was not performed 
for either case. From this brief analysis, it can be shown that ANN 
models can deliver very good predictions when it comes to a limited 
range of inputs in terms of experimental parameters. However, these 
models are not generalizable; they are reactor and biomass type specific. 
Furthermore, any variation of the input parameters beyond the limits of 
each study would constitute an extrapolation on behalf of the model. 

4. Conclusions 

The ANN models proposed within this work for the estimation of 
solid, liquid and gaseous pyrolysis product yields focus on generaliz-
ability and aim to achieve the best possible results over different reactor 
systems, conditions and biomass types. This was made possible through 
the creation of a unique, large database, consisting of a variety of small- 
scale experimental pyrolysis studies. It can be argued that the imple-
mentation of the ANN models was successful, given the quite reasonable 
values of RMSE of the predictions. However, the ANN models cannot be 
compared to ones obtained from single or in general more limited 
studies. The models developed in this work appeared to be able to 
consistently reproduce the expected behaviours for the respective yields, 
especially in relation to temperature variation. However, a difficulty in 
extracting useful information from inputs such as gas residence time and 
holding time was also noted. Furthermore, a reduction of the input pa-
rameters was attempted, based on an evaluation of the most effective 
parameters. The increased generalization capabilities achieved through 
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this method were observed in terms of prediction quality improvement 
for the char and gas ANNs, while in the case of the liquid ANN the loss of 
information led to worse performance. Finally, it was shown that the 
inclusion of the experimentally derived char yield as an input parameter 
in the ANN models, can lead to improved predictive capabilities. 

For the cases of the char and gas ANNs, the reduced input networks 
performance was only slightly better compared to the full ones. The 
liquid product ANN was the worst performing one, with the reduced 
version being also considerably less accurate (RMSE of 9.3 wt% ar) than 
the full one (6.9 wt% ar). Among the three product classes, the char 
models were the best performing ones, largely due to the higher accu-
racy of char yield experimental measurements compared to the ones for 
the liquid and gaseous products. The wide variety of methods employed 
for pyrolysis liquid product determination as well as the calculation of 
either the liquid or the gaseous product by difference add to that effect. 
Considering the lower reliability of the gas and liquid yields measure-
ment from pyrolysis experiment, the reason for the significantly better 
performance of the gas models in the present work can be sought in the 
actual numerical values of the yields. In the present database, the 
standard deviation of the gas yield values (10.9 wt% ar), is significantly 
lower compared to the ones of the char (15 wt% ar) and liquid (14.7 wt 
% ar). This means that there is a lower variability in the reported 
gaseous yields and therefore their prediction, which falls within a 
smaller interval, entails a smaller error. 

In general, the maximum achievable accuracy for the models ob-
tained in this work is limited due to a number of factors. That of course 
does not exclude the possibility of improvements for example by further 
optimization of the ANNs, the inclusion of continuous reactors in the 
database by making the necessary adaptations in the models, the 
reduction of the models’ scope (e.g. focus on specific pyrolysis regime) 
or the introduction of stricter criteria for the induction of data in the 
database. Furthermore, the feature reduction method, could be further 
refined, by utilizing hypothesis – testing methods for the derivation of 
correlations within the dataset. Additionally, the reported lack of fast 
pyrolysis samples could be addressed by the removal of some input 
parameters and/or by focusing on specific regimes, that would allow the 
expansion of the database to include studies previously left out due to 
incomplete information. In any case however, the limitations induced 
through discrepancies in the literature are still significant. Firstly, the 
composition of biomass samples can be measured using different 
methodologies of which the results might differ significantly. The 
standards that are used are often not mentioned in the literature. 
Furthermore, fundamental parameters are also sometimes omitted, such 
as the lignocellulosic composition, the gas residence time, even in some 
cases the heating rate. Finally, the implications of the employment of 
different methods for products measurement, the calculation of product 
yields by difference and the ambiguity in definition of units of mea-
surement have already been discussed thoroughly in the present work. 
In a world that is rapidly shifting its focus towards the realm of big data, 
it is essential to provide high amounts of quality data that can be easily 
used and compared by these types of models. Therefore, the pyrolysis 
scientific community needs to be aware of using higher standards in 
terms of reported data quality. 

Author statement 

C. Tsekos: Conceptualization, Methodology, Resources, Writing - 
Original Draft, Writing - Review & Editing, Visualization. S. Tandur-
ella: Methodology, Software, Formal analysis, Investigation, Data 
Curation, Writing - Review & Editing. W. de Jong: Writing - Review & 

Editing, Supervision, Project administration, Funding acquisition. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Appendix A  

Appendix B. Hyperparameters values 

Table B1, Table B2 

Table A1 
Studies from literature included in the database, along with the amount of data 
points.  

ID Biomass Type Data 
points 

Reference 

2 Wood mixture, reed 12 [77] 
3 Hazelnut, almond, walnut and sunflower shells 32 [46] 
4 Cotton cocoon shell, tea factory waste, olive husk 12 [47] 
5 Torrefied and non – torrefied ash wood 25 [78] 
6 Leaucaena leucocephala 1 [79] 
7 Coffee waste 6 [48] 
10 Switchgrass 12 [80,81] 
11 Pine needles 23 [82] 
12 Giant fennel 27 [52] 
13 Laurel extraction residue 23 [53] 
14 Safflower seed cake 19 [83] 
15 Hazelnut cupula 12 [84] 
16 Euphorbia rigida, sesame stalk 4 [85] 
17 Rice straw 3 [86] 
18 Maple fruit 12 [54] 
19 Miscanthus X Giganteus 27 [55] 
22 Rice straw 5 [43] 
23 Geodae – Uksae 1 7 [87] 
24 Bagasse, coco peat, paddy straw, palm kernel shell, 

umbrella tree stem, umbrella tree bark 
6 [44] 

26 Sugarcane bagasse 15 [88] 
27 Rice husk 18 [89] 
28 Spruce wood 4 [49] 
29 Xylan, cellulose, hemicellulose and mixtures 6 [73] 
30 Xylan, cellulose and hemicellulose 3 [90] 
31 Lignin 7 [91] 
33 Cotton seed cake 12 [92] 
34 Beech wood 97 [69] 
35 Beech and fir wood, agricultural residues 18 [93] 
36 Beech wood 10 [94] 
37 Wheat straw, almond shell, olive stone, grape refuse 20 [95] 
38 Pine wood 4 [96]  

Table B1 
Hyperparameter values used in the powerset and sequential tests.  

Parameter Powerset test Sequential test 

Hidden layers 1 1 
Neurons in hidden layers 15 15 
Batch size 30 30 
Epochs 1250 1500 
Learning rate 0.001 0.001 
Noise (σ) 0 0.02 
Dropout probability 0 0.2  
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Appendix C. Additional figures 

A) Full char ANN 

Fig. C1 
B) Reduced liquid ANN 
Fig. C2 

Fig. C1. Performance of the full char ANN over the test set. Predictions of the networks are shown alongside the targets for each single sample in the test set. 
Indicative boundary lines are shown ±5 wt% ar around the zero line. 

Table B2 
Hyperparameter values for the ANN models developed in the present study.  

Parameter Full char Reduced Char Full liquid Reduced liquid Full gas Reduced gas Full liquid with char input Reduced gas with char input 

Hidden layers 1 1 1 1 1 1 1 1 
Neurons in hidden layers 9 9 18 9 9 9 18 9 
Batch size 30 30 30 30 30 30 30 30 
Epochs 500 750 1500 1500 750 1500 750 750 
Learning rate 0.01 0.0001 0.001 0.01 0.01 0.001 0.003 0.003 
Noise (σ) 0.3 0.2 0.3 0.3 0.1 0.2 0.3 0.2 
Dropout probability 0.2 0 0.2 0.2 0.2 0 0.2 0  

Fig. C2. Performance of the reduced liquid ANN over the test set. Predictions of the networks are shown alongside the targets for each single sample in the test set. 
Indicative boundary lines are shown ±5 wt% ar around the zero line. 
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C) Full gas ANN 
Fig. C3 

D) Full liquid with char as an input ANN 
Fig. C4 

Fig. C3. Performance of the full gas ANN over the test set. Predictions of the networks are shown alongside the targets for each single sample in the test set. 
Indicative boundary lines are shown ±5 wt% ar around the zero line. 

Fig. C4. Performance of the full liquid ANN with char as an input over the test set. Predictions of the networks are shown alongside the targets for each single sample 
in the test set. Indicative boundary lines are shown ±5 wt% ar around the zero line. 
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E) Reduced gas with char as an input ANN 
Fig. C5 

F) Single study ANNs 
Fig. C6 

Fig. C6. Performance of the liquid, char and gas ANN over the test set for reference ID 34. Predictions of the networks are shown alongside the targets for each single 
sample in the test set. Indicative boundary lines are shown ±5 wt% ar around the zero line. 

Fig. C5. Performance of the reduced gas ANN with char as an input over the test set. Predictions of the networks are shown alongside the targets for each single 
sample in the test set. Indicative boundary lines are shown ±5 wt% ar around the zero line. 
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Fig. C7 

Appendix D. R2 values of the ANNs 

Table D1 
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Table D1 
Correspondence between RMSE and R2 values for the ANN models developed 
within the present study.  

ANN RMSE (wt% ar) R2 

Reduced Char 5.1 0.75 
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Char ID 12 0.43 0.91 
Gas ID 12 0.63 0.62  
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