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A B S T R A C T   

Determination of inspection and maintenance policies for minimizing long-term risks and costs in deteriorating 
engineering environments constitutes a complex optimization problem. Major computational challenges include 
the (i) curse of dimensionality, due to exponential scaling of state/action set cardinalities with the number of 
components; (ii) curse of history, related to exponentially growing decision-trees with the number of decision- 
steps; (iii) presence of state uncertainties, induced by inherent environment stochasticity and variability of in
spection/monitoring measurements; (iv) presence of constraints, pertaining to stochastic long-term limitations, 
due to resource scarcity and other infeasible/undesirable system responses. In this work, these challenges are 
addressed within a joint framework of constrained Partially Observable Markov Decision Processes (POMDP) and 
multi-agent Deep Reinforcement Learning (DRL). POMDPs optimally tackle (ii)-(iii), combining stochastic dy
namic programming with Bayesian inference principles. Multi-agent DRL addresses (i), through deep function 
parametrizations and decentralized control assumptions. Challenge (iv) is herein handled through proper state 
augmentation and Lagrangian relaxation, with emphasis on life-cycle risk-based constraints and budget limita
tions. The underlying algorithmic steps are provided, and the proposed framework is found to outperform well- 
established policy baselines and facilitate adept prescription of inspection and intervention actions, in cases 
where decisions must be made in the most resource- and risk-aware manner.   

1. Introduction 

Optimal inspection and maintenance planning delineates a class of 
important engineering decision-making problems, aimed at supporting 
sustainable and resilient operation of systems and networks over their 
life-cycle. Optimality refers to minimizing various societal, environ
mental, and economic risks, along with other operational costs, as these 
emerge due to the combined consequences of the selected actions of the 
decision-maker and their effects based on the future exogenous deteri
oration of the environment. Within this context, the goal of the decision- 
maker is to determine an appropriate policy, i.e. an optimal rule of 
sequential decisions over a presumed time frame, which is able to aptly 
map states and times to intervention and observation actions [1,2]. 

Literature indicates several approaches to solving this problem, from 
threshold-based nonlinear and mixed-integer programming formula
tions (e.g. in [3,4,5,6]), to analysis of decision trees (e.g. in [7,8,9,10]), 
and from renewal theory (e.g. in [11,12,13,14]), to stochastic optimal 
control (e.g. in [15,16,17,18]). These approaches are also applicable to 

infrastructure problems beyond inspection and maintenance planning, 
such as post-disaster recovery, e.g. in [19,20,21]. Respectively, admis
sible solution strategies to the above approaches span from exhaustive 
policy enumeration, and genetic algorithms, to gradient-based schemes, 
and dynamic programming. Besides formulations that leverage dynamic 
programming and stochastic optimal control concepts, a common 
characteristic underlying traditional inspection and maintenance plan
ning methods is that the decision-making problem, despite its inherent 
sequential and dynamic nature, is articulated by means of static opti
mization formulations. As a result, many otherwise practical approaches 
tend to be more susceptible to optimality limitations, especially in 
problems with high-dimensional spaces and long decision horizons, 
challenges also known as the curse of dimensionality and curse of history, 
respectively [22,23]. Moreover, many solution techniques often lack 
cohesive and generalizable mathematical capabilities regarding the 
consistent integration of stochastic environments and/or uncertain 
observation outcomes in the optimization process, as well as the incor
poration of stochastic or deterministic constraints that need to be 
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satisfied over multiple time steps or even the entire operating life of the 
system. 

To address the above issues, this work follows a stochastic optimal 
control approach, casting the optimization problem within the joint 
context of constrained Partially Observable Markov Decision Processes 
(POMDPs) and multi-agent Deep Reinforcement Learning (DRL). 
POMDPs are able to alleviate the curse of history as a result of their 
dynamic programming principles, and to facilitate optimal reasoning in 
the presence of real-time noisy observations [24]. Their efficiency in 
inspection and maintenance planning has been thoroughly studied and 
exemplified in [25,26,27,28,29], among others. Within the same class of 
applications, in the confluence of DRL and point-based POMDPs, the 
Deep Centralized Multi-agent Actor Critic (DCMAC) approach has been 
recently developed in [30,31], an off-policy algorithm with experience 
replay, belonging in the general family of actor-critic approaches [32, 
33]. DCMAC leverages the concept of belief-state MDPs, a fundamental 
idea for the development of point-based POMDP algorithms, thus 
directly operating on the posterior probabilities of system states given 
past actions and observations [34]. In DCMAC, individual control units 
are centralized in terms of global state information and sharing of policy 
network parameters, nonetheless, they are decentralized in terms of 
policy outputs. Hence, based on classic Markov decision processes 
formalism, DCMAC provides Decentralized POMDP (Dec-POMDP) so
lutions [35,36], for a setting where the agents representing the various 
control units have access to the entire state distribution of the system, 
however, having the autonomy to make their own choices without being 
aware of each other’s actions. DRL is extremely efficient in tackling the 
curse of dimensionality stemming from high-dimensional and/or com
binatoric state spaces, whereas the computational hurdle of exponential 
scaling of the number of actions with the number of components is 
seamlessly handled by the decentralized multi-agent formulation of the 
problem, given that decentralization enables linear scaling. 

Building upon the above described DRL concepts in this work, a 
modified architecture in relation to the original DCMAC approach is 
implemented for the actor. We consider a sparser parametrization of the 
actor, without parameter sharing, i.e. each agent has its own individual 
policy network. We call this architecture Deep Decentralized Multi- 
agent Actor Critic (DDMAC). Similar approaches exist for various 
cooperative/competitive multi-agent robotic and gaming control tasks 
[37,38]. Thorough reviews on state-of-the-art methods and applications 
can be also found in [39,40]. Despite the architectural differences with 
DCMAC, DDMAC solves the same Dec-POMDP problem, eliminating, 
however, inter-agent interactions in the hidden layers for the sake of 
computational efficacy. Based on this numerical approach, this paper is 
particularly focused on investigating the effects of incorporating 
resource constraints and other limitations, especially in the forms of 
budget and life-cycle risk constraints. Depending on the nature of the 
modeled limitations, the constraints can be addressed through either 
state augmentation or primal-dual optimization approaches based on 
the Lagrangian function of the problem. 

Constrained static optimization formulations for operation and 
maintenance policies exist in the literature, e.g. in [3,14,41,42], mainly 
reflecting short-term risk, reliability-based, and budget-related consid
erations. In the case of POMDPs, the optimization problem now falls in 
the category of constrained POMDPs. Constrained Markov decision 
processes have been given model-based solutions with the aid of linear 
programming formulations in [43,44]. Exact POMDP alpha-vector value 
interation can be extended to constrained problems as well, inheriting, 
however, the PSPACE complexity of the unconstrained solution [45]. 
Unconstrained point-based POMDP algorithms, which are well-suited 
for inspection and maintenance planning of systems with up to thou
sands of states and hundreds of actions and observations [27,18], have 
also been extended to constrained problems [46]. In multi-component 
systems, under the assumption of component-wise independent cost 
functions, states, and actions, [47] derives constrained POMDP solutions 
through a series of unconstrained solutions controlled by a linear master 

program. Overall, and notwithstanding their principled mathematical 
descriptions, the above value iteration and linear or nonlinear pro
gramming formulations are fundamentally hard to extend to 
high-dimensional systems that are of interest in this work. 

In DRL, constraints typically refer to either the parameters of the 
approximated functions, or the cumulative returns related to auxiliary 
functions of interest [48,49,50]. The former methods restrain the iterate 
increment of the policy parameter updates to be within a trust region of 
the Kullback-Leibler divergence between the new and the old policy, 
thus preventing abrupt policy changes and, consequently, training in
stabilities. In such cases, optimization is typically based on surrogates of 
the objective and constraint functions [48]. The latter methods typically 
aim to protect the agent from unsafe or otherwise undesirable states and 
choices during training or policy deployment. To this end, the objective 
is optimized with the aid of primal-dual formulations, either through 
trust region concepts, or Lagrangian relaxation, or domain-based 
manual penalization [49,51,52]. Safe RL formulations similarly inte
grate risk and policy variance in the constraint functions of the problem, 
or directly intervene in exploration to guide training [53,54]. Such 
“safety” constraints can for example pertain to the probability of failure 
over multiple steps and, as such, they reflect soft constraints, meaning 
that they only need to be satisfied in a probabilistic or expected sense. 
The satisfaction of hard constraints, such as budget constraints, are 
easier to account for in the optimization process through state 
augmentation. Such constraints tend to be relevant for other resource 
limitations as well, e.g. in cases of limited availability of operating 
crews, inspectors, etc. In this work, we consider and study both types of 
constraints. 

In summarizing, in this paper we consider and optimize DRL-driven 
non-periodic inspection and maintenance policies in the presence of 
resource limitations and risk-related constraints. First, the preliminaries 
of the POMDP formulation in inspection and maintenance planning are 
elaborated, with insights in the problem-specific modeling re
quirements. State updating equations and inspection, maintenance, 
shutdown, and risk cost definitions are presented. It is studied and dis
cussed how the selected actions affect the above costs, and which the 
inherent mechanisms that drive observational strategies in POMDPs are. 
Theoretical analysis pertaining to risk definitions and related accruable 
and instantaneous costs is presented, along with their relation to clas
sical definitions. The optimization problem is cast within the context of 
decentralized multi-agent DRL control, where agents operate directly on 
the belief space, i.e. the space of posterior system statistics based on past 
actions and observations. The developed and employed DRL approach, 
DDMAC, is an off-policy actor-critic method with experience replay, 
modifying the original architecture presented in [30]. The relevant 
algorithmic steps for implementing the above described decentralized 
DRL framework are provided, based on state augmentation for hard 
constraints and Lagrangian relaxation for soft constraints. Quantitative 
investigation is conducted based on a stochastically deteriorating 
multi-component system. Numerical experiments include evaluation of 
different baseline policies, and different budget and risk constraint 
scenarios. The resulting evolution of various system metrics, pertaining 
to risk, reliability, inspection, and intervention choices over the system 
operating life, is parametrically studied and discussed based on the 
learned policies. 

2. POMDPs in inspection and maintenance planning 

2.1. The optimization problem 

The goal of the decision-maker (agent) in a life-cycle inspection and 
maintenance optimization problem is to determine an optimal policy π 
= π* that minimizes the total cumulative future operational costs and 
risks in expectation: 

C.P. Andriotis and K.G. Papakonstantinou                                                                                                                                                                                                
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π* = argmin
π∈ΠC ⊆Π

Es0:T ,o0:T ,a0:T

[
∑T

t=0
γtct

⃒
⃒
⃒
⃒
⃒
at ∼ π(o0:t, a0:t− 1), s0 ∼ b0

]

= argmin
π∈Πc⊆Π

Vπ(b0)

(1)  

where ct = c(st,at,st+1) is the cost incurred at time t by taking action at ϵ A, 
and transitioning from state st ϵ S to state st+1 ϵ S; ot ϵ Ω is an observation 
outcome; γ ϵ [0,1] is the discount factor translating future costs to cur
rent value; b0 is an initial distribution over states (or initial belief); Vπ is 
the value function, which expresses the total discounted cost given a 
state or a belief under policy π; and T is the length of the planning ho
rizon. Planning horizon T can be either finite or infinite. A finite horizon 
problem can be solved as an infinite one, through proper formulation of 
the problem, i.e. through augmenting the state space with time, and 
considering an absorbing state at the final time step [55]. 

Policy π is a rule according to which actions are taken by the 
decision-maker at different time steps, and it can be, at best, a map from 
histories of actions and observations to actions, π: At-1 × Ω t →A. The 
policy function belongs to a space, π ϵ Πc, which contains all possible 
policies that are admissible under the existing constraints of the prob
lem. Πc is a subset of Π, which is the policy space of the unconstrained 
problem. From the mapping a policy function conducts, it can be 
observed that the number of possible policies can easily become 
immense, even in problems with small planning horizons. Also known as 
the curse of history, this problem is optimally tackled by dynamic pro
gramming and POMDPs as explained in detail in the next section. 
Another approach to attack this complexity, however, often at the 
expense of solution efficiency, is to exploit problem-specific character
istics and employ simplified assumptions, including approaches that 
impose action periodicity, policy uniformity among components, 
component prioritization, ranking, or clustering [12,56,57,58,59,60]. 
Particularly in inspection planning, periodic inspection visits or 
non-periodic inspections that exploit similarity and/or prioritization of 
components is typical for deteriorating structural systems [10,58]. 

Policy π can also be stochastic, in which case it is a mapping to a 
probability distribution over actions, i.e. π: At-1 × Ω t →P(A). It can be 
shown under loose regularity conditions about the cost function that the 
optimal policy in a Markov decision process is deterministic [61]. 
However, in general and especially in the presence of constraints, the 
optimal policy is more broadly described by functions accounting for 
stochastic mappings [43]. 

2.2. Mapping posterior state distributions to actions 

In a POMDP environment, transition from state st =s to state st+1 =s’ 
is Markovian. Detaching the effect of the maintenance action from the 
environment transition (natural deterioration), we can define an inter
mediate state, st

a =sa ϵ S. This state succeeds s, with probability Pr(sa|s,a), 
and reflects the system state immediately after maintenance and before 
the environment transition. This distinction is important to help us 
better define and quantify the risk in the next section, and additionally 
allows consideration of the probability of unsuccessful or partially suc
cessful actions. State s’ succeeds sa with probability Pr(s’|sa,a), after the 
environment transition, i.e. s’ = sa,e. Owing to the Markovian property, 
given a pair (s,a), the probability distribution of s’ can be fully defined, 
regardless of the prior history of actions and states as: 

Pr(s′

|s, a) =
∑

sa∈S
Pr(s′

|sa, a)Pr(sa|s, a) (2)  

Similarly, the cost at a certain time step can be expressed as: 

c(s, a, s
′

) =
∑

sa∈S
Pr(sa|s, a)c(s, a, sa, s

′

) (3)  

where, for notational brevity, c on the right hand-side pertains to cost 
that additionally depends on sa. State augmentation can be applied if 

higher order temporal dependencies exist regarding the history of states 
and/or actions prior to t, or the environment is characterized by non- 
stationarity [55,25]. In POMDPs, at each time step, states are hidden 
to the agent, and are only perceivable through the noisy observation 
ot=o ϵ Ω. Observation o depends on the state of the system and the 
respective action at the current step, and is defined by probability Pr(o| 
s, a). The entire process described above is depicted in the network of 
Fig. 1. 

As a result of the structure of POMDPs, optimal policy π* can be 
defined, without any loss of information, as a function of belief bt=b ϵ B: 
S→P(S), which is a sufficient statistic of the entire history of previous 
actions and observations, up to time t. Belief b is thus the posterior 
probability distribution over states, given the previous belief, and the 
current transition, action and observation. Hence, the belief at time t+1, 
bt+1=b’=ba,e,o, is computed by the Bayesian update: 

b′

(s′

) = ba,e,o(s′

)

= Pr(s′

|o
′

, a, b)

=
Pr(o′

|s
′

, a)
Pr(o′

|b, a)
ba,e(s

′

)

=
Pr(o′

|s
′

, a)
Pr(o′

|b, a)

∑

sa∈S
Pr(s′

|sa, a) ba(sa)

(4)  

where probabilities b(s), for all s ϵ S, form the |S|-dimensional belief 
vector b. The denominator of Eq. (4), Pr(o’|b,a), is the standard 
normalizing constant: 

Pr(o′

|b, a) =
∑

s′ ∈S

Pr(o′

|s
′

, a)
∑

sa∈S
Pr(s′

|sa, a) ba(sa) (5)  

Similarly to sa, belief ba in Eqs. (4) and (5) is the intermediate belief, 
right after the maintenance action and before the environment transi
tion and observation, defined as: 

ba(sa) =
∑

s∈S
Pr(sa|s, a)b(s) (6) 

In the special case that the environment is fully observable, i.e. o= s, 
observation specifies exactly which one of the belief vector entries is 1, 
assigning 0 otherwise. This defines an MDP environment and, accord
ingly, Pr(o’|b,a) reduces to Pr(s’|b,a), which is the transition probability 
of MDPs given the current state distribution. Following this remark, it is 
apparent that Pr(o’|b,a) holds transition probability semantics for the 
belief space, B, hence a POMDP can be seen as a belief-MDP, where now, 
however, states are the belief vectors. Accordingly, the transition be
tween beliefs is given as: 

Fig. 1. POMDP diagram in time, including intermediate states occurring after 
actions and before environment transitions. 
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Pr(b′

= x|b, a) =
∑

o′ ∈Ω

δb′ xPr(o′

|b, a) (7)  

where δij is the Kronecker delta, i.e. δij=1 if i=j, 0 otherwise. 
This allows us to write the optimality equation, also known as the 

Bellman equation [22], in the belief space as: 

V(b) = HV(b)
= min

a∈A
{Q(b, a)}

= min
a∈A

{

cb + γ
∑

o′ ∈Ω

Pr(o′

|b, a)V(b)

} (8)  

where V(b)=Vπ*(b) is the optimal value function, representing the total 
life-cycle cost under the optimal policy π* given an initial belief b, H is 
the Bellman backup operator, Q is the optimal action-value function, and 
cb is the expected cost at belief b, defined as: 

cb = cb(b, a)
= Es,sa ,s′ [c(s, a, sa, s′

)]

=
∑

s∈S
b(s)

∑

sa∈S
Pr(sa|s, a)

∑

s′ ∈S

Pr(s′

|sa, a)c(s, a, sa, s
′

)
(9)  

Operator H is a contraction with unique fixed point V(b). It has been 
shown that the POMDP cost value function described by the Bellman 
equation in Eq. (8) is piece-wise linear and concave (convex for the 
maximization problem) at every time step, composed of linear hyper
planes, also called the alpha-vectors [62]. Each alpha-vector corresponds 
to an inspection and maintenance action [26,63]. 

Despite its analogies with MDPs, Eq. (8) is hard to solve exactly 
through standard MDP-based approaches, e.g. through value or policy 
iteration. However, there are numerous efficient approximate solution 
procedures along the lines of point-based algorithms [34]. Point-based 
algorithms sample a subset of the reachable belief space, starting from 
an initial root belief, thus making value iteration scale linearly with the 
cardinality of this subset. DRL is used for solving Eq. (8) in this work, 
using the point-based belief MDP concept combined with deep function 
approximations and actor-critic training [30]. 

2.3. Risks and costs 

Cost at different time steps for a selected action can be decomposed 
into inspection cost, cI, maintenance cost, cM, and damage state cost, cD. 
In addition, it is often important for the decision-maker to account for 
the possibility of additional losses due to intentional system shutdowns, 
cS, which may occur not as a consequence of damage, but rather as a 
result of the selected actions. Accounting for this as well, the total cost at 
each decision step can be generally expressed as: 

c(s, a, sa, s’) = cM(s, a)
⏟̅̅̅̅⏞⏞̅̅̅̅⏟
mainten.cost

+ cS(s, a)
⏟̅̅̅ ⏞⏞̅̅̅ ⏟
shut. cost

+ γcI(s’, a)
⏟̅̅̅̅⏞⏞̅̅̅̅⏟
inspec. cost

+ γcD(sa, s’)
⏟̅̅̅̅̅⏞⏞̅̅̅̅̅⏟

dam. cost

(10) 

Using Eq. (10) in Eq. (9), the expected inspection, maintenance and 
shutdown costs, can be written as: 

cb,X = Es[cX(s, a)] =
∑

s∈S
b(s) cX(s, a), X ∈ {M, S}

cb,I = Es′ [cI(a, s
′

)] =
∑

s′ ∈S

ba,e(s
′

) cI(a, s
′

)
(11)  

Although Eq. (11) provides a broad description of the cost function, it is 
often appropriate to adopt the hypothesis that inspection and mainte
nance actions affect the respective costs independently, and are also 
independent of the system state (this hypothesis is stronger for in
spections since certain maintenance actions may depend on the extent of 
damage in the system): 

cI(s
′

, a) = cb,I(a) = cI(aI)

cM(s, a) = cb,M(a) = cM(aM)
(12)  

where aI ϵ AI is the selected inspection action and aM ϵ AM is the selected 
maintenance action. Under this distinctive consideration of actions, the 
total action can be defined as a ϵ A=AI × AM. We will refer here to no 
inspection and no maintenance actions as trivial inspection and trivial 
maintenance actions respectively. Trivial actions may also refer to routine 
maintenance and inspection actions, which are actions that are always 
taken at every time step, thus their costs do not affect the optimization 
process. Similarly to Eq. (12), it is also reasonable to assume in many 
problems of inspection and maintenance planning that scheduled shut
downs will be primarily triggered by maintenance actions only, namely: 

cS(s, a) = cS(s, aM) (13) 

Damage state cost cD translates various losses associated with the 
damage states of the system to cost units. These can be devised into two 
types of losses, which we will refer to as instantaneous losses and accru
able losses. Instantaneous losses refer to costs incurred upon arrival at a 
damage state and do not continue to be collected for as long as the 
system sojourns this damage state. In the case of a failed civil engi
neering structure, for instance, such costs can be related to capital- 
related losses, which occur at the time step at which the structural 
system transitions to the failure state. This cost is collected once over the 
operating life, unless the system is restored and fails again. Accruable 
losses, on the other hand, refer to costs collected for as long as the system 
sojourns a certain damage state, regardless of which damage state it 
transitioned from. In the previously mentioned example of a failed civil 
engineering structure, such costs can be related to economic losses due 
to downtime, which are, of course, not instantaneous but accrue over 
time, until the system is restored to an operating status. Following this 
distinction, the damage cost component of Eq. (10) is written as: 

cD(sa, s′

) = cacc
D (s

′

) + dsas′ c
inst
D (s

′

) (14)  

where [dij]i,j ϵ S is the adjacency matrix pertaining to damage states, as 
this can be derived by state connectivity according to available actions. 
That is, if there is an action such that state j is an immediate successor of 
i, then dij=1. For i=j, dij=0. In deteriorating environments, it commonly 
happens that states are ordered, that is, transitions from sa to s’ form an 
upper-triangular transition matrix, meaning that the system can only 
transition to a worse state, or at best remain at the same one, due to 
environment effects. In this case, the adjacency matrix will be strictly 
upper-triangular. 

As implied by Eq. (14), the cost of accruable losses is a function of the 
next state, s’, whereas the part instantaneous losses depends on the 
current state after the effect of the maintenance action, sa, and the next 
state. The expected costs in Eq. (14), which is required to solve Eq. (8), 
with the aid of Eq. (9), give the step or interval risk as: 

cb,D = cacc
b,D + cinst

b,D

= Es′
[
cacc

D (s′

)
]
+ Esa ,s′

[
dsascinst

D (s′

)
]

=
∑

sa∈S
ba(sa)

∑

s′ ∈S

Pr(s′

|sa, a)
(
cacc

D (s
′

) + dsas′ c
inst
D (s

′

)
)

(15)  

Using Eq. (15), risk is defined as the expected cumulative discounted 
damage state cost over the life-cycle: 

ℜπ = Eo0:T

[
∑T

t=0
γtEsa

t ,st+1

[
cacc

D (st+1)+ dsa
t st+1 cinst

D (st+1)
]
]

(16)  

Quantification of risk is only relevant to the post-maintenance config
uration of the system, thus from sa. Note that if risk is quantified from s 
instead, it can take unrealistic negative values, since state s’ can be of 
lower damage. To better understand Eq. (16), one can consider a case 
where the system may suffer only instantaneous losses due to failure 
with cost cF. In this case, Eq. (16) reduces to: 
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ℜπ
F = cFEo0:T

[
∑T

t=0
γt( PFt+1 |a0:t ,o0:t − PFt |a0:t ,o0:t

)
]

(17)  

where PFt is the probability of failure up to time t. The specialized 
definition of risk provided by Eq. (17) follows standard risk and reli
ability assumptions and is well-studied in inspection and maintenance 
planning [10]. The proof that Eq. (16) reduces to Eq. (17) under the 
above stated assumptions is presented in Appendix A. This work em
ploys the risk definition of Eq. (16) instead of that of Eq. (17), as it fa
cilitates a broader consideration of losses related to multiple system 
states. 

Similarly, the other step costs of Eq. (10) assume the following ex
pected cumulative discounted values over the life-cycle: 

Cπ
X = Eo0:T

[
∑T

t=0
γtEst [cX(st, at)]

]

, X ∈ {M, S}

Cπ
I = Eo0:T

[
∑T

t=0
γtEst+1 [cI(at, st+1)]

] (18)  

Hence, the optimal POMDP value with its optimality equation described 
in Eq. (8) is: 

V(b) = min
π∈ΠC ⊆Π

{Vπ(b)}

= min
π∈ΠC ⊆Π

{
Cπ

M + Cπ
S + γCπ

I + γℜπ} (19)  

Thus, overall, the problem of Eq. (1) consists in jointly minimizing the 
above life-cycle cumulative discounted costs. 

2.4. To observe or not? Value of information in POMDPs 

We can define the step-wise Value of Information (VoI) associated 
with a certain policy and a certain inspection action aI as [64]: 

VoIπ
step(aI) = Eoe [V

π(baM ,e,oe )] − Eoe ,oI [V
π(baM ,aI ,e,oe ,oI )] (20)  

Observation oe ϵ Ωe describes the default observation, i.e. an observation 
always available to the decision-maker, oI ϵ ΩI refers to the optional 
observation provided by the selected inspection action, and o ϵ Ω =Ωe ×

Ω I is the total observation. 
Similarly, we can define the net step-wise VoI under a policy as: 

netVoIπ
step(aI) = VoIπ

step − cb,I (21)  

Net step-wise VoI expresses the net gain as a result of additional infor
mation, also considering the cost to acquire this information (i.e. in
spection cost). Elaborating on Eq. (8), and considering the fact that 
inspections do not change the state of the system, we have [64]: 

V(b) = min
aM∈AM

{
cb,I− + γEoe [V(baM ,e,oe )]

− γmax
aI∈AI

{
netVoIπ*

step(aI)
}} (22)  

where cb,I- combines any costs other than the expected inspection cost, i. 
e. maintenance, shutdown, and damage state costs. Eq. (22)provides an 
alternative description of the Bellman equation, and shows that for any 
possible maintenance action, the decision-maker takes that inspection 
action which maximizes the net VoI at this step. 

Following the above, the concavity of the POMDP value function of 
Eq. (8), and the properties of the Bellman contraction operator, we can 
show that step-wise VoI, as well as VoI over the life-cycle, are always 
non-negative if the decisions follow the POMDP optimal policy [64,65]. 
At the extreme case that no inspection means no information at all, VoI 
reaches its highest value. This result can be similarly shown. 

3. Operating under constraints 

We consider the following form of the stochastic optimization 
problem of Eq. (1): 

π* = argmin
π∈Π

Es0:T ,o0:T ,a0:T

[
∑T

t=0
γtct

⃒
⃒
⃒
⃒
⃒
at ∼ π(o0:t, a0:t− 1), s0 ∼ b0

]

s.t. Gh,k =
∑T

t=0
γtgh,k(st, at) − αh,k ≤ 0, k = 1, ..,K

Gs,m = Es0:T ,o0:T ,a0:T

[
∑T

t=0
γtgs,m(st, at, st+1)

]

− αs,m ≤ 0, m = 1, ..,M

(23)  

where Gh,k and Gs,m are the hard and soft constraints, respectively, gh,k 
and gs,m are their respective auxiliary costs (e.g. cM, cI, cS, cD, or else), and 
αh,k, αs,m are real-valued scalars. The form of constraints in Eq. (23) is 
amenable to a broad class of constraint types that are relevant to 
infrastructure management. For example, hard constraints can model a 
great variety of fixed resource allocation and control action availability 
problems, such as problems referring to strict budget limitations. In turn, 
soft constraints, of the Eq. (23) form, can model a great variety of risk- 
based constraints. More details about these can be found in Section 3.2. 
The term soft constraints, although not standard in stochastic optimi
zation and optimal control literature, is used here to distinguish from the 
term hard constraints, indicating that the underlying constraints do not 
need to be strictly satisfied, but are rather imposed in an expected or 
probabilistic fashion. 

Hard constraints can be straightforwardly taken into account 
through state augmentation. On an interesting remark, in one of his 
notes on dynamic programming under constraints in 1956 [66], R. 
Bellman mentions that this approach may not be favored since “due to 
the limited memory of present-day digital computers, this method 
founders on the reef of dimensionality”. However, this restriction has 
been widely lifted today, whereas DRL has diminished the effects of the 
curse of state dimensionality even further. Thus, state augmentation is 
followed for the hard constraints here. Note that in the special case 
where functions gs,m are deterministic, soft constraints become hard. 
However, soft constraints are not practical to consider through state 
augmentation since one should track the entire distribution of the cu
mulative discounted value of gs,m. Therefore, probabilistic constraints 
are addressed here through Lagrangian relaxation [67]. Based on the 
above, the optimization problem is restated as: 

V = max
λ1 ,...,λM≥0

min
π∈Π

Es0:T ,y0:T ,o0:T ,a0:T

[
∑T

t=0
γt

(

c(st, at, st+1, yt) +
∑M

m=1
λmgs,m

)

−
∑M

m=1
λmαs,m|at ∼ π(o0:t, a0:t− 1, yt), s0 ∼ b0, y0

]

= max
λ1 ,...,λM≥0

min
π∈Π

Vπ
λ (b0, y0)

s.t. yt = ykt}
K
k=1, ykt =

∑t− 1

τ=0
γτgh,k(sτ, aτ), yk0 = 0, ykt ∈

[
0, αh,k

]
, k = 1, ...,

{

(24)  

where variables ykt track the discounted cumulative value of the func
tion related to hard constraints, gh,k, up to time step t-1, and c is the cost 
function also considering ykt. Variables ykt are upper bounded by ah,k. 
Lagrange multipliers, λm, constitute the dual variables of the max-min 
dual problem, they are positive scalars, and are associated with the 
soft constraints. 

3.1. Budget constraints 

Depending on the operational and resource allocation strategy of the 
management agency, available funding for inspection and maintenance 
must comply with certain short-term or long-term goals related to a 
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specific budget cycle duration, TB. Namely, in the extreme case of a 
short-term budget cycle duration, budget caps exist for every decision 
step (e.g. annual budget), whereas in the extreme case of a long-term 
budget cycle duration, there is a budget cap pertaining to the cumula
tive inspection and maintenance expenses over the entire life-cycle of 
the system, i.e. TB=T. The cumulative cost of inspection and mainte
nance actions over period TB is given for: 

gh(sτ, aτ) = (cM + γcI)1τ∈Λt (25)  

Λt = (⌊t / TB⌋TB, (⌊t /TB⌋+ 1)TB] (26)  

where ⌊x⌋ is the integer part of x. For a given budget cap αh, the 
maintenance and inspection costs at each time step read: 

cM = 1y+gh≤αh cM
cI = 1y+gh≤αh cI

(27)  

According to Eqs. (25)-(27), inspection and maintenance costs are 
accounted for only at the current budget cycle, and if the currently 
selected action does not violate the budget cap. The total cost at each 
time step of Eq. (10) is accordingly rewritten as: 

ct = cM(st, at) + γcI(at, st+1) + cS(st, at) + γcD
(
sa

t , st+1
)

(28)  

Transition and observation probabilities are also affected by the pres
ence of the budget constraints as: 

Pr(sa|s, y, a) = 1y+gh≤αh Pr(sa|s, a) +
(
1 − 1y+gh≤αh

)
Pr(sa|s,ao)

Pr(s′

|sa, y, a) = 1y+gh≤αh Pr(s′

|sa, a) +
(
1 − 1y+gh≤αh

)
Pr(s′

|sa, ao)

Pr(o′

|s
′

, y, a) = 1y+gh≤αh Pr(o′

|s
′

, a) +
(
1 − 1y+gh≤αh

)
Pr(o′

|s
′

, ao)

(29)  

where ao is the trivial decision, where no inspection and no maintenance 
are performed. As indicated by Eqs. (24)-(29), incorporation of budget 
constraints can be accomplished by accounting for new state variables 
y=yt. This way the agent is able to reason about control actions based on 
the available budget, αh - yt, at each time step of the decision process. In 
the case of step-wise budget constraints, i.e. TB=1, this state augmen
tation is not necessary, since the agent does not need to track any in
spection and maintenance expenses made in the past, thus having the 
entire amount of αh at its disposal for every single step. 

As opposed to state variables st, new variables yt are fully observable. 
In this regard, the problem can be also seen as a mixed observability 
Markov decision process, which admits favorable state decompositions 
and can be solved by value iteration algorithms in settings with mod
erate dimensions [18]. In this case, constrained value iteration based 
POMDP solution procedures devised for constrained problems can be 
employed to drive the optimization process [45,46,47]. However, as for 
the unconstrained case, such formulations can manifest limitations 
related to efficient scaling in systems with large state and action spaces, 
like the systems that are typically encountered in the class of sequential 
decision-making for infrastructure and networks. 

3.2. Risk-based constraints 

For notational efficiency of the present section we introduce the 
following random variables: 

Jπ
i =

∑T

t=0
γtci(st, at, st+1), i ∈ {M, I, S,D}

Jπ =
∑

i
Jπ

i

(30)  

where Jπ
M, for example, accumulates total costs, related to maintenance 

actions over the life-cycle, and Es0:T ,o0:T ,a0:T [Jπ
M ] = Cπ

M according to the 
definitions of Eq. (11). 

We are now interested in incorporating constraints that bound risk 
over the system life-cycle. The risk-related random variable based on 

Eqs. (16) and (30) is Jπ
D. Thus, the respective constraint function obtains 

the following form, for gs=cD in Eq. (23): 

Gs = Es0:T ,o0:T ,a0:T

[
Jπ

D

]
− αs

= Es0:T ,o0:T ,a0:T

[
∑T

t=0
γt( cacc

D (st+1) + dsa
t st+1 cinst

D (st+1)
)
]

− αs

= ℜπ − αs

(31)  

It should be noted that, although the budget constraints of focus in this 
work are not soft, budget constraints can also be expressed through Gs 
constraints, satisfied in expectation, depending on the modeling needs of 
the problem, as in Eq. (31). Any other costs as introduced in Eq. (10) can 
be considered in the same logic as well. 

Constraints of the generic Gs form are also the chance or probabilistic 
constraints, which bound the probabilities of certain quantities or events 
[53,54]. As such, if one wants to bound the probability of the optimal 
policy exceeding a certain life-cycle cost threshold Jcr, one may apply the 
following gs function, for any Jπ

i similarly to Eq. (31): 

gs = 1t=T ⋅1Jπ
i >Jcr (32)  

where the second indicator signifies the cumulative cost constraint 
violation, and the first one ensures that this is taken into account once, at 
the end of the planning horizon. Taking the expectation of cumulative 
value of the constraint function of Eq. (32), we have: 

Gs = Es0:T ,o0:T ,a0:T

[
∑T

t=0
1t=T ⋅1Jπ

i >Jcr

]

− αs

= Pr
(
Jπ

i > Jcr
)
− αs

(33)  

Considering Eq. (33), if αs =1, we end up with a hard constraint 
requirement, i.e. Jπ

i > Jcr. It is thus obvious that hard constraints can be 
also seen as a limiting case of soft constraints. 

From a stricter reliability standpoint, many decision problems are 
interested in bounding the probability of failure (i.e. the probability 
reaching a failure state sF from a non-failure state) over the system 
operating life. In this case, we just need to set, cper

D = 0, γ=1, and cinst
D =

δst+1sF in Eq. (31): 

Gs = Es0:T ,o0:T ,a0:T

[
∑T

t=0
dsa

t st+1 δst+1sF

]

− αs

= PFT − αs

(34)  

PFT is the probability of failure up to the end of the life-cycle t=T. Scalar 
αs in Eq. (33) and (34) is a valid probability designating the (1 - αs) 
percentile of risk and probability of failure, respectively, the decision- 
maker is willing to tolerate. 

Other relevant constraint definitions in stochastic optimization and 
constrained Markov decision processes literature include constraints on 
the value-at-risk and conditional-value-at-risk [68,54] (with the former 
coinciding with probabilistic constraints), constraints on the policy 
variance [69,70], as well as constraints whose satisfaction is implicitly 
encouraged through reward-based penalization [71]. 

3.3. Constrained control with deep reinforcement learning 

In recent work by the authors [30,31], the Deep Centralized 
Multi-agent Actor Critic approach has been proposed for management of 
large engineering systems, shown to significantly outperform traditional 
maintenance and inspection decision rules. DRL approaches in general, 
either in the form of actor-critic, or policy gradients, or Q-learning, e.g. 
[30,72,73,74], offer several computational advantages in 
high-dimensional state spaces, due to the fact that function parametri
zation over the state space alleviates the need for exhaustive state 
exploration. In addition, DCMAC concurrently accounts for partial state 
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observability, and high-dimensional action spaces. Its multi-agent 
formulation treats system control units as individual agents making 
decentralized decisions based on shared/centralized system information 
and actor-network hidden layer parameters. Control units are defined in 
reference to system parts for which separate actions apply at each de
cision step, and can be either individual system components or greater 
sub-system parts comprised of multiple components. As such, one con
trol unit has at least one component, and one component may belong to 
more than one control units. The system policy function is written as: 

π
(

a|b̂, y
)
=
∏NCU

i=1
πi

(
a(i)|b̂, y

)
(35)  

where a is a vector of actions and b̂ is a 2D matrix, such that: 

a =
[
a(i)]NCU

i=1

b̂ =
[
b(j)]NC

j=1

(36)  

where a(i) is the action of control unit i, b(j) is the belief of system 
component j, NCU is the number of control units, and NC is the number of 
system components. 

The policy functions of Eq. (35), as well as a centralized system 
Lagrangian value function are parametrized with the aid of deep neural 
networks as: 

πi

(
a(i)|b̂, y

)
≃ πi

(
a(i)|b̂, y, θ(i)

π

)

Vπ
λ

(
b̂, y
)
≃ Vπ

λ

(
b̂, y|θV

) (37)  

Parameters θ(i)
π , θV are real-valued vectors, and can either vary or be 

shared among control units. In either case, each control unit’s policy is 
conditioned on the global belief and the budget-related states. Note that 
here we have a separate policy network for each agent as denoted by 
superscript i in the policy parameters of Eq. (37), thus a completely 
decentralized actor parametrization is used. To distinguish this from the 
original DCMAC architecture we call this Deep Decentralized Multi- 
agent Actor Critic (DDMAC). As discussed in Section 1, both provide 
decentralized POMDP policy solutions. The respective architectures are 
shown in Fig. 2. In this figure, 4 components are depicted, and each 
component is a control unit, thus NCU=NC. DDMAC is trained based on 
off-policy experiences retrieved from the replay memory or replay buf

fer,M . These experiences are in the form of (b̂, y, a, [πi]
NCU
i=1 , cb, [gs,m]

M
m=1,

b̂
′

, y′

) tuples that are generated while the agent interacts with the 
environment. Thus, the replay memory is a stack of transition tuples. 

The off-policy gradients of the policy function and the value function 
are computed by importance sampling as: 

∇θ(i)π
Vπ

λ = EM

[

w
∑NCU

i=1
∇θ(i)π

logπi

(
a(i)
⃒
⃒
⃒b̂, y, θ(i)

π

)
Aπ

λ

(
b̂, y, a

)
]

(38)  

∇θV Vπ
λ = EM

[
w∇θV Vπ

λ

(
b̂, y|θV

)
Aπ

λ

(
b̂, y, a

)]
(39)  

where w is the importance sampling weight with sample distribution a 
policy μ retrieved from the experience replay and target distribution the 
current policy. Aπ

λ is the advantage function, which is herein approxi
mated by the temporal difference: 

Aπ
λ

(
b̂, y, a|θV

)
≃ cb +

∑M

m=1
λmgs,m

+γVπ
λ

(
b̂

′

, y′

|θV
)
− Vπ

λ

(
b̂, y|θV

)
(40)  

The gradient of dual variables λm is easily computed as [51]: 

∇λm Vπ
λ ≃

∑T

t=0
γtgs,m − αs,m (41)  

Dual variables are updated through on-policy samples since off-policy 
weighted sampling of multiple time steps produces high-variance esti
mators that may trigger training instabilities. Algorithm 1 describes the 
aforementioned implementation steps. 

4. Results 

4.1. Environment details 

A stochastic, non-stationary, partially observable 10-component 
deteriorating system is considered, operating over a life-cycle period 
of 50 decision steps (years), with a discount factor of γ=0.975. For civil 
engineering systems, discount factors typically range from 0.93 to 0.98. 
Higher discount factors make the decision problem more challenging, in 
the sense that they increase the effective horizon of important decisions. 
Links between components create the system shown in Fig. 3. It is 
assumed that link operation depends solely on the operating status of the 
respective components. Overall system connectivity is determined by 

Fig. 2. Constrained Deep Decentralized Multi-agent Actor Critic (DDMAC) 
architecture. 

Algorithm 1 
Constrained Deep Decentralized Multi-agent Actor Critic  

Initialize replay buffer 

Initialize actor, critic, and dual parameters [θ(j)
π ]

NCU

j=1 ,θV , [λm]
M
m=1  

for number of episodes do 
for t=1,…,T do 
Select action at at random according to exploration noise  

Otherwise select action at ∼ μt = [πj(⋅|b̂t , yt , θ(j)
π )]

NCU

j  

Estimate costs cb,t = cb, gs,mt = gs,m given b̂t and at Observe o(l)t+1 ∼ p(o(l)t+1 |b
(l)
t , yt , at) for 

l = 1,2, ...,NC  

Compute beliefs b(l)
t+1 for l = 1,2, ...,NC  

Store tuple (b̂t , yt , at , μt , cb,t , [gs,mt ]
M
m=1, b̂t+1 , yt+1) to replay buffer  

Sample batch (b̂i, yi, ai, μi, cb,i, [gs,mi]
M
m=1, b̂ i+1, yi+1) from replay buffer  

If b̂i is terminal state Aπ
λ,i = cb,i +

∑M
m=1λmgs,mi − Vπ

λ (b̂ i,yi|θV)

Otherwise Aπ
λ,i = cb,i +

∑M
m=1λmgs,mi + γVπ

λ (b̂i+1 ,yi+1|θV) − Vπ
λ (b̂i,yi|θV)

Update actor parameters θ(j)π according to gradient:  

∇θ(j)π
Vπ

λ ≃
∑

i
wi(
∑NCU

j=1 ∇θ(i)π
logπj(a(j)

i |b̂i,yi,θ(j)π ))Aπ
λ,i  

Update critic parameters θV according to gradient:  

∇θV Vπ
λ ≃

∑

i
wi∇θV Vπ

λ (b̂i,yi|θV)Aπ
λ,i  

Update dual variables λm, m=1,…,M, based on current policy return,  
according to gradient: 
∇λm Vπ

λ ≃
∑T

t=0γtgs,mt − αs,m  

end for 
end for  
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the connectivity of nodes A and B. 
Each component has independent deterioration dynamics. These are 

expressed by 4 × 4 × 50 three-dimensional transition matrices, corre
sponding to 4 damage states (intact, minor damage, major damage, severe 
damage), combined with 50 deterioration rates, as many as the decision 
steps of the system life-cycle. Component transitions are given in Ta
bles 1,2. Component transition parameters for the underlying hidden 
Markov models are assumed to be known or already learned, thus model 
uncertainty is not considered in this example. For learning of (hidden) 
Markov models and details on forming and maximizing the respective 
likelihood functions based on load-conditioned structural data, the 
interested reader can refer to [75,76], among various sources. In the 
case of latent states, as shown in the previous works, 
expectation-maximization or recurrent neural networks can be used. 
Parameter inference with hidden Markov models can be efficiently 
applied as in [77,78]. Different failure probabilities are considered 
based on each one of the above damage states, as shown in Table 3. 
Thus, the system behavior, as a whole, is described by the Bayesian 
network of Fig. 4. The examined system has been kept 
application-agnostic, being however assigned general deteriorating 
characteristics that can, among others, resemble formations of trans
portation networks, where components 1-10 are deteriorating bridges 
controlling the functionality of the respective links (e.g. road segments), 
or parallel-series reliability block diagrams that can be applied to 
multi-member/unit structures such as a structural truss or a bridge-type 
diagram of an electrical circuit. 

Further details on consistently coupling inference of dynamic 
Bayesian networks, both in the state and parameter space, with POMDPs 
for deteriorating structures, can be found in [79,80], whereas formula
tions without parametric updates also exist in [79]. The final state vector 
for each component is s(i)=(x(i),τ(i),f (i),t), where x(i) is the damage state; 
τ(i) is the deterioration rate; f (i) is a binary failure indicator; and t is the 
decision time step (t is the same for all components). Vectors s(i) define 
the input space of the neural networks, thus naturally instilling 
non-stationarity in the learned policy. Failure is considered an absorbing 
state. Hence, we assume that when a component fails it remains failed at 
the next step, as long as no restorative action is taken. This allows us to 
augment the component state space, finally obtaining 5 × 5 × 50 

transition matrices. 
We consider three types of available maintenance actions; AM ={no- 

repair, partial-repair, restoration/replacement}. There are also two types of 
available inspection actions; AI ={no-inspection, inspection}. Accord
ingly, to allow for utmost diversification between component policies, 
each component, which herein defines a separate control unit, is 
assigned 5 available inspection and maintenance actions, based on the 
combinations of the abovementioned sets, i.e. a(i) ϵAM × AI \ (restora
tion/replacement, inspection). The (resto-ration/replacement, inspection) 
action is excluded from the set of available actions, as it is assumed that 
whenever a system component is replaced, thus returning to an as good 
as new condition, a decision for inspection is strictly suboptimal. No- 
repair costs are null, whereas restoration/replacement costs are the 
same for all components. Partial-repair costs are (7.5,10,15)% of the 
component replacement cost, for component Types (I, III, II), respec
tively. Inspection costs are the same for all components, at 1.5% of the 
component replacement cost. Partial-repairs send components one 
damage state back without changing the deterioration rate, restora
tions/ replacements send components to the initial damage state and 
deterioration rate, whereas no-repairs have no effect on the damage 
state and deterioration rate. Partial-repairs have no effect on failed 
components and are considered to have been completed before the next 

Fig. 3. Multi-component deteriorating system. System fails when connectivity 
between nodes A and B is lost. Major costs are incurred when system fails. 
Minor costs are incurred for combinations of failed series subsystems. Types I-III 
refer to the severity of the deterioration model, from less to more severe, 
respectively. 

Table 1 
Component initial damage state transition probabilities for deterioration model 
Types I, II, and III.  

Deterioration 
model 

p12 p13 p14 p23 p24 p34 

Type I 0.0129 0.0072 0.0008 0.0102 0.0038 0.0092 
Type II 0.0311 0.0096 0.0014 0.0283 0.0057 0.0281 
Type III 0.0428 0.0229 0.0033 0.0406 0.0095 0.0328  

Table 2 
Component final damage state transition probabilities for deterioration model 
Types I, II, and III.  

Transition 
probability 

p12 p13 p14 p23 p24 p34 

Type I 0.0618 0.0512 0.0036 0.0905 0.0091 0.0768 
Type II 0.0862 0.0868 0.0051 0.1219 0.0121 0.1091 
Type III 0.1347 0.0669 0.0098 0.1665 0.0244 0.1462  

Table 3 
Component failure probabilities for different deterioration types and damage 
states.  

Damage state intact minor major severe 

Type I 0. 0019 0. 0067 0. 0115 0. 0177 
Type II 0. 0028 0. 0076 0. 0163 0. 0219 
Type III 0. 0088 0. 0210 0. 0449 0. 0564  

Fig. 4. Dynamic Bayesian network of multi-component deteriorating system 
in time. 
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environment transition. When restorations/replacements are chosen, 
these are completed at the end of the next time step, negating the 
deterioration transition during that step. Thus, in this case, the next state 
is the intact one with certainty. 

If an inspection action is taken, observation probabilities are given 
by the following observation matrices: 
[
Pr
(
o(i)|s(i), a(i) ∈ AM × {inspection}

)]
o(i)∈Ω
s(i)∈S

=

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.84 0.13 0.02 0.01

0.11 0.77 0.09 0.03

0.02 0.16 0.70 0.12

0.01 0.02 0.13 0.84

1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(42) 

Observation matrices depend on state discretization and presumed 
measurement noise or estimated model errors [15]. Failure is considered 
to be a self-announcing event, hence, component (5,5) of the observa
tion matrix of Eq. (42) is 1. Accordingly, if no inspection is taken, the 
observation matrix reads: 
[
Pr
(
o(i)|s(i), a(i) ∈ AM × {no − inspection}

)]
o(i)∈Ω
s(i)∈S

=

=

[
1 1 1 1

1

]T (43) 

System failure, i.e. loss of connectivity between nodes A and B, is 
described by random variable fs. Random variable fs assumes 4 values 
associated with events E0: all links available, E1: 25% of links failed, E2: 
50% of links failed without system failure, and Fs: system failure. A link 
is failed if at least one component is failed. We can thus consider the 
series subsystems, controlling the link failures, l1={1,2,3}, l2={4,5}, 
l3={6,7} and l4={8,9,10}. Their failure events are accordingly described 
by events Fl,1, Fl,2, Fl,3, and Fl,4. Based on the above, it can be derived that 
the system failure probability is: 

Pr(Fs) = Pr
(
Fl,1
)
Pr
(
Fl,3
)
+ Pr

(
Fl,2
)
Pr
(
Fl,4
)
−
∏4

i=1
Pr
(
Fl,i
)

(44)  

The corresponding non-failure events of interest, E0, E1, E2, are defined 
as: 

E0 :
⋂4

i=1
F−

l,i

E1 :
⋃4

i=1

(

Fl,i

⋂4

j∕=i

F−
l,j

)

E2 :

(
⋃4

i,j=1, i>j
Fl,i ∩ Fl,j

)

∩ Fs
−

(45)  

Accordingly, the probabilities of events E0, E1, E2 are computed as: 

Pr(E0) =
∏4

i=1

(
1 − Pr

(
Fl,i
))

Pr(E1) =
∑4

i=1

∏4

j=1,j∕=i

(
1 − Pr

(
Fl,j
))

Pr
(
Fl,i
)

Pr(E2) = 1 − Pr(E0) − Pr(E1) − Pr(Fs)

(46)  

Accruable and instantaneous losses due to failure are equivalent to 2.5 
and 50 times the system rebuild cost, respectively, i.e. cacc

Fs 
= 2.5⋅creb 

andcinst
Fs

= 50⋅creb. Similarly, we consider accruable and instantaneous 
losses incurred when 25% and 50% of system links are not available (i.e. 
at least one of their respective components is at the failure state). These 
losses are incurred if events E1, E2 occur, respectively, and are quantified 
in cost units as cacc

E1
= 0.05⋅creb,cacc

E2
= 0.25⋅creb, cinst

E1
= 1⋅creb,cinst

E2 
= 5⋅creb. 

In case of transportation networks, for example, such accruable losses 
may refer to time delays and/or additional user costs due to detours, 
whereas such instantaneous losses may pertain to capital loss due to 
asset failures related to those links. 

Based on the above losses, the fact that system events are fully 
observable, and following the risk definition of Eq. (16), the interval risk 
reads: 

cb,D =
∑

fs∈
{Fs ,E2 ,E1}

Pr
(
fs,t+1

)(
cfs,t+1

acc +
(
1 − Pr

(
fs,t
))

cinst
fs,t+1

)
(47) 

Apart from the above losses, additional costs are included in the 
analysis, pertaining to scheduled system shutdowns. Those come as a 
result of different action combinations on different system components. 
That is, considering that non-trivial maintenance actions require some 
degree of component non-operability for completion during a time step, 
events Ea0, Ea1, Ea2, Fas can occur, in analogy to events E0, E1, E2, Fs. 
Those losses are only incurred if the system would be otherwise in an 
operating condition, i.e. not failed. Events and their probabilities are 
similarly defined as in Eqs. (45)-(47), whereas respective costs are the 
same as the accruable losses due to events E0, E1, E2, Fs. 

4.2. Experimental setup 

For the purposes of this numerical investigation two sets of analyses 
a conducted. The first set considers a budget cycle period of TB = 5. Each 
budget period shares the same budget cap, and 9 different levels of 
budget constraints are considered, which are given as functions of the 
system rebuild cost, {5, 7.5, 10, 12.5, 15, 17.5, 20, 25, 30}% creb. For the 
second set of analyses, 9 different levels of life-cycle risk constraints are 
considered, i.e. {1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3.25} creb. In 
addition to the above analyses, the unconstrained policy is also learned. 

For training, the Keras deep learning python libraries are used with 
Tensorflow backend. For all analyses, the actor networks consist of two 
fully connected hidden layers with 50 Rectified Linear Unit activation 
functions each, for all 10 components. No parameters are shared among 
component actors, and each control unit has a 5-dimensional softmax 
output corresponding to the cardinality of AM × AI \ (restoration/ 
replacement, inspection). The critic network also consists of two fully 
connected hidden layers with 150 ReLU activations each. The critic has a 
one-dimensional linear output, which approximates the POMDP 
Lagrangian value function of the entire system. 

The Adam optimizer [81] is utilized for stochastic gradient descent 
on the networks parameter space, with learning rates being gradually 
adjusted from 1E-3 and 1E-4, to 1E-4 and 1E-5 for the critic and actor, 
respectively. The learning rate of Lagrange multipliers is set to 

1E-5. The size of the experience replay is set equal to 300,000 and an 
exploration noise linearly annealed from 100% to 1% is added at the 
first 2,500 episodes of the training process. 

The main factors influencing the computational cost are the sizes of 
the actor and critic networks, and the sample complexity of the learning 
scheme, which dictates the number of simulator calls. The depth and 
width of the hidden layers grow with the dimensions of state and action 
spaces (inputs and outputs, respectively), and the user is generally 
advised to decide about network size and hyperparameters on a 
problem-to-problem basis. 

All analyses were run on an Intel Xeon Platinum 8260 CPU at 
2.40GHz. DRL solutions required approximately 4 days to exceed the 
best risk-based baseline presented in the next section. This time is 
comparable to the computational cost associated with obtaining the 
optimal parameters of this baseline through standard brute-force eval
uation of possible policies. 

4.3. DRL solutions and baseline policies 

To verify the quality of DDMAC solutions, we construct and optimize 
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various baseline policies, incorporating well-established condition- risk- 
, and time-based inspection and maintenance assumptions, which are 
also combined with periodic action considerations, as well as compo
nent prioritization approaches. These baselines are:  

• Fail Replacement (FR) policy. No inspections are taken. If a 
component fails it is immediately replaced. No variable is optimized.  

• Age-Periodic Maintenance (APM) policy. No inspections are taken, 
whereas maintenance actions are taken based on the age of compo
nents. Two maintenance ages are optimized; periodic age for 
component partial-repair and periodic age for component restora
tion/replacement.  

• Age-Periodic Inspections and Condition-Based Maintenance (API- 
CBM) policy. Age-based inspections are taken for all components, 
based on each component’s age. At inspection times, maintenance 
actions are taken based on the observed damage state of each 
component. Five variables are optimized; age interval for component 
inspection, and type of maintenance for each one of the 4 observed 
damage states.  

• Time-Periodic Inspections and Condition-Based Maintenance (TPI- 
CBM) policy. Time-based inspections are taken for all components at 
fixed intervals of the planning horizon. At inspection times, main
tenance actions are taken based on the observed damage state of 
each component. Five variables are optimized; time interval for 
block component inspection, and type of maintenance for each one of 
the 4 observed damage states.  

• Risk-Based Inspections and Condition-Based Maintenance (RBI- 
CBM) policy. Inspections are taken for all components each time the 
system exceeds a predefined failure probability threshold. At in
spection times, maintenance actions are taken based on the observed 
damage state of each component. Five variables are optimized; 
failure probability threshold, and type of maintenance for each one 
of the 4 observed damage states. 

The last two baseline policies are also optimized with Component Pri
oritization (CP), which produces policies RBI-CBM-CP and TPI- CBM-CP. 
Components are prioritized based on their probability of failure. In this 
case, one extra decision variable regarding the number of components (1 
to 10) to inspect and maintain is added. This policy adapts a heuristic 
presented in [10]. In all baselines, if a component fails, it is immediately 
replaced. Such decision rules can be optimized by evaluation of possible 
policies through simulations, based on an underlying Bayesian network, 
or an actual physics-based model, or a meta-model fitted on data [9,10, 
82]. 

In Fig. 5, a comparison of the learned DDMAC policy with the various 
baselines is presented, for the unconstrained environment (total costs 
and disaggregated costs in linear and log scales, respectively). The best 
optimal baseline is the policy combining risk-based inspections, 
condition-based maintenance and component prioritization. It can be 
observed that the life-cycle cost attained by the best baseline is about 
42% worse than the DDMAC solution. The optimal age-periodic main
tenance and fail-replacement policies, do not include the possibility of 
inspections and achieve the worst life- cycle costs. It is overall observed 
that baselines including inspections achieve consistently better results. 
Adding to this remark, it is interesting to note that the DDMAC policy 
spends more for inspections, i.e. performs a higher number of in
spections, compared to the 2 best optimal baselines. As discussed, these 
inspections are in principle non-periodic and, as shown in Section 2.4, 
are driven by the innate notion of VoI in POMDPs. This allows the agents 
to make more informed decisions regarding proper maintenance actions 
that overall minimize the total cumulative costs of Eq. (19) more effi
ciently. Risk is significantly reduced with the DDMAC policy, as also 
indicated in Fig. 5, whereas scheduled system shutdown costs are more 
intelligently avoided compared to other baselines, due to the flexibility 
in intervention timings and action combinations. 

4.4. Constrained system solutions 

Constrained DDMAC results for life-cycle inspection costs, mainte
nance costs, shutdown costs and risk for different 5-year constraint 
levels are shown in Fig. 6 (all costs in log scale). As expected, higher 
budget limits result in lower total life-cycle costs. Budget limits higher 
than 25% of the system rebuild cost, creb, practically converge to the 
unconstrained solution. A noticeable feature of the learned near-optimal 
policies is that as budget becomes tighter, the agents tend to reduce their 
inspection expenses, to save resources in case of a need for major in
terventions (e.g. restoration/replacement actions). This means that they 
deliberately choose to forfeit better system information, in order to be 
more effective against disruption. It is characteristic that inspections are 
overall reduced in the budget cases below 15% creb, compared to the 
cases above that budget threshold, since the component replacement 
cost is 10% creb. That is, below 10% creb budget constraints, restorations/ 
replacements are infeasible. In Fig. 7, the respective results for risk 
constraints are shown (all costs in log scale). It can be observed that as 
the decision-making task becomes more risk averse the total life-cycle 
cost becomes higher, since more frequent inspection and maintenance 
actions need to be taken. Constrained solutions practically converge to 
the unconstrained one after the risk tolerance threshold of 2.75creb. It is 

Fig. 5. Comparison of DDMAC life-cycle policies with different baseline pol
icies. Total life-cycle cost and life-cycle costs due to inspection, maintenance, 
shutdown, and risk (95% confidence intervals are lower than ±1%). The best 
optimized baseline is 42% worse than the DDMAC policy. 

Fig. 6. Comparison of DDMAC life-cycle policies for different 5-year con
straints from 5% creb to infinity. Total life-cycle cost and life-cycle costs due to 
inspection, maintenance, shutdown, and risk (95% confidence intervals are 
lower than ±0.5%). 
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interesting to note here that for lower risk constraints, i.e. for scenarios 
where the agents need to keep total risk lower over the operating life, 
although the maintenance cost increases, the inspection cost is not 
following the same trend, hence, the inspection per maintenance cost 
ratio of the optimal policy consistently decreases. This is attributed to 
the fact that more frequent maintenance is unavoidable in a case where 
risks have to be kept low, something that, by itself, leads on average, to 
longer sojourn in states of lower damage. As such, increased frequency 
of inspections, which would solely serve better state determination, is 
not favored by the agents, and thus life-cycle inspection costs do not 
present important changes for different risk-based constraints. Accord
ingly, due to the high demand for maintenance actions, scheduled 
shutdown costs also increase in low-risk cases. 

In Fig. 8, action frequencies and respective cost metrics of inspection 
and maintenance are depicted for two budget constraints corresponding 
to a low and a high budget scenario, i.e. to 15% and 20% creb 5-year 
budget constraints, respectively. Contour plots depict the frequency of 
maintenance and inspection actions per time unit. Adjacent graphs on 
the right show the mean step cost per component related to the 

respective action type, whereas the bottom graphs show the action cost 
per step, collectively for all system components. The same features are 
depicted for risk constraints of 2.75 and 3.25 creb in Fig. 9. Examining 
Figs. 6 and 8 together, we can observe that lowering the budget from 
20% to 15% creb has significant consequences for risk, which increases 
disproportionally with the achieved reduction in the expected total life- 
cycle maintenance cost. What changes significantly for maintenance 
cost, as shown in Fig. 8, is its distribution per time unit and component, 
rather than its total life-cycle value. This is indicative of the general 
observation that stricter budgets increase risk, without necessarily 
yielding clear economic budget-related benefits, if any, in the long run. 
Another interesting feature is that, in the presence of stricter budgets, 
the imbalance in the allocation of maintenance resources among com
ponents increases. Inspections and their respective expenditures are 
considerably restricted, as also mentioned previously. As also shown in 
Fig. 8, for the 15% creb case, inspections are rather reserved mainly for 
component 4, as this is the most vulnerable component of path 6,7,4,5, 
which is the path securing system survival with the least number of 
components. 

For the cases of risk-based constraints, examining Figs. 7 and 9 
together, we can observe that relevant costs are distributed more evenly 
in time over the planning horizon. Over the system life-cycle, we observe 
that lowering the risk tolerance considerably encumbers maintenance 
costs per step and in total. Similarly to the budget-constrained cases, for 
the 2.75 creb versus 3.25 creb risk constraint case, inspections are prom
inently clustered to fewer components. Accordingly, it is observed that 
the agents reserve their inspection actions exclusively for components 3- 
5,7,8,10. This intrinsically prioritized selection of components to be 
frequently inspected allows the agents to track the state of at least half of 
the components from each link, and thereby to better synchronize 
maintenance actions in order to minimize system shutdowns and costs. 
It was observed that although mathematically feasible from an optimi
zation perspective, policies below 2.0 creb start becoming practically 
unrealistic due to the very frequent restorations/replacements that need 
to be taken in order for the risk constraints to be satisfied. 

To look closer into how policies change for different constraints, 4 
detailed policy realizations are shown in Figs. 10 and 11, for the con
strained environments shown in Figs. 8 and 9, respectively. In Fig. 10(a), 
displaying the realization of component failure probabilities and 
respective inspection and maintenance actions, for two cases of 5-year 

Fig. 7. Comparison of DDMAC life-cycle policies for different life-cycle risk 
constraints from 1 creb to infinity. Total life-cycle cost and life-cycle costs due to 
inspection, maintenance, shutdown, and risk (95% confidence intervals are 
lower than ±0.5%). 

Fig. 8. Components maintenance and inspection frequency per step and 
respective mean costs for 5-year budget constraints of 15% and 20% creb (95% 
confidence intervals are lower than ±0.5%). 

Fig. 9. Components maintenance and inspection frequency per step and 
respective mean costs for risk constraints of 2.75 and 3.25 creb (95% confidence 
intervals are lower than ±0.5%). 
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Fig. 10. Life-cycle realization of the DDMAC policy for 15% creb and 20% creb 5-year budget constraints. (a) Component failure probabilities and actions; (b) System 
failure with selected interventions; (c) Costs of inspection and maintenance actions, scheduled shutdowns, and risks. 

Fig. 11. Life-cycle realization of the learned DDMAC policy for 2.75 creb and 3.25 creb life-cycle risk constraints. (a) Component failure probabilities and actions; (b) 
System failure probability with selected interventions; (c) Costs of inspection and maintenance actions, scheduled shutdowns, and risks. 
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budget constraints, it can be readily observed that, in the low budget 
scenario, available budgetary resources are primarily allotted to the 
maintenance needs of components 3,4,8, and 9. This is explained by the 
fact that these are Type III components, thus being described by the most 
aggressive deterioration. In this realization example, only component 4 
is inspected, since, as also explained earlier, with a budget limit close to 
the component replacement cost, the agents choose to inspect more 
rarely in order to save resources if major interventions are needed. In the 
high budget scenario, inspections play a more prominent role, since the 
imposed budget restrictions have become looser, and the agents have 
the budgetary capacity to afford expenditure for acquiring information. 
Although Type III components continue to receive the majority of 
maintenance actions, intervention resources are now allotted more 
frequently to all components. Some of the most prominent intervention 
effects changing significantly the overall system failure probability, are 
indicated in Fig. 10(b). The various costs are also tracked in Fig. 10(c). 
For the 20% creb case, a notable feature can be observed for components 
6 and 7, controlling the operability of the third link. Component 7 fails at 
t=38 and available resources do not allow for immediate replacement, 
which is postponed to t=40, when the next budget cycle begins. In the 
meanwhile, the agent of component 6 takes advantage of the link 
shutdown and applies repeated opportunistic partial repairs which do 
not yield additional shutdown costs. Overall, it can be interestingly 
observed in Figs. 8 and 10, that the agents, despite their decentralized 
policies, form and increase collaboration as the budget becomes lower, 
directing their focus to components that are more vulnerable to deteri
oration, or more strategically placed in terms of system connectivity. 

Similar features can be seen for the low- and high-risk constraints 
cases of Fig. 11. In the 3.25 creb case, effectively coinciding with the 
unconstrained policy, a complex and diverse policy is overall illustrated. 
It is worth noting that, in the absence of any budget constraints, in
spections are now taken frequently for all components, whereas resto
ration/replacement actions start to also have more prominent 
preventive characteristics, i.e. they are not only reserved for failure 
events. This is even more apparent in the low-risk scenario, in which 
case, restorations need to be performed in a more recurrent fashion to 
ensure low probability of failure. In turn, this also causes more system 
closures and, thus, increases shutdown costs. To balance this side effect 
of frequent restorative actions, the agents are interestingly shown to 
deploy a block-restoration/replacement logic in their policies. That is, as 
shown in the 2.75 creb scenario of Fig. 11(a), component agents of the 
same links synchronize their restoration actions (e.g. components 2,3 at 
t=37; components 8-10 at t=20; components 4,5 at t=26), whereas they 

also start to extensively leverage opportunistic interventions in links 
where failure events occur (e.g. components 1-3 at t=12; components 
4,5 at t=39). The system failure probability and the various costs along 
with various actions that affect them are shown in Figs. 11(b),(c), 
respectively. 

The mean failure interval probability of the system over time is 
shown in Fig. 12, for various 5-year budget and various life-cycle risk 
constraints. It is observed that, on average, system failure probability 
reaches its peak before the onset of new budget cycles. For the uncon
strained case, mean failure probability is allowed to increase over time, 
without abrupt escalations, since no budget limitation is imposed. The 
7.5% creb constrained case reflects an extreme life-cycle optimization 
setting where no replacement actions are feasible. Thus, in this case no 
major corrective steps are detected in the evolution of the mean failure 
probability. In the case of risk constraints, the more stringent the risk 
constraint is, the higher is the reliability of the system at each time step, 
as anticipated. 

Overall, Figs. 8-12 allow us to obtain insights in the ways the agents 
reason and adapt under a certain deteriorating environment, by forming 
and altering cooperative strategies, or dynamically re-prioritizing in
spection and maintenance resources based on different risk and resource 
constraints. Such analyses are useful in order to interpret patterns in the 
learned policies, and can be utilized to also enhance more traditional 
decision rules, bridging optimality gaps induced by their life-cycle 
planning assumptions and formulations. 

5. Conclusions 

In this work, a stochastic optimal control framework for inspection 
and maintenance planning of deteriorating systems operating under 
incomplete information and constraints is developed. Decision-making 
is cast in a multi-agent decentralized framework of DRL and POMDPs, 
where each system component, or control unit consisting of multiple 
components, acts as an independent agent given the dynamically 
updated global system state probabilistic information. While satisfying a 
shared overarching objective, each agent can make its own inspections 
and maintenance choices. Operational resource-based restrictions and 
policy risk considerations are taken into account by means of relevant 
stochastic soft and/or hard constraints. The latter are incorporated in 
the solution scheme through state augmentation, thus being rendered as 
environment properties, whereas the former are appended in the life- 
cycle objective function as dual variables, to form the Lagrangian 
function to be optimized. Modeling of various constraint choices is 
discussed, whereas a thorough numerical investigation is provided for 
budget and risk constraints, which are of particular significance in 
infrastructure management applications. Along these lines, a broad risk 
definition is also presented and utilized in the constrained optimization 
procedure, accommodating both the instantaneous and accruable nature 
of damage-related losses. This risk definition is further shown to be 
reducible to classic reliability-based definitions. Solutions to the opti
mization problem are driven by the introduced DDMAC algorithm. 
DDMAC uses both policy and value function parametrizations, experi
ence replay, off-policy network parameter updating, and operates on the 
belief space of the underlying POMDP. 

Operation under constraints is shown to considerably affect how the 
agents adapt their policies. The conducted parametric analysis shows 
that:  

• The need for inspections and, therefore, the value of information, 
fades in low-budget environments, where the agents tend to diminish 
expenses otherwise allotted to system information updating needs, in 
order to secure advanced intervention capabilities through avail
ability of maintenance resources.  

• Stricter budget constraints reduce inspection and maintenance costs 
for the respective budget cycle, however, without comparably 

Fig. 12. System mean failure probabilities based on DDMAC life-cycle policies 
for different (a) 5-year budget constraints and (b) life-cycle risk constraints 
(95% confidence intervals are lower than ±0.5%). 
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reducing these costs in the long run, i.e., cumulatively, over the 
system life-cycle.  

• In risk-averse environments, inspection costs do not follow the 
notable increase in maintenance costs, which are necessary in order 
to maintain low-risk levels over the system operating life. 

• In such cases, agents are shown to increasingly leverage the struc
tural properties of the system or incidental sub-system failure con
figurations, to develop opportunistic repair strategies, so that system 
operability is minimally disrupted.  

• Budget limitations and risk intolerance, disproportionally increase 
the risk and maintenance costs, respectively, compared to the re
ductions they achieve in the constrained quantities.  

• For both types of constraints, multi-agent cooperation emerges more 
prevalent as restrictions become stricter, since resource scarcity and 
risk intolerance force the agents to more carefully reallocate re
sources and redefine management priorities, based on the specific 
deterioration dynamics and structural importance of different system 
parts. This rescheduling arises naturally and intrinsically through the 
training process, without any explicit user-based enforcement or 
penalty-driven motivation. 

Overall, the derived DRL policies showcase remarkable flexibility and 
multi-agent cooperation in various constrained and un-constrained en
vironments, whereas the obtained decentralized solutions are found to 
significantly outperform conventional and state-of-the-art inspection 
and maintenance planning formulations. 
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Appendix A. On the definition of risk 

Proposition. A.1. If only failure incurs damage cost, this cost is cF, and it is instantaneous, then: 

ℜπ = Eo0:T

[
∑T

t=0
γtEsa

t ,st+1

[
cacc

D (st+1) + dsa
t st+1 cinst

D (st+1)
]
]

= cFEo0:T

[
∑T

t=0
γt( PFt+1 |a0:t ,o0:t − PFt |a0:t ,o0:t

)
]

= ℜπ
F  

where PFt+1 |a0:t ,o0:t and PFt |a0:t ,o0:t are the probabilities of failure up to time t+1 and t, respectively, given a history of actions and observations a0:t, o0:t. 

Proof. By definition, the transition probability from sa to s’ can be written as: 

Pr(s′

|sa, a) = (dsas′ + δsas′ )Pr(s′

|sa, a) (A.1)  

where dij and δij are the adjacency and Kronecker indicators, as defined in Eqs. (14) and (7), respectively, for all i,j belonging to S. Thus, using Eq. (A.1), 
the expected cost of the instantaneous costs of Eq. (14) reads: 
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D (sa)

(A.2)  

Combining both instantaneous and accruable damage costs, and elaborating further on Eq. (15) we finally obtain: 

cb,D = Esa ,s′
[
cacc

D (s
′

) + cinst
D (s

′

)
]
− Esa ,s′

[
δsas′ c

inst
D (s

′

)
]

=
∑

sa∈S
ba(sa)

∑

s′ ∈S

Pr(s′

|sa, a)
(
cacc

D (s
′

) + cinst
D (s

′

)
)

−
∑

sa∈S
ba(sa)Pr(s′

= sa|sa, a)cinst
D (sa)

(A.3) 

C.P. Andriotis and K.G. Papakonstantinou                                                                                                                                                                                                



Reliability Engineering and System Safety 212 (2021) 107551

15

Using Eq. (A.3), risk is defined as the cumulative damage state cost over the life-cycle in expectation: 

ℜπ = Eo0:T

[
∑T

t=0
γt ( Esa

t ,st+1

[
cacc

D (st+1) + cinst
D (st+1)

]

− Esa
t ,st+1

[
δsa

t st+1 cinst
D (st+1)

])]
(A.4)  

Eq. (A.4) is equivalent to Eq. (15). We now consider that only failure incurs damage related cost, this cost is cF, and it is instantaneous. We denote 
failure state(s) as sF. The respective cost is written as cinst

D = δst+1sF cF. In this case, Eq. (A.4) reduces to: 

ℜπ = Eo0:T

[
∑T

t=0
γt ( Esa

t ,st+1 [δst+1 sF cF ] − Esa
t ,st+1

[
δsa

t st+1 δst+1 sF cF
])
]

= cFEo0:T

[
∑T

t=0
γt( Esa

t ,st+1 [δst+1 sF ] − Esa
t

[
δsa

t sF

])
]

= cFEo0:T

⎡

⎣
∑T

t=0
γt

⎛

⎝
∑

sa
t ∈S

ba( sa
t

)∑

st+1∈S
Pr
(
sF |sa

t , at
)
− ba(sF)

⎞

⎠

⎤

⎦

(A.5)  

Probability ba(.), is the updated probability, as defined by Eqs. (4) and (6), hence, ba(.) = Pr(. |a0:t,o0:t). As such, Eq. (A.5) is equivalently written as: 

ℜπ = cFEo0:T

[
∑T

t=0
γt( PFt+1 |a0:t ,o0:t − PFt |a0:t ,o0:t

)
]

(A.6)  

From Eq. (A.6) follows immediately thatℜπ =ℜπ
F. □Under the assumptions of the above proposition, one can model the POMDP problem with damage 

cost: 

cD(s, a, sa, s′

) = dsas′ δs′ sF
cF = δs′ sF

cF − δsasF cF (A.7)  

Marginalizing with respect to s’ and assuming that pair (s,a) leads deterministically to sa, a simpler expression can also be used for the cost function: 

cD(s, a) = Pr(sF |sa, a) cF − δsasF cF (A.8)  

Note that Eq. (A.8) is a closed form expression, if transitions to failure state from all other states, Pr(sF | sa,a), are known, i.e. according to standard 
offline Markov decision processes semantics. 
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