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Chapter 1

Introduction

1.1 Background and scope

People move in time and space daily. Many questions can be posed about this phe-
nomenon. Why do they travel? Why do they choose to visit a certain place? Why do
they travel at a certain time? Why do they use the car over public transportation? Why
do they follow a certain route? Travel behavior (interchangeably referred to as human
mobility) research aims to answer all these questions, which can respectively be refined
into the following dimensions of travel-related choices: activity type choice, location
choice, time-of-day choice, transportation mode choice, and route choice (Rasouli &
Timmermans, 2014; de Dios Ortúzar & Willumsen, 2011).

This thesis specifically focuses on location choice. Notwithstanding, activity type
choice is inevitably in scope as well, because activity type choice is most likely a pre-
requisite for location choice. Different activity types result in different location choice
sets (Arentze & Timmermans, 2004). For example, for daily work or home activities,
most people do not have a choice because their home or work location is unique and
fixed, and it has been determined on a longer-term basis, serving as anchor locations
to perform other activities (Arentze et al., 2013). On the other hand, if people want to
eat outside, there is a large choice set of places for them to visit (Yoon et al., 2012),
and these types of activities are designated as flexible activities since they are flexible
in time and space (Wang et al., 2016).

This thesis refers to the outcome of people’s activity type and location choice in a
mobility system or network, as human spatial behavior. Specifically, the outcome can
be individual location choice for after-work flexible activities (Chapter 2), individual
preferred destination type for flexible activities (Chapter 3), individual location choice
for flexible activities (Chapter 4), or an aggregated origin-destination (OD) trip matrix
(Chapter 5).

Human spatial behavior can be measured for each individual. We can observe the lo-
cations that a person visits for different activities in a certain time period (e.g., Yue
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et al., 2014). Traditionally, researchers ask a group of respondents to report such infor-
mation, as part of a so-called travel diary (e.g., Schlich & Axhausen, 2003). In recent
years, such individual spatial traces can be tracked passively by new technology such
as mobile phones and smart cards (e.g., Calabrese et al., 2015; Jiang et al., 2013; Pel-
letier et al., 2011). Since most people bring mobile phones and use smart cards in their
daily lives, the mobility data collected in this way are likely to be big, thus designated
as “big mobility data”.

Compared to travel survey data, big mobility data can show a larger-scale picture of
human spatial behavior in a city by tracking the spatial-temporal traces of many peo-
ple (Demissie et al., 2015). For privacy concerns, big mobility data are sometimes
prepared in an aggregated way, in terms of OD matrices (Caceres et al., 2013). This
provides a macroscopic perspective to understand human spatial behavior (Sevtsuk &
Ratti, 2010). From this perspective, activity type choices of individuals are aggregated
into trip generation from each zone, and destination choices of individuals are aggre-
gated into trip distribution between zones (Anas, 1983). This thesis aims to use big
mobility data, either aggregated or disaggregated, to contribute to the understanding of
human spatial behavior.

An individual’s location choice for performing an activity can largely be explained
by three types of factors: individual-specific factors, location-specific factors, and ac-
cessibility factors (Horni, 2013). Individual-specific factors are related to travelers’
attributes such as socioeconomic status. Location-specific factors describe the charac-
teristics of a location and/or its surrounding urban environment. Accessibility factors
generally measure the extent to which transportation and land-use systems enable in-
dividuals to reach destinations (Geurs & Van Wee, 2004). All these factors are usually
assumed to be observable and serve as explanatory variables in location choice models.

Using disaggregated mobility data, researchers attempt to understand the importance
of a certain location and/or accessibility factor given personal characteristics from a
choice theory perspective (Koppelman, 2007). The importance is regarded as an un-
known parameter in a discrete choice model and estimated by fitting historical in-
dividual travel data. Using aggregated mobility data, individual-specific factors are
averaged out, and a gravity model is commonly used to explain trip distribution based
on location-specific factors and accessibility factors (Hansen, 1959). In summary, dis-
crete choice models and gravity models are the two most common types of models
to understand human spatial behavior. Apart from these types of models, this thesis
explores and expands the body of knowledge on new spatial behavior models that are
more appropriate for big mobility data.

Transportation services, planning and policies can shape human spatial behavior (Fox,
1995). For example, if a metro is operated overnight, night event locations might at-
tract more people. To plan and operate better transportation services, decision-makers
first want to know the current picture of human mobility in their systems or networks
so that they can conduct ex-post evaluations. When only survey data are available, they
first need to estimate a model of spatial behavior using a collected sample, and then
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Figure 1.1: The overview of human mobility research and the scope of this thesis
highlighted in red.

extrapolate to the whole population (Tolouei et al., 2017). Nowadays, some big mobil-
ity data themselves can already tell an almost complete story about historical mobility
patterns (Sevtsuk & Ratti, 2010). Moreover, decision-makers are also eager to foresee
how their decisions would finally impact human mobility. For this purpose, they need
to apply spatial behavior models in what-if scenarios, and predict behavioral responses
to policy scenarios.

Spatial behavior models can also be applied for purposes other than transportation and
urban planning, including but not limited to controlling spread of diseases (Balcan
et al., 2010) and socioeconomic well-being (Pappalardo et al., 2015), which are out
the scope of this paper. As a summary, Figure 1.1 presents the scope of this thesis,
highlighted in red, as well as its position in the larger realm of mobility research.

1.2 Motivation

1.2.1 Data

Big mobility data vs. survey-based data (called as “small data” in Chen et al., 2016) has
been a topic of long-time debate in human mobility research. Big data are intuitively
better than relatively “small” survey data but this is not always the case (Bonnel et al.,
2015). This thesis argues that in most cases, big mobility data are only big in terms of
the number of samples, but not big in terms of the number of features; survey-based
data are exactly the opposite. Big mobility data contain a large number of travelers and
trips but little is known about each traveler and trip, not to mention that sometimes they
have to be aggregated. On the other hand, survey-based data, despite reporting only
a small group of respondents, tend to include abundant features about each traveler,
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Figure 1.2: A pseudo-example of typical big mobility data vs. survey-based data.

such as age, and about each trip, such as trip purpose (Kwan, 2016). Assuming that
each row represents one sample and each column represents one feature, big mobility
data should have better been described as long and thin, and “small” survey-based data
should have better been described as short and wide.

The difference between typical big mobility data vs. survey-based data is illustrated
in Figure 1.2. Most big disaggregated mobility data record the spatial-temporal traces
(i.e., locations and timestamps) of many individuals in a certain geographic area in a
time frame (Çolak et al., 2015), whilst big aggregated mobility data present the in-
tensity of spatial interactions between every two locations per time slot (Deeva et al.,
2019). Survey-based data are often disaggregated, and focus on one geographic area
and a certain period. Different from big mobility data, these data not only include the
accurate origin, destination, departure time and arrival time of each trip made by the
respondents, but also further details about each trip as well as the attributes of each
respondent (Collia et al., 2003).

Big disaggregated mobility data cannot be long and wide at the same time mainly be-
cause of privacy concerns. For example, mobile phone traces cannot include the per-
sonal information of a certain mobile phone user (De Montjoye et al., 2013). Survey-
based data cannot become longer because they are expensive to collect. Also, due to
the cost of data collection, survey-based data are usually not updated (Alexander et al.,
2015).

The obsolescence of survey-based data was not a serious problem in the days when
they were mainly used for long-term transportation planning purposes. Today, in this
hyper-connected, technological world, mobility data are being consumed by more par-
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ties, including not only planning authorities but also more retail and mobility compa-
nies (e.g., Cohen et al., 2016; Timmermans, 1993). All need the most affordable and
updated mobility data to make more timely decisions in a cost-efficient way. It has thus
become relevant to explore the use of big mobility data, especially in terms of how to
leverage their strength (i.e., being long) and avoid their shortcoming (i.e., being thin or
being aggregated).

1.2.2 Models and applications

After collecting survey-based mobility data, the next step is to estimate the popula-
tion’s behavior based on the samples. For example, trip frequency per age group can
be inferred. Since survey-based data include the attributes of each traveler, it is feasi-
ble to extrapolate from the sample to the population, as long as the distribution of each
attribute is known at the population level. In many cases, mobility surveys can result in
a general report that summarizes travel behavior of the population (Collia et al., 2003;
Lu & Gu, 2011). Also, researchers can estimate travel behavior models using small-
size survey data and then apply the models to a synthetic population, so that they can
estimate a full picture of current mobility patterns (Ziemke et al., 2019).

Comparably, more efforts have to be made to extract spatial behavior information from
big mobility data. As illustrated in Figure 1.2, big mobility data mostly reveal only two
elements of human spatial behavior: location and time. However, neither of them is
necessarily accurate in big mobility data, which are collected passively and thus not
meant for mobility-related purposes in its nature. For example, many spatial-temporal
traces of a traveler can be left in mobile phone data, but mobility researchers want
to distinguish the real activity locations from the other pass-by places (e.g., Zheng
et al., 2009). Certain techniques are therefore necessary to extract real trip information,
including origin, destination (e.g., Alexander et al., 2015) and departure time (e.g.,
Bwambale et al., 2019).

One might think that big data are more representative of the population. This could
be true in some cases but sometimes it is even more difficult for big mobility data to
represent accurately the population. For example, mobile phone data could be biased
if they are only from one telecommunication provider (Zhao et al., 2016b). Social
media check-in data, as a trendy mobility source, have been criticized for being bi-
ased towards young people (Huang & Wong, 2016). Consequently, the estimation of
travel demand would be negatively impacted. In recent years, extensive research has
attempted to overcome the aforementioned issues in order to allow the possibility of
using big mobility data to provide an accurate overview of spatial behavior and travel
demand (Munizaga & Palma, 2012; Alsger et al., 2015; Iqbal et al., 2014; Demissie
et al., 2016). Although estimation is not the main focus of this thesis, it is a task that
cannot be bypassed before understanding spatial behavior and travel demand (as illus-
trated in Figure 1.3). This thesis reviews the existing methods and adapts them to fit in
our specific cases.



6 Modeling Human Spatial Behavior through Big Mobility Data

Estimating UnderstandingData
Decision 
making

Figure 1.3: The process of transforming mobility data into informed decisions.

To take a further step, it is also worth building predictive models based on the es-
timated mobility information because they can help understand spatial behavior and
make informed decisions (Ben-Akiva et al., 1996). For example, one can estimate the
current OD trip matrix, but without understanding it, this cannot directly result in any
decision, unless it is possible to predict a new OD matrix given a different transporta-
tion network layout. Survey-based data are convenient for building a predictive spatial
behavior model because of the large number of features. For example, location choice
patterns per age group can be learned, and predictions can be made accordingly (Ar-
entze et al., 2013). However, big mobility data do not fit in this approach since few
features are available. While differences in spatial behavior can still be observed, they
are difficult to explain because it is difficult to know who the travelers are and why
they travel (Calabrese et al., 2013).

In summary, big mobility data are favorable for being cost-efficiently, up to date and
promising especially in terms of sample size, but given their very nature (i.e., being
thin or being aggregated), it is still cumbersome to use them for understanding human
spatial behavior. This thesis aims to contribute to filling this gap by exploring the
answers to the main research question which is formulated as follows:

To what extent, and how, can big mobility data foster the understanding of human
spatial behavior?

1.3 Contributions

1.3.1 Scientific contributions

Most existing spatial behavior models are theory-based. Typical examples include
discrete choice models based on the utility maximization theory and gravity models
based on the physics theory. Those models inherently require input data to be suffi-
ciently wide to include features supporting their respective theories. For example, to
account for individual discrete choice, there should be data related to each component
of utility and individual characteristics. Fitting such theory-based models with long-
and-thin big data is possible, but it would be a lose-lose situation: theory-based models
would be weakened by the lack of features, and patterns latent in large samples would
not be fully explored because of the constraints of theories. One potential solution is
to feed theory-based models with an expanded dataset. The other potential solution is



Chapter 1. Introduction 7

to use data-driven models, which essentially make less strong assumptions about the
nature of the data distributions than theory-based models (Murphy, 2012).

The scientific contribution of this thesis consists of two main strategies adopted to
answer the research question. The first principal strategy is to make long and thin data
wider. This strategy has led to the following publications, which correspond to Chapter
2 and 3 respectively:

Wang, Y., Correia, G.H.A., de Romph, E., & Timmermans, H.J.P. (2017). Using metro
smart card data to model location choice of after-work activities: An application to
Shanghai. Journal of Transport Geography, 63, 40-47.

Wang, Y., Correia, G.H.A., van Arem, B., & Timmermans, H.J.P. (2018). Under-
standing travellers’ preferences for different types of trip destination based on mobile
internet usage data. Transportation Research Part C: Emerging Technologies, 90, 247-
259.

Since lack of features is the biggest obstacle for big mobility data to explain human
spatial behavior, attempts are made to generate proxy variables for traveler segmen-
tation and trip characterization, from either big mobility data themselves (Chapter 2)
or external datasets (Chapter 3). The addition of proxy variables for each traveler and
each trip can enhance the understanding of human spatial behavior. This principal
strategy results in the following methodological contributions:

� Adapting the existing algorithms to our case study to detect home and work
stations of metro travelers from disaggregated smart card data (Chapter 2).

� Proposing to use home and work stations as proxy variables to distinguish be-
havior heterogeneity 2).

� Building a discrete choice model with the addition of the proposed proxy vari-
ables to model after-work activity location choice in a metro network by using
disaggregated smart card data (Chapter 2).

� Building a clustering algorithm to distinguish the functions of urban areas based
on point of interest (POI) data and using the results to label trip destinations
extracted from disaggregated mobile phone traces (Chapter 3).

� Testing the hypothesis that one’s preferred destination types are related to one’s
preferred mobile internet content, extracted from mobile internet usage data
(Chapter 3).

The second principal strategy takes a new and groundbreaking approach, inspired by
the collaborative filtering algorithms that are commonly used to model user preferences
in recommendation systems (Koren et al., 2009). This strategy has led to the following
under-review articles, which correspond to Chapter 4 and 5 respectively:
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Wang, Y., Correia, G.H.A., van Arem, B., & Timmermans, H.J.P. (2020). Exploring a
neighborhood-based collaborative filtering approach to modeling location preferences
for flexible activities through metro smart card data. Journal of Transport Geography,
submitted.

Wang, Y., Correia, G.H.A., van Arem, B., & Timmermans, H.J.P. (2020). A matrix
factorization approach to modeling trip generators and their interactions. Travel Be-
haviour and Society, submitted.

Without using any specific proxy variables, Chapter 4 and 5 implement data-driven
methods, which only rely on empirical observations about many people, and do not
require imposing any theory-based prior assumptions about the mechanisms of human
spatial behavior. The intuitive reason why this approach might work is that historical
spatial behavior itself can indicate some heterogeneity between individuals within a
given group of travelers and thus help make predictions about their future behavior.
This principal strategy results in the following methodological contributions:

� Building a neighborhood-based collaborative filtering algorithm to model loca-
tion preferences for non-work activities in a metro network by using disaggre-
gated smart card data (Chapter 4).

� Building a Poisson factorization algorithm to model spatial interactions in a
metro network by using aggregated smart card data (Chapter 5).

1.3.2 Practical contributions

As pointed out in Figure 1.3, the process of transforming mobility data into informed
decisions includes three stages: estimating, understanding, and decision making. All
the analyses that were conducted in this thesis cover the first two parts, and espe-
cially contribute to the second part. Urban authorities, mobility companies and retail
companies can follow our approaches to estimating and understanding human spatial
behavior using their own big mobility data. For example, a public transportation op-
erating company stores massive mobility data of its services, and it can freely apply
our methods to extract mobility information and understand the spatial behavior of its
users.

Although this thesis does not include the part of decision making, it is promising to
do so based on the understanding of human spatial behavior. For example, Chapter
2 builds a location choice model for after-work activities in a metro network. Urban
planners can further use this model as a starting point to optimize the development of
shopping areas around metro stations.

A side note on the practical contributions is about data privacy issues. Since the mo-
bility data might reveal highly sensitive personal information, the use of big mobility
data, especially in disaggregated form, could be restricted for research and analysis
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Figure 1.4: The outline of this thesis.

(Giannotti & Pedreschi, 2008). Given local regulations, the available granularity of
big mobility data varies from case to case. Considering this issue, this thesis proposes
various methods, which can deal with not only big disaggregated mobility data, but
also big aggregated mobility data.

1.4 Thesis outline

The remainder of the thesis is organized as follows.

Chapter 2 takes the advantage of the long nature of the metro smart card data of Shang-
hai, China to detect the stations that are closest to home and work locations of each
metro traveler. In most cases, if a traveler always leaves one station at the beginning
of a day and returns to this station at the end of the day, this station is likely to be
associated with this traveler’s home location, thus named as home station. Such socio-
geographic information can help characterize trip purposes, and as a result, those trips
for after-work activities are especially distinguished in the case study. Although per-
sonal attributes are not explicitly provided in big mobility data, detected home and
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work stations might be able to indicate some behavior heterogeneity among travel-
ers. For example, metro travelers living in a more residential area might share some
common characteristics. Based on this idea, Chapter 2 adds two proxy variables to dis-
tinguish travelers living/working in the different types of areas, and the variables are
found to help enhance the prediction accuracy of a discrete choice model accounting
for after-work activity location choice.

In the era of mobile internet, users generate not only spatial-temporal traces but also
internet browsing traces. Chapter 3 fuses mobile phone traces with a special external
dataset: the mobile internet usage data of the same users. The objective is to understand
users’ spatial preferences based on their mobile internet usage, which also serves as a
proxy variable for personal attributes. Moreover, POI data, which record the coordi-
nates of each POI, are also used as an external source to characterize trip destinations,
based on a clustering algorithm.

Chapter 4 argues that the previous approaches rely on theory-based assumptions and
thus proposes a data-driven approach under a more flexible assumption: past behavior
itself can reflect the heterogeneity in the population and be further used as a reference
to predict future behavior. Specifically, this chapter introduces an algorithm called
neighborhood-based collaborative filtering, which finds the so-called neighbors of a
traveler. Instead of being geographically close to each other, the neighbors in this
definition are similar in terms of past spatial behavior.

Chapter 5 continues the data-driven strategy by implementing the other main-stream
collaborative filtering algorithm: matrix factorization. Instead of factorizing a traveler-
location frequency matrix using big disaggregated mobility data, this chapter consid-
ers data privacy issues and proposes a Poisson factorization method, a variant of the
classical matrix factorization algorithm, to model aggregated spatial behavior, in terms
of a location-location frequency matrix (i.e., spatial interaction matrix or OD matrix).

Finally, Chapter 6 presents the conclusions of the thesis and recommendations for
future research.

The outline of the thesis is shown in 1.4.



Chapter 2

Building an after-work location choice
model using smart card data

Chapter 1 identified a problem in human spatial behavior modeling using big mobility
data: the absence of features accounting for behavioral heterogeneity. A straightfor-
ward solution is to use proxy variables for personal attributes. This chapter specifically
investigates the possibility of using socio-geographic status as a proxy for personal at-
tributes to model after-work location choice; i.e., given a metro commuter’s home and
work locations, the question is: can we predict where this person would visit after
work? To solve this problem, a discrete choice model is estimated using metro smart
card data from Shanghai, China. The model could further serve as a tool to help re-
tail companies locate their businesses optimally and help urban decision makers plan
transport networks and land use more reasonably.

The chapter is based on the following publication:

Wang, Y., Correia, G.H.A., de Romph, E., & Timmermans, H.J.P. (2017). Using metro
smart card data to model location choice of after-work activities: An application to
Shanghai. Journal of Transport Geography, 63, 40-47.
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Abstract

A location choice model explains how travelers choose their trip destinations espe-
cially for those activities which are flexible in space and time. The model is usually
estimated using travel survey data; however, little is known about how to use smart
card data (SCD) for this purpose in a public transport network. Our study extracted trip
information from SCD to model location choice of after-work activities. We newly de-
fined the metrics of travel impedance in this case. Moreover, since socio-demographic
information is missing in such anonymous data, we used observable proxy indicators,
including commuting distance and the characteristics of ones home and workplace sta-
tions, to capture some interpersonal heterogeneity. Such heterogeneity is expected to
distinguish the population and better explain the difference of their location choice be-
haviour. The approach was applied to metro travellers in the city of Shanghai, China.
As a result, the model performs well in explaining the choices. Our new metrics of
travel impedance to access an after-work activity result in a better model fit than the
existing metrics and add additional interpretability to the results. Moreover, the proxy
variables distinguishing the population seem to influence the choice behaviour and thus
improve the model performance.

Keywords: Public transport; smart card data; location choice modelling; discrete choice
model; demand forecast; transport planning.

2.1 Introduction

Travel behaviour is becoming more diverse and complex especially in large metropoli-
tan areas. One of the most significant changes is that non-commuting travel demand
takes a larger share than ever before (Lu & Gu, 2011). Therefore, the task of ob-
serving and analysing non-commuting travel demand is becoming important today.
This task is not only relevant for transport planners to better understand movements of
travellers, but also for service and retail business planners to understand where peo-
ple would like to consume and where their customers come from (Sivakumar & Bhat,
2007). Moreover, economists regard the accessibility to non-commuting activities as
an important indicator to reflect quality of life (Nakamura et al., 2016; Suriñach et al.,
2000). These relevant perspectives have led the transportation research field to expand
its scope to topics like accessibility (Dong et al., 2006), social exclusion (Schönfelder
& Axhausen, 2003), subjective well-being (De Vos et al., 2013), etc., in addition to
traditional transport problems particularly focusing on network levels of service.

To cope with the increasing non-commuting demand, the usage of public transport
(PT) to access retail and service facilities has been encouraged in many cities due to the
concentration of people (Castillo-Manzano & López-Valpuesta, 2009; Ibrahim & Mc-
Goldrick, 2017). Urban decision makers need to know where large recreational centres
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should be located and how PT network should be planned to meet the considered ob-
jectives. Answering these questions requires the prediction of non-commuting OD ma-
trices in many what-if scenarios, based on the understanding of peoples activity-travel
behaviour including, but not limited to, location choice. A relevant and interesting per-
spective is the activity-based travel demand modelling, which focuses on individuals
and regards travelling as the result of the need to participate in activities (Rasouli &
Timmermans, 2014). However, few studies have adopted this methodology focused on
PT network. In this paper, we aim to fill this gap by using new available travel demand
data sources, namely, smart card data (SCD). We focus on travel demand of after-work
activities since it is a significant part of non-commuting travel demand especially on
weekdays (Demerouti et al., 2009). Our research can also be regarded as a complement
to the existing research that uses SCD to study commuting patterns (Ma et al., 2017;
Zhou et al., 2014).

Compared to traditional mobility survey data, SCD have several advantages and dis-
advantages to reveal how people travel by PT (Bagchi & White, 2005; Pelletier et al.,
2011). Firstly, collecting such data is more efficient, saving both time and money, com-
pared to large-scale surveys. Secondly, SCD usually correspond to a larger sample and
the observations can be longitudinal in time (Morency et al., 2007). On the other hand,
trip purpose is difficult to obtain in SCD and needs to be estimated using other methods
(Devillaine et al., 2012; Kuhlman, 2015; Long et al., 2012). In some cases, destination
information needs to be estimated as well because some PT networks do not request
a check-out (Trépanier et al., 2007). The very relevant personal socio-demographic
information is most of the times not available for confidentiality reasons which de-
creases the possibility to do a more thorough analysis of particular behavioural traits
of the population (Pelletier et al., 2011).

The advantages of using SCD have allowed researchers to obtain more accurate esti-
mates of transit demand, which have led to many applications. Using the data collected
during 277 consecutive days, Morency et al. (2007) examined the variability of tran-
sit use. Some studies proposed to cluster and classify the regularity of transit travel
patterns by mining SCD (Goulet-Langlois et al., 2016; Ma et al., 2013). Estimating
origin-destination (OD) transit trip matrices is a usual application of SCD (Munizaga
& Palma, 2012). It can further serve as a fixed input to passenger flow assignment
(Sun et al., 2015), OD flow visualization (Liu et al., 2009; Long et al., 2012) and any
other post hoc analysis, such as commuting efficiency assessment (Zhou et al., 2014).
However, only a few attempts have been made to use SCD to build explanatory trip
distribution or location choice models, in order to predict the OD matrices as a result
of the changes made to transport systems and land use. One example is the gravity
model developed by Goh et al. (2012) to understand aggregate commuting OD flows
by metro. We believe that not only the characteristics of SCD but also the research
objective in our study is a better fit for a disaggregate activity-based travel demand
modelling framework.

In this study, we use SCD to model location choice of after-work activities. The in-
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novation of our approach firstly lies in the creation of new metrics to model travel
impedance in location choice of after-work activities. Secondly, this is the first time
that proxy variables, which can be observed in anonymous SCD, are used to cap-
ture some interpersonal heterogeneity in order to explain the difference of their loca-
tion choice behaviour. Thanks to the Shanghai Open Data Apps (SODA) contest1, a
full-population dataset of one-month PT smart card transaction records for the city of
Shanghai (China) was made available, allowing us to explore this methodology in a
large-size real-world case scenario.

This paper is organized as follows. First, the methodology is described. Then, the data
of Shanghai is further explained. Following that, we present the application of our
method. In the final section, we take conclusions and point out directions for future
research.

2.2 Methodology

We start by defining the scope to which our methodology can be applied. The method
can be applied in a metro network composed of stations with services connecting them,
where the automated fare collection system forces travellers to check in and check
out at the stations where they board and alight respectively. Therefore, the following
information of each trip is available through SCD: anonymous identity (ID) of the
user, IDs of boarding and alighting stations and timestamp. A trip is defined to start
from an origin station near which the previous activity has been finished, and end at
a destination station where the next activity will take place. In our case, the recorded
boarding and alighting stations are not necessarily an origin or a destination station
of a trip. In other words, a trip including any transfers should not be regarded as
two separate ones. Moreover, a daily trip chain is the ordered set of trips done by an
individual within one day.

2.2.1 Detecting commuters

Several studies have been performed on the detection of commuters as well as their
home and workplace stations from SCD (Chakirov & Erath, 2012; Long & Thill,
2015). By recurring to travel survey data, researchers have either predefined the rules
or trained the models to predict if a smart card user is a commuter and if the purpose of
a PT trip recorded in SCD is home, work or other, based on several observed factors,
such as activity start time. In our method, we used a similar principle for activity iden-
tification, but due to the unavailability of travel survey data, we predefined the rules
with the parameters identified in the literature. We used the following rule applied by
Long et al. (2012) to determine ones home station: any boarding station of the first trip

1http://soda.datashanghai.gov.cn/ (retrieved date: November 21st, 2015)
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done by an individual on a weekday was defined as a so-called candidate home sta-
tion of this individual, and the station appearing most frequently as a candidate home
station during the observed period was defined as the definitive home station of this
individual. There could be more than one station appearing most frequently. In such
cases, Long et al. (2012) compared the land use around the stations and assigned the
station in a more residential environment to be the definitive home station.

In SCD, activity duration can approximately be regarded as the time gap between a
check-out and the subsequent check-in at the same station when the access and egress
mode is walking. If the activity duration of visiting a station was longer than 6 hours on
a weekday, we identified the station as a so-called candidate workplace station. Long
et al. (2012) selected this parameter based on the travel survey data from Beijing,
China, and thus we think that it is the best reference for our study of Shanghai despite
the differences between the two cities. Next, the station appearing most frequently as
a candidate workplace station during the observed period was defined as the definitive
workplace station. If there were more than one station appearing most frequently,
we calculated for each station the distance from home multiplied by the frequency of
visits during the observed period, as suggested by Alexander et al. (2015), and the
station with the largest product was defined as the definitive workplace station.

Commuters were defined as those who had both detected definitive home and work-
place stations. Due to access and egress, home and workplace stations are not, in many
cases, the real locations of home and workplace but can be regarded as proxies for
those, especially when the access and egress mode is walking. One drawback of our
method is that those commuters who have multiple home or workplace stations or have
flexible working hours are difficult to detect. If necessary and possible, we recommend
a more flexible approach relying on travel survey data. However, this step is not the
main focus of our work, and our current method using the parameters identified in
the literature is sufficient to detect a great number of commuters whom we can study
regarding their after-work station choice behaviour.

2.2.2 Extracting individual daily metro trip chains

We assume that within one day, travellers do an activity between every two consecutive
trips, and the purpose of this activity can be estimated based on the check-out station
of the former trip and the check-in station of the latter. If they are the same one, the
purpose can be classified into home, work or secondary activity dependent on whether
the station is the home station, the workplace station or neither for that individual; if
they are different due to the interim unobservable movement by using other modes, we
do not classify any activity purpose. Note that the first activity on one day is dependent
only on the check-in station of the first trip, and the last activity is dependent only on
the check-out station of the last trip.

The diagram of an individual daily metro trip chain starts in the first activity within a
day, represented as a node, connected by an edge representing the trip to the second
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(a) The diagram of a daily metro trip chain.

(b) The program of this trip chain.

Figure 2.1: An example of an individual daily metro trip chain.

activity, connected sequentially until the last activity. An example is shown in Figure
2.1, where each activity is labelled with its type and the grey box indicates where the
chain starts. The commuter first travels from the home station to the workplace station
at 8:00 and stays at the workplace station until 17:30. After staying at another station
for 90 minutes, this person checks out there and travels back home.

2.2.3 Modeling station choices for after-work activities

In this paper, we focus on modelling station choice of metro commuters for after-
work activities. Location choice involves a trade-off between attractiveness and travel
impedance. We assumed that the attractiveness of a station for after-work activities
is time-invariant. Travel impedance is a function of PT travel time, PT network dis-
tance, PT costs and number of PT transfers. In existing location choice models, there
were three ways to model travel impedance to perform a secondary activity in a trip
chain. The traditional way was to consider only the impedance of travelling between
the activity location and home (Arentze & Timmermans, 2004). However, Arentze &
Timmermans (2007) found that this measurement would result in the overestimation
of the impedance between locations of activities within trip chains, and they proposed
the concept of detour travel impedance:

DTs = d(Os;s)+ d(s;Ds)�d(Os�Ds) (2.1)
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In this equation, Os is the origin of the trip to a candidate location s for the secondary
activity, and Ds is the destination of the trip from s. d(x;y) is the travel impedance
from x to y.

Despite the wide use of this concept in existing travel demand models, such as MAT-
Sim (Horni, 2013), a disadvantage of this method is that it is not very sensitive in
differentiating between distance from workplace or to home. Thus, while the previous
definitions were adequate in the specific contexts of those studies, for our problem, it
may be better to account for the effect of proximity to workplace vs. home. We defined
the new metrics by complementing the detour impedance DTs with a new variable Rs:

Rs = d(s;DS)�d(Os;s) (2.2)

Table 2.1 summarizes the three possible ways to model travel impedance to perform an
after-work activity in a trip chain. h, w and s represent home station, workplace station
and candidate station for an after-work activity respectively, and the former two are
respectively equivalent to the succeeding activity location Ds and the preceding activity
location Os in our specific case.

Although we focus on a metro network, attention should be paid to other modes like the
access and egress to trips made in the metro network. In this study, we only model the
trips to perform after-work activities with walking as access and egress, and we assume
that the generalized travel cost of walking access and egress is minor compared to the
main part of the metro trip.

The characteristics of activities (i.e., activity start time and activity duration) can be
inserted in the model to describe contexts of choice occasions. The underlying as-
sumption, in line with existing travel demand models (Balmer et al., 2008), is that
people have already generated their activity schedules before making location choices.
Attributes related to individuals are generally missing in SCD; however, in our study,
we proposed to use commuting distance and characteristics of home and workplace sta-
tions as proxies for the attributes of the travellers. Aggregating the number of people
living and working near each station can help identify whether a station is categorized
into a mainly residential area or a mainly commercial area (Liu et al., 2009). This can
serve as a way to characterize each travellers home and workplace stations.

Considering that choice making may also rely on the previously made choices, we in-
clude the effect of last choice feedback (i.e., first-order state dependence) in our model.
Following the approach of Danalet et al. (2016), we estimate the model where the pre-
vious choice can be assumed to be strictly exogenous to the estimation. Danalet et al.
(2016) also addressed a more advanced approach to deal with the initial conditions
problem and related endogeneity bias in estimation. However, the consideration of
these issues is beyond the scope of our paper. For the same reason, we do not con-
sider time-variant attributes of alternatives and unobserved inter-individual and intra-
individual response heterogeneity.
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We used a discrete choice model to explain the station choice for after-work activities
with the referred impedance structures in our study. Consider that an individual user u
in the network of the study area is associated with the home station hu and the work-
place station ws, where hu;wu 2 NNN, and NNN is the set of metro stations in an area. In
addition, u is observed to have a set of choice occasions JJJu over time. The choice set
of the destinations for after-work activities is denoted as SSSu j = RRRu j n fhu;wug, where
RRRu j is the reachable subset of N for u on choice occasion j. RRRu j was calculated based
on the following space-time constraints: (1) a commuter should not leave work earlier
than the work schedule allows; (2) a commuter should not miss the last metro back
home; (3) given the previous constraints, travel times to reach an after-work activity
should not affect the activity start time and the activity duration. For each individual,
we calculated the earliest time of departure from work during the observed period as
the threshold to apply the first constraint. The timetables of the metro line were used to
apply the second constraint. Travel time between every two stations can be calculated
by averaging over the trips according to the SCD.

The deterministic part of the utility function for an alternative s 2 SSSu j on choice occa-
sion j 2 JJJu of decision maker u in one month is the following:

Vus j = Zs[a +å
m

(dmXum)+å
n

(fnCu jn)]

+å
k
fTusk[bk +å

m
(wkmXum)+å

n
(hknCu jn)]g

+ gSAMEus j

(2.3)

Z is station attractiveness measured in terms of number of points of interest (POI). T is
travel impedance. X is proxy variable for user-specific attributes. C is activity context.
SAME is about previous choice. a +åm(dmXum)+ån(fnCu jn) is a function represent-
ing the preference for station attractiveness Zs, and bk +åm(wkmXum)+ån(hknCu jn) is
a function representing the preference for reducing travel impedance Tusk. Both func-
tions incorporate the effects of user-specific attributes Xum and activity characteristics
Cu jn on taste variation. Therefore, the preferences vary across individuals and choice
occasions (Sivakumar & Bhat, 2007). The descriptions of all variables and parameters
are presented in Table 2.2, and the specific indicators of Tusk, Xum and Cu jn are sum-
marized in Table 2.3. The possible values of SAMEus j under different conditions are
given in the following equation:

SAMEus j =
�

1 if individual u chose station s on choice occasion j�1
0 otherwise

(2.4)

Regarding the random part of the utility function, we used the spatially correlated logit
model proposed by Bhat & Guo (2004) to consider the effect of spatial correlation
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Table 2.2: Variables and parameters in the deterministic utility function.

Parameters Variables

g
Preference for maintaining
the previous choice SAMEus j

Variable indicating the
previous choice feedback

a
Baseline preference for
attractiveness of station s

Zs Attractiveness of station s

bk
Baseline preference for reducing the
type k travel impedance

Tusk

The type k travel impedance
associated with home and
workplace station of
individual u and station s

dm

The extent of the preference for
attractiveness of station s that can be
captured by the attribute m of travelers

Xum
Variable for the attribute m of
individual u

fn

The extent of the preference for
attractiveness of station s that can be
captured by the characteristic n of
activities

Cu jn

Variable for the characteristic
n of the activity performed by
individual u on choice
occasion j

wkm

The extent of the preference for
reducing the type k travel impedance
that can be captured by the attribute m
of travelers

hkn

The extent of the preference for
reducing the type k travel impedance
that can be captured by the
characteristic n of activities

between adjacent stations on the metro network. This is a cross-nested logit model
(Train, 2009) with two characteristics: (1) it is a paired combinatorial logit model
(Koppelman & Wen, 2000), and each paired nest includes a station and one of its
adjacent station; (2) it defines the allocation parameters that reflect the degree to which
each alternative belongs to each nest. The probability of choosing an alternative can be
calculated in a closed-form expression, where the dissimilarity parameter r (0 < r �
1) is designed to be equal across all paired nests and capture the general correlation
between adjacent stations. There is no correlation between adjacent pairs of stations
when r = 1, and the correlation increases as r decreases. In addition to the parameters
in the deterministic part of the utility function, we need to estimate r as well. More
details about the spatially correlated logit model can be found in the work by Bhat &
Guo (2004).
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Table 2.3: Indicators of travel impedance, user-specific attributes and activity charac-
teristics in the utility function.

Variables Specific indicators

Travel impedance
variables

Home-based impedance Tus1 = d(s;h)
Detour impedance Tus1 = DTs
Detour impedance and
home vs. workplace proximity

Tus1 = DTs
Tus2 = Rs

User-specific attributes
Xu1: commuting distance
Xu2: characteristics of
home station
Xu3: characteristics of
workplace station

Activity characteristics
Cu j1: activity duration
Cu j2: activity start time

2.3 Background information and data of the case study

2.3.1 Study area

Shanghai is one of the most populated and fastest growing cities worldwide. The
socio-economic development has influenced people’s travel behaviour. Local travel
surveys show that the trip generation rate of residents has increased in recent years.
Meanwhile, the government invested in PT systems to mitigate traffic congestion led
by the increasing private car ownership, resulting in an upward trend in the share of PT
use (Lu & Gu, 2011). Among all PT modes, the Shanghai metro network is expanding
the most in the last years. As shown in Figure 2.2, the metro system operates 14 metro
lines, connecting 288 metro stations distributed in the region, among which there are
54 transfer stations (i.e., the stations where passengers can change from one line to
another).

A shortest path algorithm can be used to calculate the shortest network distance be-
tween every two stations and the number of transfers along each of those paths. The
trip fare is set by the operator based on the shortest network distance, and thus they
are almost perfectly correlated. The perfect correlation also exists between travel time
and network distance, since we assume that the speeds of metro service do not vary
between different OD pairs. These are the reasons why in this application we did not
use fare and travel time as components of generalized travel costs.

On the website of Dianping2, which is one of the most popular Chinese location-review
services, we mined information of POI, in terms of total number of shops and restau-
rants within a 500-meter radius from each metro station, indicated by the depth of

2http://dianping.com/ (retrieved date: November 21st, 2016)
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Figure 2.2: The metro network in Shanghai and number of points of interest per station.

colour in Figure 2.2. This variable is regarded as a proxy for the attractiveness of each
station for after-work activities in this study. It can be observed that the spatial distribu-
tion of POIs is concentrated towards the central part of the city, and it is also interesting
to notice that in distant areas from the city centre, that distribution is concentrated in
one or two stations, which can be interpreted as being city sub-centres.

2.3.2 Smart card data

One of the ways in which the government promoted PT in Shanghai was to introduce
the automated fare collection system that automates the ticketing system for the entire
PT network, including metro, bus, taxi, ferry and P+R. Travelers are allowed to pay
these services by using a smart card not only for its convenience but also to get a
discount.

The SCD provided by the SODA contest contains the records of all transactions by
all smart cards in April, 2015. In Shanghai, metro is the only PT system where card
holders should both check in and check out. On the other hand, travellers are required
to scan their cards only when boarding a bus or alighting a taxi, not to mention that the
location information is missing on these modes. Therefore, we focused on the metro
network for further analysis and modelling.

In addition, we carefully dealt with those trips including transfers. In Shanghai, only a
few metro stations require travellers to check out and then check in again to switch to
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another line. Such cases should not be seen as two separate trips. To distinguish them,
we used a threshold of 30 minutes between check-out and check-in at those stations.
The selection of this threshold is based on the policy by which after 30 minutes without
checking in again, the system will regard the next check-in as the start of a new trip. We
assume that travellers are aware of this fact, and if they stay at those stations for more
than 30 minutes, they must have performed an activity whose utility can compensate
for the loss.

2.4 Results of the case study

2.4.1 Detecting metro commuters and extracting daily metro trip
chains

After applying the method for detecting the commuters, there were about 0.8 million
metro commuters filtered from the data. This number can be compared with the aver-
age daily number of unique card IDs scanned for metro trips, which was about 2 mil-
lion. We did not include those commuters who had detected PT access and/or egress
modes such as bus trips connecting with metro trips for commuting. Figure 2.3 shows
the spatial distributions of home stations and workplace stations of all the detected
metro commuters. By comparing the spatial distributions of home stations, workplace
stations and POIs (shown in Figure 2.2 and Figure 2.3), we found that the spatial distri-
bution of home stations was completely different from the ones of workplace stations
and POIs, and the latter two were somehow similar to each other.

In our study, we focused on the metro commuters and extracted their daily metro trip
chains which only consisted of metro trips. The ten most common types of the daily
metro trip chains are plotted in Figure 2.4. Among the metro commuters on an average
weekday, about 64.7% performed the home-work-home chain, which was the most
common type of trip chains, and at least 13.5% performed the trip chains involving
secondary activities. This shows that neglecting this kind of travel patterns may cause
the distortion of travel demand prediction.

Among the chain types involving secondary activities, we analyzed the activity start
time and activity duration. It was found that Type 10 is more likely to indicate a person
who has a lunch break from work, and Type 7 and 9 correspond more to business trips.
Type 3, 5 and 8 are more related to the travel patterns of an individual performing an
after-work activity.

2.4.2 Model estimation

We focused on the after-work activities which were performed after 16:00 in Chain
Type 5. Considering the computational limits, we randomly selected 3,000 commuters
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Figure 2.3: Spatial distribution of commuters living and working near each station.

who experienced the prescriptive choice situations in the month. To explain the re-
vealed station choice behaviour, we used the previously proposed model structure.
The variable specifications in the utility function formulated as Equation 2.3 should be
updated in the context of the case study. The attractiveness of a station for after-work
activities was defined as the number of POIs around the station. The features of travel
impedance included metro network distance and number of metro transfers. As the
characteristics of an after-work activity, activity duration was assumed to be the time
gap between the arrival time and the departure time at the station for an after-work
activity, and activity start time was quantified by the time gap between 16:00 and the
arrival time at the station for the after-work activity.
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Figure 2.4: The top 10 most common types of daily metro trip chains and their shares.

We have calculated the spatial distribution of home and workplace stations of all the
metro commuters (See Figure 2.3). Based on that, we can calculate for each station the
ratio of the number of commuters living there over the number of commuters working
there, and this ratio is designated as the residents-to-jobs ratio (RJ ratio). For each
commuter, we further calculated the RJ ratios for the home station and the workplace
station respectively. It can be observed in Figure 2.3 that if the RJ ratio of ones home
station is higher, then this person is more likely to live in a mainly residential area,
located in the peripheral area of Shanghai; Otherwise, this person is more likely to live
in a mainly commercial area, located in the central area of Shanghai. The same applies
to interpreting the RJ ratio of ones workplace station. These two variables, along with
the commuting network distance and the number of transfers along the commuting
trip, can serve as proxies for some personal distinction among the travellers. For each
choice occasion, we computed the choice set based on the spatiotemporal constraints.
In about 78% of the choice occasions, there is at least one station that a traveller cannot
choose due to the constraints.

The estimation results are compared under different model specifications. First, we
tested how the different ways of defining travel impedance (See Table 2.1) would in-
fluence model fit. Second, we tested how the introduction of the last choice feedback
variable would lead to different model estimates.

The estimation results of the models using different kinds of travel impedance without
considering last choice feedback are presented in Table 2.4, Table 2.5 and Table 2.6,
where only the statistically significant estimates are retained (p-value < 0.05). Biogeme
(Bierlaire, 2003) is the software package we used for model estimation in this study.
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Table 2.4: The estimation results of the discrete choice model using home-based travel
impedance without considering last choice feedback.

Variable Param.
Robust
t-test
value

Number of POIs 4.28e-04 10
Number of POIs � activity duration 3.98e-05 6.06
Number of POIs � commuting network distance 3.32e-05 2.43
Number of POIs � RJ ratio of home station 1.53e-05 2.51
Number of POIs � RJ ratio of workplace station -1.1e-05 -2.27
Network distance from home -0.255 -12.6
Network distance from home � activity duration 0.014 4.86
Network distance from home � activity start time -0.00987 -3.19
Network distance from home � commuting network distance 0.0592 9.14
Network distance from home � commuting number of transfers -0.0223 -4.25
Number of transfers from home -0.848 -4.62
Number of transfers from home � activity duration 0.184 6.45
Number of transfers from home � commuting network distance -0.293 -4.89
Number of transfers from home � commuting number of transfers 0.544 9.63
Number of transfers from home � RJ ratio of home station 0.0616 2.38
Number of transfers from home � RJ ratio of workplace station 0.0702 3.29
Number of observations: 5107; Initial log likelihood: -26589.161;
Final log likelihood: -21128.36; Adjusted rho-square: 0.205; Run time: 1’58”

First, the effects of spatial autocorrelation are found to be statistically insignificant in
all cases as the estimated values of the dissimilarity parameter are not significantly
different from 1. Thus, the spatially correlated model structure actually collapses to
the multinomial logit one, of which we present the results. Second, we see that the
metro commuters significantly prefer to visit the stations where there are more POIs
for performing after-work activities, which is not a surprise. Third, the model using
both detour impedance and home vs. workplace proximity fits the data slightly bet-
ter than the model using only detour impedance, and both of them outperform the
one using home-based impedance. This result substantiates the research conclusion
drawn by Arentze & Timmermans (2007) regarding the benefit of modelling detour
travel impedance, and apart from that, it further shows that commuters do give differ-
ent weights to travel impedance to access an after-work activity coming from home or
from the workplace. It turns out that they generally prefer the stations which are closer
from the workplace in terms of number of transfers but closer from home in terms
of network distance, ceteris paribus. Fourth, the attributes related to activities are ob-
served to have a considerable impact on station choices for after-work activities. The
results significantly show that people give a higher weight to the number of POIs and
care less about all kinds of travel impedancs if the activity duration is longer. In addi-
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Table 2.5: The estimation results of the discrete choice model using detour travel
impedance without considering last choice feedback.

Variable Param.
Robust
t-test
value

Number of POIs 4.44e-04 9.31
Number of POIs � activity duration 6.80e-05 9.13
Number of POIs � RJ ratio of home station 1.59e-05 2.34
Number of POIs � RJ ratio of workplace station 3.03e-05 5.58
Detour network distance -0.0579 -3.6
Detour network distance � activity duration 0.00914 3.26
Detour network distance � commuting network distance -0.0174 -3.43
Detour network distance � commuting number of transfers -0.0134 -2.17
Detour number of transfers -0.918 -7.58
Detour number of transfers � activity duration 0.180 8.98
Detour number of transfers � commuting network distance -0.0795 -2.08
Detour number of transfers � RJ ratio of workplace station 0.0840 5.41
Number of observations: 5107; Initial log likelihood: -26589.161;
Final log likelihood: -20530.100; Adjusted rho-square: 0.227; Run time: 1’46”

tion, an activity of longer duration is preferred to take place near the workplace station
than near the home station in terms of network distance. The activity start time is an
especially effective variable interacting with the home vs. workplace proximity. It can
be observed that for a later activity, peoples preference for reducing travel impedance
from home weighs more than reducing the one from workplace. Fifth, results seem to
support the use of proxy variables to translate differences between travellers. Given
that an individual has longer commuting distance, this person seems to be more reluc-
tant to detour farther for after-work activities. A commuter whose home station has
higher RJ ratio is more willing to visit a station with a greater number of POIs for
after-work activities.

We also estimated the model using detour travel impedance and home vs. workplace
proximity after considering last choice feedback. The first choice of each traveller was
not modelled since it was assumed to be exogenously given. The estimation results are
shown in Table 2.7.

Again the effect of spatial correlation is not statistically significant in this model. It can
be observed that travellers frequently chose the same station for after-work activities,
leading to the overwhelmingly significant estimate of the preference for the last choice
feedback variable which leads to a better model fit. Such a good fit does not neces-
sarily lead to a good demand prediction in future scenarios, because the model relies
heavily on the assumption that the previous choice is exogenously given. However,
this model can still help us figure out whether we misestimate any parameters due to
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Table 2.6: The estimation results of the discrete choice model using detour travel
impedance and proximity to home vs. workplace without considering last choice feed-
back.

Variable Param.
Robust
t-test
value

Number of POIs 4.21e-04 8.73
Number of POIs � activity duration 5.50e-05 7.3
Number of POIs � RJ ratio of home station 2.00e-05 2.94
Number of POIs � RJ ratio of workplace station 2.26e-05 3.98
Detour network distance -0.0613 -3.84
Detour network distance � activity duration 0.00688 2.47
Detour network distance � commuting network distance -0.0152 -3.01
Detour network distance � commuting number of transfers -0.0121 -2
Detour network distance � RJ ratio of home station 0.00589 2.24
Detour number of transfers -0.931 -7.59
Detour number of transfers � activity duration 0.171 8.47
Detour number of transfers � RJ ratio of workplace station 0.0802 5.1
Home vs. workplace proximity (network distance) -0.0676 -3.78
Home vs. workplace proximity (network distance)
� activity duration

0.0131 5.32

Home vs. workplace proximity (network distance)
� activity start time

-0.00717 -3

Home vs. workplace proximity (network distance)
� commuting network distance

0.0185 3.22

Home vs. workplace proximity (number of transfers) 0.414 2.74
Home vs. workplace proximity (number of transfers)
� activity start time

-0.0863 -3.12

Home vs. workplace proximity (number of transfers)
� commuting network distance

-0.113 -2.29

Number of observations: 5107; Initial log likelihood: -26589.161;
Final log likelihood: -20404.619; Adjusted rho-square: 0.231; Run time: 3’10”

neglecting habitual effect. After introducing the variable of last choice feedback, re-
sults indicate that travellers actually do not give as much weight to the number of POIs
as was estimated previously. To make a choice among those stations which have not
been visited previously, people seem to care less about detour number of transfers but
care more about detour network distance, and they are more likely to choose a station
even closer to home in terms of network distance. The effect of activity start time is
no longer significant on the preference for home vs. workplace impedance, indicating
that this effect estimated in the previous models might have been related with habitual
behaviour. However, the effects of activity duration and commuting network distance
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Table 2.7: The estimation results of the discrete choice model using detour travel
impedance and proximity to home vs. workplace without considering last choice feed-
back.

Variable Param.
Robust
t-test
value

Number of POIs 3.88e-04 2.84
Number of POIs � activity duration 7.15e-05 3.28
Number of POIs � commuting network distance -1.06e-04 -2.81
Detour network distance -0.0734 -2.84
Detour network distance � activity duration 0.0107 2.61
Detour network distance � commuting network distance -0.021 -2.94
Detour number of transfers -0.851 -3.63
Detour number of transfers � activity duration 0.141 4.26
Detour number of transfers � RJ ratio of workplace station 0.0872 3.3
Home vs. workplace proximity (network distance) -0.144 -6.14
Home vs. workplace proximity (network distance)
� activity duration

0.0108 3.22

Home vs. workplace proximity (network distance)
� commuting network distance

0.0439 6.24

Home vs. workplace proximity (number of transfers) 0.689 2.24
Home vs. workplace proximity (number of transfers)
� commuting network distance

-0.244 -2.69

Last choice feedback 3.99 60.39
Number of observations: 2127; Initial log likelihood: -11448.617;
Final log likelihood: -6378.6849; Adjusted rho-square: 0.440; Run time: 2’38”

on the preferences still exist.

2.5 Conclusions and recommendations

In this paper, after detecting metro commuters and extracting their trip chains from
the SCD, we focused on modelling their station choices for after-work activities. The
method was applied to the case study of metro travellers in Shanghai. The advantages
of using SCD over travel survey data for this purpose include the cost efficiency of data
collection, the full population of travellers, and the revealed panel effect. In addition, to
overcome the drawback of such anonymous data, we proposed to use proxy variables
to distinguish the travellers, which can help better explain the heterogeneity of location
choice behaviour among the population. Moreover, different ways of modelling travel
impedance were compared, and we found that the model using detour impedance and
home vs. workplace proximity, which we created in this study to model the travel
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impedance to conduct after-work activities, outperformed the others and improved the
interpretation of behaviour.

This work can still be improved in a few ways. First, a travel survey dataset is rec-
ommended to be complementarily used for validation and reference. It can help im-
prove the accuracy of commuter detection and identify more specific activity purposes
among after-work activities. Also, stated-preference data from travel survey can po-
tentially help enhance the understanding of how travellers perceive travel impedance
for after-work activities, further improving our proposed travel impedance metrics. For
example, the preference for reducing travel impedance may be related to factors such
as familiarity with a particular area, which is difficult to obtain using smart card data.
Next, the discrete choice model can be further elaborated to take more factors into
consideration. Finally, we only focused on the station choices for after-work activities
conducted in a certain type of daily trip chain in this study; however, a more general
framework can be built to model station choices for all secondary activities using SCD
in future research.
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Chapter 3

Understanding spatial preferences
based on mobile internet usage

The previous chapter used socio-geographic status as a proxy variable to segment a
given population and further predict travelers’ after-work location choice. Today, in
this hyper-connected, technological society, one’s personal attributes relate not only to
one’s status in the physical world but also to one’s profile on the internet. However,
few studies have been conducted to link spatial behavior with mobile internet usage, a
gap that this chapter fills. A special dataset from Shanghai, China is used, including
individuals’ spatial-temporal traces and mobile internet usage, thus revealing the re-
lationship between their preferred types of non-commuting trip destinations and their
preferred types of mobile internet content.

The chapter is based on the following publication:

Wang, Y., Correia, G.H.A., van Arem, B., & Timmermans, H.J.P. (2018). Understand-
ing travellers preferences for different types of trip destination based on mobile internet
usage data. Transportation Research Part C: Emerging Technologies, 90, 247-259.
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Abstract

New mobility data sources like mobile phone traces have been shown to reveal individ-
uals movements in space and time. However, socioeconomic attributes of travellers are
missing in those data. Consequently, it is not possible to partition the population and
have an in-depth understanding of the socio-demographic factors influencing travel be-
haviour. Aiming at filling this gap, we use mobile internet usage behaviour, including
ones preferred type of website and application (app) visited through mobile internet
as well as the level of usage frequency, as a distinguishing element between different
population segments. We compare the travel behaviour of each segment in terms of
the preference for types of trip destinations. The point of interest (POI) data are used
to cluster grid cells of a city according to the main function of a grid cell, serving as
a reference to determine the type of trip destination. The method is tested for the city
of Shanghai, China, by using a special mobile phone dataset that includes not only
the spatial-temporal traces but also the mobile internet usage behaviour of the same
users. We identify statistically significant relationships between a travellers favourite
category of mobile internet content and more frequent types of trip destinations that
he/she visits. For example, compared to others, people whose favourite type of app is
in the tourism category significantly preferred to visit touristy areas. Moreover, users
with different levels of internet usage intensity show different preferences for types of
destinations as well. We found that people who used mobile internet more intensively
were more likely to visit more commercial areas, and people who used it less preferred
to have activities in predominantly residential areas.

Keywords: Mobile internet usage; mobile phone data; travel behaviour; mobility anal-
ysis; data fusion.

3.1 Introduction

There is a recent trend in complementing or even replacing traditional travel survey
data with new mobility-related data sources, such as GPS data, mobile phone traces
and smart card transaction data (Chen et al., 2016; Demissie et al., 2013b; Iqbal et al.,
2014; Ni et al., 2018; Toole et al., 2015; Wang et al., 2017; Wolf, 2006; Yue et al.,
2014; Zhao et al., 2018). These trajectory-based data are getting popular for travel
analysis because (1) they are inexpensive to collect; (2) they are usually up to date;
and (3) most of them contain a large sample with observations that are longitudinal in
time (Calabrese et al., 2013; Demissie et al., 2013a; Morency et al., 2007).

However, despite the potential advantages, these sources of information only include
the spatial-temporal traces describing peoples movements. If the aim is to understand
travel behaviour from an activity-based perspective (Chen et al., 2016; Rasouli & Tim-
mermans, 2014; Zhao & Zhang, 2017), the information of these data sets is usually
very limited. For example, activity purpose of the trips is typically missing (Calabrese
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Figure 3.1: The conceptual framework.

et al., 2013). Moreover, in traditional travel demand models, socioeconomic informa-
tion is used to segment the population, and better explain the heterogeneity of activity-
travel behaviour, including, but not limited to, activity patterns (Balmer et al., 2008)
and location choice (Sivakumar & Bhat, 2007). However, in anonymous big data, so-
cioeconomic information is unavailable mainly due to privacy reasons (Calabrese et al.,
2015).

To deal with such problems, researchers have tried to combine different types of data
in order to fill the gaps (Anda et al., 2017). In attempting to derive activity purpose
information from trajectory data, there have been several applications fusing trajectory
data with land use data, OpenStreetMap data or point of interest (POI) data (Dashdorj
et al., 2013; Demissie et al., 2015; Wolf et al., 2004; Yuan et al., 2012). This geo-coded
background knowledge can help estimating the function of an area, which can tenta-
tively be connected to the type of activity that a visitor performed in that area (Furletti
et al., 2013; Jiang et al., 2015; Phithakkitnukoon et al., 2010; Wolf et al., 2001). We
referred to the main function of an area being visited as type of trip destination in this
paper. The left chain in Figure 3.1 shows how we derive the dependency of ones pref-
erence for destination types on socioeconomic attributes, based on literature review.
Intuitively, such dependency exists in most cities. For example, it is common that
some specific urban areas are more frequented by young people.

To partition the population using mobile phone data, Arai et al. (2014) and Bwambale
et al. (2017) suggested utilizing calling behaviour such as calling frequency and dura-
tion to predict ones personal attributes. However, mobile phones are less used for calls
today, making calling behaviour less useful, while simultaneously people are spending
more time on services provided by mobile internet such as mobile apps (Richmond,
2012). Therefore, mobile internet usage behaviour, if available, could have a greater
potential to reflect individuals traits, such as gender and age (Seneviratne et al., 2015,
2014). The right chain in Figure 3.1 shows the dependency of mobile internet usage
behaviour on socioeconomic attributes.
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As a whole, Figure 3.1, which can be regarded as a conceptual framework, shows
the relationship between mobile internet usage behaviour and preference for types of
trip destination. Since they are both dependent on the socioeconomic attributes, even
if the socioeconomic attributes are unobserved, they are still likely to be correlated
with each other. Based on this hypothesis derived from the conceptual framework, our
study aims to understand travellers preferences for types of trip destination by means of
segmenting them based on the preferred type of sites and applications visited through
mobile internet as well as the level of visiting frequency, by fusing mobile phone traces
and mobile internet usage data. We are allowed to do this study because of the data
provided by the Shanghai Unicom WO+ Open Data Application Contest1.

Furthermore, mobile internet usage behaviour might sometimes be able to reflect even
more information about a person, such as ones specific interests and lifestyles, than the
traditional socioeconomic attributes do. At the same time, ones interests and lifestyles
are regarded as the determinants of location choice through preference for different
types of non-work activities (Wen & Koppelman, 2000). A more specific interest or
lifestyle might be related to a more specific travel preference especially for non-work
activities. For example, a foodie would visit more sites and applications about food,
and meanwhile, he/she would also like to visit more restaurants in real life. We see the
potential to explore such relationships by fusing mobile internet usage data and mobile
phone traces, and we especially focus on the types of destinations for out-of-home non-
work activities, designated herein as secondary activities for simplicity. Many studies
have used mobile phone data to analyse users home and workplace locations as well
as commuting trips (Ahas et al., 2010; Alexander et al., 2015; Calabrese et al., 2011;
Isaacman et al., 2011). However, trips for secondary activities have not often been
analysed using this type of data, except in only a few studies (e.g. Huang & Levinson,
2015; Järv et al., 2014), which does not mean that they are not an important part of
urban travel demand. In fact, they are taking a larger share than ever before, especially
in large metropolitan areas (Wang et al., 2017).

The rest of this paper is organized as follows. First, we introduce the data used in
our research. Next, we explain our research method. Then, the results are presented.
Finally, we draw the conclusions, discuss the usefulness and limitation of our research,
and point out the directions for future research.

3.2 Case study

In this paper, the case study is conducted in Shanghai, China. As one of the four
directly-controlled municipalities of China, Shanghai is world famous for being a
global financial centre and transport hub. The total area of Shanghai is 6,340 square
kilometres, and the population of Shanghai has exceeded 24 million. The city of
Shanghai is divided into 16 districts. Except the Chongming district composed of

1https://www.kesci.com/woplus/
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Figure 3.2: The map of the target area.

three islands in the Yellow Sea, the other 15 districts lie on Chinas east coast. They are
separated by Huangpu River into two banks, Pudong and Puxi, which literally mean
the east bank and the west bank respectively in Chinese. Despite the crossing river,
these two banks are well connected by several bridges, tunnels for cars and tunnels for
metro. The boundary of our target area, covering the relatively more populous parts
of Shanghai, is represented by the rectangle (about 1,775 square kilometres) in Figure
3.2, using the WGS 84 (EPSG:4326) reference coordinate system. Note that WGS 84
/ Pseudo-Mercator (EPSG:3857) is used as the projection system to calculate distance
in this work.

3.2.1 Mobile phone data

The Shanghai Unicom WO+ Open Data Application Contest provides both the mobile
phone traces and the mobile internet usage data of the same sample of the Shanghai
Unicom users. Unicom is one of the three mobile carriers in China. It was reported
that the total number of the Unicom mobile users had reached about 270 million in
China by the beginning of 2017.

The mobile phone traces include the spatial-temporal records of 620 thousand sampled
users moving within the city of Shanghai hour by hour from 12 a.m. 27th of December
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2015, to 3 p.m. 6th of January 2016. Every time a user had a mobile phone activity
(i.e., a call, a text message, a voice mail, or an internet connection), the location in-
formation and the timestamp of the activity would automatically be recorded with the
anonymous user ID in the original database. However, the provided data were hourly
aggregated for each user. To be specific, if a user was detected to have visited several
locations within an hour, only the location where the user stayed for the longest time
would be known for that hour. It is also possible that a user did not have any mobile
phone activity within an hour, thus leaving no location information. It is regarded as a
missing trace for that user. The detected location information of an available trace is
represented by a pair of coordinates using the WGS 84 (EPSG:4326) reference coor-
dinate system. 4 digits of the longitude coordinate are stored after the decimal point,
and 5 digits of the latitude coordinate are stored after the decimal point. According to
the data provider, due to the inherent detection inaccuracy, the real location of a trace
lies within the 200 m 200 m square of which the centre is the detected point.

The mobile internet usage data include the page view counts of each user for different
types of mobile apps and websites during the same study period. The page view counts
of mobile apps and websites were merged for the same category, thus producing a total
of 13 types of mobile internet contents: finance, food, shopping, social news, housing,
tourism, sports, car, entertainment, education, job seeking, game, and health. The
specific mobile apps and websites in each category were selected by the data provider.
The users who never browsed any mobile internet contents are labelled with the tag
null.

3.2.2 POI data

A POI is a specific point location associated with a pair of coordinates and some in-
formation about this location, such as name, category and description. The POI data
used in our study were extracted from the Gaode Maps service2, which is the Chinese
equivalent of Google Maps. The Gaode open platform allows the registered develop-
ers to obtain the POI data of a specific area through the application program interface
(API). In our target area, about 260 thousand POIs of ten predefined categories can be
obtained. The available information of the POI data includes name, coordinates and
category. The ten categories are hotel, sports and recreation, finance and insurance,
residence, education, workplace, restaurant, car service, tourism, and health.

3.3 Methodology

In Figure 3.3, we present a flowchart of the proposed research method in this study.
First, trip destinations chosen by the users for secondary activities can be extracted

2https://lbs.amap.com
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Figure 3.3: The flowchart of the research method.

from mobile phone traces. Second, each trip destination can be labelled by the clus-
ter of the grid cell calculated based on the POI data, and we can discover the users
preferences regarding the types of trip destinations for secondary activities. Third, the
favourite categories of mobile internet contents and the total usage intensity levels of
the users can be derived from mobile internet usage data. Fourth, the relationships
can be statistically tested between the users mobile internet behaviour and the users
preferences for the types of trip destinations. We also perform a sensitivity analysis to
examine to what extent results would be affected due to the inherent spatial inaccuracy
of mobile phone traces.

3.3.1 Extracting trip information from mobile phone traces

To ensure that the problem of missing traces would not affect our analysis, we first filter
the users and only focus on those who were traced at least 80% of the total hours. Also,
we only focus on the users who were always traced within the prescribed boundary of
the target area. To estimate the trips made by mobile users, it is important to distinguish
stay locations (i.e., origins and destinations of trips) from pass-by locations, in the
mobile phone traces (Ahas et al., 2010; Alexander et al., 2015; Wang & Chen, 2018;
Zheng et al., 2009). Meanwhile, signal errors may lead to false movement of traces
which do not represent actual movement of users (Çolak et al., 2015). The effects
of such errors should be reduced as well. In this study, we adopt the main steps lately
suggested by Alexander et al. (2015) to detect stay locations, whilst the parameter used
in the third step is modified to suit our case:

� For each user, we find the traces that are spatially close (within 300 metres)
to their subsequent observations and thus obtain the sets of geographically and
temporally close traces. The medoid of the coordinates within each set is then
calculated to update the locations of the traces.
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� The traces that are close in space but far apart in time need to be consolidated
for each user as well. The complete-linkage hierarchical clustering algorithm is
applied using 500 metres as the threshold. In this algorithm, we first treat each
point as a cluster and merge step by step the two clusters whose merger has the
smallest diameter, until the smallest diameter reaches 500 metres. The medoid
of the coordinates within of each cluster is used to update the location of the
traces.

� To identify whether a user stays or passes through, a duration threshold should
be chosen dependent on the assumed shortest activity duration as well as the
sampling rate of the data. In our study, the sampling rate for each user is rela-
tively small: at most one trace per hour. Hence, it is stipulated that at least two
consecutive traces close in space can determine a stay point, which will neces-
sarily lead to overlooking some short activities; however, this is the best that can
be done to extract stay points with these data.

In this research, we will not study the trips toward home or work activities but focus
on the trips for secondary activities. Thus, we need to detect them using the stay traces
of the users. A possible way is to infer activity purposes based on the ground truth
(i.e., the features related to a certain activity purpose). Those features can be sourced
from either general knowledge, such as the fact that people mostly spend their night at
home (Alexander et al., 2015; Nanni et al., 2013), or travel survey data, which provide
more powerful evidence (Liu et al., 2013). In this study, since travel survey data are
not available, we apply the rules suggested by Alexander et al. (2015) to detect the
trips for secondary activities, and we choose the parameters that suit our case:

� For each user, the home location is defined as the location with most stay traces
from 7 p.m. to 8 a.m. on weekdays, on weekends, and on holidays.

� The work location is defined as the place to which one travels the maximum
accumulated distance from home, max(v� d), where v is the number of visits
between 8 a.m. and 7 p.m. on weekdays during the study period, and d is the
distance between a given place and home location. If the user visits the detected
work location fewer than 2 days per week, it is not regarded as a work location.

� It is assumed that the stay traces at the detected home location should be labelled
as home activity. The same applies to labelling work activity, and the remaining
stay traces are labelled as secondary activity. In this suggested approach, only
stable home and workplace locations can be detected.

In the further analysis, we only focus on the users who had a home location and per-
formed at least one secondary activity during the study period.
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3.3.2 Clustering types of trip destinations for secondary activities

In this section, we further distinguish the trips for secondary activities in terms of
the types of trip destinations. In traditional travel demand models, the purposes of
secondary activities, such as eating out and shopping, can be used to distinguish the
trips for secondary activities. However, it is very difficult to detect such purposes in
mobile phone traces, especially without any travel survey data available as a reference.
A compromising solution is to distinguish the trips for secondary activity based on
geographical information of the visited area, such as land use (Wolf, 2006), and the
POI data can be used to depict urban land use in a more detailed way (Jiang et al.,
2015; Phithakkitnukoon et al., 2010; Yuan et al., 2012). Following this strategy, we
define the types of trip destinations for secondary activities as follows.

A virtual grid reference can be constructed to divide the city (Demissie et al., 2015;
Phithakkitnukoon et al., 2010). Each cell should be characterized and serves as a
reference for determining the type of trip destination. For a cell k 2 f1;2; :::;Kg, the
number of each type of POIs is calculated, named pk j, where j 2 f1;2; :::;Jg indicates
a POI type (e.g., restaurant or workplace). The number of POIs of each type is then
ranked over all cells, and the percentile rank rk j is calculated as the percentages of cells
that have lower number of POIs of type j than cell k has. As a result, each cell k can be
portrayed as a vector of the percentile ranks of all the POI types rrrk = (rk1;rk2; :::;rkJ).

In our study, a hierarchical clustering algorithm is applied to the vectors of all cells.
We use the Pearson-correlation-based distance metric (Resnick et al., 1994; Xue et al.,
2005) since we assume that the similarity between the functions of two areas can be re-
flected by the correlation between vector rrrk and vector rrr0k, where k0 2 f1;2; :::;Kg fkg.
The distance dkk0 between these two vectors, used in the clustering algorithm, is calcu-
lated in the following equation:

dkk0 = 1�
cov(rrrk;rrr0k)
s(rrrk)s(rrr0k)

(3.1)

where cov(rrrk;rrr0k) is the covariance of rrrk and rrr0k; s(rrrk) is the standard deviation of rrrk;
s(rrr0k) is the standard deviation of rrr0k. Since correlation is scale-invariant, it is better to
standardize rrrk as r̂rrk to represent the profile of a cell, whose element is calculated as
follows:

ˆrk j = (rk j� r̄rrk)=
s

å
j

(rk j� r̄rrk)2
(3.2)

Where r̄rrk is the mean of rrrk. To find relatively more compact clusters of approximately
equal diameters, we choose the complete-linkage clustering method (Everitt et al.,
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2011). Consequently, each cell k can be related to a cluster c 2 f1;2; :::;Cg. Cluster
compactness can be assessed by the Dunn index (Dunn, 1973), which is the ratio of the
smallest distance between observations in different clusters to the largest intra-cluster
distance. Note that the distance used to calculate the Dunn index is still the Pearson-
correlation-based distance defined previously. Intuitively, maximizing the Dunn index
can help us select the optimal parameters and obtain the most distinctive urban area
functions. In this case, the parameters to be selected include the number of clusters
and the side length of the grid cells.

We pre-set the upper bound of the number of clusters as 10, equal to the number of
dimensions of the POI data in this study, mainly for interpretation. In this study, we
aim to interpret the statistical relationship between the preference for mobile internet
contents and the preference for types of trip destination. Each type of trip destination
is desired to have a distinctive characteristic. Thus, we expect our clusters to reflect
the most distinctive urban functions. If the number of clusters is too large, the dif-
ferences between some urban functions would possibly become very subtle, and the
corresponding types of trip destination would be difficult to interpret.

Different from the other studies choosing an arbitrary value for the side length of the
grid cells of the city, for example, 500 meters (Phithakkitnukoon et al., 2010) and 800
meters (Demissie et al., 2015), our study tests several values (i.e., 300 meters, 400
meters, 500 meters, 600 meters, 700 meters and 800 meters) as the side length of a
grid cell. We only consider this range of values because the size of the grid cell should
neither be too large nor too small. If it is too large, the defined function of a cell
must become too rough; if it is too small, the detected destination of a trip would be
very likely to lie in a wrong cell due to the inherent detection inaccuracy explained in
Section 3.2.1. However, even if the size of a grid cell is very large, it is still possible
that the detected destination and the real destination would lie in different grid cells.
Thus, we will present the method to examine the impact of this issue on the final results
in Section 3.3.5.

We generate the clustering results iteratively and choose the combination of the side
length value and the number of clusters that can maximize the Dunn index and thus
give us the most compact set of clusters. Consequently, each user has a set of trips for
secondary activities during the study period. The coordinates of a trip destination can
correspond to a grid cell k and further correspond to a cluster c, which is defined to be
the type of that trip destination.

3.3.3 Analysing mobile internet usage behaviour

Let fun indicate the frequency of browsing a type of mobile internet content n 2
f1;2; :::;Ng (e.g., finance or shopping) through mobile apps and/or websites by an
individual u 2 f1;2; :::;Ug across several days. Given this, two main indicators of
ones mobile internet usage during a period can be derived: (1) the frequency of using
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all mobile internet contents Fu = ån fun, which reflects an individuals usage intensity,
and (2) the relative preferences for using different types of mobile internet contents,
expressed in terms of an N-dimensional vector wu = (wu1;wu2; :::;wuN), reflecting the
different lifestyles and interests. We rank fun for each n over all users and calculate
wun as the percentages of users who browse n less often than user u does.

Based on the total usage intensity, the population can be divided into three classes:
(1) the null class, representing the people who never use any mobile internet service,
(2) the low intensity class, representing the people whose usage intensity is lower than
or equal to the median value of all non-zero total usage intensities, and (3) the high
intensity class, representing the people whose usage intensity exceeds the median value
of all non-zero total usage intensities. To segment the population using the preferences
for specific contents, we find the content category n that maximizes wun for a user u
and use it to tag this user. Intuitively, such a tag is a users favourite content category.
For example, a user can predominantly be tagged as shopping, finance, etc.

3.3.4 Relating preferred types of trip destinations to mobile inter-
net usage behaviour

In order to understand if there are statistically significant differences regarding the
preferences for the different types of trip destinations among those who have different
preferences for mobile internet content, we mainly use the statistical test of comparing
two population proportions with independent samples, which is explained as follows.

The number of trips going to a destination of type c is aggregated over the users tagged
as n regarding mobile internet content. The aggregate number of these trips is ex-
pressed as xcn, and the total number of trips made by the users with the interest tag n is
xn = åc xcn. Then the proportion of trips to the destinations of type c made by the users
with the interest tag n is rcn = xcn=xn. On the other hand, the number of trips to the
destinations of type c is aggregated over the remaining users who do not prefer n. The
aggregate number of these trips is expressed as xcn0 , where n0 2 f1;2; :::;Ngnfng, and
the total number of the trips made by the remaining users is xn = åc xcn0 . The propor-
tion of trips to the destinations of type c made by the remaining users is rcn0 = xcn0=xn0 .
The two-tailed z-test, if following a normal distribution, is appropriate for our objec-
tive, which is to check whether the two proportions, rcn and rcn0 , are different or the
same, and the test statistic is given as follows:

Z = (rcn�rcn0)=
p

rcn*(1�rcn*)(1=xn + 1=xn0) (3.3)

where rcn* = (xcn + xcn0)=(xn + xn0).

Based on the value of Z, the significance of the difference can be derived, in terms of
the corresponding p-value pvcn. For every combination of c and n, we calculate the
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significance of the difference. Thus, there are C�N cases in total, causing the multiple
comparisons problem: if a statistical analysis involves multiple simultaneous statistical
tests, there will be more chances of rare events, increasing the likelihood of incorrectly
rejecting a null hypothesis (Rupert Jr et al., 2012). Therefore, a stricter threshold of
p-value should be used to reject a null hypothesis. In this study, we use the Bonferroni
correction, which suggests dividing the original p-value threshold by the number of
hypotheses. In our case, we set the original p-value threshold as the typical one, 0.05,
and the threshold after the Bonferroni correction is 0:05=(C�N).

We construct an indicator of the significance of the preference pre fcn, explained in the
following equation:

pre fcn =

8
<

:

log10(1=pvcn) if rcn � rcn0 and pvcn < 0:05=(C�N)
�log10(1=pvcn) if rcn < rcn0 and pvcn < 0:05=(C�N)
0 if pvcn � 0:05=(C�N)

(3.4)

The absolute value of this indicator is larger if the significance is higher. If the indicator
is positive, it means that compared to the others, the users tagged by n significantly
prefer to visit the destinations of type c. If the indicator is negative, it means that the
users tagged by n significantly prefer not to visit the destinations of type c. If the
indicator is zero, it means that there is no significantly different preference.

The same method can be applied to understand if there are statistically significant
differences regarding peoples preferences for different types of trip destinations among
those who have a certain level of total mobile internet usage intensity.

3.3.5 Sensitivity analysis

Consider Tui as the ith stay trace of an individual u 2 f1;2; :::;Ug. The location of a
stay trace can be represented by longitude lonui and latitude latui in terms of metres
using the WGS 84 / Pseudo-Mercator (EPSG:3857) projection system. As mentioned
in Section 3.2.1, the true location of a trace lies within the 200m� 200m square of
which the centre is the detected point. Thus, it is possible that the true activity location
does not lie in the correct grid cell. In this study, we assess the impact of such detection
inaccuracy on the results regarding the statistical relationship between the preference
for mobile internet contents and the preference for types of trip destination.

We assume that the longitude of the true location of a stay trace lonui can be uniformly
drawn inside the interval [lonui�100; lonui +100], and the latitude of the true location
lat 0ui can be uniformly drawn inside the interval [latui�100; latui +100]. We draw lon0ui
and lat 0ui of all the stay traces independently in 20 loops, except in the first loop where
we set lon0ui as lonui and set lat 0ui as latui. In each loop, based on lon0ui and lat 0ui, the
stay traces are assigned to their belonging grid cells. Consequently, the type of the trip
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Figure 3.4: The Dunn index used to determine the number of clusters and the side
length of the grid cells.

destination corresponding to each detected trip can be determined in each loop. Finally,
we mainly assess the two specific impacts on the results of the statistical relationships.
First, we assess whether any conflicting significant results will be found in the 20 loops.
Second, we examine whether the same significant relationships are robust enough to
be found in more than 80% of the loops, namely 16 loops. We construct an indicator of
the significance of the robust preference pre f 0cn, explained in the following equation:

pre f 0cn =

8
<

:

log10(1=pvcn) if rcn � rcn0 and pvcn < 0:05=(C�N) in � 16 rounds
�log10(1=pvcn) if rcn < rcn0 and pvcn < 0:05=(C�N) in � 16 rounds
0 Otherwise

(3.5)

Where pvcn is the average of the values of pvcn in the loops, and pvcn < 0:05=(C�N).
The same method can also be applied to construct an indicator of the robust statisti-
cal relationships between mobile internet usage intensity and preferred types of trip
destination.

3.4 Results and discussion

We processed the mobile phone traces using the method explained in Section 3.3.1. As
a result, we obtained 26,535 target users meeting the specified criteria, and we detected
their trips for secondary activities. Next, we clustered the grid cells using the method
explained in Section 3.3.2. As shown in Figure 3.4, based on the Dunn index, we can
find that the clusters are best distinguished by setting the number of clusters as 6 or 7
and setting the side length as 500 meters in our case. We chose the smaller number of
clusters, 6, for interpretation.

Figure 3.5 geographically shows the computed clusters of the grid cells in the city.
Table 3.1 and Figure 3.6 show the portrait of each cluster, where the profile chart
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Figure 3.5: The clustered grid cells of the city.

depicts the first quartile, the median and the third quartile of ˆrk j (see Section 3.3.2 for
the definition) of the cells belonging to each cluster. ˆrk j can indicate which POI types
are dominant in a cell. For a cell k, the POI type j is relatively more influential if the
value of ˆrk j is higher.

In Table 3.1 and Figure 3.6, it appears that the variances of ˆrk j for restaurant, education
and sports & recreation are relatively small among the clusters; hence, they are not
the main factors making a cluster different from the others. On the other hand, the
other POI types all seem to determine the characteristics of a cluster. Among them,
the POI types of residence, workplace and tourism play the most important role in
distinguishing the clusters. It can be observed that cluster 2, 3 and 6 represent the
areas with relatively more workplaces, whilst cluster 1, 4 and 5 represent the areas with
relatively fewer workplaces. Thus, it is not a surprise to see that the relative importance
of residence is higher in cluster 1, 4 and 5. Among those more commercial clusters,
cluster 3 is a special one since it seems to be all-round in terms of the relatively higher
importance of most POI types including residence. Moreover, the relative importance
of tourism is nearly zero in cluster 1, 2 and 5; in contrast, it is the highest in cluster 6,
which thus seems to represent predominantly touristy areas.

It can be observed in Figure 3.5 that the city centre is mostly composed of the cells
belonging to cluster 3, implying that the centre is more multifunctional compared to
the remaining parts. In addition, we can find in Figure 3.5 that the famous tourist spots
such as Gongqing Forest Park, Yu Garden and the Bund all belong to cluster 6, and the
well-known hi-tech parks such as Caohejing and Zhangjiang are assigned to cluster 2.
These results make much sense based on our interpretation of the cluster profiles.
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Table 3.1: The portraits of the six clusters.

Cluster
Description Profile chart

(in terms of ˆrk j)Based on the profile Based on the location

1
Residential

(with more car service POIs)
Mainly outside the centre Subfigure 3.6a

2
Commercial

(or industrial)
Mainly outside the centre Subfigure 3.6b

3 All-round Mainly in the centre Subfigure 3.6c

4
Residential

(more multifunctional)
Mainly outside the centre Subfigure 3.6d

5
Residential

(with more health POIs)
Mainly outside the centre Subfigure 3.6e

6 Touristy and commercial
Some in the centre
and some outside

Subfigure 3.6f

We also characterized each cluster with a few keywords in Table 3.1. Note that al-
though cluster 1, 4 and 5 all somehow represent the predominant residential areas
mainly outside the city centre, they are still different in terms of the relative impor-
tance of the other types of POIs within each cluster. In the areas belonging to cluster
1, there are relatively more POIs of car service in addition to residence. On the other
hand, there are relatively more POIs of health in the areas belonging to cluster 5. The
areas belonging to cluster 4 seem more multifunctional. They are almost similar with
the areas belonging to cluster 3, except that they have a very low number of work-
places.

Figure 3.7 presents the results of the statistical test between the mobile internet usage
behaviour and the preferences for the types of trip destinations in the initial loop us-
ing the original spatial traces (see the explanation in Section 3.3.5). Intuitively, if a
category of users like/dislike visiting the destinations of a specific type more signifi-
cantly, the corresponding colour, representing the indicator pre fcn (see the explanation
in Section 3.3.4), will be deeper red/blue. Based on our definition of pre fcn (equal to
zero for the insignificant results), only the significant results are retained in the figure.

Next, we randomly draw the locations of the traces within the boundaries in 20 loops
to examine the impact of mobile detection inaccuracy. We first found that there were
no conflicting statistical relationships (e.g., rcn is significantly larger than rcn0 in one
loop, but significantly smaller than rcn0 in another loop) in these 20 loops. Figure 3.8
further presents the results of the robust statistical relationships that held in more than
16 loops. Comparing Figure 3.7 and Figure 3.8, we can find that the preferences of
people tagged by health, shopping and social news for certain types of trip destination
did not hold in more than 16 loops, and the preferences of people who did not use any
mobile internet were also sensitive to the possible spatial detection errors.

Results show that people who have different tastes in mobile internet content do have
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(a) The profile chart of Cluster 1. (b) The profile chart of Cluster 2.

(c) The profile chart of Cluster 3. (d) The profile chart of Cluster 4.

(e) The profile chart of Cluster 5. (f) The profile chart of Cluster 6.

Figure 3.6: The profile charts of the six clusters.

different preferences for different types of trip destinations. Some of the observed sta-
tistically significant results seem to be intuitive. More importantly, it seems that results
can reflect some travel preferences that have never been captured in the existing liter-
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Figure 3.7: The statistical relationships between the mobile internet usage behaviour
and the preferences for the types of trip destinations in the initial loop using the original
spatial trace.

Figure 3.8: The robust statistical relationships between the mobile internet usage be-
haviour and the preferences for the types of trip destinations in the 20 loops.

ature using traditional travel survey data, mainly because travellers are now grouped
based on their specific interests. For example, the destinations of type 6, which are
mostly related to touristy areas, were only significantly visited by people tagged with
the tourism label. Some existing studies have explored the travel preferences of car
lovers, and they found that car lovers had their own preferences for residential or job
location choice since it is flexible for them to travel farther, and they are not much will-
ing to drive to downtown often (Van Wee, 2009; Van Wee et al., 2002). In our study,
we found that car lovers also had their own preference for secondary activities, which
shows that they would significantly like/need to visit the commercial or industrial ar-
eas far from the city centre. Despite being more multifunctional, the characteristics of
the destination type 3, compared to the other types, are more similar with the concept
of a CBD (central business district) since a CBD is usually located in the city centre,
also being the most attractive part of the city. It was found using traditional travel sur-
vey data that younger people preferred to visit CBDs (Sivakumar & Bhat, 2007). In
our study, we assume that users who preferred education and game contents are more
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likely to be younger, and they seem to have totally different preferences for the desti-
nation type 3. This implies that age might not be sufficient to segment the population
for travel analysis, and mobile internet behaviour might be able to reflect a persons
characteristics in more detail.

Users with different levels of total mobile internet usage intensity also had clearly
different preferences for different types of destinations. Users who often used mobile
internet preferred to visit the destinations of type 2, 3 and 6, and they did not visit
often the destinations of type 1 and 4. In contrast, users who less often used mobile
internet preferred to visit the destinations of type 1 and 4, and they did not visit often
the destinations of type 3 and 6. It can be observed in Table 3.1 that cluster 2, 3 and 6
are distinct from cluster 1 and 4, as the former are more commercial, and the latter are
only residential. Therefore, we can draw the conclusion that those who used mobile
internet intensively were more likely to visit commercial areas, and those who used less
mobile internet preferred to make trips to more residential areas. It is worth comparing
our results with the results of an existing study using travel survey data (Giuliano et al.,
2003). In that study, researchers found no significant difference between the land use
of the places where the elderly and the non-elderly travelled. We have similar results
in our case, if we assume people who never used mobile internet services were most
likely to be the elderly. However, among those who use mobile internet services, the
level of usage can be related to their preferred destination types.

It is also worth comparing our results with the relevant ones found in the recent stud-
ies using new big data sources. A research group from Estonia was able to access
mobile phone traces associated to users demographics, and by using such data, they
conducted several studies to investigate the impact of ethnicity, age, and gender on
activity locations and spaces (Järv et al., 2014; Silm & Ahas, 2014; Silm et al., 2018).
They found in their case studies that ethnicity had a significant influence on the spatial
preferences of individuals for out-of-home non-work activities, and the ethnic segre-
gation in activity spaces was higher in younger age groups. We believe that our results
can complement the results of those studies since mobile internet usage data (the apps
and webpages used) can characterize users in a different way. Also, it is arguably eas-
ier to re-identify users by using mobile phone traces associated to users demographics,
which is not desirable from a privacy perspective. Our approach seems to be able to
distinguish different population segments at a relatively lower privacy risk. As another
promising new mobility data source, social media data, including user-generated text,
hash-tags, check-in information and even photos, can provide rich contexts of loca-
tions and users, allowing researchers to estimate more accurate activity purposes and
find more specific interests of users (Hasan & Ukkusuri, 2014; Huang et al., 2017;
Rashidi et al., 2017). Thus, it is also possible to characterize users and relate them to
mobility behaviour using social media data. For example, Hasan & Ukkusuri (2015)
used the Foursquare check-ins posted via Twitter to understand peoples different atti-
tudes and interests through activity locations. Also by using Twitter data, Abbasi et al.
(2015) were able to identify the tourists in Sydney and at the same time find that they
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were more likely to visit touristy areas. However, an issue of using social media data
for such analysis is that the users of a social media product may not be an unbiased
sample of the general population of travellers, both demographically and geographi-
cally (Hasan & Ukkusuri, 2015), when compared to the general mobile phone users.

3.5 Conclusions and recommendations

This paper proposes a method to segment the population and understand travellers pref-
erences for types of trip destinations by fusing mobile internet usage data and mobile
phone traces. The results of a case study, using a dataset from Shanghai, China, show
that given ones favourite category of mobile internet content, the proportions of visit-
ing some types of destinations were significantly higher, and the proportions of visiting
some others were significantly lower. Many of these observed relationships were in-
terpretable. For example, compared to the others, the users whose favourite content
was tourism preferred to visit the touristy areas. Moreover, the users intensively using
mobile internet were more likely to visit more commercial areas, and the users who
used mobile internet less often would prefer to visit predominantly residential areas.

There are some limitations in this study which derive essentially from the data quality.
The sampling rate of the mobile phone traces is relatively lower. As we have discussed
in Section 3.3.1, we have to stipulate that at least two consecutive traces close in space
can determine a stay point. This will necessarily lead to overlooking some short activ-
ities; however, it is the best approach for the available data. In addition, we only use
the number of POIs to reflect the characteristics of an area; however, some additional
information about the POIs can be added to improve our model. For example, in our
case, we found that the number of restaurants is not very different in different areas
of the region, but as we know, the quality of restaurants can be very diverse, and it is
possible that the better restaurants are spatially distributed in a different way than the
others. Thus, although our current model cannot distinguish the areas frequented by
foodies, it may be possible to do so, by using more detailed data such as ratings or
more specific categories of POIs.

People may also question about the potential privacy issues of such analysis since users
generally do not want their mobility traces or mobile usage to be disclosed (Blondel
et al., 2015). Despite such privacy risks, society can however benefit from using such
big data for transport analysis and planning. Therefore, it is important to consider
the extent to which such data should be pre-processed before being available for re-
searchers or decision makers. For example, the data should be aggregated to prevent
the privacy risks, whilst at the same time it should not be overly aggregated since it
could cause the loss of information and make transport analysis not accurate. In our
case, we think that the data provider found a good balance of data aggregation. They
aggregated the mobile phone traces hour by hour. They also aggregated the specific
websites and apps into several categories, and they only provided the frequency of
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each user visiting each category of websites and apps during a period. Even though
the demographics of the users were removed, the aggregate mobile internet usage data
can still help distinguish different population segments.

The significant and interpretable relationships found in this case suggest the potential
of using mobile internet usage data to enhance the explanatory travel behaviour models
in future research. Although we only explored the statistical significance in this case,
several applications can be made based on the findings of our study. For example,
mobile internet usage data may be used to predict mobile users destination choice or
for developing a travel behaviour model that would benefit from population partition,
such as trip generation model and mode choice model.
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Chapter 4

Nearest-neighbor collaborative
filtering for modeling location choice

The previous two chapters used proxy variables for personal attributes, either socio-
geographic status or mobile internet usage, to segment a given population and further
predict spatial behavior. However, one might ask whether it is necessary to make prior
assumptions that relate spatial behavior to certain personal attributes. Alternatively,
a data-driven approach can be taken under a more flexible assumption: past behavior
itself can reflect the heterogeneity in the population and be further used as a reference
to predict future behavior. This chapter introduces an algorithm called collaborative
filtering, which is likely unfamiliar to many transportation researchers but has been
widely used in product recommendation systems. A neighborhood-based collabora-
tive filtering algorithm is tailored to predict non-work location choice. The method is
applied to the metro smart card data from Shanghai.

The chapter is based on the following paper that is currently under review:

Wang, Y., Correia, G.H.A., van Arem, B., & Timmermans, H.J.P. (2020). Exploring a
neighborhood-based collaborative filtering approach to modeling location preferences
for flexible activities through metro smart card data. Journal of Transport Geography,
submitted.
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Abstract

Given a limited length of time of observation, the frequencies of individuals visiting
different locations revealed in big urban mobility data are still too sparse to represent
their real location preferences, especially for those non-work and out-of-home activi-
ties, which are flexible in space and time and infrequent by nature. Traditional discrete
choice models address this issue by imposing theory-based prior assumptions, i.e., the
contribution of certain factors to utilities resulting in a location choice. This method
has been very well coupled with travel survey data, which contains personal informa-
tion to distinguish travel behavior of different population segments. While discrete
choice models could also be applied to big urban mobility data, this paper proposes
a neighborhood-based collaborative filtering approach to understand travelers location
preferences for flexible activities. This data-driven method has been used to model the
preferences of a consumer for a product in a recommendation system. It only relies
on empirical observations, captures location preferences in a flexible way, and intrin-
sically accounts for behavioral heterogeneity without prior knowledge of any personal
attributes, thus being able to prevent privacy issues. The tailored neighborhood-based
collaborative filtering algorithm is applied to the metro smart card data from Shanghai,
China. We especially focus on those zero observations, i.e., the metro stations that an
individual commuter has not visited during the observation period for flexible activi-
ties, and we attempt to use our algorithm to predict which of them are most likely to
be visited during the test period. Results show that the collaborative filtering algorithm
performs reasonably well in this task, giving support for exploring this method further,
which is still relatively unfamiliar to most transportation researchers.

Keywords: Location choice; individual mobility; smart card data; collaborative filter-
ing; nearest-neighbor model.

4.1 Introduction

Location choice for an activity is an important dimension of urban travel behavior. Peo-
ple have significantly different preferences in not only the relatively more long-term
location choices, i.e., choices of home and work locations (Sermons & Koppelman,
2001; Timmermans et al., 1992; Willigers & van Wee, 2011), but also location choices
for non-work and out-of-home activities which are relatively more flexible in space
and time (named flexible activities in this study), such as recreation and eating out
(Horni et al., 2009). Traditionally, transportation researchers can only observe a very
small sample of travelers through mobility surveys (Chen et al., 2016). Using these
data, models can further be developed to explain observed location choices based on
some features of locations, such as attractiveness and geographic position, as well as
some features of travelers, such as socioeconomic attributes (Arentze & Timmermans,
2007). Location choice models can generally be used for two purposes:
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� Purpose 1: estimating current location preferences of a given population, without
any changes that would result in a different equilibrium,

� Purpose 2: predicting location preferences in a future scenario with a different
equilibrium caused by, for example, a policy or infrastructure change.

In recent years, mobility survey data have been criticized for being outdated, small in
size and expensive to collect (Demissie et al., 2015; Wang et al., 2019). On the other
hand, big urban mobility data, such as mobile phone data, smart card data, and social
media data, have received more and more attention in the transportation field. Because
of the granularity and size of such data, they seem promising to reveal individual urban
travel behavior as well as a whole picture of urban mobility patterns in a cost-efficient
and real-time way (Cats et al., 2015; Demissie et al., 2013b, 2016; Gong et al., 2018;
Luo et al., 2019; Tao et al., 2014; Tu et al., 2018; Wang et al., 2018).

Today it is feasible to use big data to observe aggregate visiting frequencies or even de-
tailed spatial-temporal traces of everyone in a given population during a certain period;
however, this does not mean that location choice modeling has become irrelevant. To
achieve Purpose 2, it is apparently still necessary to understand the factors influencing
location choice by fitting traditional discrete choice models to big data (see Wang et al.
2017 for example). Regarding Purpose 1, while it seems sufficient to use historical ob-
servations about a given population in big data as a proxy for estimating their current
location preferences, this is not necessarily true because such observations are some-
times too sparse to represent the real location preferences of individuals, especially
given a limited length of time of observation at the current equilibrium.

Evidence is often abundant to validate an individuals choices of home and work loca-
tions using big data (Ma et al., 2017; Zhou et al., 2014), and this kind of choices is
mostly fixed at least in the short term. On the other hand, for most flexible activities,
due to their infrequency in nature and flexibility in both space and time, it is difficult
to observe the full spectrum of location preferences, unless the data is available over
very long periods, which would, however, be very likely to involve equilibrium shifts.
Given an individual who has never traveled to a place in the past months, it does not
necessarily mean that he/she has zero preference for this place. In other words, real
location preferences for flexible activities are actually distributed more smoothly than
observed visiting frequencies. Therefore, estimating real location preferences can help
better understand the current equilibrium and predict future choices of locations to
perform an activity, especially those that have not been visited during the observation
period, as long as the equilibrium remains unchanged.

To predict an individuals future visiting patterns at a stable equilibrium, using historical
visiting frequencies of this individual would cause the problem of overfitting, while in
contrast, using historical visiting frequencies of the whole population would cause
the problem of underfitting. It is necessary to find a balance between underfitting
and overfitting (Calabrese et al., 2013). Discrete choice models tackle this balance by
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making behavioral assumptions. One of them is the assumption that people of different
socioeconomic strata have different behavior.

For privacy reasons, big urban mobility data are usually anonymous, which means
that personal attributes of individuals are always missing in such data, leading to the
lack of sources to understand behavioral heterogeneity (Calabrese et al., 2014). (Wang
et al., 2017, 2018) attempted to bridge the gap by using proxy variables, including
ones socio-geographic status and mobile internet usage, to segment the population and
further explain their different travel behavior expressed through mobile phone traces
and smart card data.

Alternatively, a data-driven approach can be implemented under a much more flexi-
ble assumption (He et al., 2015): past behavior itself can reflect the heterogeneity in
the population and be further used as a reference to predict future behavior at a stable
equilibrium. This approach is very similar to a computer-science concept that has been
widely used in product (e.g., movie or music) recommendation systems but has rarely
been mentioned in the transportation field: collaborative filtering (Schafer et al., 2007).
This suggests that the preferences of an individual can be modelled by collecting pref-
erence information from many other similar individuals.

An analogy can be made here between modeling movie preferences in a recommenda-
tion system and modeling travel location preferences. In the past, computer scientists
created explicit profiles to characterize users (e.g., age) and movies (e.g., genre) and
then built statistical models to explain their relationships and further make predictions.
For example, young people would prefer thriller movies. This approach was termed
as content filtering (Su & Khoshgoftaar, 2009). However, such preferences are com-
plicated in most cases, and many influencing characteristics of users and movies are
actually too latent and subtle to observe. Also, it is inefficient to collect so much ex-
plicit information about so many users and movies.

With the emergence of big data and the expansion of computational capabilities, com-
puter scientists started taking the approach of collaborative filtering, which does not
require knowing any explicit information about users and movies and only relies on
historical interactions between users and movies (Koren et al., 2009). In fact, the tradi-
tional approach of location choice modeling is pretty much the same as content filter-
ing, where travelers and locations are the equivalents of users and movies. Transport
modelers collected explicit information about travelers and locations, and then tried to
explain travelers location preferences (Arentze & Timmermans, 2007). For example,
young people would prefer crowded areas.

We argue that collaborative filtering is promising for modeling location preferences
mainly for two reasons. First, big urban mobility data and high computational capa-
bility are becoming accessible to the transportation research community as well (Chen
et al., 2016). Second, it is inefficient and even impossible (for privacy concerns) to
collect explicit information about travelers and locations in big data. Also, many char-
acteristics of travelers and locations that influence location preferences are usually
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latent, subtle and thus difficult to explicitly incorporate in a discrete choice model. In-
stead, collaborative filtering approaches can benefit from massive historical data and
intrinsically account for behavioral heterogeneity.

In general, collaborative filtering can be implemented as either a nearest neighbor
model or a latent factor model (Koren et al., 2009). We focus on the former in this
study and leave the latter for future research. Collaborative filtering with a nearest-
neighbor model is also called as neighborhood-based collaborative filtering, and the
underlying logic of this method for our problem is straightforward: the full spectrum
of ones location preferences can be approximated by considering the behavior of ones
neighbors, and here the neighbors are defined by the similarity between their historical
behavior.

This concept is tested in the case study of the metro smart card data from the city
of Shanghai, China. We especially focus on those zero observations, i.e., the metro
stations that an individual commuter has not visited during the observation period for
flexible activities, and we attempt to use our algorithm to predict which of them are
most likely to be visited during the test period. As explained, this topic might not be
the most interesting one to the people whose objective is mainly to estimate the elas-
ticity of travel demand with respect to operation, infrastructure or policy changes (Gan
et al., 2020; Lin et al., 2018). However, it would be relevant for those who want to
understand individual mobility patterns at the current transport demand-supply equi-
librium (Axhausen et al., 2002; Borgers et al., 1989; Sivakumar & Bhat, 2007; Yin
et al., 2017; Zhao et al., 2018). Also, predicting such location choices for flexible ac-
tivities is more challenging than predicting regular commuting trips or self-repetitive
non-commuting trips (Goulet-Langlois et al., 2017) and has thus attracted many re-
searchers attention (Danalet et al., 2016; Horni, 2013; Marchal & Nagel, 2005). To
the authors knowledge, it is the first time that this topic has been studied following a
collaborative filtering approach.

The remainder of this paper is organized as follows. First, the case study of Shanghai
is described, with an explanation of the data preprocessing. Then, the methods are
proposed, with some benchmarks in order to give readers a term of comparison, such as
a simple discrete choice model. Following that, the results are presented and discussed.
Finally, conclusions are made, and future research directions are pointed out.

4.2 Case study and data preprocessing

The smart card data provided by the Shanghai Open Data Applications (SODA) con-
test1 contain the records of all transactions by all smart cards in Shanghai, China from
July to September, 2016. Metro is the only public transport (PT) system in Shanghai
where cardholders should both check in and check out. In contrast, travelers must scan

1http://soda.shdataic.org.cn/
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their cards only when boarding a bus or alighting a taxi, and the location information is
missing on these two modes. Therefore, for further analysis, this work focuses on the
transit travelers who have only used the metro during the study period. Nevertheless,
the methodology can be generalized for other PT systems as well if there are available
data.

In addition, only a few metro stations require travelers to check out and then check in
again to switch to another line in Shanghai. Such cases should not be regarded as two
separate trips. To distinguish them, a threshold of 30 min is used between check-out
and check-in at those stations. The selection of this threshold is based on the policy by
which after 30 min without checking in again, the system will regard the next check-in
as the start of a new trip and will charge for a new trip. Travelers are assumed to be
aware of this fact, and if they stay at those stations for more than 30 min, they must
have performed an activity whose utility can compensate for the added cost.

Since this study focuses on modeling location preferences for flexible activities, we
need to detect a metro travelers home and work stations, if any, by using a rule-
based algorithm. The details of this algorithm can be found in the work by Wang,
de Almeida Correia, de Romph, & Timmermans (2017). It is not specifically explained
here since it is not the main focus of the present work. A metro traveler with detected
home and work stations can be defined as a metro commuter. It is assumed that metro
commuters perform activities between trips. The following steps are taken to tenta-
tively detect activity purposes of trips within one day:

� If the check-out station of one trip and the check-in station of the next trip are
the same one, the activity purpose can be classified into home, work or flexible
activity, depending on whether the station is the home, workplace, or neither for
that individual.

� The check-out station of one trip and the check-in station of the next trip can also
be different due to the intermediate unobserved movement using other modes of
transport. In that case, the activity purpose is labeled as undefined.

� The first activity in a day is dependent only on the check-in station of the first
trip, and the last activity is dependent only on the check-out station of the last
trip.

As a result, we can extract the number of trips by each metro commuter visiting each
station for flexible activities. The specific task of this study is to predict for each
metro commuter the station choices for flexible activities during the test period, which
have not been visited during the observation period, given their station choices for
flexible activities during the observation period. We set July and August, 2016 as the
observation period and set September, 2016 as the test period. Figure 4.1 shows an
example where the individuals home and work stations are indicated by a star and a
triangle respectively, and the number of visits to the other stations for flexible activities
in the three months is indicated by the squares with different depths of color.
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Figure 4.1: The spatial distribution of a Shanghai metro commuter’s flexible activities
in three months.

4.3 Methods

The approach of collaborative filtering does not require making any theory-based prior
assumptions, and it only finds behavior patterns in empirical data. The model mainly
consists of two steps (Aggarwal, 2016). The first step is looking for the neighbors
which are individuals who share similar historical behavior patterns to a specific trav-
eler i. In this work, the data during the observation period are used to determine neigh-
bors and generate predictions. For a traveler i, a vector fff i is constructed to represent the
frequency f (i;s) of traveler i visiting each station s during the observation period. The
similarity between two travelers historical behavior patterns is defined as the Pearsons
correlation between the frequency vectors of them.

An important issue is to define the range of what is considered to be a neighbor. A
common approach is to select a certain number of neighbors, which is known as a
k-nearest neighbor model (Aggarwal, 2016). Instead, in our study, we select the neigh-
bors by applying a cutoff value of the correlation-based similarity because in this way,
it is easier to interpret the similarity between the neighbors and a traveler based on
whether the correlation coefficients are positive or negative.

The range of the cutoff value is set to vary between 0 and 0.5 at a 0.1 interval. Zero
correlation is a reasonable and conservative cutoff value just by definition. In addition,
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Figure 4.2: A toy example of the neighborhood-based collaborative filtering algorithm
for flexible activity location choice prediction.

if the cutoff value is set as -1, the collaborative filtering model will actually collapse to
the method in which it is assumed that people always choose the station most visited by
all other travelers. In this paper, it will be tested how different cutoff values influence
the prediction accuracy. This issue is equivalent to finding the optimal k (i.e., con-
sidered number of neighbors), regarded as a hyper-parameter, in a k-nearest neighbor
model (Hastie et al., 2009).

The second step uses the majority vote of the neighbors of a traveler to calculate a
prediction for that traveler. This study aims to predict the station choice for flexible
activities that a traveler has not visited during the observation period; therefore, the
vote refers to the total frequency of visiting each station that traveler i has not visited,
by the neighbors of traveler i in the past. A vector of neighbors vote regarding traveler
i can be constructed as mmmi, where each element mi is equal to åNi f (ni;si), and si is a
station that traveler i has not visited in the first two months; a neighbor of traveler i is
expressed by ni 2 Ni. Next, the top ranking stations are chosen for traveler i, which
are the ones that the neighbors of i have visited most times. These are regarded as
predictions of the choice by traveler i.

A toy example of the model is shown in Figure 4.2. It is assumed that there are four
travelers in a network of three stations. The correlation-based similarities of traveler
1 to the other travelers are calculated using the historical records, and traveler 3 and 4
turn out to be the neighbors of traveler 1. Based on the majority vote, it is predicted
that traveler 1 would prefer station 3 to station 1.

The data of the test period are used for evaluating the predictions. If the predicted
station matches one of the actual stations that traveler i has visited during the test
period, a hit is achieved.

In this study, we use a simple multinomial logit discrete choice model as a benchmark
in order to give readers a term of comparison for how the collaborative-filtering ap-
proach performs. We want to remind again that our research objective at this stage is
only to explore the possibility of the new approach. Discrete choice models are still
irreplaceable.
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Traditionally, discrete choice models have been used to model location choice for flex-
ible activities considering the potential utilities of choosing available locations, which
are dependent on certain factors (e.g., attractiveness, distance, and personal attributes).
Given the available metro smart card data in our case study, the deterministic part of the
utility function of choosing a metro station, among all the stations in a metro network,
by a metro commuter for a flexible activity can simply be expressed by the following
equation:

v(i;s) = aA(s)+b1hd(i;s)+b2wd(i;s) (4.1)

Where v(i;s) is the deterministic utility of choosing station s for a flexible activity by
traveler i, where s should neither be home station nor work station for i; A(s) is the at-
tractiveness (usually in terms of size) of station s, and more specifically, the number of
POIs within the radius of 500 m around station s. hd(i;s) is the metro network distance
between the home station and station s, and wd(i;s) is the metro network distance be-
tween the work station and station s (in terms of km). a is the parameter representing
the preference for attractiveness; b1 and b2 are the parameters representing the prefer-
ence for distance from home and distance from work respectively. Personal attributes
are not available for this model as they are missing in smart card data. Therefore, it is
difficult to distinguish the preferences between different population segments. In ad-
dition, it was found in our previous work (Wang et al., 2017) that the effect of spatial
autocorrelation is insignificant in this kind of choice situations; thus, it is not incorpo-
rated in this model.

Despite being simple, the model is already able to capture the most basic factors of
location choices: size and distance of a location. For each traveler, we use the estimated
parameters to calculate the deterministic utility of choosing each station, and based on
that, we rank the stations and exclude those that have been visited by this traveler
during the observation period. Among the remaining stations, the one with maximum
utility is regarded to be the prediction generated for this traveler.

Several other benchmarks are used to generate top ranking stations as well, which are
compared with the ones predicted by the nearest neighbor method proposed in this
paper:

� Assuming that people always choose the station that is most visited by all other
travelers (equivalent to a collaborative filtering algorithm with the cutoff value
of -1);

� Assuming that people always choose the station with most points of interest
(POI);

� Assuming that people always choose the station closest to home;

� Assuming that people always choose the station closest to work.
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Figure 4.3: The average number of visits per metro commuter for flexible activities on
each day of week.

4.4 Results

In the case study, we focus on the metro commuters who left intensive travel records
(i.e., traveled at least two-thirds of the days) and made a trip for flexible activities at
least once in the first two months and at least once in the third month. On average,
these travelers visited around 5 unique stations for flexible activities in the first two
months and visited around 3 unique stations for performing flexible activities in the
third month. Figure 4.3 shows the average number of visits per metro commuter for
flexible activities on each day of the week.

In the third month, about 86% of the preselected travelers visited at least a new station
that has not been visited in the first two months. This indicates that our hypothesis is
somehow true in this case: the full spectrum of location preferences cannot be fully
observed in the first two months. We further focus on these 37,923 travelers for the
prediction task.

For each traveler, we look for the neighbors among the 37,922 travelers (excluding the
analyzed traveler) based on the similarity in terms of the correlation coefficient, with a
cutoff value of the correlation coefficient (as explained in Section 4.3). If a neighbor is
specifically defined as the person whose similarity is over 0, each traveler would have
25% of all other travelers as his/her neighbors on average according to the data. With
the increase of the cutoff value, the percentage of neighbors decreases, and it decreases
to an average of 1%, if the cutoff value is set as 0.5.

For performance benchmarking, using the data of the first two months, we estimate a
discrete choice model whose deterministic utility function is given by Equation 4.1.
The estimation results are presented in Table 4.1. It is not a surprise to observe that
travelers generally prefer a closer station with more POIs. In addition, on average, they
seem to prefer one closer to home than from work.

Figure 4.4 shows the number of hits of all the considered methods tested on 37,923
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Table 4.1: The estimation results of the multinomial logit model.

Parameter Coef. Robust Std. err. Robust t-test
a (preference for
number of POIs)

4.71e-04 3.93e-06 120.04

b1 (preference for
distance from home)

-0.132 0.00102 -129.39

b2 (preference for
distance from work)

-0.0134 0.00121 -11.06

Number of observations: 37,923; Adjusted rho-square: 0.129

Figure 4.4: The prediction results of all the methods applied to the 37,923 travelers.

travelers. A hit is defined as the situation where the predicted station matches one of
the actual stations to be visited in the next month. First of all, and most importantly,
the collaboration filtering method with almost all the cutoff correlation thresholds out-
performs all the non-collaborative-filtering methods. The best collaborative filtering
method results in nearly 15% more hits than the method assuming that people choose
the station most visited by all other travelers, and about 16.5% more than the estimated
multinomial logit model. Consequently, the number of correctly predicted choices
would further increase in a scaled-up scenario using our collaborative filtering meth-
ods. The hit rates (about 6,000 hits among 37,923 travelers) do not seem very high
overall; this is actually not surprising because the specific problem, predicting location
choice of flexible activities, which have not been visited before, is not an easy task and
must be more challenging than predicting other more regular location choices.

Among the non-collaborative-filtering methods, the hit rate of the utility-maximization-
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Figure 4.5: The correlations between the actual number of visits to a station in the third
month vs. the number of travellers who are predicted to prefer the most this station by
different methods.

based multinomial logit model is slightly lower than the hit rate of the method assum-
ing that an individual traveler always chooses the station that is most visited by all
other travelers. Moreover, the number of POIs seems to be more influential than the
other two single features used in the multinomial logit model (i.e., distance from home
and distance from work).

While the number of hits reflects the individual-level accuracies of different methods,
to check the station-level accuracies, we calculate the correlations between the actual
number of visits to a station and the number of travelers who are predicted to prefer
the most that particular station, as shown in Figure 4.5. It can be observed that among
the other methods, the collaborative filtering method with a cutoff value of 0.1 can
generate a prediction that has the highest correlation (around 0.7) to the actual number
of visits.

Furthermore, we visualize the actual vs. predicted location preferences among the top-
50 most visited stations on the map of Shanghai. Here, location preference is defined as
a normalized indicator that represents peoples relative preference to visit each station.
For the actual observations, it is the number of visits to a station divided by the total
number of visits. For the predictions, it is the number of travelers who are predicted
to prefer one station the most divided by the total number of travelers. As shown in
Figure 4.6, the predictions made by the most visited by all method are the least smooth
ones. Except for a few stations that are predicted to be very popular, the preference
for the remaining stations is mostly under-predicted. While the predictions made by
the collaborative filtering method and by the discrete choice model assuming utility
maximization are both smooth, it seems that the former is more accurate (e.g., the
station at the most left side).

The results imply that the collaborative filtering method might be able to account for
some latent and subtle effects that the other methods cannot capture. To gain such
insights from the prediction results for a better interpretation, we explore the extent to
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Figure 4.6: Actual location preferences vs. predicted location preferences among the
top-50 most-visited stations.

which a metro station s visited in the first two months would, in part, lead to the correct
prediction of the station s’ to be visited in the third month, by counting the transition
frequency from s to s’ in all the correctly predicted cases using collaborative filtering
with the cutoff value of 0.1.

The transition with the highest frequency is from Shanghai Railway Station to Hongqiao
Railway Station. Note that they are both the names of the metro stations connected to
the corresponding railway stations. This means that according to the collaborative
filtering algorithm, people are likely to visit Hongqiao Railway Station in the third
month, given that they have visited Shanghai Railway Station in the first two months.
These two metro stations are distant from each other, but they obviously have the same
function. It seems that our collaborative filtering method can intrinsically capture such
preferences shared by the frequent inter-city travelers, possibly business people. To
show how the results vary with different random samples and further validate the op-
timal cutoff value, we randomly sample three groups of 500 users. In each group, the
prediction results of the collaborative filtering methods as well as the most visited by
all method (equivalent to a collaborative filtering algorithm with the cutoff value of -1)
are shown in Figure 4.7.

It can be observed that in each sample group, with the increase of the sample size, the
line describing the relationship between hit rate and cutoff value always converges to a
similar pattern: hit rate achieves the highest as cutoff value ranges from 0 to 0.2. The
same pattern was also found in Figure 4.4. Accordingly, it can be concluded that the
optimal cutoff value should neither be too high nor too low. It is relatively understand-
able that the cutoff value should not be too low because otherwise one would have an
increasing number of neighbors who are actually not similar among themselves. On
the other hand, it is at first glance counterintuitive to find that 0.5 is not the best cutoff
value in our case, but it actually makes sense because it has been found that a too small
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Figure 4.7: The prediction results of the collaboration filtering methods applied to
different groups of travelers.

k would potentially lead to unreliable predictions due to overfitting (Altman, 1992).

4.5 Conclusions and recommendations

This paper proposes a data-driven method, namely a neighborhood-based collaborative
filtering algorithm, to model location preferences of individuals for flexible activities
(i.e., those non-work and out-of-home activities), which are too sparse to observe even
in big data. Different from discrete choice models, which can smoothen observed
discrete choices by imposing theory-based prior assumptions regarding travel behavior,
our approach can smoothen observed discrete choices using a nearest-neighbor model,
which approximates behavior patterns merely based on empirical evidence, being thus
very suitable for big mobility datasets. One of the advantages of such smoothing is the
ability to estimate the full spectrum of location preferences. Even though a location has
not been visited by an individual during the observation period, it does not necessarily
mean that the individual has zero preference for this location. Therefore, for each
individual, we specifically focus on those non-visited locations and define our task as
predicting which of them are most likely to be visited. The case study is conducted in
Shanghai, China, and focuses on the active metro commuters, using three-month smart
card data. The results show that the collaborative filtering approach is comparable
with the other approaches, in terms of the prediction performance. At least, it shows
promise as another possibility of understanding individual mobility patterns at a stable
transport demand-supply equilibrium.

Despite being out of the scope of this paper, a few issues are worth discussing and
exploring in future research. Our case study focuses on active travelers only, whose
intensive historical travel records can help characterize each individual and find the
neighbors. However, in many cases, it is also necessary to predict the behavior of the
users who have left few travel records and even new users with no records. The same
applies to the supply side. The current model cannot predict the preferences of existing
users for a newly built station. In the product recommendation field, such problems are
designated as cold start problems (Su & Khoshgoftaar, 2009). It is relevant to study
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the cold start problems in the context of location choice modeling. It is very likely that
we have to make more prior assumptions again to compensate such sparsity of data.
Moreover, our research is somehow limited by the data we have. Further in-depth
analysis can be done if it is possible to access a mobility dataset over a longer period.
We may even consider location choice by different modes if we have multi-modal
travel demand data.
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Chapter 5

Matrix factorization for modeling
spatial interactions

Data privacy is a concern if individual spatial traces are tracked. Aggregation is the
safest solution. Thus, this chapter assumes that in some cases, big mobility data are
only available in an aggregated form, where individual spatial behavior is aggregated
into spatial interaction matrices. A matrix factorization approach is proposed to under-
stand the observed spatial interactions. As a continuation of the collaborative-filtering
strategy in the previous chapter, this method does not require any prior definition about
each location, and learns the production and attraction of a location in a data-driven
way. The method is applied to model the spatial interactions between metro stations
in Shanghai, China by using an origin-destination trip matrix constructed based on
one-day smart card data.

The chapter is based on the following paper that is currently under review:

Wang, Y., Correia, G.H.A., van Arem, B., & Timmermans, H.J.P. (2020). A matrix
factorization approach to modeling trip generators and their interactions. Travel Be-
haviour and Society, submitted.



68 Modeling Human Spatial Behavior through Big Mobility Data

Abstract

Increasingly available big mobility-related data, such as mobile phone traces and smart
card data, show human activities and mobility patterns at a large scale. To explore the
application of new methods that are more appropriate for such new big data, our paper
attempts to bridge the gap between two techniques from different research areas: (1)
unconstrained gravity model, traditionally used for trip distribution, and (2) hierarchi-
cal Poisson factorization, a variant of machine learning matrix factorization methods,
which has been commonly used to predict user preferences for a product in a recom-
mendation system. We show how a traditional gravity model can be adapted by rep-
resenting production and attraction in multiple latent dimensions and estimating them
in a data-driven way. We also show how a hierarchical Poisson factorization frame-
work can model mobility patterns only by additionally considering the effect of travel
costs. With the added extensions, the two methods become equivalent, resulting in a
gravity-based Poisson factorization model, which is suitable for modeling urban trip
generators and their interactions using big mobility-related data. Using metro smart
card data from Shanghai, China, results show that the new model benefits from adding
the number of latent dimensions and outperforms the one-dimensional model, decreas-
ing the root-mean-squared error of the test set by up to 34%. It also benefits from the
consideration of travel costs, especially with a small number of dimensions. More
importantly, it allows predicting mobility flows given new travel cost matrices.

Keywords: Big data; machine learning; matrix factorization; hierarchical poisson fac-
torization; gravity model

5.1 Introduction

Various kinds of big data are available nowadays to capture and analyze human mo-
bility patterns, particularly for urban areas (Hasan et al., 2013a; Noulas et al., 2012).
Such data are inherently disaggregate and thus reveal individual movements between
locations (Calabrese et al., 2013). These data can be processed and presented in an
aggregated form, such as spatial interaction matrices (Zhao et al., 2016a), interchange-
ably called origin-destination matrices (OD matrices). Although these data help reveal
visiting patterns (Hasan et al., 2013b), in many situations, urban planners and mobility-
related companies require mobility models with sufficient explanatory and predictive
power to determine how different factors contribute to mobility performance (Çolak
et al., 2015). For example, a model can quantify the impact of travel distance on spa-
tial interactions. Such models can further be used to support smarter decisions on urban
development, transportation network design, and business relocation (Batty, 1976).

To build an explanatory mobility model, it is important to characterize locations, which
produce, and at the same time, attract different kinds of travelers for different purposes.
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Based on prior knowledge, certain predefined variables (e.g., number of points of in-
terest in a certain category) can be used to differentiate the locations, and the values
and/or levels of these variables can be used to explain and/or predict mobility pat-
terns. However, with the increasing resolution of mobility data, it might become more
difficult to capture location differences only by predefined variables. A data-driven
approach is therefore needed.

Traditionally, transportation modelers developed gravity models and inferred several
model parameters, including the effect of generalized travel costs, and trip generators,
i.e., production of origins and attraction of destinations, from observed inter-zonal
travel flows coupled with their corresponding generalized travel costs (Sen, 1986).
Estimated models were then used to predict travel flows in what-if scenarios. In such
models, given a single generalized travel cost, travel flows between locations must be
higher, as long as the production of the origin and the attraction of the destination,
which are represented by some predefined variables such as the population density of
a location, are both higher. This is however not necessarily true: two locations can be
very densely populated in general but at the same time have little interaction with each
other just because of some latent reasons (e.g., hipster vibe) which are not known in
advance and only revealed in the data.

Is it possible to account for large-scale spatial interactions in a data-driven way in-
stead? The answer to this question may be inspired by what machine learning (ML)
researchers do when they attempt to model the interactions between users and movies
(or any other form of products) in a recommendation system, where it is impractica-
ble to collect explicit information about innumerable users and movies. To solve this
problem, matrix factorization techniques have been developed to capture multidimen-
sional latent factors of both users and movies, merely based on historical watching or
rating patterns. These data-driven models assume that a higher correspondence (math-
ematically, a higher dot product) between the latent factors defining user-profiles and
the ones characterizing a movie would lead to a higher chance of matching (Koren
et al., 2009). The same approach could potentially be adopted for mobility-related
data, capturing production and attraction without predefining any variable for them,
merely based on an observed spatial interaction matrix.

According to this principle, we assume that a high correspondence between a locations
multidimensional production factors and another locations multidimensional attraction
factors leads to a stronger spatial interaction between these two locations. At the same
time, we can borrow the gravity concept by assuming that spatial interactions depend
not only on production and attraction factors but also on the impedance of traveling
between two locations. Based on this assumption, our study essentially extends a ma-
trix factorization framework with a travel cost function to model the observed spatial
interaction matrix of a city. Our method is thus rooted in the domain knowledge of
transportation, and it leverages state-of-the-art ML techniques. Compared to a tradi-
tional gravity model, the proposed method estimates more latent factors that are not
predefined to describe the production or attraction of a location in a data-driven way.
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Compared to matrix factorization techniques for recommendation systems, the pro-
posed method additionally accounts for the effect of generalized travel costs.

The approach will be illustrated in this paper using the Shanghai Open Data Appli-
cations1 that provided the check-in and check-out data of Shanghai smart card users
at all the metro stations on April 1, 2015. These disaggregate data were aggregated
into a station-level daily OD matrix. Our method can be applied to spatial interaction
matrices built based on any mobility data sources, including not only smart card data
(Zhao et al., 2007), but also cellular network data (Çolak et al., 2015), social media
check-in data (Gong et al., 2019), and GPS data (Rasouli & Timmermans, 2014; Wolf
et al., 2004). The method presented herein only requires mobility data in aggregate
form, thus preventing potential privacy issues (Blondel et al., 2015).

The remainder of this paper is organized as follows. Section 5.2 presents a literature
review of traditional gravity models for trip distribution and matrix factorization meth-
ods for recommendation systems. Section 5.3 illustrates the method. Following that,
Section 5.4 illustrates the method through the use of metro smart card data, and the
results are presented and discussed in Section 5.5. Finally, the main conclusions are
drawn, and future research directions are pointed out in Section 5.6.

5.2 Background literature

5.2.1 Single-dimensional unconstrained gravity models

Spatial interaction is reflected in the number of trips from one place to another. In
the era of big data, spatial interaction has become a more general term, not only for
physical human movements but also for some trip proxies that can only be observed in
big data, such as two sequential social media check-ins from one location to another
(Liu et al., 2014).

From the perspective of a traditional 4-step transportation model (de Dios Ortúzar &
Willumsen, 2011), each zone can produce and attract trips. For example, a zone can
produce more trips on a weekday morning because it is a residential zone. This is
the first step called trip generation. Then, the trips produced from each origin are
distributed to their destinations based on the gravitational law, proportional to the trip
potential of each zone and inversely proportional to the travel impedance, resulting in
an OD matrix. This is the second step called trip distribution.

A regression model is typically used to predict the number of trips produced from a
zone and/or attracted to a zone by some factors such as the number of households
(Kassoff & Deutschman, 1969). The output of this step serves as constraints to the trip
matrix totals by column and/or row in producing a final OD trip matrix. The trip dis-
tribution model can either be doubly constrained, if both produced trips and attracted

1http://soda.shdataic.org.cn/
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trips are known, or singly constrained, if only one of them is known (Fotheringham
& O’Kelly, 1989). Otherwise, the first two steps can be expressed through an uncon-
strained gravity model (Cesario, 1975), which is the focus of this paper. In this case,
spatial interaction Fod from an origin o to a destination d can be modeled using the
following equation:

Fod = aEoAd f (cod) (5.1)

where Fod and cod (i.e., generalized travel costs) are observed; a is a scaling factor
to be estimated (Sen, 1986), and Eo and Ad are production factor and attraction factor
respectively. These two trip generation factors can fully act as the parameters to be
estimated (Griffith & Fischer, 2013). Then, for each origin (or destination), a produc-
tion (or attraction) parameter needs to be estimated. The drawback of this approach
is that the estimated model cannot be applied to new zones for which production and
attraction factors are still unavailable. The two trip generation factors can also be ex-
pressed in terms of known trip potential variables. For example, Eo and Ad can be the
population at zone o and the population at zone d respectively. Such a model is easy
to estimate and interpret, by sacrificing some degrees of freedom in the model. Some
other models have Eo and Ad as power functions of known trip potential variables
(Fotheringham & O’Kelly, 1989).

In addition, f (cod) is a function of generalized travel costs to model the negative impact
of traveling between one area and another. The most common functions include the
exponential deterrence function e�bcod , and power deterrence function cod

�n, where b
or n needs to be estimated (Hyman, 1969).

5.2.2 Matrix factorization methods

ML researchers in the field of recommendation systems study the interaction between
a user and a movie (or any other form of product). Similar to the unconstrained gravity
model where an origins production factor is multiplied by a destinations attraction
factor to account for the interaction, in a recommendation system, a users preference
factor is multiplied by a movies attribute factor. In formal terms, the major difference
is that a user us preference factor ddd u and a movie is attribute factor mmm i are allowed to
be multidimensional, sharing a joint latent space. The interaction between a user and
a movie should then be expressed as a dot product, mmmT

i ddd u. Since the two factors are
assumed to be fully latent, they need to be estimated given the observed user-movie
interaction matrix RRRui. In the classical matrix factorization method, the mathematical
problem is to find the mmm i and ddd u that can minimize (RRRui� mmmT

i ddd u)2 (sometimes plus a
regularization term that can avoid overfitting). Koren et al. (2009) provide a detailed
guide to classical matrix factorization techniques.
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In this paper, we are interested in a specific variant of matrix factorization methods,
hierarchical Poisson factorization (Gopalan et al., 2015). Two key features distinguish
this method from other matrix factorization techniques: being Poisson and being hier-
archical. First, each cell of the observed matrix is assumed to be drawn from a Poisson
distribution and is, therefore, more suitable for expressing implicit interaction frequen-
cies. Second, the hierarchical structure can first model general potential production (or
attraction) of a location and based on that, specific multidimensional production (or
attraction) factors can be modeled (Gopalan et al., 2015). This fits well with the fact
that a location has both a level of general popularity and levels of specific popularity
for different demand segments.

Different from the classical matrix factorization method with a deterministic approach,
Poisson factorization is a probabilistic Bayesian model (Gelman et al., 2013). The
model essentially aims to infer the distribution P(mmm i;ddd ujRRRui), the posterior probability
of the latent variables, given the available data, based on Bayes theorem as shown in
the following equation:

P(mmm i;ddd ujRRRui) = P(RRRuijmmm i;ddd u)P(mmm i;ddd u)=P(RRRui) (5.2)

Inference is commonly based on two mainstream methods: Monte Carlo Markov chain
and variational inference (Gelman et al., 2013), which both require extensive com-
putational power, since they require the estimation of the full posterior distribution.
Otherwise, a simpler approach can be taken: Maximum a posteriori (MAP), which
estimates the values of mmm i and ddd u that maximize the posterior distribution. This esti-
mation method obtains a point estimate, and hence does not require the estimation of
the full posterior distribution.

5.3 Methodology

First, we articulate the assumptions and the problem of this study as follows. We
assume that the given observations include an OD matrix FFF and a matrix of generalized
travel costs CCC. Moreover, we assume that the OD matrix is dependent on (i) a function
of generalized travel costs f (C), (ii) general and specific production factors g and r
respectively, and (iii) general and specific attraction factors j and w respectively. The
goal is to estimate these factors and the parameters of the assumed generalized cost
function given the observed data. Once the model has been estimated, it can be applied
to what-if scenarios with a new matrix of generalized travel costs as the model input,
and the potential spatial interactions as the model output.

The spatial interaction matrix to be factorized FFF is an S�S square matrix. There can
be observations on the diagonal if self-interaction is considered. It can otherwise be a
matrix without any observation on the diagonal if self-interaction is not considered. A
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Gamma-Gamma hierarchical structure is used to model the production and attraction
factors because it has been found to fit well the possible skewness in data and contribute
to better predictive performance (Gopalan et al., 2015). At the top of the hierarchy,
general potential production, and general potential attraction are modelled first for
each location. They represent a general level of popularity of an origin or a destination.
Latent variables go and jd are used to represent the inverse effects of production and
attraction respectively. For each origin o (o 2 f1;2; :::;Sg), we can sample the inverse-
production as follows:

go � Gamma(a0;b0) (5.3)

where a0 and b0 are the two hyper-parameters representing our prior belief about the
shape and rate of the distribution of this inverse-production variable (i.e., what we
think about P(jo) before observing any data). Similarly, for each destination d (d 2
f1;2; :::;Sg), we sample inverse-attraction as follows:

jd � Gamma(g0;h0) (5.4)

where g0 and h0 are the two hyper-parameters representing our prior belief about the
shape and rate of the distribution of this inverse-attraction variable.

Next, general potential production and attraction are respectively used to generate spe-
cific potential production for each origin and the specific potential attraction for each
destination, which are both mapped to a joint latent space with K dimensions. For
each origin o, the k-th (k 2 1;2; :::;K) latent attribute of specific potential production is
sampled as follows:

rok � Gamma(a;go) (5.5)

where a describes our prior belief about the shape of the distribution of specific po-
tential production for dimension k. If the general potential production of an origin is
higher, then the inverse-production variable go is lower. If go, as the rate parameter in
this distribution, is lower, then the specific potential production rok is higher. Simi-
larly, for each destination d, the k-th latent attribute of specific potential attraction is
sampled as follows:

wdk � Gamma(g;jd) (5.6)
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Consequently, each location has (i) an attribute of general potential production, (ii) an
attribute of general potential attraction, (iii) K dimensions of specific potential produc-
tion, and (iv) K dimensions of specific potential attraction.

The effect of generalized travel cost between two locations is another essential com-
ponent in traditional gravity models but it is missing in the hierarchical Poisson fac-
torization method. However, the flexibility of the hierarchical Poisson factorization
allows incorporating this effect. We use the exponential cost function (de Dios Ortúzar
& Willumsen, 2011) to describe a general effect of the impedance to travel for all OD
pairs: e�bCod , where Cod represents the vector of travel costs between origin o and des-
tination d, and bbb is the vector of cost parameters, which can be sampled from a Gamma
distribution because the Gamma distribution is suitable for modeling non-negative val-
ues and we assume that bx is positive:

bx � Gamma( j;m) (5.7)

The spatial interaction between origin o and destination d is modeled by the dot prod-
uct of the vector of specific potential productions rrro and the vector of specific potential
attractions wwwd . This is very similar to how potential production and attraction are mul-
tiplied in a traditional gravity model, except that only a single dimension is used. Then,
the dot product for a certain OD pair is multiplied by the result of the exponential cost
function of the generalized travel cost between this OD pair, obtaining the parameter
of the Poisson distribution that models the spatial interaction. The spatial interaction
between an OD pair can thus be modeled as follows:

Fod � Poisson((rrro
T wwwd)� e�bbbCCCod ) (5.8)

If there is only one pair of latent factors, i.e., K=1, this model would collapse into a
traditional unconstrained gravity model for trip distribution, without a scaling factor
(Sen, 1986). If there is no effect of generalized travel costs, i.e., b = 0, this model
would collapse into the existing hierarchical Poisson factorization.

Figure 5.1 illustrates the approach for an OD matrix of S locations. For each location,
there are K specific production or attraction factors. In theory, the number of dimen-
sions of latent factors K should be smaller than the number of locations S (Theodoridis
& Koutroumbas, 2009). It would be much more beneficial if a large-scale matrix is
factorized, where the number of K parameters to be estimated would be much smaller
than the number of cells in the matrix.

Figure 5.1 shows the flowchart of the model: how a spatial interaction matrix can be
generated step by step. In the inference process, we need to estimate the latent factors
and parameters (i.e., general and specific potential productions ggg and rrr , general and
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Figure 5.1: The flowchart of the model.

specific potential attractions jjj and www , and the parameter in the travel cost function bbb )
that can best explain the observed data (i.e., observed matrices of spatial interaction FFF
and generalized travel costs CCC). In the Bayesian approach, the objective is to estimate
the distribution of the posterior probability P(ggg;jjj;rrr;www;bbb jFFF ;CCC). Bayes theorem is
used to estimate the full distribution of the posterior probability:

P(ggg;jjj;rrr;www;bbb jFFF ;CCC) = P(FFF ;CCCjggg;jjj;rrr;www;bbb ) �P(FFF ;CCC) (5.9)

Compared to Equation 5.2, Equation 5.9 adds the parameter b in the travel cost func-
tion, and the observed generalized travel costs C. Also, Equation 5.9 adds ggg and jjj ,
which have hierarchical relationship with rrr and www respectively. The 2-stage hierar-
chical model can further decompose the full distribution of the posterior probability as
follows:

P(ggg;jjj;rrr;www;bbb jFFF ;CCC) = P(FFF ;CCCjrrr;www;bbb ) �P(rrr;www;bbb jggg;jjj) � p(ggg;jjj)=P(FFF ;CCC)
= p(FFF ;CCCjggg;jjj;rrr;www;bbb ) �P(rrrjggg) �P(ggg) �P(jjj) �P(bbb )=P(FFF ;CCC)

(5.10)

In Equation 5.10, the likelihood part P(FFF ;CCCjrrr;www;bbb ) in the numerator is still tractable.
The likelihood of the observed data for an OD pair given the corresponding latent vari-
ables can be calculated using the probability mass function of a Poisson distribution:

P(Fod;Codjrrro;wwwd;bbb ) = Poisson((rrro
T wwwd)� e�bbbCCCod)

= ((rrro
T wwwd)� e�bbbCCCod )Fod � e�((rrro

T wwwd)�e�bbbCCCod )=Fod!
(5.11)

The hierarchical prior part P(rrrjggg) � P(wwwjjjj) � P(ggg) � P(jjj) � P(bbb ) in the numerator is
tractable as well based on Equations 5.3 5.7. However, it is impossible to determine
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a closed-form expression describing denominator P(FFF ;CCC) since this probability has to
be computed by integrating across all possible values of the latent variables. Instead
of estimating the full distribution of the posterior probability P(ggg;jjj;rrr;www;bbbFFF ;CCC),
one can opt for point estimation. More specifically, the MAP estimation finds the
ggg , jjj , rrr , www , bbb that maximizes the posterior probability. This approach works because
argmaxggg;jjj;rrr;www;bbb P(ggg;jjj;rrr;www;bbb jFFF ;CCC) is equivalent to argmaxggg;jjj;rrr;www;bbb P(ggg;jjj;rrr;www;bbb ;FFF ;CCC),
which is equal to argmaxggg;jjj;rrr;www;bbb (P(FFF ;CCCjggg;jjj;rrr;www;bbb ) �P(ggg;jjj;rrr;www;bbb )), indepen-
dent from the denominator of Bayes theorem P(FFF ;CCC).

Because even the MAP is computationally demanding, to further ease the inference
process, we use the Monte Carlo Expectation Maximization (MCEM) method (Booth
& Hobert, 1999; Zhang et al., 2011), with Gibbs sampling for the expectation step
and MAP for the maximization step since this method has been proven to fit well
with hierarchical models (Booth et al., 2001). First the values of rrr , www are initialized.
Then in the expectation step, samples from P(ggg;jjjjrrr;www;bbb ;FFF ;CCC) are drawn using the
Gibbs sampling technique. Since ggg and jjj are only related to rrr and www respectively,
P(ggg;jjjjrrr;www;bbb ;FFF ;CCC) is essentially equal to P(gggjrrr) �P(jjjjwww). Finally, in the maximiza-
tion step, the ggg , jjj sampled in the last step are used to compute the MAP estimation
of rrr , www , bbb . The latest updated rrr , www , bbb are then input to the expectation step again.
The expectation step and the maximization step are iterated until convergence, and
afterwards argmaxggg;jjj;rrr;www;bbb P(ggg;jjj;rrr;www;bbb jFFF ;CCC) can be obtained.

5.4 Case study

The proposed method can be applied to any OD matrix that describes spatial interac-
tions. In this paper, the approach is illustrated using an OD matrix constructed from the
metro smart card data collected in Shanghai, China, on April 1, 2015. Provided by the
Shanghai Open Data Applications (SODA) contest, the data contain the timestamps,
and the station IDs of all tap-ins and tap-outs by all Shanghai metro smart card users.
A specific algorithm was used (Wang et al., 2017) to detect the trips with a transfer
between two lines requiring extra tap-outs and tap-ins, and filter out incomplete and
unrealistic trips. Each tap-in can be paired with a tap-out, and define an associated trip.
All trips on that day were aggregated to obtain the OD metro trip matrix. The value of
each cell represents the number of metro trips from one station to another. At the time
of data collection, the metro network of Shanghai consisted of 288 metro stations and
14 lines, as shown in Figure 5.2. Therefore, the spatial interactions are described by a
288 � 288 OD matrix excluding the diagonal. Besides, the shortest network distance
and the minimum number of transfers between every two stations can be calculated,
resulting in two 288 � 288 travel impedance matrices.

We randomly selected 60% of the cells of the OD matrix to train the model and estimate
the latent factors rrr , www , bbb , with the only restriction that all the stations should appear
both as origin and destination in the training set, to guarantee that the production and
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Figure 5.2: The 288 metro stations in the city of Shanghai, China (note that some
stations share multiple lines, and in that case, one line is randomly selected to show its
color).

attraction factors have been estimated for every station in the hold-out test set. The
remaining 40% of the cells are used as the hold-out test set, for which we pretend
not to know their actual values. Afterwards, for the hold-out test set, we can find
the corresponding cell values of the travel impedance matrices, and use the estimated
model to predict the number of metro trips from one station to another.

The hyper-parameters of the model, a, a0, b0, g, g0, and h0, are set to 0.3 as this setting
has been proven to work well with different types of data in previous applications
(Gopalan et al., 2015; Levitin et al., 2019). Hyper-parameters j and m are set to 0.3
as well since the resulting shape of the Gamma distribution is roughly consistent with
our prior assumption about the travel cost function. The probabilistic modeling and the
inference are implemented in Edward, a probabilistic programming language based on
TensorFlow (Tran et al., 2016).

5.5 Results

In a first analysis, we test the number of specific production and attraction factor di-
mensions K: 1, 5, 10, 20, 30, 40, 50, 60, and 70. The number of dimensions K is
naturally limited by the size of the training set. The predictive performance for the test
set is shown in Figure 5.3. For an OD pair from the test set, the inferred rrro, wwwd , bbb
and the observed travel impedance CCCod are used to calculate the expected value of the
Poisson distribution given in Equation 5.8, which can serve as the predicted OD flow.
Predictive performance is measured by the root-mean-squared error (RMSE) between
the log(x + 1) transformations of observed and predicted OD flows.
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Figure 5.3: Root-mean-squared error of the models with a growing number of dimen-
sions for the training and test sets.

It can be observed that in general, higher dimensionality for production and attraction
factors improves the predictive performance of the model for the test set. It is not
a surprise that the RMSE is always lower for the training set than for the test set,
and this gap becomes larger with an increasing number of dimensions. The predictive
performance for the test set improves sharply (i.e., 30% decrease in the RMSE) with an
increase in the number of dimensions until it reaches 10. After that, the improvement
dampens. From 10 dimensions to 20 dimensions, the RMSE decreases by 4%, and
from 20 dimensions to the maximum, there is hardly any improvement. The model
seems to benefit from adding more dimensions, but after a certain threshold, it enters an
overfitting region. In summary, the model takes the advantage of multidimensionality,
and the reduction of the RMSE can reach up to 34%.

A more detailed comparison of the predictive performance between different numbers
of dimensions is presented in Figure 5.4, where, for better visualization, log(x + 1)
transformation of the actual number of observations is rounded to the nearest 0.1, and
for each of them, the minimum value, the 1st quartile value, the median value, the
3rd quartile value, and the maximum value of the predictions are calculated. The
median value is indicated by a black point; the range from the 1st quartile value to
the 3rd quartile value by a red error bar, and the range from the minimum value to the
maximum value by a blue error bar.

It can be observed that with fewer dimensions, the model tends to underestimate the
larger OD flows and overestimate the smaller OD flows. The prediction accuracies are
relatively higher with more dimensions. The phenomenon of overfitting can also be
observed: from 1 dimension to 10 dimensions, the predictive performance evolves very
quickly, whilst there is almost no difference between the performance of the model
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Figure 5.4: The prediction results of the model with a different number of dimensions
for the test set.

with 20 dimensions and the one with 50 dimensions.

The comparison of predictive performance for the test set is shown in Figure 5.5 for
the models with and without the travel cost function. Overall, in both situations, with
an increasing number of dimensions, RMSE decreases fast at first and then gradually
stabilizes. On average, considering the effect of travel impedance reduces the RMSE
for the test set by 4.4%. The model with the travel cost function generally has a lower
RMSE than the one without, except when the number of dimensions is 50 or 70.

Still, it can be observed in Figure 5.5 that with an increasing number of dimensions,
the RMSE gap becomes much smaller. It seems that the model without the travel
cost function can make up for its inherent deficiencies by adding more dimensions
underlying production and attraction. To investigate this issue, we further analyze the
estimated model without the travel cost function when the number of dimensions is
50. The cosine similarity between the specific production vector of a station and the
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Figure 5.5: Root-mean-squared error for the test set with and without considering the
effect of travel impedance.

Figure 5.6: 1st quartile, median and 3rd quartile values of cosine similarities between
the specific production vector of a station and the specific attraction vector of another
station, estimated in the model without the travel cost function, over number of trans-
fers and network distance between every two stations in the test set.

specific attraction vector of another station is calculated. A higher cosine similarity
between these two vectors (rrr and www) would directly lead to a higher dot product,
given the magnitudes of them (jrrrj and jwwwj), which are mostly determined by general
production and attraction (jjj and ggg). Figure 5.6 presents the 1st quartile value, the
median value, and the 3rd quartile value of cosine similarities over the number of
transfers and network distance between two stations.

The negative-exponential-alike curve of cosine similarity over the number of trans-
fers or network distance in Figure 5.6 indicates that even without any prior informa-
tion about travel costs, the 50 dimensions of specific production and attraction factors
themselves, which are trained merely based on the interaction matrix, have already
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been able to account for the effect of travel costs in a data-driven way. That somehow
explains why the RMSE difference gradually diminishes in Figure 5.5. While the orig-
inal Poisson factorization framework seems to sufficiently work for our test set, the
newly proposed method still has an irreplaceable feature: since it involves a travel cost
function, it allows predicting OD flows given different travel cost matrices.

5.6 Conclusions and recommendations

This study proposes an improved method for modeling trip generators and spatial in-
teractions which combines the concepts of gravity model and a hierarchical Poisson
factorization model. This method can be used to decompose an OD matrix and embed
the locations into a continuous latent space. A traditional gravity model is extended to
allow more dimensions underlying production and attraction, and the extended model
is shown to be equivalent to an adapted framework of hierarchical Poisson factoriza-
tion which additionally accounts for the effect of travel costs. The method was applied
to one-day metro smart card data collected in Shanghai, China, which were aggregated
to generate an OD trip matrix representing spatial interactions between stations. The
results show that having more dimensions for potential productions and attractions im-
proves the prediction of mobility patterns; however, the number of dimensions does
not need to be too large. As more dimensions are added, the model tends to overfit the
data. Moreover, the model considering the effect of travel impedance performs better
than the model without this effect especially when the number of dimensions underly-
ing production and attraction is small. More importantly, the proposed model allows
predicting OD flows given different travel cost matrices.

We identify the following issues for further research. First, this study aggregates daily
OD flows, leading to a relatively more symmetrical OD matrix. However, OD flows
can also be disaggregated for different times of the day, yielding matrices that are very
likely asymmetric. It is thus reasonable to assume that potential production or attrac-
tion of locations varies over time. Such dynamic patterns could be modeled using the
framework of dynamic Poisson factorization (Charlin et al., 2015). Second, one might
argue that a negative binomial distribution could better describe spatial interactions
than a Poisson distribution does, because the mean and variance are not necessarily the
same. Therefore, it is worth experimenting the negative binomial matrix factorization
technique (Gouvert et al., 2018) to solve the problem. Third, while the proposed model
can predict OD flows given new travel cost matrices between the existing stations, it
is difficult to predict OD flows given a network with new stations. Essentially, all
the production and attraction factors of the stations are estimated based on empirical
data, which are not available for new stations. This so-called cold start problem (Su &
Khoshgoftaar, 2009), which is common in recommendation systems (e.g., the prefer-
ence of a new user for a new movie), is worth investigating regarding our problem as
well.
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Chapter 6

Conclusions and recommendations

6.1 Conclusions

This thesis synthesizes four studies that process big mobility data to allow understand-
ing of human spatial behavior, which is the outcome of people’s activity type and
location choice. Compared to traditional travel survey data, big mobility data are fa-
vorable for being cost-efficient, up to date, and promising especially in terms of the
big sample size; however, big mobility data are, at the same time, limited in their very
nature mostly due to privacy reasons. First, they lack sufficient features about trav-
elers and trips (i.e., the data is thin). Second, the individual-level mobility data are
sometimes aggregated into zone-to-zone trip tables. To overcome these limitations,
this thesis posed the following main research question:

To what extent, and how, can big mobility data foster the understanding of human
spatial behavior?

This thesis attempted two main strategies. Since big mobility data is too thin, the first
strategy is to widen the thin data by adding explicit proxy variables to describe travel-
ers, locations and trips. This strategy was tested in Chapter 2 and 3. Instead of adding
explicit proxy variables, we can also leverage data-driven methods to implicitly cap-
ture the latent characteristics of travelers, locations and trips, by taking advantage of
sample size. This strategy was tested in Chapter 4 and 5. The following two subsec-
tions explain how the two strategies work specifically and summarize to what extent
they are effective based on the case study results.

6.1.1 Adding explicit proxy variables

A big mobility dataset usually only contains spatial-temporal information. It tracks a
group of people’s spatial-temporal traces either on the individual level or in aggregated
form over a period within a mobility system. For example, Chapter 2 used smart card
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data of the metro network in Shanghai, China, including the tap-in and tap-out records
of each metro traveler for three months. Chapter 3 used mobile phone traces generated
by the users in Shanghai who subscribe to a telecommunication company.

As the first case study of the thesis, Chapter 2 strictly narrowed the scope to study only
the metro travelers’ location choices for after-work activities, and we found that given
a preselected activity purpose, building a location choice model using big mobility is
not very different from building one using traditional travel survey data, except for the
absence of personal attributes. In traditional travel survey data, the profile of a traveler
is usually obtainable, such as one’s socioeconomic level. Therefore, it is possible to
model how different types of travelers would have different preferences in location
choice. Such information is missing in big mobility data. In Chapter 2, we made
a simple assumption: the characteristics of the area where one lives or works can
reveal some characteristics of this person. We found each traveler’s home and work
locations based on the longitudinal travel data, and calculated the jobs-housing balance
that can somehow reveal some characteristics of the areas of their home and work
locations. This indicator then served as a proxy variable for each traveler’s personal
attributes and were added to the discrete choice model. It was found that this new
model outperformed the one without any personal attributes.

Chapter 3 was based on the same strategy but a different path has been chosen. Instead
of using mobility data to generate proxy variables, mobility data were combined with
external data sources that can portrait the characteristics of travelers. Specifically, the
case study used not only mobile phone traces to observe the movements of travelers
but also the mobile internet usage data (i.e., frequency of visiting each type of sites) of
the same users to portrait them. Besides, the case study proposed a clustering method
to determine function types of urban areas using another external data source, urban
point-of-interest data. As a result, we found that the mobile internet usage of travelers
is statistically related to the types of areas that they prefer to visit.

In summary, adding explicit proxy variables can enhance the understanding of human
spatial behavior. One can extract such proxy variables from big mobility data them-
selves. Intuitively, longitudinal behavioral data, because of the sample size, could
contain some hidden information about travelers and/or trips, such as one’s home and
work locations. One can also obtain such proxy variables by fusing external data about
travelers and locations, such as mobile internet usage patterns of travelers. Such infor-
mation provides a novel perspective to understand different individuals’ spatial behav-
ior.

6.1.2 Using implicit data-driven methods

In the previous strategy, one has to arbitrarily define a proxy variable to account for
behavioral heterogeneity. The effect is highly dependent on whether a good proxy
variable is selected, and the selection of a good proxy variable is mostly dependent
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on some assumptions based on prior knowledge. Without using any explicit proxy
variables, Chapter 4 and 5 proposed to understand different people’s human spatial
behavior in a more data-driven way. A more flexible assumption underlies this ap-
proach: past behavior itself can reflect the heterogeneity in the population and serve as
a reference to predict future behavior.

Chapter 4 implemented a neighborhood-based collaborative filtering algorithm to pre-
dict location choice for flexible activities using metro smart card data. This algorithm
has widely been used in recommendation systems to predict user preferences for prod-
ucts. It looks for the so-called neighbors who share similar historical behavior patterns
to an individual and then predicts this individual’s preference based on the neighbors’
historical behavior. Our case study showed that this method performed reasonably well
in the context of travel behavior prediction as well.

As a continuation of the data-driven strategy, Chapter 5 proposed a matrix factorization
model, another collaborative filtering method that has widely been used in recommen-
dation systems. This new method can especially help understand aggregate spatial be-
havior, in terms of spatial interaction matrices. We pointed out the similarity between
this model and a traditional gravity-based trip distribution model, and we showed the
advantages of the new model based on the prediction performance.

In summary, using implicit data-driven methods can enhance the understanding of hu-
man spatial behavior. However, such understanding is similar to Google Translate’s
understanding of different languages. It is not explainable, and it is data-driven, in
terms of nearest neighbors and latent factors.

6.2 Limitations and recommendations for future research

6.2.1 Data

The first limitation of this thesis is about the data. One might have questioned why
this thesis did not try using both big mobility data and traditional travel survey data.
In fact, it is difficult to find a place where both types of data are available perfectly
aligned in space and time. All the case studies in this thesis used big mobility data
from Shanghai, China. We had the chance to access those data because the urban
authority started exploring the possibility of using big data to solve urban issues. Thus,
they collaborated with the companies who owned those data, and together organized
a series of urban data competitions. Researchers were invited to contribute with their
ideas and thus obtained those data in return, which can later be used for their own
academic purposes. On the other hand, the travel survey data of Shanghai are not open
to researchers.

In Europe, the situation is the exact opposite. Traditional travel survey data are shared
with the public in a very standardized way, such as OViN and MPN in the Netherlands
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(Hoogendoorn-Lanser et al., 2015). However, especially after the implementation of
the General Data Protection Regulation (GDPR), it has been extremely difficult for
researchers to get access to any big mobility data, even in aggregated form.

As discussed previously, these two types of mobility data have both their advantages
and disadvantages. In the future, if a researcher could, by any chance, access both of
them in the same case study, we have the following recommendations. First, it would
be valuable to compare them for the same modeling task. The marginal benefits of
having a larger sample and having more features can be calculated. Second, methods
to combine them can be developed to benefit from the strengths of both types of data.

6.2.2 Methodology

All the proposed methods can be used to understand the spatial behavior of the ob-
served travelers, or the spatial interactions between the existing locations, from big
mobility data. However, generalizing to the other unobserved travelers or locations
is a different challenge. Such generalization is feasible using traditional travel survey
data, and it is a necessary step especially when the estimated behavioral model should
be applied to a synthetic population to predict the total travel demand.

Using big mobility data, such generalization is sometimes still needed. For example,
it would be relevant to infer the spatial behavior of the total population from the users
who subscribe to a telecommunication company. Even if we can observe the whole
population of public transportation travelers in a city, there will still be new travelers
in the transit system every day. How can we transfer our knowledge about the spatial
behavior of the existing observed travelers to the new unobserved travelers?

There is a trade-off between the two main strategies of this thesis. Data-driven meth-
ods benefit from the flexibility to exploit the patterns revealed in big data. However,
in this way, the knowledge about the observed travelers’ spatial behavior cannot be
transferred to any new unobserved travelers. For example, it is impossible to know
the latent factors or nearest neighbors of a new unobserved traveler. Compared to
the data-driven methods, adding explicit variables seems arbitrary, but the knowledge
about spatial behavior of observed travelers can be transferred seamlessly, as long as
the proxy variables can be generated for new unobserved travelers.

In the field of recommendation systems, researchers also noticed the same problem.
The data-driven collaborative filtering methods cannot generate predictions for new
users or products. This problem is designated as the cold start problem. To solve the
cold start problem, researchers used explicit user and product attributes to help bridge
the gap from existing users/products to new users/products (Schein et al., 2002).

The data-driven methods of modeling spatial behavior are worth exploring, but they
cannot generate predictions for unobserved travelers or locations. To tackle this issue,
we suggest that future researchers borrow the concept of the cold start problem from
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recommendation systems. It is very likely that both strategies will have to be mixed:
using the data-driven methods for the observed travelers, and at the same time, adding
the explicit proxy variables to help bridge the gap from observed travelers/locations to
unobserved travelers/locations.

6.3 Societal relevance and implications for practice

Human spatial behavior is relevant to many urban stakeholders. For example, trans-
portation operating companies want to understand human spatial behavior because they
want to provide the most requested services to fulfill people’s travel demand. Re-
tail companies want to understand human spatial behavior because they want to know
where they should locate their business. Urban planners need to understand human
spatial behavior because they want to plan cities in the most efficient way. Regardless
of the final purposes, all the stakeholders should follow the steps defined in Figure 1.3
to leverage their mobility data: data collection, estimating, understanding, and decision
making.

Traditionally, planning is a long-term iterative process including the aforementioned
steps. For example, in Shanghai, the urban authority collects travel survey data as
a basis for transportation modeling and planning every 5-10 years (Lu & Gu, 2011).
If big mobility data are widely accepted as a reliable source for planning, the time
and cost of data collection can be saved, and the iterative process can become much
more frequent. Consequently, more timely decisions can be made. Shortening this
cycle creates even more value for those mobility-related companies. Most of such
companies have already been aware of this fact, and they have built their data pipelines
to automatically collect their users’ big mobility data. In this way, the marginal cost of
data collection is extremely low. These companies are thus willing to quickly transform
their updated and low-cost data to operational insights.

A set of useful methods were presented with four real-life case studies to show how
they can help estimate and understand human spatial behavior using big mobility. They
can further be used in practice to support decision making. Real estate investors and
transportation planners can learn from Chapter 2 how to model where urban commuters
choose to visit after work. Accordingly, real estate investors can predict the number of
visitors in various investment scenarios and find out which area near a metro station
has the most business potential. Transportation planners can use the model to design
an improved metro network that provides maximum accessibility to all commuters for
after-work activities. From Chapter 3, urban planners can learn to model different peo-
ple’s spatial preferences so that they can allocate urban functions in a geographically
reasonable way. Retail companies can also utilize the model to decide where they
should better locate their business. As discussed previously, Chapter 4 and 5 explored
the data-driven methods of modeling human spatial behavior, and thus they cannot
generate predictions for unobserved travelers or locations. This drawback makes them
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limited in decision making unless the aforementioned cold start problem can be solved.
However, they can still at least help transportation operating companies better estimate
and understand the spatial behavior of their existing users, or the spatial interactions
within their existing system. Transportation operating companies can use the method
from Chapter 4 to predict the next stations that an existing user will visit, and they can
use the method from Chapter 5 to calculate the travel demand elasticity with respect to
generalized travel costs adjusted in the existing network.
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Devillaine, F., M. Munizaga, M. Trépanier (2012) Detection of activities of pub-
lic transport users by analyzing smart card data, Transportation Research Record,
2276(1), pp. 48–55.

Dong, X., M. E. Ben-Akiva, J. L. Bowman, J. L. Walker (2006) Moving from trip-
based to activity-based measures of accessibility, Transportation Research Part A:
policy and practice, 40(2), pp. 163–180.

Dunn, J. C. (1973) A fuzzy relative of the isodata process and its use in detecting
compact well-separated clusters.

Everitt, B. S., S. Landau, M. Leese, D. Stahl (2011) Hierarchical clustering, Cluster
analysis, 5.

Fotheringham, A. S., M. E. O’Kelly (1989) Spatial interaction models: formulations
and applications, vol. 1, Kluwer Academic Publishers Dordrecht.

Fox, M. (1995) Transport planning and the human activity approach, Journal of trans-
port geography, 3(2), pp. 105–116.

Furletti, B., P. Cintia, C. Renso, L. Spinsanti (2013) Inferring human activities from
gps tracks, in: Proceedings of the 2nd ACM SIGKDD International Workshop on
Urban Computing, ACM, p. 5.

Gan, Z., M. Yang, T. Feng, H. Timmermans (2020) Understanding urban mobility
patterns from a spatiotemporal perspective: daily ridership profiles of metro stations,
Transportation, 47(1), pp. 315–336.

Gelman, A., J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, D. B. Rubin (2013)
Bayesian data analysis, CRC press.

Geurs, K. T., B. Van Wee (2004) Accessibility evaluation of land-use and transport
strategies: review and research directions, Journal of Transport geography, 12(2),
pp. 127–140.

Giannotti, F., D. Pedreschi (2008) Mobility, data mining and privacy: A vision of
convergence, in: Mobility, data mining and privacy, Springer, pp. 1–11.

Giuliano, G., H.-H. Hu, K. Lee (2003) Travel patterns of the elderly: The role of land
use, Tech. rep., METRANS Transportation Center.



94 Modeling Human Spatial Behavior through Big Mobility Data

Goh, S., K. Lee, J. S. Park, M. Choi (2012) Modification of the gravity model and
application to the metropolitan seoul subway system, Physical Review E, 86(2), p.
026102.

Gong, V. X., W. Daamen, A. Bozzon, S. P. Hoogendoorn (2019) Estimate sentiment
of crowds from social media during city events, Transportation research record,
2673(11), pp. 836–850.

Gong, V. X., J. Yang, W. Daamen, A. Bozzon, S. Hoogendoorn, G.-J. Houben (2018)
Using social media for attendees density estimation in city-scale events, IEEE Ac-
cess, 6, pp. 36325–36340.

Gopalan, P., J. M. Hofman, D. M. Blei (2015) Scalable recommendation with hierar-
chical poisson factorization., in: UAI, pp. 326–335.

Goulet-Langlois, G., H. N. Koutsopoulos, J. Zhao (2016) Inferring patterns in the
multi-week activity sequences of public transport users, Transportation Research
Part C: Emerging Technologies, 64, pp. 1–16.

Goulet-Langlois, G., H. N. Koutsopoulos, Z. Zhao, J. Zhao (2017) Measuring regu-
larity of individual travel patterns, IEEE Transactions on Intelligent Transportation
Systems, 19(5), pp. 1583–1592.

Gouvert, O., T. Oberlin, C. Févotte (2018) Negative binomial matrix factorization for
recommender systems, arXiv preprint arXiv:1801.01708.

Griffith, D. A., M. M. Fischer (2013) Constrained variants of the gravity model and
spatial dependence: model specification and estimation issues, Journal of Geo-
graphical Systems, 15(3), pp. 291–317.

Hansen, W. G. (1959) How accessibility shapes land use, Journal of the American
Institute of planners, 25(2), pp. 73–76.

Hasan, S., C. M. Schneider, S. V. Ukkusuri, M. C. González (2013a) Spatiotemporal
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Summary

People are engaged in a variety of activities through space every day. The choice of
type and location of activities is known as human spatial behavior. Urban decision
makers need to understand how land use and transportation systems can shape human
spatial behavior in order to design better systems. In the past, they have collected
mobility data through travel surveys to understand human spatial behavior. Today, a
wide range of automatically collected data have become available as alternative data
sources.

Big mobility data vs. traditional travel survey data has been a topic of long-time debate
in human mobility and travel behavior research. Big data are intuitively better but this
is not always the case. Big mobility data relate to a large number of travelers and trips
but little is known about each individual individual traveler and trip, not to mention that
sometimes their information has to be aggregated for privacy concerns. On the other
hand, travel survey data, despite reporting only a small group of respondents, tend to
include abundant features about each individual traveler, such as age and attitudes, and
each trip, such as trip purpose. Assuming that each row represents one traveler and
each column represents one feature, big mobility data should have been described as
long and thin, and “small” survey data (Chen et al., 2016) as short and wide.

Still, big mobility data are favorable for being cost-efficient, up-to-date and big in
terms of sample size. Therefore, given all limitations and advantages of big mobility
data, this thesis aims to answer the following research question:

To what extent, and how, can big mobility data foster the understanding of human
spatial behavior?

The major contribution of this thesis consists of two main strategies adopted to answer
the research question. The first main strategy is to make the long and thin data wider.
Since the lack of features is the biggest obstacle for big mobility data to explain human
spatial behavior, attempts were made to generate proxy variables for traveler segmen-
tation and trip characterization, from either big mobility data themselves (Chapter 2)
or from external datasets (Chapter 3).

Given a preselected activity purpose, building a location choice model using big mo-
bility data is not very different from building a location choice model using traditional
travel survey data, except for the absence of personal attributes. In Chapter 2, we made
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a simple assumption: the characteristics of the area where a person lives or works
can reveal particular characteristics of this person. We found each travelers home and
work locations from longitudinal travel data, and used the job-housing balance to re-
veal some characteristics of these areas. This indicator then serves as a proxy variable
for each travelers personal characteristics and was added to a discrete choice model. It
was found that this new model outperformed the model without any personal charac-
teristics.

Chapter 3 was based on the same strategy but a different path was chosen. Instead of
merely using mobility data to generate proxy variables, mobility data were combined
with external data sources that portrayed the characteristics of travelers. Specifically,
the case study used not only mobile phone traces to observe the movements of travelers,
but also mobile internet usage data (i.e., frequency of visiting each type of sites via
smart phones) of the same users. Besides, the case study proposed a clustering method
to determine types of functional urban areas using another external data source, urban
point-of-interest data. As a result, we found that the mobile internet usage of travelers
is statistically related to the types of areas that they prefer to visit.

The second main strategy takes a relatively more groundbreaking approach, inspired by
the collaborative filtering algorithms that are commonly used to model user preferences
in recommendation systems. Without using any specific proxy variables, Chapter 4
and 5 implemented data-driven methods, relying only on empirical observations about
many people, and not requiring imposing any theory-based prior assumptions about the
mechanisms of human spatial behavior. Intuitively, this approach might work because
historical spatial behavior itself can indicate heterogeneity between individuals within
a given group of travelers and thus help make predictions about their future behavior.

Chapter 4 implemented a neighborhood-based collaborative filtering algorithm to pre-
dict location choice for flexible activities using metro smart card data. This algorithm
has widely been used in recommendation systems to predict user preferences for prod-
ucts. It looks for so-called “neighbors” that share similar historical behavior patterns
with an individual and then predicts individuals preference based on the neighbors his-
torical behavior. Our case study showed that this method performed reasonably well in
the context of travel behavior prediction, suggesting further exploration of this method,
which is still relatively unfamiliar to most transportation researchers.

As a continuation of the data-driven strategy, Chapter 5 proposed a matrix factorization
model, another collaborative filtering method that has widely been used in recommen-
dation systems. This new method can especially help understanding aggregate spatial
behavior in terms of spatial interaction matrices. We pointed out that this model is al-
most equivalent to a traditional gravity-based trip distribution model, but more flexible.
In a case study of predicting origin-destination trip matrices of a metro network, we
demonstrated the advantages of the new model in terms of its prediction performance.

Overall, there is a trade-off between the two proposed strategies. While the data-
driven approaches benefit from the flexibility to exploit patterns revealed in big data,
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they are limited in their interpretability as well as their ability to generalize the discov-
ered patterns from observed travelers or locations to unobserved travelers or locations.
Nevertheless, this type of method can be sufficiently useful for transportation operat-
ing companies to capture day-to-day behavioral patterns of their existing customers for
daily operations. On the other hand, the first main strategy about adding proxy vari-
ables is less data-driven, but still better for longer-term planning and policy-making
because it focuses on making predictions in what-if scenarios involving unobserved
travelers or locations.
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Samenvatting

Mensen zijn elke dag bezig met verschillende activiteiten op verschillende locaties. De
keuze van type en locatie van activiteiten staat bekend als menselijk ruimtelijk gedrag.
Stedelijke beleidsmakers willen begrijpen hoe landgebruik en transportsystemen het
menselijk ruimtelijk gedrag kunnen beı̈nvloeden zodat ze landgebruik en transport-
systemen beter kunnen plannen. In het verleden verzamelden zij mobiliteitsgegevens
via reis-enquêtes om het ruimtelijk gedrag van mensen te begrijpen. Tegenwoordig is
een breed scala aan automatisch verzamelde gegevens beschikbaar gekomen als alter-
natieve gegevensbronnen.

Big mobility data versus traditionele reis-enquête data is al lang een onderwerp van
discussie in het onderzoek naar menselijke mobiliteit en reisgedrag. Big data zijn
intuı̈tief beter, maar dit is niet altijd het geval. Big mobility data hebben betrekking
op een groot aantal reizigers en reizen, maar er is weinig bekend over elke individu-
ele reiziger en reis, en hun informatie soms moet worden samengevoegd omwille van
privacy-overwegingen. Aan de andere kant bevatten gegevens uit reis-enquêtes, on-
danks het feit dat ze slechts een kleine groep respondenten betreffen, over het alge-
meen een overvloed aan kenmerken over elke individuele reiziger, zoals leeftijd en
attitudes, en elke reis, zoals het reisdoel. Als in een tabel met mobiliteitsdata elke rij
één reiziger vertegenwoordigt en elke kolom één kenmerk, zouden big mobility data
moeten worden beschreven als lang en dun, en “kleine” enquêtegegevens (Chen et al.,
2016) als kort en breed.

Toch zijn big mobility data aantrekkelijk omdat ze kostenefficiënt, actueel en groot zijn
in termen van steekproefgrootte. Daarom, gezien alle beperkingen en voordelen van
big mobility data, wil dit proefschrift de volgende onderzoeksvraag beantwoorden:

In welke mate, en hoe, kunnen big mobility data het begrip van menselijk ruimtelijk
gedrag bevorderen?

De belangrijkste bijdrage van dit proefschrift bestaat uit twee hoofdstrategieën die zijn
gevolg om de onderzoeksvraag te beantwoorden. De eerste hoofdstrategie is om lange
en dunne data breder te maken. Omdat het gebrek aan kenmerken het grootste obstakel
is voor big mobility data om menselijk ruimtelijk gedrag te verklaren, zijn pogingen
ondernomen om proxy variabelen te genereren voor reizigerssegmentatie en reiskarak-
terisering, hetzij uit big mobility data zelf (Hoofdstuk 2) of uit externe datasets (Hoofd-
stuk 3).
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Gegeven een voorgeselecteerd activiteitendoel, is het bouwen van een locatiekeuze-
model met behulp van big mobility data vergelijkbaar met het bouwen van een lo-
catiekeuzemodel met behulp van traditionele gegevens uit reis-enquêtes, met uitzon-
dering van de afwezigheid van persoonlijke attributen. In hoofdstuk 2 doen we een een-
voudige aanname dat: de kenmerken van het gebied waar een persoon woont of werkt
bepaalde kenmerken van deze persoon onthullen. We hebben uit longitudinale reis-
gegevens de woon- en werklocaties van elke reiziger gehaald en de woon-werkbalans
van deze gebieden onthuild. Deze indicator dient dan als een vervangende variabele
voor de persoonlijke kenmerken van elke reiziger en werd toegevoegd aan een discreet
keuzemodel. Het bleek dat dit nieuwe model beter bij de data paste dan het model
zonder persoonlijke kenmerken.

Hoofdstuk 3 was gebaseerd op dezelfde strategie, maar in plaats van alleen mobiliteits-
gegevens te gebruiken om proxy variabelen te genereren, werden mobiliteitsgegevens
gecombineerd met externe gegevensbronnen die een beeld gaven van de kenmerken
van reizigers. Meer specifiek werd in de casestudy zowel gebruik gemaakt van traces
van mobiele-telefoons om de bewegingen van reizigers te observeren, als ook van
gegevens over mobiel internetgebruik (d.w.z. de frequentie van het bezoeken van
elk type sites via smart phones) van dezelfde gebruikers. Daarnaast werd in de cas-
estudy een clustermethode voorgesteld om soorten functionele stedelijke gebieden te
bepalen met behulp van een andere externe gegevensbron, stedelijke point-of-interest
gegevens. Uit de analyse blijkt dat het mobiele internetgebruik van reizigers statistisch
gerelateerd is aan de soorten gebieden die zij het liefst bezoeken.

De tweede hoofdstrategie is geı̈nspireerd door de collaboratieve filteralgoritmen die
gewoonlijk worden gebruikt om gebruikersvoorkeuren in aanbevelingssystemen te mod-
elleren. Zonder gebruik te maken van specifieke proxy-variabelen zijn in hoofdstuk
4 en 5 data-gestuurde methoden geı̈mplementeerd, waarbij alleen wordt vertrouwd
op empirische waarnemingen van een groot aantal mensen en waarbij geen op theo-
rie gebaseerde aannames vooraf worden gedaan over het menselijk ruimtelijk gedrag.
Deze benadering is intuı̈tief geschikt omdat historisch ruimtelijk gedrag zelf kan wi-
jzen op heterogeniteit tussen individuen binnen een bepaalde groep reizigers en zo kan
helpen voorspellingen te doen over hun toekomstige gedrag.

Hoofdstuk 4 implementeerde een buur-gebaseerd collaboratief filtering algoritme om
de locatiekeuze voor flexibele activiteiten te voorspellen met behulp van metro smart
card gegevens. Dit algoritme wordt veel gebruikt in aanbevelingssystemen om ge-
bruikersvoorkeuren voor producten te voorspellen. Het zoekt naar zogenaamde “naaste
buren” die vergelijkbare historische gedragspatronen delen met een individu en voor-
spelt dan de voorkeur van het individu op basis van het historische gedrag van de naaste
buren. Onze casestudy toonde aan dat deze methode veelbelovend resultaten levert
voor het voorspellen van reisgedrag. Omdat deze methode nog relatief onbekend is bij
de meeste transportonderzoekers, is verder onderzocht kansrijk.

Als vervolg op de data-gedreven strategie, werd in Hoofdstuk 5 een matrix factorisatie
model voorgesteld. Dit is een andere collaboratieve filtering methode die veel gebruikt
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wordt in aanbevelingssystemen. Deze nieuwe methode kan vooral helpen bij het begri-
jpen van geaggregeerd ruimtelijk gedrag in termen van ruimtelijke interactie matrices.
Het model is vergelijkbaar met een traditioneel op zwaartekracht gebaseerd model voor
reisverdeling, maar flexibeler. In een casestudy laten we zien hoe het model herkomst-
bestemmingsrittenmatrices in een metronetwerk kan voorspellen.

In het algemeen is er een wisselwerking tussen de strategieën die hetzij zijn gebaseerd
op het toevoegen van proxy variablelen of vooral data gedreven zijn. Terwijl de data-
gedreven strategieën profiteren van de flexibiliteit om gebruik te maken van patronen
die in big data worden onthuld, zijn ze beperkt in hun interpreteerbaarheid en hun
vermogen om de ontdekte patronen te generaliseren van geobserveerde reizigers of
locaties naar niet-geobserveerde reizigers of locaties. Niettemin kan dit type meth-
ode voldoende nuttig zijn voor transportbedrijven om de dagelijkse gedragspatronen
van hun bestaande klanten vast te leggen voor de dagelijkse operaties. De strate-
gieën gebaseerd op het toevoegen van proxy variabelen zijn minder data-gestuurd,
maar geschikter voor planning en beleidsvorming op langere termijn omdat het zich
richt op het maken van voorspellingen in what-if scenario’s met niet-waargenomen
reizigers of locaties.
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