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Abstract— Semiconductor based bulk absorbers operating in
the (sub-) THz range are discussed. The conductivities of the bulk
media are described by the Drude model for electron gas where
the electron density is controlled. The Drude model predicts the
existence of two frequencies of interest, one associated to the
scattering time of the electrons, and a second associated to the
plasma frequency. The dimensions of absorbers for a specific
frequency range can be minimized by tuning the doping levels.
Eventually, the maximum ohmic absorption from a bulk material
is achieved when the real part of the characteristic impedance of
the absorber is matched to the one of the surrounding medium
and the imaginary part of the characteristic impedance is high,
so that the power entering the material is actually transformed
in heat. Using a classic transmission line representation a
matching layer is introduced, to further increase the absorbtion
capabilities of a semiconductor slab. Measurements using a time
domain spectroscopy system show the increased accuracy of the
Drude model compared to the quasi-static approximation of the
conductivity. The transmission line representation in combination
with the Drude model shows to be a simple and accurate tool for
integrated antenna front end design and absorber optimization.

Index Terms—Absorbers, Characteristic impedance, Drude
model, Semiconductors.

I. INTRODUCTION

THE Drude’s theory for conduction electrons is a fairly
accurate description of the electromagnetic waves dis-

persion in metals [1], whose typical resisitivity is lower than
10−4Ωcm. However, it is not often considered in all its details
by the antennas scientific community, since the dependence
of the conductivity of metals on frequency starts to become
significant at frequencies much higher than the upper limit of
the antennas working frequency range (i.e. hundreds of GHz).
Indeed, up to 5 THz, metals can be considered very good
conductors amenable to the low loss simplifications assumed
by Leontovich [2].

On the other hand, for mildly doped semiconductors, whose
typical resistivity falls between 1 and 100 Ωcm, the Drude’s
model predicts a strong frequency dependence of the conduc-
tivity and dielectric constant already in the GHz range. The
dispersion properties of semiconductors (SCs) were observed
with increasing interest since the fabrication of the first Si
and Ge devices (diodes, bipolar transistors etc). Later, the
first models for the high frequency (> 100 GHz) properties
for these devices were developed from the mid-sixties [3]. In
particular, the Drude’s model was proven to be fundamental
for the explanation of the high frequency diode response as

a function of the spreading resistance [4]. Moreover, it was
not before 1978 that the high frequency cut-off of Schottky
diodes was understood, again thanks to the Drude’s theory of
free charge carriers in SCs [5].

During the 1990’s, significant technological breakthroughs
in THz time domain spectroscopy (TDS) [6] allowed the ac-
curate measurement of the SCs free charge carriers scattering
time, electrical mobility, and effective mass. The experimental
results reported in [6]–[8] demonstrated also that the Drude’s
model, despite its simplicity, describes these conduction pa-
rameters well for SCs, such as Si, in the GHz and THz
range. For specific reading, comprehensive reviews on SCs
dispersion can be found in [9], [10]. In order to overcome some
inaccuracies and limits of the Drude’s theory for SCs, numer-
ical approaches, based on Monte Carlo simulations, Maxwell
equations and Molecular Dynamics, have been presented in
[11]. However, this kind of complex methodologies resulted
to be less than 10% more accurate for the determination of
the frequency dependent complex conductivity of Si. Hence,
the Drude’s theory still remains the simplest classical model
that can predict the SCs dispersion properties with minimal
computational efforts, allowing fast engineering of SC-based
components for antenna systems and imagers.

For historical reasons, all the Drudes theory aspects and
consequences, widely studied by the physicist and time domain
community, have not yet received the proper attention by the
microwave and THz engineering community. For example,
in the modeling of state of the art of CMOS integrated
detectors, of which one pixel could be as shown in Fig. 1,
and imaging arrays [12], the material’s dielectric constant
has been assumed frequency independent. Although for some
high resistive materials, such as the material considered in
[13], the consequences of assuming the conductivity to be
frequency independent, are negligible, for other materials the
overestimation of the ohmic losses is very significant [14].

Moreover it appears that SC composites have not been
exploited in the design of absorbers yet. Bulk absorbers in
the THz regime could be simply fabricated by silicon micro-
machining and deep reactive ion etching. High resolution
imaging in the THz band [12], [15]–[17], is for instance a tech-
nological field in which arrays of antenna coupled dielectric
lenses are often adopted. Each lens corresponds to a specific
observation direction, and the mutual coupling between feeds
of different lenses must be avoided. The mutual coupling
can be hindered by selectively increasing the conductivity of
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Fig. 1. Example of stratification consisting of an antenna and a dielectric
lens, separated by a thin layer of low-resistivity silicon.

Fig. 2. On-chip lens array made of high resistive silicon. Locally increasing
the doping levels for maximum absorption can be used to reduce surface wave
propagation in the chip.

specific lateral portions of the lenses to render them opaque,
as shown in Fig. 2.

When complying with stringent volume requirements, the
fine tuning of the parameters of the SC slabs leads to sig-
nificant ohmic losses which can be characterized by equiv-
alent transmission lines. These losses imply characteristic
impedances whose imaginary part is comparable to the real
part. These lines are not usually addressed in the microwave
community and they require an heuristic approach to the
design as there are no well known design principles.

In this paper we first present a review on the Drude’s model
for metals and SCs. In the following sections we show how
to design SC absorbers employing the Drude’s theory together
with transmission line model.

This paper is structured follows: in section II we discuss
the Drude model in the context of a good conductor, specif-
ically gold. Hereafter, the dispersion of bulk SC materials is
considered, by analysing the behaviour of n-doped silicon in
section III. The characteristic impedance of the doped silicon
is used in this transmission line model and in section IV
the dependence of the doping and the frequency behaviour
of this characteristic impedance is studied. The model is
verified using a TDS system in section V by implementing
a transmission line model describing a finite slab of doped

Fig. 3. Resistivity of gold as a function of the frequency calculated using
the given parameters.

silicon. Section VI describes several applications where the
Drude model can be used to improve the accuracy of front end
modelling and aid in absorber design. Finally, in section VII
the most important findings are summarized and conclusions
are drawn.

II. ANALYSIS OF CONDUCTOR USING DRUDE MODEL

The most important characteristics of the Drude model will
be briefly summarized in this section, in order to provide
the reader with a complete view and to introduce essential
variables and terminology used in this article. The effective pa-
rameters from the Drude model as a function of the frequency
are discussed focusing on bulk metals, specifically gold.

In the quasi-static limit, the conductivity of a metal or a SC
can be approximated as

σqs =
ne2τ

me
(1)

where n is the electron density, e = 1.6 × 10−19 C is the
charge of an electron and me = 9.1 × 10−31 kg is the mass
of a free electron. The scattering time, τ , characterizes the
electron gas, and in the case of a metal it is in the order of
femto seconds (27 fs for gold at room temperature).

The model predicts a linear frequency dependent resistivity
as

ρ(ω) = ρqs(1 + jωτ) (2)

where ρqs = 1/σqs and both σqs and τ have been provided
in (1). As a specific case, the resistivity of gold calculated
using the Drude model, at 300 K is shown in Fig. 3. The
electron density is n = 5.9× 1028 electrons/m3. At very low
frequency the resistivity is seen to be mostly real. Drude’s
model introduces a frequency dependence for the conductivity
of the metal, describing the bulk material as an ion sea,
with free electrons. The free electrons are accelerated by the
presence of an electric field, and hit the metal ions, as shown
in Fig. 4. When these hits occur, kinetic energy is transferred
to the ions which are accelerated, and as a consequence
heat is generated. In a first order approximation the average
time, τ , between successive hits of electron and the ion sea,
does not depend on the electric field. Instead it depends
on the effective scattering surface of the ions, which is a
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Fig. 4. Free electrons (red dots) are accelerated by a low frequency electric
field (red arrows) until they hit a metal ion (blue dots), which is in turn
accelerated.

Fig. 5. Free electrons (red dots) are accelerated by a high frequency electric
field (red arrows). The direction of the electric field changes sign before
the electrons hit an ion (blue dots) and the electrons are oscillating without
transferring energy to the ions.

function of the temperature via the average energy of the ions.
Significant changes in the resistivity occur as the frequency of
the electromagnetic wave propagating in metal increases. At
the transition frequency f = fτ = 1/(2πτ), which for gold
corresponds to 6 THz, the imaginary part of the resistivity
becomes as large as the the real part. This corresponds to
the notion that for frequencies higher than fτ , the electric
field changes sign with period shorter than τ . Accordingly
within the time interval τ the electrons are accelerated in
alternating opposite directions. For this reason the electrons
do not discharge all the kinetic energy they acquired into the
ion sea. A pictorial view of the average electron accelerated
by a high frequency electric field is shown in Fig. 5.

From (2) the frequency dependent conductivity is

σ(ω) =
σqs

1 + jωτ
=

σqs
1 + ω2τ2

− j σqsωτ

1 + ω2τ2
. (3)

The introduction of (3) in Maxwell’s equations provides the
effective dielectric constant

εeff(ω) = ε0εr,eff = ε0εr∞

(
1− jσ(ω)

ωεr∞ε0

)
. (4)

The effective dielectric constant presents both a real and an
imaginary part which can be isolated after introducing the
plasma frequency as [18]:

ω2
p =

ne2

εr∞ε0me
(5)

Fig. 6. Absolute value of the real and imaginary part of the effective relative
permittivity of gold calculated using the given parameters. Both real and
Imaginary parts are negative for frequencies lower than the plasma frequency.

one finds

εr,eff(ω) = εr∞

[
1− ω2

pτ
2

(
1

1 + ω2τ2

)]
− jεr∞ω

2
p

τ2

τω

(
1

1 + ω2τ2

)
.

(6)

The absolute values of the real and imaginary parts of the
effective relative dielectric constant are plotted in Fig. 6 again
for the case of gold, calculated using the given parameters
(εr∞ = 1). The term in (6) within square parenthesis expresses
the real part of the effective relative dielectric constant. Since
for gold at room temperature ω2

pτ
2 ≈ 1.6×105, it is apparent

that for frequencies lower than the plasma frequency the real
part of the effective dielectric constant is negative.

A similar transition to the one that was observed in the
resistivity can be observed in the equivalent relative dielectric
constant. For frequencies lower than fτ the imaginary part of
the effective relative dielectric constant is much larger than the
real part, and also that at extremely high frequencies (f > fp,
fp = ωp/2π), gold, as all metals, becomes transparent.

The propagation constant also shows a signature associ-
ated to the fτ transition. The propagation constant for gold,
calculated using the Drude model, is plotted in Fig. 7 with
frequencies varied both in linear and in logarithmic scale. For
frequencies below 2200 THz propagation in gold is highly
attenuated. However, on an logarithmic scale, it is apparent
that from DC to the mentioned fτ = 6 THz the amplitude of
the real part of the propagation constant increases in the same
way as the amplitude of the imaginary part. At fτ = 6 THz
the real part of the propagation constant reaches a maximum
value and then decreases, while the imaginary part saturates
at approximately 20 THz.

The transition that characterizes the propagation and atten-
uation constant corresponds to the change in the dominant
mechanism of attenuation for the EM waves in the metal:
at low frequencies there are ohmic losses corresponding to
the transformation of EM energy into kinetic energy, while
at higher frequencies there is attenuation with minimal phase
progression. The electron density in the metal is very high,
and as the electrons are excited by an incident wave they
radiate a scattered field which opposes the propagation of
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Fig. 7. The propagation constant of an electromagnetic wave within gold,
calculated using the given parameters (a) Frequency on a linear scale. (b)
Frequency on a logarithmic scale.

waves (similarly to what happens in a waveguide in cut-
off). As long as the average distances between the electrons
are small in terms of the wavelength the scattering interferes
destructively with progressive waves in the metal. As the
frequency increases, the electrons become too massive to
respond with an acceleration to the force impressed by the
electric field before this changes sign. Since the electrons are
less accelerated, they also do not radiate the scattered field.
Therefore, the total field in the metal is only represented by
the incident field that can propagate in the metal unobstructed.
The specific frequency at which this happens, fp, depends on
the electron density and the effective mass of the electrons.

Mathematically this condition is represented by the real part
of the effective dielectric constant rising higher than zero, i.e.
1 − ω2

pτ
2/(1 + ω2τ2) > 0, which happens as the frequency

increases to values higher than the plasma frequency.

Another interesting parameter is the characteristic
impedance of the gold calculated using the Drude model,
which is shown in Fig. 8. The impedance tends to ζ0 ≈ 377 Ω
for frequencies much higher than the plasma frequency of
the metal, it undergoes a resonance at the plasma frequency,
and it is mostly imaginary for lower frequencies. However,
a zoomed view at the impedance curves at low frequencies,
Fig. 8(b), shows that for frequencies below 1 THz the real
and imaginary parts of the impedance tend to be equal. The
fact that real and imaginary parts have the same value is the
signature of the “good conductor” behaviour on which the
Leontovich [2] approximation for losses is built.

Fig. 8. Characteristic Impedance of gold calculated using the given
parameters. (a) Complete spectrum under consideration. (b) Zoomed in on
low frequencies.

III. SEMICONDUCTOR DISPERSION

Also for doped bulk SC materials the quasi static conduc-
tivity can be approximated using (1). Here we are neglecting
the hole conductivity, which is in fact neglicable for n-doped
SC materials. For SCs an equivalent electron mass is used to
account for the diminished inertia of electrons embedded in a
periodic lattice potential: me,si = 0.29me for silicon (Si) [6].
The scattering time τ for silicon is in the order of few pico
seconds, depending on the doping, and the temperature. The
scattering time is found as

τ =
msi

e
µ (7)

where the mobility µ is at T = 300 K equal to [19]

µ = µmin +
µmax − µmin

1 + (n/Nref,1)α1
− µ1

1 + (Nref,2/n)α2
(8)

The several parameters in (8) are based on experimental data
and the values are: µmin = 6.85× 10−3 m2V−1s−1, µmax =
0.1414 m2V−1s−1, µ1 = 5.61 × 10−3 m2V−1s−1, Nref,1 =
9.20 × 1022 m−3, Nref,2 = 3.41 × 1026 m−3, α1 = 0.711
and α2 = 1.98. For SC materials the transition frequencies,
fτ are in the few hundreds of GHz ranges. Also the plasma
frequencies can be in this frequency range depending on the
doping levels. Therefore both these frequencies should be
reason for attention specifically for mm- and sub-mm wave
front end designers.

Similar as to the case of gold, the effective relative permit-
tivity of the SC can be calculated as a function of frequency
from the Drude model using (6), so that the characteristic
impedance of the SC and its propagation constant are ex-
pressed as ζ = ζ0/

√
εr,eff and k = k0

√
εr,eff respectively. Fig-
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Fig. 9. Dispersion of the propagation constant,calculated using the given
parameters, in the complex plane. (a) In the case of gold. (b) In the case of
semiconductors with varying doping levels. Several frequency points along
the different curves are indicated.

ure 9 shows the dispersion curves of plane waves propagating
in gold (Fig. 9(a)) and in doped silicon (Fig. 9(b)), calculated
using the Drude model and the appropriate parameter values.
The propagation constants normalized to propagation constant
of free space, k0, (for gold) and to the propagation constant
of undoped silicon, khost = k0

√
εr∞, (for the silicon), are

shown as functions of the frequency. The propagation constant
of gold undergoes a very drastic transition after fp = 2200
THz, as for frequencies higher than fp, waves are actually
allowed to propagate without significant attenuation. The case
of silicon presents a more complex dispersion. The plasma
frequency in SCs depends largely on the doping levels, and
accordingly the dispersive properties can be designed to meet
certain requirements. In the case shown in Fig. 9(b) four
different levels of doping are considered. The parametrization
is referred to n = np = (εr∞ε0me,si)/(τ

2
sie

2) = 8.8 ×
1021 m−3. This doping is such that fp = fτ and corresponds to
ρqs = 0.6Ωcm. These orders of doping levels are common in
silicon wafers used in electronic circuits. The dopings of Fig.
9(b) correspond to n = np/5, n = np, n = 5np and n = 25np.
The lower doping levels imply lower dispersion, however for
higher dopings the frequency dependence of the propagation
constant is stronger. From this figure one can anticipate that
significant freedom in the design of front ends at (sub-) THz
frequencies can be obtained by finely controlling the electron
doping levels in silicon.

IV. IMPEDANCES OF LOW RESISTIVITY SILICON

Arguably the most important property of a material for an
EM engineer is its characteristic impedance. It relates the

Fig. 10. (a) Resistivity of doped silicon (np = 8.8× 1021m−3), calculated
using the given parameters, as a function of frequency. (b) Characteristic
impedance of doped silicon, calculated using the given parameters, for three
different levels of doping. Also the plasma frequencies are indicated.

electric- and magnetic field of a plane wave travelling in a
bulk medium, and is routinely introduced in transmission line
tools to describe the interaction of waves with the finiteness
of the structures. The superposition of multiple reflections in
slabs is well understood in the TDS community [6], however,
the representation of the total fields via equivalent transmission
lines is much less common than in the electrical engineering
community. For this reason, to the authors knowledge, the
characteristic impedance of a bulk SC cannot be found in
published literature.

The resistivity of doped silicon, as calculated using the
Drude model, with n = np is shown in Fig 10(a). The same
behaviour as for the resisitivity of gold is seen, where the
real part is constant as a function of the frequency while
the imaginary part grows linearly, reaching the value of the
real part at fτ . The characteristic impedance of silicon doped
with different electron densities is shown in Fig. 10(b). The
characteristic impedance of doped silicon is

ζ(ω) =
ζ0√

εr,eff (ω)
(9)

where εr,eff (ω) is introduced in (6). After some algebraic
steps (9) is written as

ζ(ω) = ejπ/4
√
µ0ω

σqs

√
1 + ω2τ2

1 + jγ(ω)
(10)

where we introduced

γ(ω) =
ω

ω2
pτ

(
1 + (ω2 − ω2

p)τ2
)
. (11)
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In the limit for low frequency it can be seen that γ goes to
zero, so that

ζ(ω � ωp) =

√
µ0ω

2σqs
(1 + j) (12)

which is recognized as the leontovich approximation for good
conductors. Instead, for very high frequencies (i.e. ω � ωp),
using ω2

pτ = σqs/(εr∞ε0), we see

γ(ω � ωp) =
ωεr∞ε0
σqs

(
1 + ω2τ2

)
(13)

so that

ζ(ω � ωp) =

√
µ0

εr∞ε0
. (14)

The impedance behaviour in the frequency range around ωp
shows an interesting behaviour. As the frequency grows from
very low frequency, both real and imaginary parts, RSi and
XSi respectively, of the impedance rise and show a peak close
to each other in frequency. In Sec. VI it will be shown that
the percentage of incident power absorbed within the SC is
maximal at a frequency between the peaks of RSi and XSi.

A better physical understanding of the imaginary part can be
understood as follows. Assuming a plane wave to propagate in
positive z-direction and the magnetic field to be of zero phase
at a given observation point, the corresponding electric field
is

−→e = ζ
−→
h × ẑ = (RSi + jXSi)

−→
h × ẑ , (15)

which presents two components that are 90◦ phase shifted.
One component is in phase with the magnetic field, −→e =

RSi
−→
h × ẑ, and thus contributes to the real part of the pointing

vector along ẑ as

Re{Sz} =
1

2
RSi|
−→
h |2 . (16)

The second component is in quadrature to the magnetic
field: −→e = jXSi

−→
h × ẑ. This term contributes only to reactive

energy transported in the longitudinal direction. However, this
same component of the electric field is actually in phase with
the flow of electrons in the silicon (electric currents) and
thus directly contributes to losses. The imaginary part of the
characteristic impedance is associated to real power in the
form of ohmic losses. It can observed from Fig. 10 that for
increasing frequency, the value of RSi tends to the impedance
in absence of doping, while XSi decreases, resulting in lower
ohmic losses with frequency.

V. VERIFICATION OF THE MODEL

The Drude model for the dispersion of the semi-conductors
in (6) had first been validated in [6]. In this section we present
an experimental validation that largely follows the one in [6],
by means of state of the art TDS measurement equipment [20]
and silicon wafers.

The experiment was conducted in the following way. Two
photoconductive antennas face each other and are coupled
by means of a quasi-optical path consisting of four spherical
lenses that focus the field radiated by the transmitting (TX)
antenna onto the receiving (RX) one. The antennas are excited

Fig. 11. Transmission line model representing the absorbing slab surrounded
by a lossless host medium.

by a pulsed in-fiber gaussian laser at 1580 nm, each pulse
having a full width at half maximum of 100 fs and being
repeated at 100 MHz. The TX antenna is biased to a constant
voltage, Vb = 100 V, that accelerates the carriers injected by
the laser generating the radiating process; the carriers freed
in the RX antenna are accelerated by the incoming THz
radiation. The Si wafer is positioned in the middle of the quasi-
optical path, and the time-domain current induced in the RX
antenna is sampled and its spectrum calculated. The spectrum
of the induced current on the receiving antenna is calculated
both with and without the sample in the quasi-optical path.
From these spectra the dielectric properties of the slab can be
extrapolated, by knowing its geometry and location.

In the following we consider a SC slab, that is much larger
in the transverse directions, i.e. the x- and y-directions, than
the width of the beam profile generated by the TDS system.
The slab has a finite thickness, h, in z-direction and it is
surrounded above and below by free space. The beam profiles
can be represented as normally incident plane waves. Thus the
total electric field can be expressed as the product of a voltage,
V , and a transverse normalized field unit vector, êt

−→
E t(
−→r ) = V (z)êt . (17)

Resorting to a standard transmission line representation, as
shown in Fig. 11, the voltage distributions in the slab (medium
2) and in the two half spaces of host material (free space in
this case) for z < −h (medium 1) and and z > 0 (medium 3)
can be expressed as the superpositions of incident and reflected
waves

Vi(z) = V +
i e
−jkiz + V −i e

jkiz (18)

where the subscript i = 1, 2, 3 indicates the portion of
space under consideration. The propagation constant and the
characteristic impedance of the transmission lines in Fig. 11
are those of the host material for medium 1 and 3, and those
of SC material for medium 2.

After a few algebraic steps, the transmission line solution
for the value of the voltage propagating after the slab to the
receiver of the measurement setup is

V +
3 = V +

2 (1 + Γout) = V +
1

ejk1h(1 + Γin)(1 + Γout)

ejk2h + Γoute−jk2h
(19)

where Γin = (Zin2 − ζhost)/(Zin2 + ζhost) and Γout = (ζhost −
ζ)/(ζhost +ζ) are the voltage reflection coefficients at the cross
sections z = −h and z = 0 respectively.

Figure 12 presents the amplitude of the transmission co-
efficient, T = V +

3 /V
+
1 as a function of the frequency for

a dielectric slab of silicon of thickness h = 434µm and
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Fig. 12. Transmission through a slab of doped silicon. h = 434µm, n =
1.16 × 1021 m−3. A comparison between measurements, the Drude model
and the quasi static approximation is shown.

resistivity declared by the provider of 5 Ωcm. The value of
εr,∞ of the slab is found beforehand to be 10.5. In the model
a nominal resistivity of ρqs = 3.77 Ωcm corresponding to
a doping of n = 1.16 × 1021 was adopted because it led
to the best fit. The scattering time is found using (7). It is
apparent that the frequency independent nominal resistivity, or
conductivity, does not represent the losses in the dielectric slab
for frequencies higher than a few hundred GHz. Meanwhile the
transmission coefficient evaluated via the full Drude model and
the measured one show very good agreement within the mea-
surement accuracy. The expected and measured oscillations
are directly related to the multiple reflections at the dielectric
air interfaces.

From the same measurements, the TDS measurement equip-
ment [20] allows to extract the index of refraction (√εr,eff).
In Fig. 13 the measured real and imaginary parts (red solid
curves) are compared with the ones predicted by the Drude
model (black solid lines), and a model that only considers
the quasi static, frequency independent, approximation for the
conductivity (dashed lines). It is apparent that the accuracy of
the measured Im{√εr,eff} (proportional to the attenuation con-
stant) is impacted by the multiple reflections within the slab.
On the large scale of Fig. 13 (a) both models seem to agree
very well with measurements. However Fig. 13 (b-d) show
expanded views of the imaginary part of the index of refraction
on separate frequency ranges. The larger apparent dispersions
occur at lower frequencies, with Im{√εr,eff} varying from
−0.7 to −0.1 in the band from 100 GHz to 500 GHz. However
in that frequency range, the quasi static approximation of
the conductivity already provides Im{√εr,eff} with a good
accuracy with respect to the measurements and the Drude
model. In the frequency range between 0.5 THz to 1.5 THz
the measured Im{√εr,eff} and the one predicted by the Drude
model start to deviate significantly from the one predicted
by the quasi static conductivity model. Finally in the ranges
from 1.5 THz to 4 THz the Im{√εr,eff} is 5 to 20 times
smaller than the one predicted by the quasi static conductance
approximation, indicating that the full Drude model must be
used to assess the losses in doped semiconductors to maintain a
useful estimation of the propagation losses. Overall the Drude
model captures the dominant features very well, validating the
analysis from the previous sections.

Fig. 13. Index of refraction of the silicon slab with h = 434µm, n = 1.16×
1021 m−3. (a) Wide frequency range. (b-d) Zoomed on specific frequency
regions.

VI. APPLICATIONS IN ABSORBERS AND LENS DESIGN

In Sec. I integrated lens arrays for imagers were introduced
as a typical field of applications where the Drude model is
commonly overlooked while estimating the losses. In this
section numerical examples will be described to highlight the
usefulness of adopting the Drude model in the design stages
of integrated lens antennas and absorber design.
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In the previous section, it is shown that the transmission line
model from Fig. 11 can be used to estimate the power absorbed
in a slab of finite thickness surrounded by free space. Here we
will consider a slab of doped silicon embedded in both non-
doped silicon and free space as examples. The absorbed power
in the slab can be expressed as

Pabs =
1

2

∫∫∫
VSC

Re{σ}|
−→
E 2(x, y, z)|2dV (20)

where VSC is the volume of the SC slab and
−→
E 2 is the electric

field inside the slab. The integral can be evaluated analytically
as:

Pabs =
Re{σ}A

2
|V +

2 |2
1

2α

(
e2αh − 1 + |Γout|2(1− e−2αh)

)
(21)

where σ is provided in (3), α = −Im{k2} and A is the
effective area under illumination. The effective area under
illumination is only needed to provide absolute power values.
However if the absorbed power is normalized to the incident
power,

Pinc =
1

2

A

ζhost
|V +

1 |2 , (22)

the effective area information cancels out.

A. Absorbing slab surrounded by silicon

Using the transmission line model from Fig. 11 and (21)
and (22) one can calculate the losses associated to the low
resistive silicon layer in the front end design introduced in
Fig. 1 [14]. The frequency band under consideration is from
200 to 600 GHz, the thickness of the slab is 200µm and the
quasi-static resistivity is 10 Ωcm. This resistivity corresponds
to a doping level of n = 4.5 × 1020 m−3. From the quasi-
static approximation, the expected losses over the frequency
band of interest are constant slightly below 1 dB. However,
after implementing the Drude model it is seen that the losses
actually peak at 200 GHz at 1 dB before decreasing with
frequency to only 0.6 dB at 600 GHz and lower still at higher
frequencies. The losses as a function of frequency calculated
using both models are shown in Fig. 14. From Fig. 14 it is
clear that the commonly used quasi-static approximation for
the conductivity severly overestimates the losses at higher fre-
quencies for the transmission of a wave through low resistive
silicon. The lower losses, as calculated from the Drude model,
show greater promise for the integration of antennas in low
resistive silicon just below silicon lenses at THz frequencies.

The doping level can be tuned to maximize absorption:
the highest absorbing efficiency is achieved by the thinnest
slab that absorbs the maximum power for a given frequency.
Assuming a frequency band centered around a given central
frequency, such an SC absorber can be synthesized paramet-
rically by tuning the electron doping, n, and the thickness, h.
A good absorber will be the one that

1) Minimizes reflections of the incident waves, i.e. one for
which ζSC ≈ ζhost.

2) Maximizes resistive wave attenuation.
As previously introduced, three frequency regimes, f < fτ ,
fτ < f < fp and f > fp, can be identified from the Drude

Fig. 14. Losses in a slab of 200µm with ρqs = 10Ωcm (n = 4.5 ×
1020 m−3). The expected losses are shown as calculated using the quasi-
static approximation and the Drude model.

Fig. 15. Calculated normalized transmitted, absorbed and reflected power in
a doped silicon slab (n = np = 8.8 × 1021, ρ = 0.6 Ωcm) surrounded by
non-doped silicon. Three different slab heights are considered.

model. For frequencies below fp the real part of the effective
dielectric constant is smaller than zero. For frequencies that
are also lower than fτ , waves can still propagate in the SC,
with attenuation constant equal to the propagation constant.
However, for frequencies in the range fτ < f < fp, there is no
propagation possible, with or without attenuation. Accordingly
the frequencies between the fτ and fp are less useful for an
efficient absorber. It is apparent that for SC absorbers fp is a
design parameter since the doping n can be finely tuned in a
cleanroom environment. Accordingly a starting point for our
SC absorber design will be the choice of an electron density
doping that cuts out the middle frequencies region, which is
achieved by choosing n = np.

Looking at the absorption within slabs of different thick-
nesses, as shown in Fig. 15, it is apparent that for n = np
a slab with thickness of one effective wavelength at 350GHz,
corresponding to approximately 250µm, is sufficient to absorb
over 90% of the incident power. As expected, thicker and
thinner slabs absorb a larger and smaller portion of the incident
power respectively. Figure 16 shows the power absorbed by a
slab of thickness h = 250µm as a function of the frequency
and doping level. Lower dopings lead to lower impedance
contrasts associated to a lower XSi, however this also implies
lower ohmic attenuations. On the other hand, higher dopings
lead to higher attenuation per unit length, but also higher
reflection at the interfaces.
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Fig. 16. Normalized absorbed power in a slab of doped silicon, h = 250µm,
as a function of both the doping and the frequency calculated using the Drude
model.

B. Absorbing slab surrounded by free space

A more clear example of the usefulness of the transmission
line representation for the propagation in SC material, involves
minimizing the volume of a SC stratification to absorb a wave
incident from free space. In this case a silicon with higher
doping level, n = 6np = 5.3 × 1022 m−3, is chosen for
the main absorber. The power absorbed in this single slab
absorber of thickness 125µm, is shown in Fig 17, with the
maximum absorption being 75% around 1.5 THz. However
the introduction of a second perforated doped silicon matching
layer can be used to facilitate the penetration from free space to
the densely doped silicon. The effective dielectric permittivity
of the matching layer in the absence of doping is εr,m =√
εr∞ = 3.4. In this second case the matching layer is taken

with lm = 81µm = λd/4 at 500 GHz, where λd is the
wavelength in the matching layer. The thickness of the core
absorber is reduced to la = 44µm, so that the total absorbing
thickness remains 125µm. The doping level of the matching
layer was chosen to be nm = 3 × 1021 m−3. In this second
case over 95% of the power is absorbed in the cumulative
space of λ0/5 at 500 GHz. It is interesting to observe that
despite the heavy losses in the matching layer, the standard
quarter wavelength transformation rule still roughly applies.

VII. CONCLUSIONS

The frequency dependent properties of gold and doped sil-
icon are investigated using the Drude model. The propagation
constant of bulk silicon for different levels of n-type dopings
is presented. The characteristic impedance for low resistivity
silicon is also introduced and used in a classic transmission
line tool. Here the notable feature is that this tool is used as
in standard microwave designs, also in the presence of very
high losses per wavelength. By means of time domain sensing
measurements the model is validated. It is found that the
commonly used quasi static approximation for the conductivity
is valid for frequency regimes up to a few hundred GHz.
However, for frequencies higher than 300 GHz the Drude
model shows significantly more accurate results than the quasi
static model compared to measurements.

Guidelines are presented for the synthesis of efficient THz
absorbers for a given target frequency, by finely tuning the

Fig. 17. (a) Densily doped silicon absorber with a matching layer surrounded
by free space. (b) Absorbed power in the structure normalized to total incident
power for the cases with (lm = 81µm, la = 44µm) and without matching
layer (la = 125µm). The remaining parameters are: n = 6np = 5.3 ×
1022 m−3, εr,m = 3.4, nm = 3 × 1021 m−3.

doping of semiconducting materials. By introducing a match-
ing layer, an absorption of over 95% of the incident power
is realized in a slab of one fifth of the wavelength in free
space. As the frequency increases above the target frequency,
the absorption decreases and the losses in the doped silicon
are much lower than would be assumed from the quasi static
conductance model.
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