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MatMix 1.0 is a novel material probe we developed for
quantitatively measuring visual perception of materials.
We implemented optical mixing of four canonical
scattering modes, represented by photographs, as the
basis of the probe. In order to account for a wide range
of materials, velvety and glittery (asperity and meso-
facet scattering) were included besides the common
matte and glossy modes (diffuse and forward scattering).
To test the probe, we conducted matching experiments
in which inexperienced observers were instructed to
adjust the modes of the probe to match its material to
that of a test stimulus. Observers were well able to
handle the probe and match the perceived materials.
Results were robust across individuals, across
combinations of materials, and across lighting
conditions. We conclude that the approach via canonical
scattering modes and optical mixing works well,
although the image basis of our probe still needs to be
optimized. We argue that the approach is intuitive, since
it combines key image characteristics in a ‘‘painterly’’
approach. We discuss these characteristics and how we
will optimize their representations.

Introduction

Natural materials scatter light in various manners.
Even if we limit ourselves to the main scattering
characteristics of opaque materials, we probably still

need about a dozen scattering types or canonical modes
to represent most materials. Bidirectional reflectance
distribution functions (BRDFs) provide a physical
description of how opaque material surfaces scatter
light. Knowing how light scatters from surfaces makes
it possible to simulate materials using parametric
BRDF models in computer renderings (Newell &
Blinn, 1977; Cook & Torrance, 1982; Hapke, Nelson, &
Smythe, 1998; Koenderink & Pont, 2003; Koenderink,
Van Doorn, Dana, & Nayar, 1999; Nayar & Oren,
1995; Oren & Nayar, 1995; Phong, 1975; Torrance &
Sparrow, 1967; Torrance, Sparrow, & Birkebak, 1966;
van Ginneken, Stavridi, & Koenderink, 1998; Ward,
1992). Generally speaking, if the scattering properties
or optical characteristics of materials can be accurately
described, the so-called forward rendering problem can
be solved. However, it is very unlikely that these optical
characteristics correspond to the representation of the
visual attributes in the brain (Fleming, 2014). In other
words, we do not see BRDFs. On the one hand, a
BRDF combined with various object shapes and
lighting conditions can result in different images of the
same material (we consider an image as the resulting
optical structure projected on a picture or the retina).
On the other hand, different combinations of BRDF,
object shape, and lighting can result in similar images.
In other words, the so-called inverse problem does not
have a unique solution. Thus, images contain ambigu-
ities of material, shape, and light (Belhumeur, Krieg-
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man, & Yuille, 1999), and consequently material, light,
and shape perception are confounded (Anderson,
2011). In the present study, we will exploit this
metamerism and investigate key ingredients in the
images that trigger our material perceptions.

Most investigations into material perception are
confined to matte–glossy variations. That is, the
perception of materials varying from matte to shiny has
been intensively studied on perceived glossiness (An-
derson, 2011; Anderson & Kim, 2009; Fleming, 2012;
Fleming, Dror, & Adelson, 2003; Ho, Landy, &
Maloney, 2006, 2008; Kim, Marlow, & Anderson,
2011; Marlow, Kim, & Anderson, 2012; Motoyoshi,
Nishida, Sharan, & Adelson, 2007; Nishida & Shinya,
1998; Pellacini, Ferwerda, & Greenberg, 2000; Van-
gorp, Laurijssen, & Dutré, 2007; Wiebel, Toscani, &
Gegenfurtner, 2015; Wijntjes & Pont, 2010). In our
research, we want to address material perception not
only within the matte–glossy continuum but also for as
wide a range of natural materials as possible. To date,
little is known about the visual perception of materials
outside the matte–glossy dimension, such as velvetiness
(Koenderink & Pont, 2003; Nishida, Sawayama, &
Shimokawa, 2015; te Pas & Pont, 2005) or other
material dimensions (Fleming, Wiebel, & Gegenfurt-
ner, 2013; Sharan, Rosenholtz, & Adelson, 2014). The
main problem seems to be the lack of a tool to test
purely visually (without referring to physical parame-
ters or attributes) and quantitatively what material is
perceived, for a wide range of materials.

We hereby present MatMix 1.0, a novel material
probe using optical mixing, which will be explained in
the next section. MatMix 1.0 is meant to account for a
wide range of opaque materials. We use optical mixing
of four canonical scattering modes as a tool for
quantitatively measuring visual perception of materials.
In our main study, we integrated the probe into a
MATLAB graphical user interface and conducted two
matching experiments without (Experiment 1) and with
(Experiment 2) variation of the illumination and
viewpoint conditions. Images of real objects were used
as a basis set. Before the experiments started, we
expected the task to be difficult for inexperienced
observers, as they would have to simultaneously
manipulate four different scattering modes. Surpris-
ingly, we found that all participants could handle
MatMix 1.0 well, as indicated by the finding that they
performed far above chance level within reasonable
amounts of time. In an additional study, we replaced
the images with renderings and conducted a similar
matching experiment (Experiment 3). Again, partici-
pants performed far above chance level, demonstrating
that the approach works well with both real and
simulated materials. In the General discussion and the
Conclusion we address the relationships between a few
key image characteristics and the results.

MatMix 1.0: A novel material probe

Optical mixing: A painterly approach

Many arbitrary materials can be represented by
linearly combining surface scattering distributions
(Matusik, Pfister, Brand, & McMillan, 2003; Pellacini
et al., 2000; Ward, 1992). Instead of directly combining
reflectance functions, we propose to linearly superpose
images of objects with the same shape but finished with
different materials. This image-combination process,
called optical mixing, was introduced by Griffin (1999),
who also described the mathematics behind the optical-
mixing method and showed that it could be used as a
tool for visual-perception studies. In Brainard’s lab,
Griffin’s partitive mixing method was applied to reduce
the number of stimuli to be rendered for their
experiments (Olkkonen & Brainard, 2010; Radonjić,
Cottaris, & Brainard, 2015; Xiao & Brainard, 2008).
Although applying image mixing was not the main
purpose of those studies, it can still be concluded from
them that implementing optical mixing in psycho-
physical studies is indeed feasible and efficient.
However, it has not been implemented yet for
variations other than matte–glossy.

The optical-mixing procedure shows an interesting
analogy with how a painter renders materials in a
scene. Most painters do not think about image statistics
or BRDFs when they paint. Instead, their approach is
more similar to optical mixing of key visual ingredients
layer by layer. A frequently observed recipe for oil
paintings (Wallert, 1999) is to first draw the contour of
an object, then apply the matte layer (the diffuse body
scattering), and finally add highlights or a bright
contour to render specular or velvety elements (forward
or asperity scattering). We reasoned that optical mixing
of nonspherical objects of arbitrary scattering modes
should work because it similarly combines key image
ingredients that trigger our perceptions—even though it
may be physically incorrect.

Pont, Koenderink, Van Doorn, Wijntjes, and te Pas
(2012) generated optical mixtures of three canonical
scattering modes (matte, velvety, and specular) by
optically mixing real objects in a viewing box. The task
for the observers was to rate perceived material
qualities such as glossiness, warmth, hardness, and
softness. In a follow-up study, observers performed the
same task, but now the stimuli were optically mixed
images of matte, velvety, and specular materials
displayed on a screen (Pont, te Pas, & Wijntjes, 2014).
They obtained robust and systematic ratings for
material qualities as a function of the weights of the
three modes in both experiments. On the basis of these
studies, we hypothesized that observers should be able
to match the perceived material of a certain object if
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they have the opportunity to create a mixture with
desired material attributes via control over the weights
of the underlying canonical material modes in that
mixture. This forms the basis of our proposed new
materials probe, MatMix 1.0.

For MatMix 1.0, we employed four basis materials
by finishing four bird-shaped objects with matte,
velvety, specular, and glittery materials (Figure 1).
These materials represent four canonical scattering
modes, namely diffuse, asperity, forward and meso-
facet scattering modes. The scattering distributions of
these four canonical scattering modes together span a
large part of the BRDF space. Because the main
scattering directions of these scattering modes are
different, the key characteristics in the images of the
corresponding objects will end up in different locations
on the object too. This means that the reflectance
components not only are complementary in BRDF
space but also allow the user to adjust different
characteristics of the proximal image. With simple
image analyses, the prototypical image characteristics
of the four materials can be easily distinguished from
each other, as shown in Figure 1. Note that there are
many alternative image manipulations that would give
similar results; the examples just serve to demonstrate
the main idea.

The interface of MatMix 1.0

Inspired by audio-mixing desks, we built a user
interface consisting of four sliders, a stimulus window,
and a probe window (Figure 2). During each matching
trial, the stimulus image and the probe image were
simultaneously presented to the observers in the
corresponding windows, with the stimulus on the left-
hand side and the probe on the right-hand side. The

four sliders were positioned directly underneath the
probe window. In order to give purely visual informa-
tion, we avoided the use of terms like ‘‘matte,’’ ‘‘velvet,’’
and so on in the interface. Instead, we put cropped
images (the head parts of the bird images) in front of
each slider, representing the material modes. The
position of each slider bar represents the selected
weight value per material mode, varying between 0 and
1.2.

The interface was developed using features of
graphical user interfaces in MATLAB R2014a, and

Figure 1. The top row shows the images of the birdlike object with the four materials representing the chosen canonical scattering

modes: diffuse, asperity, forward, and meso-facet scattering (from left to right). These modes are represented by matte, velvety,

specular, and glittery materials. The bottom row shows the prototypical image characteristics of each material. Note that the

reflectance components are not only in different directions in BRDF space but result in characteristics of the proximal image in

different regions too. For the image of the matte bird, the green channel was posterized from 255 to six levels. For the velvety,

specular, and glittery bird images, we performed red-channel thresholding at the 50% level. These extremely simple processes

resulted in smooth shading from the top to the bottom of the object for the matte object, bright contours for the velvet object,

highlights at specular points for the specular object, and bright speckles all over the surface for the glittery object.

Figure 2. The interface of MatMix 1.0. (a) Stimulus image. (b)

Material probe, generated by linear weighted superposition of

the four images representing the canonical scattering modes.

(c) Four sliders, with the position of each slider bar representing

the selected weight value per material mode, ranging from 0 to

1.2 (left to right). The icon on the left of each slider visualizes

the corresponding material component. The task of the

observers was to change the material of the probe to match the

stimulus. They could take as much time as they needed.

Observers could click the OK button below the sliders to finish

the matching procedure. Here, it is obvious that the two

materials do not match.
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presented to observers on a linearly calibrated Apple
15-in. Retina display.

Basis images

The surfaces of four physical objects with identical
shapes were finished with matte, velvety, specular, and
glittery materials. The bird-shaped objects were pur-
chased in a shop. They were originally made of ceramic
and had exactly the same shape. The matte and specular
birds were created by spray-painting them with matte
and glossy paint, respectively (both color RAL 6018).
The glittery bird was created by repeatedly sprinkling
green glitter over a layer of spray glue. The velvety bird
was finished by a factory using a technique called
flocking (color RAL 6018). These materials represent
diffuse, asperity, forward, and meso-facet scattering
modes, respectively. We took photos of the objects
under office lighting and under studio lighting from
different viewing angles. The office lighting consisted of
multiple fluorescent tubes in the ceiling of a room
without daylight. The studio lighting consisted of a
halogen spotlight from the left side of the object. The
camera settings were kept constant per lighting condi-
tion and we used raw imaging in order to photometri-
cally gauge the basis images. Furthermore, to allow
superposition of the basis images, we placed each object
in exactly the same position. To do so, we drew their cast
shadows and base outlines on their groundings as
references. Next we adjusted the white balance of the
raw images using Adobe Photoshop so that the
highlights were all white. We did this in the same manner
for all images per lighting condition. Then we segmented
the images using the shared contours of the birds and
made the background black for all images. Last, in order
to avoid color interactions, we set the hue value to 0.33
(green) for all images using MATLAB. Because the birds
were pure green, this transformation had a negligible
influence on the images (Figure 3). The saturation of the

colors was not adjusted, because the saturation as a
function of lighting and viewing angles can vary
strongly. For instance, specular reflections lower the
saturation of highlights. This effect depends on the type
of scattering (Klinker, Shafer, & Kanade, 1987; Koen-
derink et al., 1999; Koenderink & Pont, 2008; Shafer,
1985; Wolff, 1994). This is why the different modes have
substantial differences in saturation.

The probe: MatMix 1.0

The probe is a linearly superposed optical mixture of
the basis images. The mixing process can be illustrated
by Equation 1:

Iprobe ¼ wm � Im þ wv � Iv þ ws � Is þ wg � Ig; ð1Þ
where subscripts {m, v, s, g} denote the four scattering
modes matte, velvety, specular, and glittery, representing
the four canonical scattering modes (diffuse, asperity,
forward, and meso-facet scattering); {wm, wv, ws, wg} are
the weight values corresponding to the positions of the
slider bars, ranging from 0 to 1.2 (see Figure 2); and {Im,
Iv, Is, Ig} are the basis images under office lighting (top
row in Figure 3) for Experiments 1 and 2 in the main
study. The linearly mixed image Iprobe plus the interface
forms the probe MatMix 1.0, which allows real-time
dynamic and interactive variation of a visual presenta-
tion of material through adjustments of the slider bars.

Main study (optical mixing with
images of real objects)

Introduction

In the main study we tested the material probe we
developed. The study consisted of two experiments,

Figure 3. Basis images. From left to right, the columns represent the matte, velvety, specular, and glittery modes, respectively. The

images in the top row were taken under office lighting and were used as basis images for the probe in the main study. These images

were also used as the basis for the stimulus images in Experiment 1. The images in the bottom row were taken in studio lighting and

from a different viewing angle than the first set, and were used as the basis for the stimulus in Experiment 2.
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which mainly differed in the illumination and viewpoint
conditions under which the photos of real objects were
taken. In Experiment 1, we created the stimuli by mixing
the basis images shown in the top row in Figure 3. In
Experiment 2, we created the stimuli by mixing the basis
images shown in the bottom row in Figure 3. Thus, in
Experiment 1 the stimuli and probe were mixed from the
same basis, while in Experiment 2 the stimuli were mixed
from a different basis than the probe.

Method

Stimuli

We tested 15 weight combinations of the four
scattering modes, as shown in Table 1. The basis
images were linearly superposed, implementing Equa-
tion 1 in the form

Istimulus ¼ ðw0
m þ xmÞ � Im þ ðw0

v þ xvÞ � Iv

þ ðw0
s þ xsÞ � Is þ ðw0

g þ xgÞ � Ig; ð2Þ

where {w
0

m;w
0

v;w
0

s;w
0

g} are the weights of the scattering
modes; {xm, xv, xs, xg} are randomly generated offsets
in a range from�0.1 to 0.1 that were added to the
nonzero weights only; and {Im, Iv, Is, Ig} are the
stimulus basis images shown in Figure 3 (top row for
Experiment 1, bottom row for Experiment 2). The
resulting linearly mixed image is the stimulus image
Istimulus. The complete set of stimulus images for
Experiments 1 and 2 is shown in Figure 4.

Observers

There were eight paid inexperienced participants in
total (four men and four women, aged 23 to 30), with

normal or corrected-to-normal vision. All of them
participated first in Experiment 1, and a few days later
in Experiment 2. Participants read and signed a consent
form before the experiments. The experiments were
conducted in agreement with the Declaration of
Helsinki and local ethical guidelines and approved by
the Human Research Ethics Committee of the Delft
University of Technology.

Procedure

The positions of the slider bars (i.e., the initial weights
of the probe) were randomly initialized in each trial. In
Experiments 1 and 2, each stimulus weight combination
in Table 1 was repeated three times. Three repeats
combined with 15 different weight combinations, making
each experiment 45 trials in total. The trials were
presented in pseudorandom order. At the start of the
experiment, the interface (Figure 2) was shown to the
observers. The observers were instructed that their main
task was to move the sliders to adjust the material of the
bird in the top right window (probe) until it appeared to
be made of the same material as the bird in the top left
window (stimulus), and that they could take as much
time as they needed. Once observers finished a matching
trial, they pressed the ‘‘OK’’ button, after which only the
stimulus and probe images were presented on the screen.
The observers were asked to indicate to what extent they
were satisfied with thematching result. After they pressed
the ‘‘Next’’ button, the next matching trial started. Three
trials were performed as practice trials before the
experiment formally started. In the practice trials,
participants were told that they could move the slider
bars by dragging the mouse or pressing the left and right
arrow keys on the keyboard. Moving the slider bars by
dragging the mouse resulted in bigger steps, while
pressing the arrow keys resulted in smaller steps and
more gradual changes in the probe.

Results

Overview

In order to test the usability of the method and
evaluate the general matching results per experiment, we
will first fit one single linear equation to the complete set
of weights of the stimuli and probe adjustments. Then we
will analyze the satisfaction ratings and the durations of
the matching processes. After that we will look into the
details of the interactions of the four canonical material
modes to analyze the perceptual effects in detail.

Matching results

The general results of the matching experiments were
evaluated by solving the linear factor matrix A in

Stimulus w
0

m w
0

v w
0

s w
0

g

1 1 0 0 0

2 0 1 0 0

3 0 0 1 0

4 0 0 0 1

5 0.5 0.5 0 0

6 0.5 0 0.5 0

7 0.5 0 0 0.5

8 0 0.5 0.5 0

9 0 0.5 0 0.5

10 0 0 0.5 0.5

11 0.33 0.33 0.33 0

12 0.33 0.33 0 0.33

13 0.33 0 0.33 0.33

14 0 0.33 0.33 0.33

15 0.25 0.25 0.25 0.25

Table 1. Overview of the weight combinations of the four
material modes that were used to generate the stimulus
images. There were 15 stimuli in total.

Journal of Vision (2016) 16(6):11, 1–18 Zhang, de Ridder, Fleming, & Pont 5

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/935165/ on 12/20/2016



Equation 3:

Y½ �4 3 360¼ A½ �4 3 4� X½ �4 3 360þ E½ �4 3 360; ð3Þ
where

X½ � ¼

w0
m

w0
v

w0
s

w0
g

2
664

3
775; Y½ � ¼

wm

wv

ws

wg

2
664

3
775;

and the residuals

E½ � ¼

em

ev

es

eg

2
664

3
775:

For each trial, one column in matrix X represents the
weights of the four scattering modes in the stimulus
image, and the corresponding column in matrix Y
represents the weights of the four scattering modes in the
probe image, i.e., the values represented by the positions
of the four sliders set by the participant. We consider all
eight participants together. Thus, there are 45 trials for 8

participants¼ 360 columns in matrix X, matrix Y, and
matrix E (the residuals). The 434 linear factor matrix A
was solved using a least-squares fit in MATLAB, and
then the matrix E was simply calculated as the difference
between Y and A � X. If observers were to move all
sliders so that the weights in matrix Y would be exactly
equal to the corresponding weights in matrix X (i.e., the
matching would be veridical), then A would be a 4 3 4
identity matrix and E would be a zero matrix.

The resulting matrix A of Experiment 1 is surpris-
ingly close to an identity matrix (see Table 2). To be
more specific, the nondiagonal values are 0.18 or lower
and close to 0, and the diagonal values are 0.78, 0.89,
0.91, and 1.08 for the matte, velvety, specular, and
glittery modes, respectively. In the resulting matrix for
Experiment 2 the first three diagonal elements de-
creased to 0.65, 0.69, and 0.63 for the matte, velvety,
and specular modes, respectively. The diagonal value
for the glittery mode is 1.09, which is similar to that of
Experiment 1. The nondiagonal values that represent
the interactions between the scattering modes are larger
for Experiment 2 than for Experiment 1. To be more
specific, {wm, w

0

v}—the value between wm and w
0

v in

Figure 4. The stimuli. The top set represents the test stimuli in Experiment 1. The bottom set represents the test stimuli in Experiment

2. The randomly generated offsets {xm, xv, xs, xg} were set to 0 to generate these images. The numbers in the images correspond to

the stimulus numbers in Table 1.
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matrix A—was 0.14 in Experiment 1, which means that
occasionally velvety contributions in the stimuli w

0

v

were perceived to match with a matte contribution in
the probe wm. The value increased from 0.14 to 0.25 in
Experiment 2, showing that the chance increased of
perceiving velvety contributions in the stimuli to match
a matte contribution in the probe. Similarly, for the
combination {wm, w

0

s} the value increased from 0.16 to
0.32; for {ws, w

0

m} it increased from 0.18 to 0.30; for
{ws, w

0

v} it increased from 0.04 to 0.24; and for {ws, w
0

g}
it increased from 0.04 to 0.19. Thus, overall, a

comparison of the off-diagonal elements between the
two experiments shows that the interactions between
perceptions of matte, velvety, and specular modes
became stronger when stimulus and probe were under
different lighting and viewing conditions.

Another measure of general performance is the ratio
between the sum of the four diagonal values in matrix
A and the sum of all values in matrix A. This ratio can
vary from 0 to 1, with veridical behavior at 1 (identity
matrix) and chance level at 0.25 (all values in matrix A

being equal). For each individual, we solved the linear
factor matrix A with 45 trials per observer per
experiment and calculated the ratios. As shown in
Figure 5, in Experiment 1 the ratios for the observers
were 0.80, 0.85, 0.72, 0.83, 0.80, 0.77, 0.70, and 0.80 (M
¼ 0.78, SD¼ 0.05). In Experiment 2 these ratios were
0.47, 0.70, 0.58, 0.76, 0.51, 0.55, 0.64, and 0.69 (M ¼
0.61, SD ¼ 0.10). Overall, all observers performed far
above chance level.

We also analyzed how close the residuals (matrix E)
were to 0. We first took the absolute values of the 4 3

360 matrices, and then calculated the mean of all
elements in each 4 3 45 matrix, for each observer. The
results were quite similar between observers per exper-
iment. As shown in Figure 6, in Experiment 1 the means
of the residuals’ absolute values for the eight observers

w
0

m w
0

v w
0

s w
0

g

Experiment 1

wm 0.78 0.14 0.16 0.00

wv 0.18 0.89 0.03 0.00

ws 0.18 0.04 0.91 0.04

wg �0.02 0.09 0.02 1.08

Experiment 2

wm 0.65 0.25 0.32 0.02

wv 0.14 0.69 0.10 0.00

ws 0.30 0.24 0.63 0.19

wg 0.01 0.12 �0.00 1.09

Table 2. Linear factor matrices A for Experiments 1 and 2.

Figure 5. The ratio between the sum of the four diagonal values in matrix A and the sum of all values in matrix A. All eight observers

performed far above chance level in Experiment 1 (blue) and Experiment 2 (red).
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were 0.06, 0.11, 0.12, 0.10, 0.08, 0.10, 0.12, and 0.10 (M
¼ 0.10, SD¼ 0.02). In Experiment 2 these values became
0.14, 0.12, 0.13, 0.13, 0.13, 0.18, 0.16, and 0.15 (M¼
0.14, SD¼ 0.02). We can conclude that the least-squares
fit method properly solved the linear Equation 3.

Durations and satisfaction ratings

In Figure 7 we plotted the mean duration of the
matching trials over all observers as a function of trial
number. We fitted the data for both experiments
simultaneously by means of multiple linear regression
with one dummy variable to directly compare the slopes
and establish a possible shift between the two regression
lines. The first five trials of each experiment were
excluded in the linear regression because we found the
duration data in those trials to vary wildly, probably
because observers were still exploring the possibilities of
the interface. After the first five trials, the pattern of trial
durations stabilized (see Figure 7). For Experiment 1, the
slope of the regression line was found to deviate
significantly from 0 (�1.11 6 0.21, p , 0.001). The
difference between the two slopes was also significant
(0.58 6 0.3, p¼ 0.05) resulting in a slope of�0.53 for
Experiment 2. The offset for Experiment 1 (99.85 6 6.0,
p , 0.001) was higher than that for Experiment 2 (76.35;
difference equals�23.496 8.46, p , 0.001). These results

imply that the duration for Experiment 1 started at a
higher level than for Experiment 2, and afterward the
durations of both experiments systematically decreased
with trial number, converging to the same level at the
final trials. In conclusion, the main effect is a gradual but
small decrease of trial duration as a function of trial
number. On average, the duration was slightly above 1
min per matching trial.

The satisfaction ratings were defined to range from 0
(not satisfied with the matching) to 1 (satisfied with the
matching). Subsequently, we took the average over all
observers per trial. Excluding the first five trials, data
were again fitted by multiple linear regression with one
dummy variable (Figure 8). The only significant effects
were the offset for Experiment 1 (0.81 6 0.02, p ,
0.001) and the difference between the two offsets (�0.09
6 0.03, p , 0.001). Both slopes (0.001 6 0.01, p¼ 0.17)
did not significantly deviate from 0. We can conclude
that the participants generally found the matching task
feasible, as the average satisfaction is quite high, but
that changing the illumination and viewpoint condi-
tions significantly decreased the satisfaction ratings.

Sum of weights

Here we analyze the sum of the four weights in the
probe—i.e., the sum of the four slider values—per trial.

Figure 6. The mean of the absolute residuals of each observer in Experiment 1 (blue) and Experiment 2 (red).
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Figure 7. Mean trial duration as a function of trial number, averaged across all observers, for Experiment 1 (blue) and Experiment 2

(red). Error bars of each data point represent one standard error of the sample mean.

Figure 8. Average satisfaction ratings over all observers as a function of trial number, for Experiment 1 (blue) and Experiment 2 (red).

Error bars of each data point represent one standard error of the sample mean.
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Our interface and mixing algorithm is based on
additive mixing. The sums theoretically can vary from 0
to 4.8 (each slider ranges from 0 to 1.2). However, if the
observers were to adjust the image as a partitive
mixture constraining the overall brightness of the
probe, the sum would be 1 (Griffin, 1999). Similar to
what we did when analyzing the durations and the
satisfaction ratings, we considered only the last 40 trials
per experiment for all eight observers, so in total there
were 320 values per experiment. We found that the
averages of these sums were 1.13 6 0.06 and 1.18 6
0.09 in Experiments 1 and 2, respectively. Because of
the randomly generated offsets {xm, xv, xs, xg} in the
stimuli, the sums of the weights in the stimuli were very
close to 1 but not exactly equal to 1. The averages of
the sums in the stimuli were actually 1.00 6 0.01 in
Experiment 1 and 0.99 6 0.00 in Experiment 2. We
calculated the differences between the sums in the
probe and the sums in the stimuli and found that these
differences significantly deviated from 0 (one-sample t
test, p , 0.001 for both experiments), with the sums of
the weights in the probe being larger than those of the
stimuli in both experiments. We also found a significant
difference between the two experiments (paired two-
sample t test, p , 0.001), with the average sum of the
weights in the probe of Experiment 2 being larger than
that of Experiment 1.

Interactions between scattering modes

In Figure 9 we visualized the interactions between
each combination of two scattering modes by means of
ellipses representing 1 SD of bivariate normal distri-
butions fitted to the 24 data points (8 observers 3 3
repetitions) for each stimulus. Every data point
represents the settings of two of the four sliders in the
probe in one trial. For clarity of presentation the data
points themselves were rendered invisible in the plots.
Each subplot contains 6 ellipses, which are the results
of three different weight combinations in the stimuli in
the two experiments. The crosses depict the corre-
sponding stimulus weight combinations. This provides
a means to visualize the extent to which participants
would trade off—or confuse—the weights of different
reflectance modes.

To give an example, in the top left subplot the blue
ellipses depict the variations of the weights of the matte
and velvety modes in the probe for matches to stimulus
number 5 (half matte and half velvety in the stimulus,
as in Table 1 and Figure 4). The solid plot represents
the result in Experiment 2, which is centered close to
the veridical value (the blue cross). The dashed plot
represents the result in Experiment 1, which is slightly
shifted upward—i.e., in these trials the matte slider was
set around its veridical value, while the velvety slider
setting was set larger than the weight of the velvety

mode in the stimulus. This indicates that in our office
lighting, the half-matte, half-velvety mixture was
perceived as a match to mixtures of half-matte and
more-than-half-velvety components.

Another way of interpreting Figure 9 is to look at
how the ellipses are oriented and shifted from their
veridical centers. To be more specific, in both
Experiment 1 (dashed lines) and Experiment 2 (solid
lines), the matte and specular contributions strongly
interacted with each other, as seen by the ellipses
oriented and shifted diagonally in the middle left
subplot. For the velvety and matte (top left) and velvety
and specular contributions (middle), we also find
diagonal shifts for Experiment 2, while for Experiment
1 there are primarily horizontal or vertical shifts. The
glittery contributions were all set around their veridical
values in both experiments, and the ellipses in the three
subplots at the bottom primarily shifted horizontally
from their veridical centers. To conclude, in Experi-
ment 1 we found interactions primarily between the
matte mode and the specular mode. In Experiment 2
the matte, velvety, and specular modes interacted
strongly with each other. The glittery mode remained
quite independent in both experiments.

Validation study (optical mixing
with rendered images)

To cross-validate the method, we conducted an
additional experiment with MatMix 1.0 in which we
used computer-rendered images as the basis images for
the mixtures of the stimuli and the probe. In Figure 10
we show the basis images of Experiment 3. To generate
these basis images, we built a 3-D model of a bird-
shaped object in Blender (Figure 11). We then applied
four different ‘‘materials’’ to the object in Maxwell-
Render (Figure 12). The parameters of the materials in
MaxwellRender can be obtained from its online
material library. We carefully adjusted the parameters
of the four materials to represent matte, velvety,
specular, and glittery finishes. High-dynamic-range
image-based lighting was used as the illumination
environment in rendering. For the basis images of the
probe, we used Debevec’s ‘‘Grace Cathedral’’ environ-
ment map (Debevec, 1998). For the basis images of the
stimuli, we used Debevec’s ‘‘Eucalyptus Grove’’ envi-
ronment map.

Experiment 3 was conducted at the University of
Giessen, Germany. Five paid, inexperienced partici-
pants with normal or corrected-to-normal vision
participated in the experiment. Participants read and
signed a consent form before the experiment. The
experiment was done in agreement with the Declaration
of Helsinki and local ethical guidelines.
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We asked the observers to perform the matching task
with MatMix 1.0 using the rendered images in Figure 10
instead of the photographs in Figure 3. Observers spent
50–100 s per trial, which is similar to the durations in
Experiments 1 and 2.The satisfaction ratingswere 0.76 on
average, which is similar to what we found in Experiment
2. Thus, using renderings as the basis images in MatMix
1.0 does not influence the time costs or the satisfaction
ratings of observers in the matching experiment.

The linear factor matrix A for Experiment 3 is
shown in Table 3. It is very close to an identity

matrix, except for the values that represent the
perception of the velvety mode. The ratios between
the sum of the diagonal values and all values for the
five observers were 0.79, 0.71, 0.62, 0.70, and 0.60 (M
¼ 0.68, SD ¼ 0.08), and thus far above chance level
(0.25). The nondiagonal values, specifically 0.46 for
{wm, w

0

v} and 0.35 for {wv, w
0

m}, indicate that the
perception of the velvety mode strongly interacted
with the perception of the matte mode in Experiment
3. The residuals were all close to 0. The averages of
the absolute value of the residuals were 0.16, 0.12,

Figure 9. A visualization of the interactions between each combination of two scattering modes. Different colors correspond to

different weight combinations in the stimuli, which are depicted by the crosses. The ellipses represent 1 SD of bivariate normal

distributions fitted to the data. Dashed plots represent the data of Experiment 1 and solid plots represent the data of Experiment 2.
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0.14, 0.16, and 0.16 for the five observers, and thus
similar to those of Experiment 2.

To sum up, we find that (a) MatMix 1.0 could be
implemented by replacing the basis images of the
stimuli and the probe with rendered images and (b)
with renderings as the basis images, observers can still
perform the task well. However, we found increased
interactions between the matte mode and the velvety
mode. This probably reflects limitations in the current
simulations of such reflectance properties.

General discussion

A major finding in this study is our demonstration
that the interface (Figure 2) and the probe enable
accurate and robust measurements of material percep-
tion. Although observers were asked to manipulate
four canonical reflectance modes simultaneously, they
could do the task within a reasonable amount of time
and felt satisfied about their matching results. More-
over, the general matching results were found to be far

Figure 10. The basis images for Experiment 3. The images in the top row were used as basis images for the probe. The images in the

bottom row were used as basis images for the stimuli. From left to right, columns represent matte, velvety, specular, and glittery

modes, respectively.

Figure 11. A screenshot of Blender during the 3-D modeling process. The model is mirror symmetric. Note that the model is a

simplified version of the shape we used in Experiments 1 and 2.
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above chance level in all experiments. In Experiment 1,
the illumination and viewpoint conditions were the
same for both stimuli and probe images. Observers
might have simply compared the two images on a pixel-
to-pixel basis and searched for the perfect match. In
order to avoid this possibility, we implemented
Experiments 2 and 3. Results showed that observers
were able to match the materials even if the stimulus
and probe images did not correspond. The similarities
of the results of Experiments 2 and 3 further convinced
us that observers were not just doing a best possible
image match. Specifically, in Experiment 3 the light
fields of stimulus and probe were quite different, but
results were similar to those of Experiment 2. This
suggests that the observers were indeed matching
perceived materials.

Unlike in Griffin’s study (1999), the weights of the
material modes do not necessarily add up to 1 when the
mixing is performed. Compared to Griffin’s partitive
mixing method, MatMix 1.0 implements additive
mixing. As a result, observers had the freedom to
manipulate each of the material modes independently,
so that changing the weight of one material does not
affect the weight of the others. Theoretically, the sum
of the four slider settings could range from 0 to 4.8. We
calibrated the luminances of all basis images per set in

the same manner so that their relative luminances
corresponded with the physical relations. So in order to
generate a probe image that was neither too bright nor
too dark, the sum of the four weights should be around
1. We found that the sums were somewhat higher than
1, which might be an overall effect of the velvety and
glittery basis images having a somewhat lower lumi-
nance than the matte and specular basis images. An
alternative approach could be equalizing the average
luminance of all basis images. However, since the
lightness of the resulting images is dependent on
material, shape, and illumination, it is more logical to
calibrate the physical inputs of the different materials
by applying the same camera settings. Nevertheless, the
finding that the sum was close to 1 suggests that
participants can approximately match the overall
magnitude of reflectance (or albedo) while simulta-

Figure 12. A screenshot of MaxwellRender during the rendering process. In this figure, glittery material was assigned to the object,

and the Grace Cathedral image was selected as the environment map.

w
0

m w
0

v w
0

s w
0

g

wm 0.94 0.46 0.24 �0.07
wv 0.35 0.62 0.20 0.04

ws 0.05 0.08 1.01 �0.07
wg 0.00 0.03 0.02 1.00

Table 3. Linear factor matrix A for Experiment 3.
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neously reporting precise differences in the quality of
the reflectance.

We found systematic shifts in material perception
between Experiments 1 and 2 (Figure 9), showing how
the perception of material was influenced as the object
orientation changed and the lighting changed from office
light to studio light. These shifts can be related to the
changes of the values in matrixA. For example, in Figure
9 the subplot for matte versus specular (middle left)
shows that matte–specular interactions increased in
Experiment 2 compared to those in Experiment 1, which
corresponds to an increase of the nondiagonal values
{wm, w

0

s} and {ws, w
0

m} in Table 2. Material–lighting
interactions have been addressed by many researchers
(Dror, Willsky, & Adelson, 2004; Fleming et al., 2003;
Hunter, 1975; Marlow et al., 2012; Motoyoshi &
Matoba, 2012; Olkkonen & Brainard, 2010, 2011; Pont
& te Pas, 2006; te Pas & Pont, 2005). In a recent study we
combined our canonical material modes with three
canonical lighting modes, and in this manner we were
able to systematically investigate material–lighting in-
teractions for a broader range of materials and lightings
(Zhang, de Ridder, & Pont, 2015). We found systematic
effects that depended on lighting and material.

However, whether the type of interface we used is the
most suitable one remains to be seen. MatMix 1.0 was
designed and tested with a limited basis set consisting
of four materials. In the future we want to include more
material modes to span a wider gamut of the BRDF
space, such as backscattering, split-specular scattering,
and so on. In order to do this well, we need knowledge
about which canonical materials have to be included to
cover the perceptual space of natural opaque materials,
and about how redundancies between modes could
elicit formal ambiguities. But in order to generate such
knowledge we would need an extended probe. More-
over, the interface needs to be optimized using
knowledge about the perceptual space (e.g., using
nonlinear rescaling of the sliders to make the adjust-
ment steps perceptually uniform). These issues are
currently still chicken-and-egg problems. We will
approach these issues in future research via several
iterations in typical design loops (van Boeijen, Daal-
huizen, Zijlstra, & van der Schoor, 2013): redesign
(extend interface with extra modes), test and evaluate
(via formal psychophysical experiments), and adjust the
design (on the basis of the experimental outcomes).
Other techniques, such as psychophysical scaling
methods (Knoblauch & Maloney, 2008; Maloney &
Yang, 2003) may also aid with the scaling and selection
of the reflectance components.

In the Introduction we made an analogy between
optical mixing and painting. In order to analyze our
results qualitatively in terms of image characteristics, we
did some simple image analysis of the basis images of
Experiments 1 (Figure 1), 2 (for results, see Figure 13A),

and 3 (for results, see Figure 13B, C). In general, similar
to what was shown in Figure 1, we find smooth shading
to be typical for the diffuse scattering component (matte
material), bright contours for the asperity scattering
component (velvety material), highlights at specular
points for the forward scattering component (specular
material), and bright speckles all over the surface for
meso-facet scattering (glittery material). Such key image
characteristics may well form the main triggers for
general material perception, in a weighted-mixture
manner. So across illuminations and object orientations,
the diffuse mode typically yields smooth variations,
whereas the asperity mode tends to yield bright contours,
the specular mode localized highlights, and the glitter
mode high-spatial-frequency variations in the image. We
find that this indeed allows the user to adjust different
aspects of the proximal image. For highlights, many
authors have already shown how their specific charac-
teristics influence perception of glossiness (see e.g.,
Anderson, 2011; Giesel & Zaidi, 2013; Motoyoshi et al.,
2007). Perception of velvetiness, glitter, and sparkle
concern undeveloped topics. We argue that such
understanding of separate modes, together with our
findings about how these characteristics combine and
interact, will eventually lead to in-depth understanding of
any opaque material.

In Experiment 3, strong interactions between the
velvety and matte modes were found. In Figure 13C,
the rendered basis images of the velvety mode are just
very subtly different from those of the matte mode.
This might be due to both the rendering functions and
the illumination environment (Giesel & Zaidi, 2013).

A connected question is how to represent each
scattering mode properly. For instance, it might be
better to mix only the highlights of the glossy bird to
represent the specular mode, instead of using the green
glossy bird which actually also includes a diffuse mode
(see specular mode in Figure 13). Similarly, it might be
better if only the bright contours were added to
represent the velvety mode. This might avoid some
interactions between the matte mode and other modes,
and thus make them more independent. An analogy is
that in a painterly approach, after drawing the contour,
the body color is usually painted first in a diffuse
manner, after which highlights are added to make the
material look glossy or bright contours added to make
it look velvety (Wallert, 1999). Additionally, in future
studies we want to investigate whether color variation
will affect material perception. Currently, green is used
disproportionately in material-perception research, for
no clear reason (Fleming et al., 2003; Marlow et al.,
2012; Marlow & Anderson, 2013). Thus, in a novel
version of our MatMix probe we will include color
variations accordingly. This will also allow optical
mixtures of differently colored modes. For example,
specular plastic materials have white highlights, while
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metals have highlights in the color of their diffuse
reflectance, and thus we need color variations in the
specular modes to cover both plastics and metals.

Many computer-graphics systems also include sliders
to allow the user to alter the material parameters.
However, MatMix 1.0 is different in several respects
from the standard approach found in computer-graphics
interfaces. First, we are able to combine (photographs
of) real materials, which can exhibit subtle effects that
cannot yet be modeled by computer graphics. Second,
even experts find computer-graphics interfaces some-
times overwhelming, especially when there is no real-
time feedback on appearance. In typical computer-
graphics interfaces there are a large number of
parameters to adjust, and it is often not intuitive how
they are related to the proximal-image result. In
contrast, in our approach the basis is limited to a smaller

number of canonical visuals, and we have shown that
the task is natural and intuitive for inexperienced
observers. Third, the purpose of the method is to probe
perceptual judgments rather than to design materials
from scratch. Thus, the observer will typically have a
reference object whose appearance they are trying to
match. Finally, the bases are selected to provide
perceptually intuitive means for altering proximal-image
properties rather than parameters of a physical model,
which may not have any distinctive perceptual correlate.

Conclusion

We tested a novel approach to probe material
perception in a quantitative and purely visual manner.

Figure 13. The basis images and some related image characteristics. In each subfigure, the first row shows the basis images; the

bottom row shows the prototypical image characteristics of each material: the green channel of the basis images after posterization

from 255 to six levels for the matte mode, the red-channel thresholding at a somewhat arbitrary 50% level for the velvety, specular,

and glittery modes, respectively. Columns from left to right: Representations of matte, velvety, specular, and glittery modes. (A)

Photographed set in studio lighting. (B) Rendered image set in Debevec’s ‘‘Eucalyptus Grove’’ image-based lighting. (C) Rendered

image set in Debevec’s ‘‘Grace Cathedral’’ image-based lighting.
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In the main study (Experiments 1 and 2), we took
photos of real materials under different illuminations
and implemented them as basis images in MatMix 1.0.
In an additional study (Experiment 3), we rendered
four materials similar to the ones we used in the first
two experiments and used them as basis images to
perform another matching experiment with our probe.
We found that (a) no matter how difficult the task was
or how satisfied participants were, it cost them on
average around the same amount of time per matching
trial; (b) the participants were matching the probe to
the stimuli on the basis of perceived materials instead of
simply matching the two images pixel to pixel; and (c)
participants performed well above chance level. In
conclusion, it was found that the participants were able
to handle the MatMix 1.0 interface well, and our
MatMix 1.0 probe was shown to form a robust and
intuitive method to test visual material perception. We
believe that our painterly optical-mixing approach is
promising, because it reflects how weighted mixtures of
key ingredients for material representations can trigger
our perceptions.

Keywords: material perception, material probe, Mat-
Mix 1.0, BRDF, reflectance
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Radonjić, A., Cottaris, N. P., & Brainard, D. H. (2015).
Color constancy supports cross-illumination color
selection. Journal of Vision, 15(6):13, 1–19, doi:10.
1167/15.6.13. [PubMed] [Article]

Shafer, S. A. (1985). Using color to separate reflection
components. Color Research & Application, 10(4),
210–218.

Sharan, L., Rosenholtz, R., & Adelson, E. H. (2014).
Accuracy and speed of material categorization in
real-world images. Journal of Vision, 14(9):12, 1–24,
doi:10.1167/14.9.12. [PubMed] [Article]

Torrance, K. E., & Sparrow, E. M. (1967). Theory for
off-specular reflection from roughened surfaces.
Journal of the Optical Society of America A, 57(9),
1105–1112.

Torrance, K. E., Sparrow, E. M., & Birkebak, R. C.
(1966). Polarization, directional distribution, and
off-specular peak phenomena in light reflected
from roughened surfaces. Journal of the Optical
Society of America A, 56(7), 916–924.

Vangorp, P., Laurijssen, J., & Dutré, P. (2007). The
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