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Sequential Human Gait Classification With
Distributed Radar Sensor Fusion

Haobo Li , Member, IEEE, Ajay Mehul, Julien Le Kernec , Senior Member, IEEE,
Sevgi Z. Gurbuz , Senior Member, IEEE, and Francesco Fioranelli , Senior Member, IEEE

Abstract—This paper presents different information fusion
approaches to classify human gait patterns and falls in a radar
sensors network. The human gaits classified in this work are
both individual and sequential, continuous gait collected by
a FMCW radar and three UWB pulse radar placed at different
spatial locations. Sequential gaits are those containing mul-
tiple gait styles performed one after the other, with natural
transitions in between, including fall events developing from
walking gait in some cases. The proposed information fusion
approaches operate at signal and decision level. For the
signal level combination, a simple trilateration algorithm is
implemented on the range data from the 3 UWB radar sen-
sors, achieving good classification results with the proposed
Bi-LSTM (Bidirectional LSTM neural network) as classifier, without exploiting conventional micro-Doppler information. For
the decision level fusion, the classification results of individual radars using the Bi-LSTM network are combined with a
robust Naive Bayes Combiner (NBC), and this showed subsequent improvement compared to the single radar case thanks
to multi-perspective views of the subjects. Compared to conventional SVM and Random Forest classifiers, the proposed
approach yields +20% and +17% improvement in the classification accuracy of individual gaits for the range-only
trilaterationmethod and NBC decision fusion method, respectively.When classifyingsequentialgaits, the overall accuracy
for the two proposed methods reaches 93% and 90%, with validation via a ’leaving one participant out’ approach to test
the robustness with subjects unknown to the network.

Index Terms— RF sensing, radar, machine learning, sensor fusion, gait analysis, fall detection.

I. INTRODUCTION

NATIONAL health systems in many countries face sig-
nificant challenges in providing comprehensive med-

ical support to elderly people, for whom timely assistance
after potentially life-threatening accidents, such as falls, heart
attacks and stroke is crucial. For example, research showed
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that life expectancy after a fall is highly correlated with the
timeliness of medical aide [1], and data from the U.S. Census
Bureau showed that patients over 65 who have waited over an
hour have a higher chance of death within the next 5 years
than otherwise [1]–[3].

Changes in daily gait patterns and related metrics, such
as gait asymmetry, imbalance, and slower or staggered gait
with shorter stride, have been associated with increasing fall
risk and health anomalies in older people [1], [4], [5]. Such
symptoms could be very hard to detect at early stages, but
may result in hospitalization or even emergency surgery when
the situation worsens. Hence, a reliable fall detection [1] and
health monitoring system capable of identifying daily gait
patterns can be invaluable, not just for timely emergency
response, but also to enable early intervention and treatment
monitoring. More broadly, the recent COVID-19 pandemic has
highlighted the relevance and benefits of remote monitoring
technologies to reduce the need for physical proximity to
diagnose and monitor a wide range of conditions that could
potentially affect gait (e.g. concussion, stroke, and neuro-
muscular disorders). Contactless gait analysis technologies
provide the opportunity to monitor the natural mobility of
patients, as opposed to constrained settings typically used in
hospitals or highly specialised laboratories. Moreover, less
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invasive technologies deployed in natural settings (e.g. private
homes) can provide data more frequently and at less cost than
evaluations conducted during hospital visits.

Towards these aims, radar has attracted much interest
for human motion recognition [6], [7], especially
in the applications of non-contact human activity
classification, gesture recognition, and vital signs monitoring.
Conventionally, wearable devices [3], [8] and video cameras
[9] have been the focus for telemedicine research. Wearable
devices are usually attached to the body (e.g. on the wrist,
waist or ankle) via a strap, or placed in pockets or on
the soles of shoes [8]. Examples include high resolution,
multi-dimensional sensors to capture acceleration, angular
speed or magnetic field strength to characterize different
activities [8], or measurements of pulse, body skin temperature
and humidity as vital signs [3]. However, wearable devices
require user compliance to wear and carry them, and may
be hindered by low battery life. For elderly people with
cognition problems, this is risky, as the device could be
forgotten or infrequently recharged. Video cameras [9] are
contactless; however, the data presents potential privacy risks
when used in personal settings, such as private homes.

In contrast, radar is a non-contact, remotely operable radio
frequency (RF) device that is effective through-the-wall, in the
dark, and does not measure any visual imagery that could
violate privacy, even if hacked. While first developed for
military applications, the advent of integrated RF transceivers
has paved the way for miniaturized RF sensing systems
[10], [11] that are now easily embedded into small hand-held
devices, such as a cell phone or a smart watch.

The complex in-phase (I) and quadrature (Q) time stream
provided by radar is typically converted into a 2D format using
signal processing and time-frequency analysis. Range maps
are a plot of the distance between the sensor and subject
as a function of time, while the micro-Doppler signature
reveals the variation of micro-Doppler with time [12]–[14].
The micro-Doppler signature is the pattern of multiple Doppler
components generated by the different moving parts of the
human body when performing activities, including walking
gait. Unique movements result in unique patterns in the
micro-Doppler signature, which are typically used as a basis
for the recognition of activities (e.g. sitting, standing, bending,
crawling, boxing, falls) or of different gaits (e.g. normal
walking gait vs asymmetric, abnormal, or assisted gait).

Classification methods typically presented in the literature
process the radar data as finite duration snapshots of a sin-
gle activity or gait, without any natural transition from one
activity to another, and with motion often constrained along
a predefined direction with respect to the radar line of sight.
The classification algorithms include conventional classifiers
[15] (e.g. SVM, KNN, and Decision Trees), Auto-Encoders
(AE) [16], Convolutional Neural Networks (CNNs) [17], [18],
and Recurrent Neural Networks (RNNs) especially in their
Long-Short Term Memory (LSTM) [19], [20] implementation
or Stacked Gated Recurrent Units (SGRUs) [21].

Radar-based classification of activity sequences, i.e.
sequences with natural transitions happening at any time
between different actions of unconstrained duration, has not

been adequately addressed in the literature. Stacked Recur-
rent GRUs have been proposed for sequential classification
[21], [24], but the activity sequences were formed through
concatenation, a process that introduces instantaneous and
artificial transitions that are not present in natural sequences
of human motion. With a different approach, a sliding window
function that divides continuous data streams into smaller
frames [25], [26] can be used. This does, however, increase
the complexity of the approach as optimal window duration
and overlap need to be found, and this values are likely to be
strongly dependent on the specific dataset used for training.

In this paper, we address the problem of classification of
sequential human gaits proposing a framework to exploit data
fusion of range and micro-Doppler information extracted from
multiple radar sensors in a network. The network consists
of 3 Ultra Wide Band radar sensors operating at X-band and
1 FMCW radar operating at 24 GHz, enabling to test the effect
of spatial position and operating frequency on the performance
of the proposed approach. Together with conventional classi-
fiers, the usage of Bi-LSTM (Bi-directional LSTM) networks
is also investigated. These are suitable when forward and back-
ward temporal dependencies between samples at separated
time steps in a sequential data stream need to be learnt. This
is useful in many applications, such as text, speech, natural
language, and sound processing [22], [23]. For radar data of
human activities or walking gaits in a sequence, Bi-LSTM
can capture the kinematic constraints and correlations that link
each action or gait to the previous and the following actions
in the sequence. In previous work [27], [28], Bi-LSTMs were
shown to be beneficial for classification of human activities
and fall detection. However, in this paper we modify that
approach. First, we analyse different types of gaits, which are
inherently continuous and sequential movements unlike single
actions like sitting, standing, etc. Then, we consider circular
trajectories with changes of aspect angles with respect to the
radar line of sight, unlike the constrained linear trajectories
with zero aspect angle previously explored. Finally, in this
work we do not only rely on micro-Doppler information,
which is known to be most significant at zero aspect angle,
but also consider range information from single radar and by
fusing data from multiple radars.

To the best of our knowledge, the majority of research in the
literature considered only walking gaits recorded as individual,
“snapshot” data [4], [5], [29]. In this paper, we validate
the proposed classification and fusion approaches first on
individual gaits, and then on sequential gaits’ sequences that
include natural transitions between two or three types of gait,
at times also followed by a fall event. Different sensor fusion
schemes [30], [31] including signal combination, feature
fusion, soft and hard decision level fusion [32] are investigated.
Moreover, different types of input for the Bi-LSTM network
are compared: range data, Doppler spectrograms, and fused
range information via trilateration of the different radars in
the network. The initial classification results suggest that the
proposed approach outperforms conventional classifiers using
feature selection, and that fusing the relevant information from
the distributed radar sensors within the network is useful to
achieve further improvement. Specific contributions include:
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• Evaluation of the performance of the proposed classi-
fication and fusion approaches on realistic, continuous
sequence of human gaits. The data stream contains natural
transitions between different gait styles and the order of
gaits is different in each repetition. Data fusion techniques
including signal combination, feature fusion, soft and
hard decision fusion have been utilized to improve the
classification accuracy compared to single radar.

• Design of a novel trilateration algorithm to combine the
range information from three identical radar sensors at
different positions and use this as the temporal input
to the Bi-LSTM classifier. We show that this algorithm
can achieve similar performance to more conventional
micro-Doppler information fusion with a relatively low
computation load and processing time.

• Validation on a dataset with gait patterns from
14 participants and 12 different gait styles with multiple
repetitions and varying aspect angles in circular trajectory.
This allows us to validate the proposed approaches and
compare the performance on a relatively large number of
subjects and gait styles.

The remainder of this paper is organized as follows.
Section II describes the radar network setup and the gait data
collection. Section III presents the recognition of individual
gait data using two conventional classifiers and the proposed
Bi-LSTM network. Section IV validates the results of the
approach applied to more challenging sequential gait analysis.
Finally, section V concludes the paper and outlines possible
directions for future work.

II. EXPERIMENTAL SETUP

This section presents the experimental setup with details of
the radar network used to collect data, and a description of
the dataset.

A. Radar Network Setup
Gait measurements from a frequency modulated continuous

wave (FMCW) radar at 25 GHz (Ancortek 2500B) and three
ultra wide-band (UWB) impulse Doppler radars at 7.3 GHz
(Novelda Xethru X4M300) were simultaneously recorded on
a 2.7m×1.8m GaitRite mat embedded with pressure sensors
in the Computational Intelligence for Radar (CI4R) Lab of the
University of Alabama. The bandwidth of the FMCW radar
and impulse radar were set at 2 GHz and 1.5 GHz, whereas
the Pulse Repetition Interval (PRI) were fixed to 1ms and
2ms, respectively. The radars in the network were placed at
three positions, shown in Fig. 1: in front of the participants,
on the ceiling, and on the right hand side. This allows for
simultaneous characterization of human gait patterns from
three unique angles. The line-of-sight of different radar sys-
tems were carefully aligned to point the center of the scene
to capture the strongest return. It should be also noted that
the three UWB radars are separated and their positions was
determined based on their azimuth beam-width (approximately
65 degrees), in order to minimize mutual interference and its
effect on the subsequent classification processing.

Fig. 1. 2D (bottom) and 3D (top) experimental setup including line-of-
sights of different radar systems and walking trajectory (Red: radar in
front of participants, Purple: radar on the ceiling, Yellow: radar on the
right hand side).

The FMCW radar system utilizes a monostatic architecture
with two horn antennas as the transmitter and receiver, whereas
the two microstrip antennas of the impulse Doppler radar are
fabricated with the signal generator and processor on one chip.
The transmitted power are approximately 19 dBm and 4.1 dBm
respectively.

B. Experiment Design and Data Collection
The dataset in this paper was collected involving 14 different

participants with diversity in age (19-45), gender (3 female
and 11 male), height (1.6 m to 1.85 m) and weight (60 kg to
95 kg). The gait and motion patterns performed are listed in
Table I, where individual gait experiments involve gaits with
ten distinctive styles and two different types of falling, and
sequential gait experiments involve five different sequences of
gaits (A-E in Table I). These gaits are proposed to simulate
the scenario of walking at different velocities, dragging with
one injured foot, falling and losing consciousness as well
as rehabilitation from an accidental fall. To create more
challenging classification scenario, pairs of potentially similar
motions (e.g. walking with a cane and walking with a walker)
are added to the list.

In the individual gait experiment, each gait was measured
for a duration of 20 seconds independently for each partici-
pant. In the sequential gait experiments, five unique sequences
of gaits are performed by the participants and acquired in
an uninterrupted continuous fashion so that the data contains
the natural transitions between different gaits. A total of 504
(14× 12×3) for the individual gait experiments, whereas for
the sequential gait experiments, a total of 71 observations were
acquired (as not all participants were able to perform all the
sequences).
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TABLE I
LIST OF THE 12 INDIVIDUAL GAITS AND 5 (A-E) SEQUENTIAL

GAITS, (T):GAIT TRANSITION, (F):FALLING

III. DATA PROCESSING FOR INDIVIDUAL GAITS

This section presents the analysis of the classification
of individual gaits, at first using conventional classification
algorithms based on supervised learning, and then Bi-LSTM
networks.

A. Feature Fusion With Conventional Classifiers
Raw radar data contains hierarchical information [13],

which can be used to measure range and velocity. Data
from the FMCW radar can be mapped to the Range-Time
domain with a Fast Fourier Transform (FFT), whereas
the Doppler-Time domain or radar spectrogram is gener-
ated by performing a Short-Time Fourier Transform (STFT)
on the range profiles. The STFT reveals the unique patterns
of the micro-Doppler signature that stem from the rotations
of the head and movements of the limbs and torso while
walking. In this paper, spectrograms are computed for both
FMCW and impulse radar data with a 0.2s Hamming window
and an overlap of 95%. Fig. 2 illustrates the spectrograms
acquired from six different walking gaits. Positive and negative
Doppler frequencies [33], [34] are caused by reversal in net
direction (towards/away) with respect to the radar. It may be
observed that some pairs of gaits (e.g. walking and bunny
jump, dragging one foot and walking with aid) present some
similarities in terms of shape of radar envelope and Doppler
amplitude.

Beyond the spectrograms, taking a further FFT along the
time dimension or an IFT (Inverse Fourier Transform) on the
logarithm of the spectrogram will create Cadence Velocity
Diagram (CVD) and cepstrum respectively. These are different
radar data domains that may contain additional information
such as the cadence of walking and the gait frequency dis-
tribution. A total of 57 statistical features [15], [30], [35],
summarized in Table II, are extracted from different radar data
domains and supplied to the classifier. Specifically, 47 fea-
tures from the radar spectrogram, 7 features from the CVD

Fig. 2. Radar spectrogram: (a) walking (b) dragging a foot (c) small
steps (d) walking with aid (e) bunny jump (f) walking and controlled fall;
red line: upper envelope; white line: lower envelope.

TABLE II
LISTS OF THE RADAR FEATURES

[4], [5] and 3 features from the cepstrum [36], [37] are
extracted. This selection of different features from different
works in the literature is expected to increase the diversity
and the overall relevant information for gait classification.
Doppler centroid and bandwidth describe the position of
the central mass of the human body in the walking period
and the energy surrounding this. Step repetition frequency is
the most significant feature from the CVD domain as it is
shown to be associated with gait patterns [4], whereas the
cepstral coefficients are considered as an additional source
of information to characterize the periodicity of movements,
thus we select three features from them (maximum, minimum
and mean) to complement the features extracted from the
other radar domains. Additionally, all the feature vectors are
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normalized by subtracting the mean and dividing by the
standard deviation.

Linear Support Vector Machine (SVM) [15], [31] and
Random-Forest Bagging (RFB) [38] classifier with 200 trees
are chosen as conventional classifiers to distinguish the indi-
vidual gaits. SVM constructs a hyper-plane between the pre-
dictors to separate them, whereas RFB algorithm selects a
stochastic subset of predictors to train at each decision split
of the trees. The advantage of conventional classifiers with
respect to more complicated neural networks is their relatively
small computational load with still acceptable performance.

In the real-world, the pre-trained classifier needs to be
able to cope with data from new users, so it is significant
to consider and simulate this circumstance. Hence, ’Leaving
One participant Out’ (L1O) cross-validation method is used
to separate the data into training and testing set, where data
from one of the participants is selected for evaluating the per-
formance and all others are used for training the classification
model. The training and testing iteration will continue until
each participant is tested upon, and average performance can
then be investigated.

Information fusion can improve the classification perfor-
mance in our radar network as diverse information from mul-
tiple radar sensors can be combined. This can be particularly
advantageous when the micro-Doppler information from one
(or more) sensors is poor due to unfavourable aspect angles
between the movement trajectory and the radar line of sight.
In our case, given the location of the sensors and the elliptic
trajectory of the participants’ walking gaits, there are areas
where a specific radar can only see tangential movements with
respect to the line of sight, i.e. not much Doppler information.
Feature level fusion can be accomplished by constructing a
wider feature pool derived by combining features obtained
from all RF sensors. The feature matrix of one single RF
sensor, FRadar is defined as

FRadar =

⎡
⎢⎢⎢⎣

F11 F12 F13 . . . F1 j

F21 F22 F23 . . . F2 j
...

...
...

...
...

Fi1 Fi2 Fi3 . . . Fij

⎤
⎥⎥⎥⎦ (1)

where j is the number of features extracted from each sensor
and i is an index for each labelled data sample collected
by that radar. Through feature fusion a larger matrix can be
constructed by horizontal concatenation of the matrices of each
radar considered in the network, such as

FFusion = [FRadar1 FRadar2 . . . FRadar K ] (2)

where K indicates the number of radar sensors whose individ-
ual feature matrices are combined together.

Soft decision fusion [30] can be formulated as

SFus(n, c) = WAn · SAn (n, c)+WX1 · SX1(n, c)

+WX2 · SX2(n, c)+WX3 · SX3(n, c) (3)

where the posterior probability of each class is generated to
indicate the confidence level of the classifier making decisions.
SAn , SX1, SX2, SX3 and SFus are the probability matrix for

each individual radar and fusion cases; n denotes the obser-
vation; c refers to the class. WAn , WX1, WX2, WX3 represent
the sensor weight of different radars in the fusion procedure:
a radar with better performance is associated with higher
weight. In our case, all the weight indexes are equal to 1.
The probability matrix from each radar sensor is accumulated
to a new score matrix, where the new prediction label is the
class yielding the highest fusion posterior probability. This
procedure can help correct events misclassified by single radar
and ultimately yield higher confidence level for the correct
class after fusion.

Hard decision fusion [27], [39] utilizes the prediction results
of the classifier in the confusion matrices, rather than focus-
ing on the posterior probabilities. Typical hard fusion meth-
ods include majority voting (MV), weighted majority voting
(WMV), Recall Combiner (RC) and Naive Bayes Combiner
(NBC) [39]. In our previous work [27], it was shown that NBC
outperformed other hard fusion methods, and this was chosen
to be the hard fusion approach also in this paper. Compared
to soft fusion, NBC attempts to gather the results from all the
N classifiers to build a classifier ensemble. Ck is the class of
interest, d is a class set containing all the classes to distinguish,
P(Ck |d) is the probability that class Ck is chosen from the
class set d to become the output class and P(Ck) denotes the
supporting rate for class Ck in the classifier ensemble. Rm is
the prediction result of classifier m from classifier ensemble,
whereas pm,Rm,k refers to the confusion matrix element p for
classifier m, row Rm and column k. It is observed that pm,Rm,k

is highly correlated with the classification performance of
classifier m, as the confusion matrix is computed based on
its predictions. Therefore, if one radar sensor (e.g. Ancortek
FMCW radar) outperforms the other radars in classifying a
specific subset of classes, then such radar will have higher
impact than the others on the final decision after fusion. In this
way, hard fusion emphasizes and exploits the strong points of
each radar, and generally yields better performance than soft
fusion.

P(Ck |d) = P(Ck) ·
N∏

m=1

pm,Rm ,k (4)

However, some of the features in the feature set are
redundant for classification. Feature selection techniques
[30], [35] are typically utilized to pick the most effective sub-
set of features from the original feature set. Feature selection
algorithms include F-score [30], Relief-F [30], and sequential
forward/backward selection [30], [35]. Generally, wrapper
methods, such as sequential feature selection, outperform
F-score and Relief-F by leveraging computational power to
test each possible feature combination in combination with
the chosen classifier. In this paper, sequential backward selec-
tion (SBS) is chosen as the selected feature selection approach,
where features are eliminated one by one from the entire
set until the maximum classification accuracy is achieved.
In our case, compared to forward selection, backward selection
algorithm converges more quickly since it avoids starting with
a small feature set.
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Fig. 3. The classification accuracy as a function of the number of features dropped via SBS algorithm: (a) with SVM classifier on individual radar
data, (b) with RFB classifier on individual radar data, and (c) with both SVM and RFB on feature fusion of all four radar.

Fig. 3 shows the dependence of classification accuracy on
the number of features dropped during the SBS procedure.
In the case of using the SVM classifier as part of the
SBS, the FMCW Ancortek radar outperforms the other radars
with a maximum 69% classification accuracy achieved when
20 features are used (37 features dropped from the original set
of 57 features). In the case of Xethru P1-P3 radars, with SBS
they gain +4.5% to +7% accuracy improvement with respect
to the case of using all features. Compared to SVM, using
SBS algorithm with a RFB classifier is less effective, as the
maximum accuracy increases only of +2-3% with respect to
the performance using all features. RFB is an ensemble of
decision trees which integrates preliminary feature selection,
whereas the SBS basically filters the features again and as a
result of that, the improvement is not as significant as SBS-
SVM. When feature fusion is used, the SBS with RFB and
SVM classifier show an accuracy improvement of +3.3% and
+12% with 109 and 64 features respectively used, compared
to using the whole set of 228 features. The best classification
result using L1PO cross-validation after feature fusion reaches
80.56%.

B. Bi-LSTM Recurrent Neural Network Structure
In this sub-section we introduce the Bi-LSTM network

used as classifier of sequential walking data. The network
contains an input layer, two Bi-LSTM layers, a softmax
layer and a classification layer. The network is capable of
learning the forward and backward time dependencies through
characterizing and memorizing the possible correlations within
the sequence of the data [22], [40]. For individual gaits, due to
repetitive actions, such as arm and leg swing, the network can
extract the common temporal features between those periodic
gait patterns. For sequential gaits, the network is able to learn
the dependencies related to the order of the gaits, where the
transition between two different gait styles is the key to rein-
force the inter-connections among the cells on two Bi-LSTM
layers. A dual layer architecture has higher capabilities than
a single layer one; however, there is a trade off between
the number of layers and the computational complexity to
achieve a boost in accuracy with feasible network training
time, as shown in previous work [27], [28].

The hyper-parameters of the network training are listed in
Table III. The hyper-parameters are fine-tuned to achieve the

TABLE III
THE HYPER-PARAMETERS FOR THE BI-LSTM NETWORKS

PROPOSED IN THIS PAPER

best test performance for the different types of inputs data con-
sidered in this paper, namely sequential information extracted
from the micro-Doppler of single radar, information extracted
from the range-time matrix of single radar, and information
generated by combining the range information of multiple
radar through trilateration. The max epochs for the network
training using range information is doubled compared to the
training using Doppler and trilateration location information.
This accounts for the slower conversion of the network when
range information from single radar is used.

The connections and weight transfer between the layers in
the proposed network along with the inter-links of gates of the
Bi-LSTM cell are sketched in Fig. 4.

The sequential forward operation of a Bi-LSTM cell is
controlled by

−→
H t = σ(W−−→

X H
Xt +W−−→

H H

−→
H t+1 + b−→

H
), (5)

while the backward operation of the cell is governed by
←−
Ht = σ(W←−−

X H
Xt +W←−−

H H

←−
H t+1 + b←−

H
). (6)

The output is given by summing the product of the weight and
hidden state with the bias; namely,

Yt = W−→
HY

−→
Ht +W←−

HY

←−
Ht + bY (7)

where σ is the tanh activation function, Xt is the input of the
neural network, Ht with an arrow on its head indicates the
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Fig. 4. Structure of the Bi-LSTM layers in the proposed network and
sketch of a single LSTM cell.

hidden state with forward/backward direction, Wab shows the
weights associated with hidden states and I/O, bn is the bias
component and Yt is the network output.

The information propagation between the layers and hid-
den cells are sketched in different color arrows. Inside the
Bi-LSTM hidden cell, the forgot gate f can reset the cell
state by removing the unnecessary prior knowledge from the
previous cell state (Ct−1). The cell candidate g is the key
element which computes the new memorable information. The
input gate i decides whether the input (Xt ) is important to be
sent to the cell candidate for next step computing. The output
gate o controls the amount of current cell state (Ct ) to be
exposed. Finally the output cell state will be added with the
previous hidden state (Ht−1) to form the current hidden state
(Ht ). The detailed equations of working states into each gate
can be found in [22], [40].

C. Results With Bi-LSTM Networks
In this section, the classification results of individual gaits

described in Table I (G1 to G12) using different types of
inputs to the Bi-LSTM networks are discussed; notably these
are micro-Doppler information, range-time information, and
signal level combination of multiple radar with trilateration.

1) Decision Fusion With Bi-LSTM Networks: Doppler
centroid and bandwidth are firstly generated from the
micro-Doppler spectrogram. Then the upper and lower enve-
lope are also extracted. These four different types of features
are utilized as parallel inputs to the proposed Bi-LSTM
network, referred to as Doppler Bi-LSTM. Centroid and band-
width represent the centre of mass of the human body and the
Doppler spread around this respectively, whereas the upper
and lower envelopes of the micro-Doppler signature reflect
the variation in the velocity of human limbs (e.g. arms and
legs) that swing during the walking gait. These features are

successfully implemented in other applications, such as arms
motion detection and gesture recognition [42], [43].

Fig. 5 shows the Doppler Bi-LSTM classification results
for each participant through the L1PO training and testing
scheme. All the four radar sensors used in isolation yield
similar mean classification accuracy between 88% and 92%,
but with higher variability in terms of the minimum accuracy
(i.e. the participant whose testing results yielded the lowest
accuracy). There is significant variability of the performance
for a given participant when using different radar systems,
either if the radar are co-located but operating at different
frequency (e.g. participant #3 and #4 for Ancortek and Xethru
P1), or if they are the same radar but located at different places
(e.g. participant #2 for the three Xethru P1-P2-P3). When
fusion based on Naive Bayes Combiner across the four radar
is used, all the performance metrics are improved, not only in
terms of mean (98.2%) and minimum (94.6%) accuracy among
participants, but also in terms of the standard deviation among
the 14 participants that is significantly reduced.

Fig. 6 characterises the prediction results of the Doppler
Bi-LSTM network with respect to the aspect angle. As the
participants walk along the elliptical trajectory, this angle
changes with different values across the different radar sensors
in the network. At high aspect angle, it is expected that the
Doppler signature will be attenuated, potentially compromis-
ing the classification results. In this test shown in this figure,
the recordings of the 12 individual gaits of a participant are
cascaded one after the other to generate a 240 s long sequence
(12 gaits, with 20 s recording for each individual gait) that is
processed by the network. A number of wrong classifications,
indicated by the orange prediction line on “False”, can be
seen in different moments for the different radar sensors used
in isolation. This happens more frequently with the Ancortek
radar and with the Xethru P2, mostly in the period between
120 and 160s. Using fusion, the number of false predictions
can be significantly reduced by leveraging the advantages of
each sensor, assuming that at any given moment at least one
of the radars in the network will have low aspect angle view
on the target, leading to favourable Doppler.

Fig. 7 shows the confusion matrix with the results for indi-
vidual gaits in Table I obtained with fusion. Rows and columns
represent the target and output classes, while the diagonal
elements are the events correctly classified and non-diagonal
elements indicate the misclassified gaits. Most of the classes
have a nearly perfect recognition rate, whereas some confusion
occurs between ’normal walking’, ’walking and direct fall’
and ’walking and controlled fall.’ This is due to participants
experiencing some hesitation or delay prior to performing the
fall.

2) Signal Combination With Bi-LSTM Networks: In the pre-
vious section, we discussed the use of information extracted
from micro-Doppler spectrograms as inputs to the Bi-LSTM
network. However, generating spectrograms requires an extra
step of processing from range information. Thus, it is inter-
esting to explore whether comparable performance could be
achieved directly using range information into the Bi-LSTM
network. Fig. 8 shows range-time maps for different gaits,
where the red and white solid lines denote the average distance
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Fig. 5. The classification performance of the Doppler Bi-LSTM with single radar and fusion for individual gait data. Different colours indicate results
from the different radar sensors used in isolation or with fusion (green).

Fig. 6. The prediction results of the Doppler Bi-LSTM network with respect to the aspect angle for individual gait data. From top bottom: Ancortek,
Xethru P1, P2, P3, and radar fusion. Aspect angle values reported in blue; network prediction results as binary true-false values in orange.

between radar and centre of mass of the subject’s signature,
and the range extent along the profile due to movements of
arms and legs during the gait. These two features, average
distance and range extent, are computed from the Range-Time
matrix in the same way as Doppler centroid and bandwidth
from the spectrogram [44], and then used as inputs to the
network. The recorded target signal strength is between 0 and
approximately -25 dB in the normalised plots, indicated by red
to light blue in the colormap. Background noise is shown in
dark blue, at about -30dB and below. The difference between
the range-time plots of different gaits is not as immediately

noticeable as differences in the spectrograms were. However,
classification based on range maps, if successful, can save
the computational effort of extracting micro-Doppler, which
can be relevant for portable devices with limited memory and
computational capacity.

As a further approach to use range only information, a tri-
lateration algorithm is applied to fuse the information on the
range to the participant from the three Xethru radar sensors.
The geometry of the sensors relative to the subject and the
resulting ranges are sketched in Fig. 9, where x and y are the
coordinate of the subject. Mathematically, these ranges can be
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Fig. 7. Confusion matrix of Doppler Bi-LSTM fusion using a NBC for
individual gait data.

Fig. 8. Range-time maps for several gaits: (a) walking; (b) dragging
foot; (c) small steps; (d) walking with aid; (e) bunny jump; (f) walking
and controlled fall. Red line: average radar-subject distance. White line:
range extent around average value.

Fig. 9. Concept figure of trilateration algorithm: Xethru P1 (0,0); Xethru
P2 (d,0); Xethru P3 (i,j)); R1(distance from Xethru P1 to participant);
R2(distance from Xethru P2 to participant); R3(distance from Xethru
P3 to participant).

computed as three circumferences as

R2
1 = x2 + y2 (8)

R2
2 = (x − d)2 + y2 (9)

R2
3 = (x − i)2 + (y − j)2 (10)

Fig. 10. Sketch of trilateration advantage in localising the subject.

Fig. 11. Classification accuracy for range only information from Xethru
P1 and trilateration for individual gait data.

Fig. 12. Confusion matrix of information fusion using multiradar trilater-
ation for individual gait data.

where x is

x = (R12 − R22 + d2)/2d (11)

and y is

y = (R12 − R32 − x2 + (x − i)2 + j2)/2 j (12)
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Fig. 13. The classification performance of the Doppler Bi-LSTM with single radar and fusion for sequential gait data. Different colours indicate
results from the different radar sensors used in isolation or with fusion (green).

In our case, as the Xethru P2 is installed on the ceiling of the
lab, rather than directly using R2 as given above, the length of
its projection on the 2-D horizontal plane is considered as the
actual value. The x and y coordinates of the participant are
then extracted and utilized as the two inputs to the Bi-LSTM
network. In comparison to the range information from each
individual RF sensor, trilateration decreases the variance level
in the measurement errors of single radar by a factor of N
equal to the number of sensors [45], where in our case, N = 3.
Moreover, using the geometry of the radar, it is also possible
to explain why the trilateration-based signal level fusion can
improve the classification accuracy. As shown in Fig. 10, each
radar sensor has a range resolution R, thus the target location
would be at the estimated measured distance plus/minus R.
As the single-receiver radars have no angular resolutions,
the target could appear anywhere within the radar beam-width,
approximately 65 degrees. By using the range information of
two radar sensors, namely, Xethru P1 and P2 (UWB radar
in front of the participants and on the ceiling), the target
location can be narrowed to one small area (marked in black
dash line); this small area can be subsequently narrowed by
using trilateration (marked in green solid line). Compared to
using range measurements of single radar, trilateration-based
signal level fusion algorithm can increase the precision of
localization, which is beneficial to the following training and
testing of the proposed Bi-LSTM network. The computational
cost for applying trilateration on the range data is much lower
than Doppler processing plus further decision level fusion: the
running time is 90% less using MATLAB implementation on
the same computer.

Fig. 11 compares the results of using range only data
from Xethru P1 with those from trilateration, both with
L1PO cross validation. The average classification accuracy are
84.4% and 95.3% for range information from Xethru P1 and
multi-radar localization information by trilateration. Compared

Fig. 14. Classification accuracy for range only information from Xethru
P1 and trilateration for sequential gait data.

Fig. 15. Confusion matrix of Doppler Bi-LSTM fusion using a NBC for
sequential gait data.

to the micro-Doppler classification using Xethru P1 in Fig. 5,
range only results report an accuracy drop of approxi-
mately 7.5%, whereas a boost in accuracy between +2%
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Fig. 16. Predictions vs ground truth for sequential gaits performed by a participant. From top to bottom: zoomed Doppler spectrogram of each gait
transition; Doppler spectrogram for all sequential gaits recorded with Xethru P1; Xethru P1 results using Doppler; Xethru P1 results using range;
signal level range fusion using trilateration; decision level Doppler fusion of all radar sensors. G1= normal walk; G2= slow walk; G3= dragging foot;
G4= walk with cane; G5= walk with walker; G6= bunny jump; G7= controlled fall.

and +30% is attained for most participants via multi-radar
trilateration. Fig. 12 shows the classification matrix for the
results obtained using trilaterated coordinates as inputs to
the Bi-LSTM network. Although the performance of trilat-
eration decreases of 6%-9% for ’G9’ to ’G11’ compared to
the micro-Doppler results, for the controlled fall detection
trilateration outperforms micro-Doppler signature fusion. This
justifies the benefits of exploring information fusion at differ-
ent levels, i.e. signal level for range trilateration and decision
level for micro-Doppler information used as networks’ inputs.

IV. DATA PROCESSING FOR SEQUENTIAL GAITS

In this section the analysis of sequential gaits is performed,
i.e. gaits where there are natural and seamless transitions from
one type of gait to the other that need to be accounted for in the
classification. The efficacy of both usage of micro-Doppler and
trilaterated range information as inputs to Bi-LSTM networks
is demonstrated with experimental data.

Fig. 13 shows the classification results attained using
Doppler-BiLSTM for sequential gaits. The Ancortek radar
yields the highest mean classification accuracy of 85.4%,
closely followed by the Xethru P1 at 84.8%. The side-looking
Xethru P3 yields the lowest mean accuracy of 75%. Notably,
participants #3 and #4 exhibit low classification accuracy
across all sensors. The decision fusion between four radar
systems with the NBC leads to an accuracy boost of +7.9%
as compared to the best single radar, and improves signifi-
cantly the minimum accuracy and standard deviation across
participants as well.

Fig. 14 compares the classification performance using range
information and trilaterated coordinates combining the data
from the three Xethru radar P1-P2-P3. The range information
from Xethru P1 yields about 83.7% mean accuracy across
all participants, and trilateration yields approximately +7.3%
performance improvement, even if this is less significant for
some of the participants.

Fig. 15 shows the confusion matrix for the sequential gait
classification results using Doppler information and decision
fusion through a NBC. The confusion matrix has 7 classes for
the 7 types of walking gaits contained in the sequences, includ-
ing the fall. The main confusion can be observed between
’walking slowly’ and ’dragging one foot’, most likely because
of the similarity between these walking patterns. Conversely,
the recognition rate of the ’controlled fall’ is even higher than
that attained in the individual gait experiments.

A summarising example to compare the different proposed
methods using both single sensors and fusion is shown in
Figure 16. A time-synchronised spectrogram is provided for
the entire sequence, composed by concatenating the 5 diverse
sequential gait samples performed by a participant; ’T’ and ’F’
indicate the transition between individual gait types and fall
events, respectively. Classification errors can appear as rapid
oscillations of the classifier output (as between 65 and 85s for
Xethru P1 using Doppler or range information in isolation),
or as wrong decisions for long periods of time (e.g. at 20-40s
for Xethru P1 using Doppler and at 155-175s for Xethru
P1 using only range). In general, both approaches using range
trilateration and using decision level fusion with Doppler infor-
mation reduce the occurrence of these classification errors.
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Fig. 17. The L1O classification accuracy with different data sampling
periods for sequential gaits.

The remaining discrepancies between the ground-truth and
the predictions concern time alignment: the correct classes
(types of gaits) are predicted, but this can happen with up
to several seconds of difference with respect to the time of
the transition in the ground-truth.

In general, low signal strength received at one radar will
lead to more classification errors. Thanks to the deployment
geometry of the radars and the combination of their infor-
mation via fusion approaches, there is no experimental area
where the signal strength is too low at all radar sensors
at the same time to yield acceptable classification perfor-
mances.Furthermore, an analysis of the changes in classi-
fication accuracy with the length of data sampling period
is shown in Figure 17. The original data sampling period
for the gait data is about 20ms; we then re-sampled the
sequential gaits data with a factor q . Different choices of
this factor will lead to different data sampling period. In this
paper, q is equal to 1/8, 1/4, 1/2, 2, 4 and 8, whereas the
corresponding data sampling period are 2.5, 5, 10, 40, 80 and
160ms. The Bi-LSTM network is used to test the re-sampled
gait data comparing both Doppler and range information via
trilateration. It is shown that the ’L1O’ classification accuracy
drops significantly if increasing or decreasing the original
sampling period (20ms) of the radar data. Moreover, increasing
the length of the data sampling period appears to lead to
a more significant degradation compared to decreasing such
parameter. Compared to the Doppler information (blue line),
the trilaterated range information has a slower decrease rate,
which suggests that fusion using trilateration algorithm can be
more robust in terms of the ability of adapting to changes in
the sampling period.

V. CONCLUSION AND FUTURE WORK

This paper presented the classification of human gait pat-
terns and falls in a radar sensors network composed of a
FMCW radar and three UWB pulse radar placed at different
spatial locations. The human gaits classified in this work are
both individual and sequential, continuous gaits. These contain
multiple walking styles performed one after the other, with
natural transitions in between, including fall events developing
from walking gait in certain cases.

Preliminary results obtained using conventional SVM and
Random Forest classifiers are outperformed by the use of
Bi-LSTM networks, capable of accounting for the temporal
backward and forward correlations within the sequences of
radar data. In terms of data fusion approaches, a signal level
scheme based on trilateration to combine range information
from different radar sensors proved to be very effective,
and yielded comparable results to more conventional process-
ing based on micro-Doppler. An experimental dataset with
14 participants and 12 walking gaits was used to validate the
results. Decision fusion based on micro-Doppler information
and the use of signal fusion based on range trilateration yielded
approximately 98.2% and 95.2% classification accuracy, when
applied on individual gaits. For sequential gait classification,
the two approaches achieved 93% and 90%, respectively.

Future work will focus on different network architectures
and components (e.g. Temporal Convolution Network and
Connectionist Temporal Classification) for better modelling
and learning sequential classification problems, as well as
adding more participants and gait styles to the dataset, includ-
ing totally unconstrained walking gait in any random direction.
Cross-modality tests (training on fusion data and then test
with single sensor) will be also important for evaluating
the system performance under the worst-case of one sensor
malfunctioning or being severely occluded by clutter in the
environment. In addition, building a framework that combines
the advantages of signal, feature and decision level fusion
will be considered to subsequently improve the classification
accuracy, especially for some gaits that cannot be easily
classified via a single fusion approach.
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