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Abstract
We present a novel nonlinear formulation for modeling reactive-compositional flow and transport in the presence of
complex phase behavior due to a combination of thermodynamic and chemical equilibria in multi-phase systems. We
apply this formulation to model precipitation/dissolution of minerals in reactive multiphase flow in subsurface reservoirs.
The proposed formulation is based on the consistent element balance reduction of the molar (overall composition)
formulation. To predict the complex phase behavior in such systems, we include the chemical equilibrium constraints
to the multiphase multicomponent negative flash calculations and solve the thermodynamic phase and chemical phase
equilibria simultaneously. In this solution, the phase equilibrium is represented by the partition coefficients, whereas the
chemical equilibrium reaction is represented by the activity coefficients model. This provides a generic treatment of chemical
and thermodynamic equilibrium within the successive substitution loop of multiphase flash to accommodate chemical
equilibrium reactions (precipitation and dissolution reactions). Equilibrium Rate Annihilation matrix allows us to reduce the
governing component conservation equations to element conservation equations, while the coupling between chemical and
thermodynamic equilibrium is captured by a simultaneous solution of modified multiphase flash equations. The element
balance equation written in terms of overall component mole fractions is modified and defined in terms of element mole
fractions. Therefore, the primary set of governing equations are the element balance equations and the kinetic equations.
This element composition of the mixture serves as an input to the modified multiphase flash computations, whereas the
output is fractions of components in each phase, including solids. The nonlinear element–based governing equations are
solved with the modified version of the operator-based linearization (OBL) approach where the governing equations are
formulated in terms of space- and state-dependent parameters constrained by the solution of the extended multiphase flash.
The element balance molar formulation along with the modified multiphase flash has been tested in a simple transport model
with dissolution and precipitation reactions. The simulation of multidimensional problems of practical interest has been
performed using the adaptive OBL technique. This is the first time when a robust multiphase multicomponent flash based
on element fractions is coupled with an element balance–based compositional formulation and tested for multidimensional
problems of practical interest. The proposed technique improves both robustness and performance of complex chemical
models.

Keywords Reactive compositional flow and transport · Thermodynamic and chemical equilibria · Fully coupled solution ·
Operator-based linearization · Element balance formulation

1 Introduction

Reservoir engineering has nowadays become an integral
part of effective reservoir management, with reservoir
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simulation being the main tool in this process. Therefore,
there are continuous efforts to improve the performance
of the reservoir simulators and also implement a higher
degree of physics into them in order to capture detailed
subsurface processes with greater accuracy and without
loss of computational efficiency. Reservoir simulation
coupled with good static and dynamic geologic models
can provide greater insights into the reservoir and can
help in the effective management of oil fields by testing
various production scenarios and integrating available
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information into the simulator to make better production
forecast.

Fluids in subsurface reservoirs are a complex mixture
of different types of hydrocarbons which can be present as
either gas, liquid, or even solid phase (asphaltenes, coke),
depending on the pressure, temperature, and composition
of the reservoir fluids. Along with the hydrocarbon vapor
and liquid phases, there is always a presence of an
aqueous phase which contains mainly water but can also
have dissolved hydrocarbon components and minerals.
In addition to the in situ reservoir components, other
components are also introduced into the reservoir mixture
during injection operations to enhance the production and
recovery from the reservoir. Examples include low salinity
brine, surfactants, polymers, and CO2. The distribution
of components in different phases are usually controlled
by thermodynamic equilibrium, chemical equilibrium, and
chemical kinetics. Therefore, for accurate modeling of
such systems, we need to couple these effects with flow
and transport which requires solving multiple nonlinear
governing equations simultaneously.

The modeling of flow and transport in the subsurface
is divided into two different research categories. The first
direction is being supported by the reservoir engineering
community which focuses on complex equation of state
(EOS) models to resolve the multiphase multicomponent
flow and transport. The second category of models is being
developed by the hydrological community which almost
ignores multiphase phenomena due to the limited presence
of other phases, but incorporate a wide range of chemical
equilibrium and kinetic reactions. One of the first efforts
to rigorously couple chemical reactions with the flow has
been done in [14]. He reduced the species into primary and
secondary components and decoupled the local chemical
equilibrium reactions from the solution of single-phase flow
[13].

From another side, compositional reservoir simulators
put a major emphasis on phase resolution due to the
presence of multicomponent fluid. Traditional reservoir
simulators determine the phase state of the fluid using the
Gibbs energy minimization technique proposed in [16],
which is based on the equality of chemical potentials of
species in different phases at equilibrium. Using this to
determine the stability of the fluid system, flash calculations
can be run if the system has multiple phases as suggested in
[17] to determine the phase fractions and compositions.

The phase split problem at equilibrium assumptions
includes the solution of the nonlinear system of equations.
In [22], they reformulate this system in one nonlinear
equation which yields phase fraction of phase. Later, in
[12], authors allowed the phase fractions to become negative
which indicates single-phase mixture. Next, the range of
vapor fraction values was bounded in [28]. Since any point

in sub-critical single-phase region can be parameterized by
the tie-line, the negative flash procedure can be used as an
effective phase-state identification method which does not
require phase stability test [7].

With the use of modern production technologies like
enhanced oil recovery, well acidization, and CO2 seques-
tration, various phenomena involve dissolution and pre-
cipitation in the reservoir, mostly in the near-well region.
This introduces a need to effectively couple the chem-
ical reactions with multiphase flow and transport using
reactive compositional simulation. The first attempt to intro-
duce this coupling was performed in [5] where he applied
the element-based formulation for multiphase reactive-
compositional flow and transport in reservoir simulation.
Later, in [6], the model was extended to multiple equilibria
and kinetic reactions using both natural- and molar-based
formulations in the Automatic Differentiation General Pur-
pose Research Simulation (ADGPRS). In [18], an element
and species balance formulation for chemical reactions
was introduced. The Gibbs-Helmholtz constrained (GHC)
equation of state solver for the simultaneous solution of
thermodynamic and chemical equilibria [15], was incor-
porated in ADGPRS framework to model multiple salt
precipitation/dissolution reactions [26].

There are different techniques which are used to couple
the non-linear compositional transport equation with the
chemical reactions. In [29], authors studied these different
approaches and then suggested the sequential iterative
approach (SIA) to model the reactive transport, which is
faster and has lower numerical dispersion but requires
smaller time steps for stability. Another way to solve the
system is by using the sequential non-iterative technique
where first the flow and transport is solved and later,
using the transported concentration, the reaction terms are
solved. This method assumes that the transport is fast and
the reactions can be applied after the transport solution is
complete, which is not an accurate assumption for, e.g., in
kinetic reactions which has varied time scales. In [5] and
[6], authors solved reactive flow and transport problems
using fully implicit formalism also known as the global
implicit technique in the hydrological community, where
the transport and the reactions are solved simultaneously.
The fully implicit technique gives the liberty to perform
large time steps without stability issues. However, the phase
behavior evaluation was not tightly coupled with chemical
equilibrium computations in these approaches which affect
the robustness and efficiency of the simulation process.

In this work, we utilize a recently developed fully
implicit operator-based linearization (OBL) technique [25].
The OBL method controls the nonlinearity of the prob-
lem with the multi-linear representation of state-dependent
operators in governing equations. During the course of the
simulation, these operator values are linearly interpolated on
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the mesh with a predefined accuracy. The values of the state
operators are calculated adaptively using conventional prop-
erty estimators based on correlations or solution of equation
of state [9]. Thus, this method additionally improves simula-
tion time by skipping the routine evaluation of computation-
ally expensive phase behavior calculations performed by the
conventional technique. The OBL approach has been imple-
mented and successfully tested for the solution of complex
geothermal [8] and multiphase multicomponent flow and
transport problems with buoyancy [10].

In this paper, we develop an algebraic framework for
the simultaneous solution of thermodynamic and chemical
equilibria and apply it to reactive multiphase multicompo-
nent flow and transport problem. The first section describes
governing equations for multiphase compositional simula-
tion in chemical and thermodynamic equilibrium assump-
tions. In the second section, we explain the reduction of gov-
erning equations to element formulation. The third section
describes the simultaneous solution of thermodynamic and
chemical equilibrium using an extended negative flash tech-
nique and includes an illustrative example. This approach
is implemented in Delft Advanced Reservoir Terra Simula-
tion (DARTS) [4] to adaptively parameterize the governing
equations for simulation which is described in the fourth
section. The last section presents several numerical simula-
tions performed in DARTS and used to test and validate the
developed framework.

2 Conventional governing equations

In this section, we present the conventional governing
equations which define the mass balance of species in
reactive flow and transport at thermodynamic and chemical
equilibrium assumptions.

2.1 Conservation of components

We start with the basic mass balance equations including the
effect of chemical reactions as source/sink term [11]:

∂nc

∂t
+ lc +qc =

K∑

k=1

vckrk +
Q∑

q=1

vcqrq, c = 1, . . . , C, (1)

where nc is the overall mass of component, lc is the
total flux associated with that component, qc is the total
well flow rate associated with that component, vck is the
stoichiometric coefficient associated with kinetic reaction k
for the component c and vcq is the stoichiometric coefficient
associated with equilibrium reaction q for component c, rk
is the rate for kinetic reaction, and rq is the equilibrium
reaction rate.

In this study, we only consider equilibrium reactions. The
overall mass of components is defined as

nc = φ

P∑

j=1

(
ρj sj xcj

) +
M∑

l=1

(1 − φ)ρlxcl, c = 1, . . . , C.

(2)

Here, P stands for the total number of fluid phases and M

stands for total number of solid phases. Here, the first term
indicates total mass of component c in all the fluid phases;
whereas the second term is the mass of component c in the
solid phases. The term lc defines the flux of component c
and is given as:

lc = ∇
P∑

j=1

(
ρjxcjuj

) + ρjφsj dcj∇xcj , c = 1, . . . , C,

(3)

where the term dcj corresponds to the dispersion of
component c in phase j. For simplicity, this term is neglected
in our study. The term uj is the velocity of the phase j and is
defined by Darcy’s law:

uj = −K
krj

μj

(∇p − ρjg∇h
)

(j = 1, . . . , P ). (4)

The rest of the properties are split into the state-
dependent (ω) and space-dependent (ξ ) relations.

• State based (fluid and rock interactions):

– krj (ω) - relative permeability,
– ρj (ω) - density,
– sj (ω) - saturation,
– xcj (ω) - mole fraction of component c in phase

j,
– μj (ω) - phase viscosity.

• Space based (properties altered in space):

– K(ω, ξ) - permeability tensor,
– φ(ω, ξ) - porosity,
– uj(ω, ξ) - phase velocity.

In our work, we assume that the solid phase is not moving;
therefore, we take the velocity of solid phase zero and it is
not considered in the flux term. With all above-mentioned
assumptions, Eq. 1 can be written in a vector form:

∂n
∂t

+ l + q = V r, (5)

where n = (n1,. . . ,nC)T, l = (l1,. . . ,lC)T, q = (q1,. . . ,qC)T

is the well flow rate, V is the stoichiometric matrix in a
reaction, and r = (r1,. . . ,rQ)T is the reaction rate vector.
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2.2 Closing assumptions

Equilibrium reactions are defined as reactions with the
forward reaction rate the same as the rate of backward
reaction. There are no observable changes in the properties
of the system since the reactants and the products do not
change with time but, the system is in dynamic equilibrium.
Since the reaction proceeds very fast and is reversible in
nature, the instantaneous local equilibrium assumption can
be made. The equilibrium relations are defined by the law
of mass action and are given as:

Qq − Kq = �C
c=1α

vcq
c − Kq = 0. (6)

Here, αc is the activity of component c, Qq is the
reaction quotient, and Kq is the equilibrium reaction
quotient or equilibrium solubility limit in the case of
dissolution/precipitation of minerals.

The next closing relation is the fugacity constraint
which is based on the equality of fugacity of a particular
component across different phases. A component is at
thermodynamic equilibrium if the chemical potentials of the
component in both phases are equal. Numerically, it can be
written as

fi1 − fij = 0, i = 1, . . . , C, j = 2, . . . , P . (7)

The fugacity of a component in a particular phase is given
by

fij = φij xijp, i = 1, . . . , C, j = 1, . . . , P , (8)

where φij is fugacity coefficient. These relations (7) can
also be written in terms of partition coefficients (K)

Kxi1 − xij = 0, i = 1, . . . , C, j = 2, . . . , P . (9)

There are two methods to resolve the thermodynamic
phase behavior: EOS-based approach and constant K value
approach, see [19] for details. The EOS-based approach
starts with an initial guess of K values and they are updated
in every iteration using the cubic EOS until the fugacity
constraint is satisfied. In the second approach, K values
are considered only a function of pressure and temperature
but not the composition. This representation is valid for
hydrocarbon mixtures at low-pressure conditions. However,
it can be extended for higher pressure as well with additional
composition dependency [23]. For simplicity, we are using
the constant K value assumption in this work.

The final set of closing relations are given below

zi −
P∑

j=1

xij vj = 0, i = 1, . . . , C, (10)

C∑

i=1

xi1 −
C∑

i=1

xij = 0, j = 2, . . . , P , (11)

P∑

j=1

vj − 1 = 0, j = 1, . . . , P , (12)

where vj is defined as

vj = ρj sj
P∑

k=1
ρksk

, j = 1, . . . , P , (13)

and zi is the overall mole fraction of component i.
Equation 10 is the definition of overall composition of
component c, Eq. 11 is the phase composition, and Eq. 12 is
the overall phase fraction constraint.

2.3 Nonlinear formulation

There are different nonlinear formulations which can be
used for the solution of the compositional flow problem.
These formulations depend on the type of primary equations
and unknowns selected for a fully implicit system. There
are two major types of formulations which are being used
in reservoir simulation community: (1) natural formulation
[2] and (2) molar formulation [1, 3]. An extended analysis
of the different types of formulations has been covered in
[26]. In this study, we are using the molar formulation as
an alternative to the natural formulation suggested in [5].
Comparison of reactive simulation using both natural and
molar formulation has been performed in [6] and can be
referred for further details.

The governing Eq. 1 in molar formulation are solved for
pressure (p) and overall composition (z) where the overall
molar mass of component in (1) can be written as

nc = φρtzc +
M∑

l=1

(1 − φ)ρlxcl, c = 1, . . . , C, (14)

and ρt is the total density of the fluid.
In a fully implicit model, when more that one phase

exists, we need to determine the secondary variables using
the given primary variable p and z. The set of secondary
Eqs. 9 to 12 are solved using multiphase flash procedure.
The governing equations are linearized using the Newton-
Raphson approach given as

J
(
yk

) (
yk+1 − yk

)
= −r

(
yk

)
. (15)

Here, J stands for the Jacobian matrix with respect to
primary unknowns, k stands for the nonlinear iteration,
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and y stands for a vector of nonlinear unknown which are
pressure and overall compositions. Finally, r is the residual
of the mass balance Eq. 5 at k-th iteration. The linear
Eq. 15 is solved on every nonlinear iteration to obtain an
update of primary unknowns. If the residual is below the
pre-defined tolerance, then the system is converged, and the
Newton loop is terminated. In this approach, the derivatives
of secondary variables with respect to the primary nonlinear
unknowns are calculated using the inverse theorem [26].

3 Element balance reduction

In this section, we describe the reduction of component
mass balance equations to element mass balance equations
with thermodynamic and chemical equilibria constraints
used as secondary equations.

3.1 Stoichiometric and annihilationmatrices

The stoichiometric matrix takes into account the mass bal-
ance of components in chemical reactions. Stoichiometric
matrix S, when written in canonical form, consists of com-
ponent (primary species) and non-components (secondary
species). Secondary species are components which are
uniquely defined by a chemical reaction and can be writ-
ten in terms of primary species. The general form of the
stoichiometric matrix as suggested in [6] is given below

(16)

Here, R stands for the total number of reactions, Q is
the number of equilibrium reactions, K is the number of
kinetic reactions, and C is the total number of components.
The rows represent the components involved in chemical
reactions, whereas the columns represent the chemical
reactions itself. In this study we are using the equilibrium
reactions only; therefore, R is equal to Q and K =
0. Equilibrium Rate Annihilation matrix E removes the
equilibrium reaction rates from the governing mass balance
equations when they are pre-multiplied by it. In addition,
this multiplication reduces the C component mass balance
equations to E element mass balance equations. The E
matrix can be visualized as the distribution of elements in
different components and can be written in the matrix form
as

EE × C =

⎡

⎢⎢⎢⎢⎣

e11 e12 . . . e1C
e21 e22 . . . e2C
. . . . . .
. . . . . .

eE1 eE2 . . . eEC

⎤

⎥⎥⎥⎥⎦
. (17)

The multiplication by E matrix also linearly combines
the kinetic reaction components so that they appear only
in the corresponding governing equations. Therefore, C

component balance equations are reduced to E element
mass balance equations, K differential kinetic reaction
relations, and Q algebraic chemical equilibrium relations
which sum to C (C = E + K + Q). The formulation of
E matrix is dependent on the stoichiometric matrix S. The
general form of E is given in [6] as

E(E+K) × C =
[
E1(E×C)

E2(K×C)

]
, (18)

The rows of the E matrix are chemical elements which
combine to form the components. These elements are the
smallest chemical species which do not disassociate into
the smaller entities. The column of matrix E represents the
components involved in the system.

To illustrate this approach, we consider a simple system
consisting H2O, CO2 and one dissolution-precipitation
reaction of CaCO3. Since H2O and CO2 do not
disintegrate into smaller species, they can be treated as
elements for this example. Whereas CaCO3 disassociates
into Ca2+ and CO2−

3 ions, therefore these ions are
considered as elements. The equilibrium rate annihilation
matrix for this system is given as

E =

⎡

⎢⎢⎢⎢⎣

H2O CO2 Ca2+ CO2−
3 CaCO3

H2O 1 0 0 0 0
CO2 0 1 0 0 0
Ca2+ 0 0 1 0 1
CO2−

3 0 0 0 1 1

⎤

⎥⎥⎥⎥⎦
.

The stoichiometric matrix for this system is given as

S = [
0 0 1 1 −1

]T
.

3.2 Reduction to element formulation

The addition of chemical reactions to compositional formu-
lation posses serious challenges. Firstly, the instantaneous
chemical equilibrium reaction rates make the transport
problem very stiff, which requires very small time steps to
resolve the nonlinearity. Therefore, we use the local equi-
librium assumption and decouple the chemical equilibrium
reactions. Secondly, equilibrium reactions and kinetic reac-
tions are both functions of concentrations of reactants and
products, which are in turn functions of transport. As a
result, we need a robust mechanism to capture this coupling.

Next, we formulate the element balance approach as
suggested in [24] and write the element-based governing
equations in terms of mole fractions of elements. To write
the governing equation in terms of elements, we pre-
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multiply the vector Eq. 5 with E which yields the element
balance equation

∂(En)

∂t
+ El = ESr =

[
E1Sr
E2Sr

]
=

[
0
rk

]

(E+K)×1
. (19)

The above equation is now reduced to E mass balance
equations written as

∂(En)

∂t
+ El = 0, (20)

and K kinetic reaction relations
∂(EK×CnC×1)

∂t
+ EK×C lC×1 = rk . (21)

The above relations are still written in terms of overall mole
fractions and need to be converted to the governing equation
in terms of element mole fractions (zE) using the relations
described below. Element to composition transformation
shows how the elements combine to form the components
and are written as

zE =
(

ρT

ρE
T

E

)
z =

C∑
c=1

eeczc

C∑
c=1

E∑
e=1

eeczc

. (22)

Total molar component density is given by

ρT =
P∑

j=1

ρj sj = 1
P∑

j=1

vj

ρj

, (23)

and total molar element density is given as total moles of
the element to the total volume

ρE
T =

P∑

j=1

(
ρj sj

C∑

c=1

E∑

e=1

eecxcj

)
=

C∑
c=1

E∑
e=1

eeczc

P∑
j=1

vj

ρj

. (24)

Introducing ρE
T in Eq. 20 transforms the mass balance

equation in terms of zE and is written as

∂φρE
T zE

∂t
+ El = 0. (25)

Using the above relations, we have additional E unknowns
apart from the C already present. This E unknowns are sup-
plemented by the E element to component transformation
Eqs. 22 which can also be written as

zE

C∑

c=1

E∑

e=1

eeczc − Ez = 0. (26)

The flux terms are still written in terms of component
compositions in each phase which can be determined from
the multiphase flash coupled with the chemical solver. As
there are a fewer number of elements compared to the
total number of components, the above system becomes

under-defined. Therefore, we also include the chemical
equilibrium as the closing relations along with the phase
equilibrium relations in a Newton loop with the element to
component transformation in Eq. 26. The unknown variable
set for the element formulation is given below:

γc =
{
p, zE, z, vj , xcj

}
, e = 1, . . . , E, c = 1, . . . , C,

j = 1, . . . P .

There are in total E + C + P + CP + 1 unknowns
in this formulation which has additional E equations in
comparison to the overall formulation. The system is closed
by E element conservation equation, K kinetic reaction
relations, and Q equilibrium relations which together
adds up to C. Then there are E element to component
transformation relations (26), C(P − 1) fugacity relations,
C overall mole fraction relation, P − 1 phase composition
relations, and one phase constraint and overall mole fraction
relations. So adding all of them up, the total number of
equations becomes C + E + CP + P + 1 which is equal to
the total number of unknowns.

4 Thermodynamic and chemical equilibria

The phase constraint relations, when solved with chemical
equilibrium relations and element to component transfor-
mation, suggests how elements partition in different phases
and how these elements are combined to form components.
The chemical equilibrium relations, which follow the law
of mass action (6), are solved with thermodynamic relations
(9) to (12) for phase behavior prediction. The chemistry
of precipitation and dissolution reactions are simplified by
several adjustments which can be later relaxed.

If the value of Qq > Kq , then the reactants (minerals)
will form instantaneously in order to reduce Qq and the
opposite occurs when Qq < Kq . Any change in the
system at equilibrium will cause the composition to move
in the direction which neglects the change according to
Le Chatelier’s principle. Therefore, if Qq is greater than
Kq , precipitation occurs in cases of mineral reactions
as more reactants are formed to reduce Qq . Since the
equilibrium reactions occur instantaneously (independent of
time), and they are the only function of the concentration of
components in the grid blocks, we can decouple them from
the mass balance and consider them as secondary equations.

As shown in [5], the equilibrium relations can be written
in terms of mole fractions instead of the activities. The
activity of the pure mineral phases and water is considered
as one. The activity of components can be written in terms
of molality as given below:

αcw = γcw

mcw

m0
. (27)
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Here, standard molality of solute species is taken as one
mol/kg, mcw stands for molality of component c, and γcw

is the activity coefficient of component c in water. Activity
coefficient for very dilute solutions can be taken as one. The
molality of a component is related to the mole fractions of
the components as

mcw = Mwm

(
xcw

xww

)
, (28)

where Mwm = 55.508 is the moles of H2O per kilogram
of the aqueous phase, xcw stands for mole fraction of
component c in the aqueous phase, and xww stands for
mole fraction of water in the aqueous phase. The initial
guess for phase compositions is determined by solving the
RR equation for thermodynamic equilibrium as shown in
Appendix A.

4.1 Rigorous equilibrium validation

In this section, we resolve the phase behavior at local
thermodynamic and chemical equilibrium assumptions
using the method described earlier. We first start with
a simple one equilibrium reaction system with two fluid
phases and one solid mineral phase present.

CaCO3(s) ←→ Ca2+(aq) + CO2−
3 (aq)

Using the law of mass action, we can algebraically write the
above reaction in terms of activities of present components
as shown in (6). The molality relations can be used to
convert the relations in terms of component mole fractions

Kq =
M2

wm ∗ γCa2+ ∗ γ
CO2−

3
∗ xCa2+ ∗ x

CO2−
3

x2
wa

. (29)

For very dilute solution, we can assume activity coefficient
to be one and reduce the above equation to

Kq ∗ x2
wa − M2

wmxCa2+x
CO2−

3
= 0. (30)

To resolve the combined thermodynamic and chemical
equilibria simultaneously, Eqs. 9 to (12) are solved along
with (26) and (6) in a nonlinear loop. If the solution gives all
the three-phase fraction values as positive, then the system
is in a three-phase region. If any of the phase fractions
are negative, then that phase is missing, and we reduce the
system of equations to two-phase case; if both two-phase
fractions are negative, then there is only one phase present.

Figure 1 shows the phase distribution generated using
the element flash and chemical equilibrium solver for
different values of Ksp from 10−08 to 5800. A range of
Ksp values is taken to check the robustness of the coupled
thermodynamic and chemical equilibrium solver and to

understand how the phase regions change with changing
Ksp values. Therefore, starting with the element mole
fractions, partition coefficients, and equilibrium constant
values, we can resolve the phase behavior of chemical and
thermodynamic equilibrium system in a coupled manner.
The yellow region in Fig. 1 is the three-phase region where
all the three phases (aqueous, gas, and solid) are present.
As the value of Ksp increases, it implies that more ions can
dissolve in the aqueous phase, hence the solid phase region
begins to shrink. This can be clearly seen in the figure, as
we increase the Ksp values.

5 Element reduction in operator-based
linearization

Above, we have discussed how the thermodynamic and
chemical equilibrium can be resolved in a coupled manner.
Here, we couple the phase behavior with the transport
solver and complete our reactive-compositional model. In
this section, we will first give a short description of
parameterization of the governing equation in Operator-
Based Linearization and generate physics-based operators
for a one reaction test case.

5.1 Operator-based linearization

OBL framework has been used before to solve composi-
tional and geothermal problems with buoyancy [8, 10], but
has never been tested for flow with chemical reactions. The
OBL approach provides a flexible solution for nonlinear
formulations with complex derivatives in a fully implicit
manner. In element balance formulation, all derivatives need
to be evaluated with respect to element concentration zE

which is a non-trivial procedure.
Equation 31 gives the description of conventional OBL

approach for non-reactive compositional problem. The
finite-volume discretization of compositional governing
equations is given as

V

⎛

⎝(φ

P∑

j=1

xcjρj sj )
n+1 − (φ

P∑

j=1

xcjρj sj )
n

⎞

⎠

−
t
∑

lεL

⎛

⎝
∑

j

xl
cj ρ

l
j T

l
j 
pl

⎞

⎠ = 0. (31)

This equation can be rewritten in parameterized form with
space- and state-dependent operators as

a(ξ)(αc(ω) − αc(ωn)) −
∑

l

βl
c(ω)bl(ω, ξ) = 0, (32)

where ω is a state-dependent parameter and ξ is a space
dependent parameter. Equation 31 is translated into Eq. 32
using the following operators:
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Fig. 1 Phase distribution of three-phase CaCO3 system with increasing values of Ksp

– αc(ω) = [
1 + cr(p − pref )

]
zcρT ,

– a(ξ) = V (ξ)φo(ξ),

– βc(ω) =
P∑

j=1
xcjρj

krj

μj
,

– b(ξ, ω) = 
tT ab(ξ)(pb − pa).

Here, α and β are state-dependent operators. The value
of these operators can be determined for parametrized
set of p and z points, by evaluating different properties
at these points. These points are defined as base nodes
or nodal values. During the course of the simulation,
the operators are evaluated using multi-linear interpolation
in parameter space. The larger the number of base

node points we use, the higher is the accuracy of the
interpolation.

To improve the performance of OBL approach for a large
number of species, an adaptive extension has been proposed
in [10]. This is a minor extension of OBL approach in which
the tables are generated during the course of a simulation.
The grid is uniform but the values of the operators at the
nodes are calculated during the course of simulation when
it is required. Adaptive OBL is useful for simulating a
multicomponent system where only a limited number of
compositions defines hyperbolic transport. Therefore, the
phase behavior is resolved only at those nodes which are
used for interpolation. The chemical reaction system was
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Fig. 2 Alpha operators for the four-element CaCO3 system

simulated using both the fixed OBL and the adaptive OBL
strategy both of which produced equivalent results.

5.2 Adding chemical reaction in OBL

Until now, we discussed the OBL approach for compo-
sitional transport, i.e., where the operators do not take
chemical reactions into account. Here, we modify the oper-
ators to include equilibrium reactions. We start with a
simple CaCO3 dissolution-precipitation reaction example
where the reaction is considered as an equilibrium one.
This system has been defined in the previous section. Since
the governing equations in reactive transport are written in
terms of elements, the operators have slightly different form
as compared to the compositional OBL formulation. The
element-based governing equations can be described as

∂φT ρE
T zE

∂t
+ El = 0. (33)

Here, φT is the total porosity of the rock which includes
the reactive (mineral) and the fluid part, and it is always
constant throughout the course of the simulation as the non-
reactive part of the rock does not take part in any reaction
or flow. The fluid porosity keeps on changing with the
change in reactive porosity, hence affecting the permeability
of the system. Since the elements are also part of solids,
the total mole fractions of elements also include the solid
component. Therefore, the accumulation term should also
include the reactive part of the reservoir. Hence, the total
porosity will remain constant in the accumulation term. The
alpha operator for a chemical reaction is given as

αi(ω) = (1 + cr(p − pref ))ρE
T zE

i , i = 1, . . . , E. (34)

Using the definition of ρE
T from Eq. 24, αi operator can be

can written as

αi(ω)=(1+cr(p−pref ))

C∑
c=1

E∑
e=1

eeczc

P∑
j=1

vj

ρj

· zE
i , i =1, . . . , E.

Space-dependent parameter a is modified to include the
total porosity instead of fluid porosity. The total porosity is
constant throughout the course of the simulation, unlike the
fluid porosity which changes as the reaction proceeds. As a
result of considering total porosity in the accumulation term,
φT

o becomes a space-dependent parameter instead of state-
dependent parameter reducing the nonlinearity in the alpha
operator

a(ξ) = v(ξ)φT
o (ξ). (35)

Here, φT
o is the total initial porosity which does not vary

with time but only in space. The concept of total porosity
and how it depends on the mineral mole fraction is described
in Appendix B.

The alpha operators generated for the current system
are shown in Fig. 2. The last operator for the current
system represents the combined accumulation of both the
ion species Ca2+ and CO2−

3 since they behave exactly
the same when there is no source for these ions. Hence,
we are able to represent a four-element system with just
three elements. This is not the case when there are multiple
reactions or there is some source of individual ions. In
real cases, the number of operators would be equal to the
number of elements as the individual ion concentration will
be different in a particular grid block for some cases.

Here, zE is an E-element vector, whereas ρE
T and

compressibility are scalar quantities. ρE
T depends on the

overall mole fraction distribution of the components in a
grid block. For the current system, we assume the density
of all phases to be equal to one so we can reduce the alpha
operator to

αi(ω) = c(p)

C∑

c=1

E∑

e=1

eeczcz
E
i , i = 1, . . . , E. (36)

The βi operators are similar to the conventional compo-
sitional case with the only difference that it should be
pre-multiplied by the Equilibrium Rate Annihilation matrix
to get the element-based flux terms. The Ematrix takes into
account the flux of all components formed by a particular
element.
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Fig. 3 Beta operators for the four-element CaCO3 system

Therefore, it is a sum of overall fractional flow of all the
components which contain the individual elements. The βi

operators for the current system is given below

βi(ω) = EE×C lC×1, (37)

where E is the equilibrium annihilation matrix and l is the
flux term. The above equation can be written in terms of
phase compositions as

βi(ω) =
C∑

c=1

⎛

⎝e ic
P∑

j=1

xcjρj

krj

μj

⎞

⎠ , i = 1, . . . , E. (38)

where eic is the amount of element i in component c. In
total, there should be E number of βi operators but for this
example, we just need three similar to αi operators, see
Fig. 3. The above-described operators linearize the reactive
flow and transport governing equations. This problem is
solved using the fully implicit scheme. A uniform grid is
used for parameterizing and the operators are generated and
stored adaptively.

6 Numerical simulation results

In this section, we present the results generated using the
newly developed element–based formulation and adaptive
OBL for different cases with single and multiple reactions.
The Ksp values for the equilibrium reactions are highly
scaled up to make the reaction more pronounced in the
simulation for the testing purposes.

6.1 Reactive flow and transport in 1D

The results are generated using the adaptive OBL simulation
framework in the 1D test case for one calcite dissolution and
precipitation reaction system shown below:

CaCO3(s) ←→ Ca2+(aq) + CO2−
3 (aq),

MgCO3(s) ←→ Mg2+(aq) + CO2−
3 (aq).

The rest of the parameters for the simulation can be
found in Appendix C. The simulation was performed for
2000 days. In the first simulation run, we model just one
mineral reaction; therefore, only the first reaction affects
the porosity. Figure 4 shows the element mole fraction

Fig. 4 Element and component mole fraction profile for 1 reaction case
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Fig. 5 Element and component mole fraction profile for 2 reaction cases

Fig. 6 aH2O mole fraction, bCO2 mole fraction, and cCaCO3 mole fraction for fifth layer of the Brugge model at T = 900, 2020, and 5400 days
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Fig. 7 a Pressure profile (top left to right). b CO2 mole fraction profile (middle left to right). c CaCO3 mole fraction profile (bottom left to right)
for layers 3, 5, and 9 of the Brugge model

profile on the left and overall component mole fraction
profile along with porosity profile on the right. Since we
are assuming that there is no additional source of ions
apart from the amount already present, the mole fraction of
ions in water is only a function of the reaction coefficient
value. We can see the mole fraction of ions varying based
on the water amount present which moves along the CO2

shock front. The simulator solves for the primary element
balance equations which produce the element profile. Using
the element composition, component mole fractions are
determined for the whole domain.

The right part of Fig. 4 shows the overall composition
in which the green line represents the calcite mole fraction.
It is clear, that near the injection well, there is vaporization
of water which leads to the calcite deposition. As a result,
the fluid porosity of the system decreases and the reactive
porosity increases while keeping the total porosity of the
system constant. Due to the variation in fluid porosity, the

permeability of the reservoir will also be affected which in
turn will affect the transport.

Next, we consider two dissolution/precipitation reactions
in the system by adding the MgCO3 equilibrium reaction.
The simulation results are shown in Fig. 5. Here, the element
and component mole fractions at the end of the simulation
are shown. In the composition plot, we can also see the
fluid porosity variation due to dissolution and precipitation
reactions, which depends on the amount of both minerals
present.

6.2 Reactive flow and transport in 3D

Next, we use the developed framework for amodification of the
3D Brugge field model [21]. In our models, we look into
CO2 sequestration to the depleted gas field with only one
CO2 injection wells and two gas production wells. We start
with the one-layer model and then extend it to the 3Dmodel.
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The simulation was performed for one layer (layer 5) of
the Brugge field only. Figure 6 shows the dynamic at various
times.

The element-based governing equations are solved using
the fully implicit adaptive OBL method. We can see that
as the water mole fraction decreases, the CaCO3 deposition
occurs based on the equilibrium quotient of the reaction.
Since the Ksp for this reaction is taken unrealistically high,
the initial mole fraction of calcite is zero at the initial
conditions. As the CO2 front proceeds, water is vaporized
and CaCO3 precipitates.

Next, the rest of the layers were activated in the Brugge
model. The pressure profile along with mole fraction of
CO2 and calcite are shown for three layers in Fig. 7.

From Fig. 7, it is clear that the CO2 front has mostly
progressed in the layer with the higher permeability. The
change in the fluid porosity with precipitation is also
determined as described in Appendix B but its effect on
permeability has not been considered in the performed
simulations and will be investigated in future research.

7 Conclusions

We present a simulation framework which includes chemi-
cal equilibrium reactions fully coupled with flow and com-
positional transport. The newly developed nonlinear formu-
lation reduces the component-based governing equations to
the element-based mass balance equations and provides an
effective coupling between chemical equilibrium reactions,
thermodynamic equilibrium, and compositional flow and
transport. For the computation of phase behavior, we expand
the negative flash technique and include chemical reaction
into the nonlinear loop. This approach was rigorously val-
idated for a single equilibrium reaction coupled with the
two-phase thermodynamics.

For reactive flow and transport, we use an element
molar formulation where the secondary unknowns are
fully resolved by the extended multiphase flash combined
with thermodynamic and chemical equilibrium relations.
Recently proposed adaptive operator–based linearization
(OBL) technique is employed to solve the nonlinear
mass balance equations in a fully implicit manner. The
developed multiphase flash, together with other nonlinear
relations, provides an effective parametrization of operators
in governing equations based on the element composition.
The reactive-compositional simulations were performed in
the Delft Advanced Research Terra Simulation (DARTS)
framework based on the pressure and element compositions.
This choice can significantly improve the run time of
simulation due to a reduction in the size of the algebraic
system in realistic settings. An additional improvement
in simulation time can be achieved due to an adaptive

parametrization of the reactive multiphase flash result in the
OBL approach.

Simple mineral dissolution and precipitation system with
two equilibrium reactions are modeled using DARTS frame-
work. To demonstrate the applicability of the developed
framework to realistic problems, we modify the Brugge
field and transform it to the problem of CO2 storage in the
depleted gas field with one CO2 injector and two producers.
We successfully model the process of calcium carbon-
ate deposition due to the changes in the composition of
the dynamic system. The approach will be later extended
to include chemical kinetics and permeability alteration
to model practical field applications. Furthermore, bench-
mark studies will be performed using the newly developed
framework by comparing the experimental and simulation
results.
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Appendix A: Negative flash results

To predict phase behavior, we solve the multiphase
multicomponent Rachford-Rice equation using the negative
flash approach suggested by [7]. Equations 10 to 12 can
be used to derive the Rachford-Rice formulation as given
below

F(vj ) =
C∑

i=1

zi(1 − Kij )

mi(v)
= 0, j = 1, . . . , (P − 1),

mi(v) = 1 +
P−1∑

j=1

vj (Kij − 1), i = 1, . . . , C.

In this technique, the multi-stage flash is applied using
the bisection method to solve the Rachford-Rice equations.
Since the bisection method is robust, it is guaranteed to
converge to a solution for a monotone function, but the

Comput Geosci (2020) 24:609–624 621

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Fig. 8 Plot of the Rachford-Rice equation solution for phases v1 and v2 at z = [.3.4.3] and K = [.25, 2.33, 1.5; .33, .67, 6]

convergence rate can be slow. Figure 8 above shows the
solution for a three-phase three-component system. This
technique provides a robust mechanism to resolve the
thermodynamic equilibrium by solving the RR equation. To
improve the convergence rate, we include a Newton loop
inside the bisection. In the case when the solution based on
Newton iterations fails to converge or moves out from the
physical bounds, the solver switches from Newton method
back to bisection.

The comparison between the original bisection method
and the combination of bisection and Newton methods
is given in Table 1. We parameterized the complete
compositional space for a three-phase three-component
system. The first column in Table 1 shows the total
number of iterations required for 18997 flash computations
with a pure bisection strategy. The second column uses a
combination of Newton and bisection approaches for only
one of the two RR equation. The last column shows the
result when applying Newton for both the RR equations.
Here, the residual tolerance was set to ε = 10−12.

From the table, we can see that there are some waste
Newton iterations in the case when Newton solver fails to
converge and, hence, the system switches back to bisection.
Even though some of the Newton iterations were wasted, the
total number of iterations for the system with Newton and
bisection is almost an order of magnitude less than the total
iterations for the pure bisection method. This shows that
including Newton method along with bisection for phase
computations can significantly improve the computational

Table 1 Iteration details for different solution methods

Bisection Bisection + Bisection +

Newton (v1) Newton (v1&v2)

Flash calculations 18,997

Total # of iterations 79,995,320 15,731,518 7,807,353

Newton wasted (v1) 0 165,146 106,742

Newton wasted (v2) 0 0 45,879

efficiency of the thermodynamic flash solver and can be
extended further to find more robust and effective methods
to solve the RR equation. The compositional diagram
generated using the flash calculations is shown as the third
figure, where the yellow tie-triangle represents a three-
phase region, the blue regions are the single-phase regions,
and the green regions are the two-phase regions.

Appendix B: Solid phase treatment

This appendix describes the concept of fluid and reactive
porosity which combine to give the total porosity of the
system. We treat the volume, occupied by the mineral
component, as a part of the pore volume. The classic
porosity, which represents the volume occupied by fluids,
is what we call a fluid porosity. For a system without
chemical reactions, the porosity only varies with changes
in pressure due to the compressibility of the rock. But in
the case of chemical reactions when mineral precipitation
and dissolution are present, we have continuous changes in
the pore space depending on the concentration of minerals.
Therefore, the reactive porosity varies with mineral mole
fraction. The bulk volume of the model is defined here
by three parameters: non-reactive volume (Vnr ), reactive
volume (Vr ), and the pore volume (Vφ). The non-reactive
volume is the part of the rock which is not involved in any of
the chemical reaction hence its volume is always constant.
The reactive volume is the mineral part of the rock, and
the pore volume is the volume occupied by the fluids in
the rock; both of these volumes are changing depends on
the amount of mineral present. Therefore, we can define
the total volume as the sum of all the three components as
shown below

Vb = Vnr + Vr + Vφ,

φT = Vr

Vb

+ Vφ

Vb

,

φT = φr + φp. (39)
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From the above equation, it can be seen that the total
porosity of the system is always constant irrespective of the
concentration of mineral. If there is less mineral deposited,
the pore volume will be higher; otherwise, the reactive
volume will be higher. The mineral saturation is defined
as

sm
i = Vri

Vr + Vφ

.

Using the definition of total porosity, the above equation can
be written as

sm
i = Vri

φT Vb

.

The relation for fluid porosity can be written as

φ = φT

(
1 −

M∑

l=1

sl

)
, (40)

where M stands for the number of mineral species.
Therefore, knowing the initial total porosity of a control
volume, we can calculate the porosity based on the
saturation value of the mineral. As the reaction progresses,
the dissolution/precipitation process occurs which alters
the fluid porosity φp. This porosity value can be used to
determine the permeability values using empirical relations
and update the velocities in the governing equations.

Appendix C: Simulation parameters

In this section, we describe the fluid and rock properties as
well as numerical parameters of OBL used in the simulation.
Table 2 shows the rock and fluid properties. The rock is
considered low compressible and the total mineral and fluid
porosity are taken as 0.3.

Table 2 Rock and fluid properties

Phase Water Gas Solid

Residual saturation (Sjr ) 0.0 0.0 0.0

End point relative permeability (Krje) 1.0 1.0 0.0

Saturation exponent (nj ) 2.0 2.0 −
Viscosity, cP (μj ) 0.5 0.1 −
Rock compressibility, 1/bar 10−7

Total porosity 0.3

Table 3 shows the initial pressure condition of the
reservoir and the OBL parameters which are used for
adaptive simulation.

Table 3 OBL parameters

Parameter Min Max

Pressure limit 119 131

Composition limit 0 1

Pressure points 2

Composition points 64

Initial pressure (Pini ), bar 125

Injection pressure (Pinj ), bar 130

Table 4 shows the initial and injection reservoir mole
fractions.

Table 4 Reservoir compositions

Elements H2O CO2 Ca2+ CO2−
3

Initial .69 .01 .15 .15

Injection .01 0.98 .005 .005

Table 5 shows the thermodynamic partition coefficient
and the chemical equilibrium constants for two equilibrium
reactions. These values were slightly elevated in comparison
with real physical values.

Table 5 Thermodynamic and chemical properties

Elements H2O CO2 CaCO3 MgCO3

K .1 2.5 − −
Ksp − − 53.5 53.5 × 10−05
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