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Abstract— Brace sleeve (BS) fasteners, i.e., nut and bolt, are
small components but play essential roles in fixing BS and can-
tilever in railway catenary system. They are commonly inspected
by onboard cameras using computer vision to ensure the safety of
railway operation. However, most BS fasteners cannot be directly
localized because they are too small in the inspection images.
Instead, the BS is first localized for detecting the BS fastener. This
leads to a new problem that the localized BS boxes may not con-
tain the complete BS fasteners due to low localization accuracy,
making it infeasible to further diagnose the fastener conditions.
To tackle this problem, this article proposes a novel pipeline for
BS fastener looseness diagnosis. First, the competitive deep learn-
ing model Faster RCNN ResNet101 is used to coarsely localize
BSs. Second, an action-driven reinforcement learning agent is
adopted to refine the coarse-localized boxes through a dynamic
position searching process. Then, BS fasteners are extracted from
the refined localized BS image by the deep segmentation model
YOLACT++, which is fast and interpretable. Finally, a looseness
diagnosis criterion based on segmented information are proposed.
We evaluate the performance of submodels independently and the
overall performance of the whole model on a real-life catenary
image dataset collected from a high-speed line in China. The
test results show that the proposed method is effective for BS
looseness detection in railway catenary.

Index Terms— Component segmentation, looseness detection,
railway catenary fasteners, reinforcement learning (RL).

I. INTRODUCTION

CATENARY systems are important infrastructures that
support the electric power transmission in railway power

supply system. As a key component in catenary, fasteners
installed on the brace sleeve (BS) are small but plays an
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Fig. 1. Normal (left) and loose (right) fasteners in the global catenary image.

important role in binding together the BS and a cantilever.
Due to the physical/mechanical impact triggered by the high-
speed trains and complex environmental influences along the
railway line, the fastener may become loose after a long-term
operation, as shown in Fig. 1.

The loose fasteners increase the risk of disrupting train
services and compromising operation safety. Therefore, it is
essential to monitor the fastener conditions. To automati-
cally monitor the catenary components, image acquisition and
processing methods have been developed to replace manual
inspection [1]. The first step of this technique is localizing
components from a global catenary image captured from train
inspections. Then, defect diagnosis is implemented based on
the specific features associated with the localized components.
For BS fasteners, localization is very difficult because fasteners
are very small among all components. But, diagnosing fastener
conditions must rely on an accurate localization result.

In the past decade, class-agnostic object localization
methods are mainly based on traditional handcrafted
features [2], [3] and deep learning techniques [4]–[6]. They
have been widely used for railway components localization.
In terms of traditional methods, Han et al. [7] utilized
histogram of oriented gradient (HOG) features to represent a
series of sliding window images, which are sent to support vec-
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Fig. 2. (a)–(d) Examples of fasteners that are not included in the localized
BS boxes produced by Faster RCNN ResNet101.

tor machine to localize catenary clevis. Zhong et al. [8] applied
template matching on a standard catenary sleeve image and
an original image to search the target position based on scale
invariant feature transform (SIFT). Fan et al. [9] proposed a
line local binary patterns (LBP) encoding method to localize
fasteners on the railway track. Recently, deep learning models
have shown great power in railway component localization.
Kang et al. [10] applied Faster RCNN VGG16 to localize
multiple-class components, such as isoelectric line, steady arm
base, and insulator. Chang et al. [11] proposed refine-inception
net (RIN) which integrates three novel feature enhancers on
RefineDet [12] to maximize the ability of expressing deep
features. The RIN greatly improves localization accuracy for
small lassoes on the train. In [13], an improved YOLOv3 [14]
which adopts a deblur block to enhance image quality is
proposed to localize catenary split pins. Liu et al. [15]
proposed an improved Faster RCNN ResNet101 [16] to
localize BS fastener directly and increased its localization
accuracy from 0.49 to 0.58, which is still too low compared
with larger components and for application requirements.

Overall, traditional handcrafted feature-based methods are
simpler, but the performance of deep learning-based meth-
ods is by far superior for detecting catenary components.
As BS fastener is too small, localizing complete BSs first
is considered the optimal choice. However, even the state-of-
the-art deep learning methods [15], [16] may provide incorrect
localizations by failing to include BS fasteners, which makes it
infeasible to further diagnose the fastener condition, as shown
in Fig. 2.

To address the localization problem shown in Fig. 2 and
make the localized box more accurate, a reasonable solution is

Fig. 3. Schematic flow of RL system.

finding a box searching model that can change the position and
the shape of an incorrect box, and make it get close to ground-
truth. This article adopts a reinforcement learning (RL)-based
solution. The RL refers to a broad group of learning tech-
niques. RL agent emulates the way living beings learn by try-
ing actions and learning from successes and failures. As shown
in Fig. 3, an RL agent is trained to make good decisions in
a given environment by receiving rewards when the decisions
are considered positive. The agent observes the state of a given
environment, and takes actions that transform the environment
into a new state according to its state-action policy, which is
learned during training. A Markov decision process (MDP)
is a formal mathematical representation of how the agent
interacts with the environment to learn its policy. As the
dynamic box searching process follows MDP, thus training
a box searching model can be realized by RL. Actually,
the box searching model is a kind of agents, and training the
box searching model is a kind of RL optimization problems.
By properly defining the basic RL elements (Actions, Rewards,
Environment, State, and Agent) according to the requirement
of localization refinement, the obtained RL agent can be used
as a box searching model. Recent works [17]–[19] in the RL
field have proposed to combine deep neural networks with RL
algorithms such as value function or policy function. For com-
puter vision problems, various methods have been proposed
in the literature. In [22], RL was adopted to learn a policy of
selecting a region from five fixed subregions, and realize object
localization by only a few steps. So far, we are not aware of
available literature applying RL to solve catenary component
localization problems. Caicedo and Lazebnik [20] proposed
an active class-specific localization approach. Yun et al. [21]
proposed an action decision method for object tracking by
RL. Both works [20], [21] adopt action-driven RL that defines
Actions as box transformations that can directly and intuitively
present the box changing process. In this article, we select
action-driven RL for localization refinement because it can be
intuitively explained. As far as we know, this article is the
first work that introduces RL for railway catenary localization
refinement.

For BS fastener defect detection, there is scarcely any
related work that quantifies the defect state. In this article,
we propose a diagnosis method which uses image segmenta-
tion masks to characterize fastener state for defect detection.

Image segmentation can be regarded as a binary classifi-
cation task of pixels. In recent years, tremendous progress
has been made on image segmentation with the development
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of deep learning. Ronneberger et al. [23] designed U-net
which adopts a contracting path and a symmetric expanding
path to segment objects precisely. He et al. [24] proposed
Mask R-CNN which uses feature pyramid network (FPN) to
extract object features and predicts mask within the detected
object box. Bolya et al. [26] proposed a real-time instance
segmentation YOACLT, which uses one-stage architecture and
remove the feature repooling step to enhance the segmentation
speed. Based on YOLACT, Bolya et al. [27] proposed
YOLACT++ which applied deformable convolutions and
mask rescoring modules to improve the segmentation accuracy.
For image segmentation in railway, the recent works [28], [13]
have utilized deep segmentation models for rail surface defect
detection and catenary split pin defect diagnosis.

In summary, the following issues from existing methods
need to be addressed for BS fastener monitoring.

1) Localization accuracy for BS is not sufficiently high.
When a part of or an entire fastener is missing in the
localized image, it is impossible to perform fastener
diagnosis.

2) Lack of effective fastener diagnosis method. Due to the
inaccurate localization of fasteners and the lacking of
defective samples, there are very few methods developed
for BS fastener looseness detection.

In a previous study, Zhong et al. [29] investigated the use of
RL for BS localization. This work is an extension that aims
to address the aforementioned problems. We summarize the
contributions of this article as follows.

1) A complete two-stage defect-detection pipeline is pro-
posed for BS fasteners. The performance comparisons
among different pipelines on a real-life catenary image
dataset show that our method is effective.

2) For BS localization, an action-driven RL method is
adopted to refine the coarse localized box automatically.
We demonstrated that RL can effectively refine both
Gauss initialized box and deep learning model produced
box.

3) For BS fastener diagnosis, the deep learning segmen-
tation model YOLACT++ is first utilized to extract
the masks of fasteners. Then, a diagnosis criterion is
proposed based on the characteristics of segmented
masks for detecting the looseness of BS fasteners. Com-
parisons with existing methods verified the effectiveness
of YOLACT++ and the proposed diagnosis criterion.

The rest of this article is organized as follows. Section II
gives an overview of the proposed method. Section III intro-
duces the action-driven RL model and describes how it
localize the BSs from coarse to fine. Section IV presents
the deep segmentation model for fastener looseness detection.
Section V presents the experimental results and evaluates the
performance of our method. Finally, conclusion and further
works are summarized in Section VI.

II. OVERVIEW OF THE PROPOSED METHOD

The flowchart of the proposed defect detection method for
BS fasteners is shown in Fig. 4. The input is a global catenary
image which has a size of 6600 × 4400. It will go through

two stages successively. In the first stage, the current state-
of-the-art method Faster RCNN ResNet101 [15] is adopted
to localize BSs coarsely. The localized BS may not include
a fastener, as in the white boxes shown in Fig. 4. Then, a
RL trained agent called action decision network (ADNET) is
applied to refine the coarse boxes automatically. The RL agent
takes a sequence of actions to adjust the coarse BS boxes close
to their ground-truth positions. These actions are defined as a
series of moving and shape changing transformations that will
be introduced in Section III. The refinement process follows
the box changes from white to purple in Fig. 4. In the second
stage, the pixel-level segmentation model YOLACT++ [13]
is utilized to extract the sleeve, nut, and bolt accurately.
As the mask information of the extracted components can well
characterize fastener conditions, an effective defect diagnosis
criterion is proposed accordingly. Finally, BS fastener defect
can be detected based on the proposed criterion.

III. LOCALIZING BS COMPONENTS

FORM COARSE TO FINE

In this article, we consider the existing object localization
method as a coarse prior step, and adopt an action-driven
RL agent act as a generic postprocess step to improve the
localization accuracy. In the following, we first briefly intro-
duce the existing Faster RCNN ResNet101. Then, the adopted
action-driven RL is elaborated in detail.

A. Coarse Localization by Faster RCNN ResNet101

The Faster RCNN [5] is a classic deep learning framework
for object localization. It consists of three parts, namely,
convolutional neural network (CNN) backbone, region pro-
posal head, and object localization head. The CNN backbone
extracts image features which greatly affects the performance
of the whole framework. Many networks such as ZF, VGG,
and ResNet can be used as the CNN backbone. Particularly,
the ResNet101 [16] has a very deep structure with residual
blocks, which makes ResNet101 learn discriminative features
for localization. In [15], the Faster RCNN with ResNet101 has
shown better localization capability than other structures.
However, it still can produce inaccurate localization results
when the object is too small, as shown in Fig. 2. These coarse
BS boxes do not include the target fasteners and must be
further improved.

B. Localization Refined by Action-Driven RL

Motivated by the reward-action in RL and [21], we con-
sider the localization refinement problem as a control prob-
lem where a sequence of steps to refine the geometry
of the localization box is obtained. Then, the refinement
becomes a MDP that can be trained with RL. We define
the actions as position-moving, scale-changing, and shape-
changing. The reward is feedback about how well the current
localization is compared with the ground truth. Therefore,
the action-decision policy can be learned according to the
obtained rewards. The agent is a deep CNN called ADNET, as
shown in Fig. 5.
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Fig. 4. Flowchart of the proposed method. Stage one: BS components are coarsely localized by generic localization methods (here, state-of-the-art method
Faster RCNN ResNet101 [15] is selected). Then, RL trained agent is applied to refine the boxes. Stage two: Fastener defect is detected based on deep
segmentation model YOLACT++ and a proposed criterion.

Fig. 5. Architecture of ADNET.

1) MDP Formulation: The MDP is defined by states s � S,
actions a � A, state transition function s� = f (s, a), and
the reward r (s, a). Here, we take the ADNET as an agent
to find accurate box regions of BSs by taking sequential
actions. By formulating the localization refinement as the
MDP, the action policy of ADNET can be optimized by RL.
The action, state, state transition function, and reward are
formulated as follows.

a) Action: To make the initial box fit the position and
shape of BS, transformations of moving (left, right, up, down),
scale changing (scale up, scale down), and shape-changing
(fatter, taller) are defined as possible actions. Especially, when
the agent finds the optimum location or the current localized
box is the same as the previous box, a stop action is needed to
finalize the box searching during training. We define the action
space A as shown in Fig. 6. Space A includes 15 actions and
provides sufficient transform options for box changing.

b) State: As the localization refinement is a process
of changing the geometry of box, the information of what
actions the ADNET has taken before can help predict better
boxes [20], [21]. The image patch within a box and the history

Fig. 6. Defined actions in our method.

actions are used to form the state s. For the localization
refinement in image I at step t , the state st is defined as a
tuple (pt , ct), where pt � R112�112�3 is the image within the
current box and ct � R150denotes the encoded vector of action
history. As such, pt can be formulated as

pt = �([xt , yt , wt , ht ], I ) (1)

where (xt , yt) is the coordinate of center point of pt in image
I , wt and ht are the width and height of pt , respectively.
The function � crops pt from image I and resizes it to the
input size of ADNET. ct is a 150-D vector, because we choose
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