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ABSTRACT This study addresses unsupervised subword modeling, i.e., learning acoustic feature represen-
tations that can distinguish between subword units of a language. We propose a two-stage learning framework
that combines self-supervised learning and cross-lingual knowledge transfer. The framework consists of
autoregressive predictive coding (APC) as the front-end and a cross-lingual deep neural network (DNN)
as the back-end. Experiments on the ABX subword discriminability task conducted with the Libri-light and
ZeroSpeech 2017 databases showed that our approach is competitive or superior to state-of-the-art studies.
Comprehensive and systematic analyses at the phoneme- and articulatory feature (AF)-level showed that our
approach was better at capturing diphthong than monophthong vowel information, while also differences in
the amount of information captured for different types of consonants were observed. Moreover, a positive
correlation was found between the effectiveness of the back-end in capturing a phoneme’s information and
the quality of the cross-lingual phone labels assigned to the phoneme. The AF-level analysis together with
t-SNE visualization results showed that the proposed approach is better than MFCC and APC features in
capturing manner and place of articulation information, vowel height, and backness information. Taken
together, the analyses showed that the two stages in our approach are both effective in capturing phoneme
and AF information. Nevertheless, monophthong vowel information is less well captured than consonant
information, which suggests that future research should focus on improving capturing monophthong vowel
information.

INDEXTERMS Unsupervised subword modeling, zero-resource, cross-lingual modeling, phoneme analysis,
articulatory feature analysis.

I. INTRODUCTION

There are around 7000 spoken languages in the world [1].
For most of them, the amount of transcribed speech data
resources is very limited, or even non-existent [2]. Many of
these low-resource languages, such as ethnic minority lan-
guages in China and languages in Africa, may have never been
formally studied. In addition to the lack of enough transcribed
speech data, linguistic knowledge about such languages is
incomplete, or may even be entirely lacking. Conventional
supervised acoustic modeling [3], [4] can therefore not be
applied directly. This leads to the current situation that high-
performance ASR systems are only available for a small num-
ber of major languages, e.g., English, Mandarin, French. To

facilitate ASR technology for low-resource languages, inves-
tigation of unsupervised acoustic modeling (UAM) methods is
necessary, which aims to find and model a set of basic speech
units that represents all the sounds in the language of interest,
i.e., the low-resource, target language.

Recently, there has been a growing research interest in
UAM [5]-[10]. A strict assumption of UAM is that for the
target language only raw speech data is available, while the
transcriptions, phoneme inventory (and its size) and pronunci-
ation lexicon are unknown. This is known as the zero-resource
assumption [11]. There are two main research strands in
UAM. The first strand formulates the problem as discovering
a finite set of phoneme-like speech units [5], [6], [12], [13].
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230

VOLUME 2, 2021


https://orcid.org/0000-0003-2531-8480
https://orcid.org/0000-0003-0693-8852
https://doi.org/10.1109/OJSP.2021.3076914

ISEEE (% IEEE Open Journal of
Bicesing  Signal Processing

This is often referred to as acoustic unit/model discovery
(AUD) [5], [8]. The second strand formulates the problem as
learning acoustic feature representations that can distinguish
subword (phoneme) units of the target language, and is robust
to linguistically-irrelevant factors, such as speaker [14]-[16].
This is often referred to as unsupervised subword model-
ing [11], [16], [17]. In essence, the second strand is focused
on learning an intermediate representation towards the ulti-
mate goal of UAM, while the first strand aims directly at the
ultimate goal. These two strands are closely connected and
can benefit from each other; for instance, a good subword-
discriminative feature representation has been shown benefi-
cial to AUD [18], [19], while conversely, discovered speech
units with good consistency with true phonemes are helpful
to learning subword-discriminative acoustic feature represen-
tations [14], [16].

This study addresses unsupervised subword modeling in
UAM. Learning subword-discriminative feature representa-
tions in the zero-resource scenario has been shown to be a
non-trivial task [11], [17]. The major difficulty is the sepa-
ration of linguistic information (e.g., phoneme information)
from non-linguistic information (e.g., speaker information).
For instance, a speech sound such as [&]' produced by differ-
ent speakers might be mistakenly modeled as different speech
units [20].

There are many interesting attempts to unsupervised sub-
word modeling [7], [9], [14]-[16], [21]. One typical research
direction is to leverage purely unsupervised learning tech-
niques. One method is the clustering of speech sounds that
have acoustically similar patterns and that potentially corre-
spond to the same subword units [7], [22], which results in
phoneme-like pseudo transcriptions that can be used to fa-
cilitate subword-discriminative feature learning [7], [14]. Un-
supervised and self-supervised representation learning algo-
rithms are applied to learn, without using external supervision,
speech features that retain the linguistic content in the origi-
nal data while ignoring linguistically-irrelevant information,
particularly speaker variation [15], [23]-[26].

A second research direction to unsupervised subword mod-
eling is to exploit cross-lingual knowledge [27], [28]. Speech
and text resources from out-of-domain (OOD) resource-rich
languages have been shown beneficial to modeling subword
units of in-domain low-resource languages. For instance, [27],
[28] used an OOD AM to extract cross-lingual bottleneck
features (BNFs), and [28] also used an OOD ASR to generate
cross-lingual phone labels.

This study adopts a two-stage learning framework which
combines both research directions within the area of unsu-
pervised subword modeling (the second research strand in
UAM). At the first stage, the front-end, a self-supervised rep-
resentation learning model named autoregressive predictive
coding (APC) [29] is trained. APC preserves phonetic (sub-
word) and speaker information from the original speech sig-
nal, but makes the two information types more separable [29].

!International Phonetic Alphabet (IPA) symbol.
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At the second stage, the back-end, a cross-lingual, OOD
DNN model with a bottleneck layer (DNN-BNF) is trained
using the APC pretrained features as the input features to cre-
ate the missing (due to the zero-resource assumption) frame
labels. This system framework was proposed in our recent
study [30], and showed state-of-the-art performances on the
subword discriminability task on two databases in UAM: Ze-
roSpeech 2017 [17] and Libri-light [21].

In this work, we expand and extend the work in [30].
Specifically, we (1) compare the proposed approach to a su-
pervised topline system that is trained on transcribed data
of the target language; (2) compare the proposed approach
with another cross-lingual knowledge transfer method [27];
(3) investigate the potential of our approach in relation to
the amount of unlabeled training material by varying the
data between 600 hours (as used in [30]) and 6000 hours,
and compare the models’ performance to the topline model.
Throughout our experiments, English is chosen as the target
low-resource language. Its phoneme inventory and transcrip-
tions are assumed unavailable during system development.
Dutch and Mandarin are chosen as the two OOD languages for
which phoneme inventories and transcriptions are available.

Unsupervised subword modeling is typically evaluated us-
ing overall performance measures, such as ABX [11], [17],
purity [6], normalized mutual information (NMI) [13]. These
metrics, however, do not provide insights on the approaches’
ability of modeling individual phonemes or phoneme cate-
gories. As the ultimate goal beyond unsupervised subword
modeling is to discover basic speech units that have a good
consistency with the true phonemes of the target language,
we, to the best of our knowledge for the first time in the
literature, additionally present detailed analyses that explore
the question of the effectiveness of the proposed approach to
capturing phoneme and articulatory feature (AF) information
of the target language. The analyses are based on the standard
ABX error rate evaluation [11], which we adapted for this
work (see Section IV), and consist of two parts, i.e., an analy-
sis at the phoneme level and at the AF level. The analyses are
aimed at investigating what phoneme and AF information is
(not) captured by the learned subword-discriminative feature
representation, which can be used to guide future research
to improve unsupervised subword modeling as well as AUD.
Moreover, we correlate the phoneme-level ABX error rates
and the quality of the cross-lingual phone labels which are
used to train our back-end DNN-BNF model in order to study
why the proposed approach performs differently in capturing
different target phonemes’ information, and how the perfor-
mance is affected by the quality of cross-lingual phone labels.

The remainder of this paper is organized as follows.
Section II provides a review of related works on the unsu-
pervised subword modeling task. In Section III, we provide a
detailed description of the proposed approach to unsupervised
subword modeling, and introduce comparative approaches
to compare against our approach. Section IV describes the
methodology used for the phoneme-level and AF-level anal-
yses. Section V introduces the experimental design of this
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study, while Section VI reports the results. Section VII de-
scribes the setup for conducting the phoneme- and AF-level
analyses, and discusses the results of the analyses. Finally,
Section VIII draws the conclusions.

Il. RELATED WORKS
A. UNSUPERVISED LEARNING TECHNIQUES
Clustering algorithms and self-supervised learning techniques
are widely applied in zero-resource speech modeling. For
instance, the clustering approach using the Dirichlet pro-
cess Gaussian mixture model (DPGMM) [31] has shown
to outperform all other competitors [7] in the Zero Re-
source Speech Challenge (ZeroSpeech) 2015 [11]. Follow-
up studies focused on improving speaker invariance of
the input features to DPGMM [14] (best-performing in
ZeroSpeech 2017 [17]), [28], [32], exploring multilingual
DPGMM [33], [34], and alleviating the “over-fragment” na-
ture, i.e., DPGMM’s shortcoming in producing an exces-
sive number of fine-grained clusters [16], [35]. K-means and
HMMs were also investigated for frame clustering [36], [37].
In self-supervised learning for zero-resource speech mod-
eling [15], [23], [24], [29], [38], [39], targets that a model
is trained to predict are computed from the data itself [40].
A typical self-supervised representation learning model is
the vector-quantized variational autoencoder (VQ-VAE) [15],
which achieved a fairly good performance in ZeroSpeech
2017 [41] and 2019 [9], and has become more widely
adopted [42]-[44] in the latest ZeroSpeech 2020 chal-
lenge [45]. Other self-supervised learning algorithms such as
factorized hierarchical VAE (FHVAE) [46], contrastive pre-
dictive coding (CPC) [23] and APC [29] were also exten-
sively investigated in unsupervised subword modeling [30],
[42], [47], [48] as well as in a relevant zero-resource word
discrimination task [49].

B. CROSS-LINGUAL KNOWLEDGE TRANSFER

Transcribed speech data for OOD languages [50], [51] can
be exploited in various ways to boost zero-resource subword
modeling for low-resource languages. In [27], [28], a DNN
AM trained with OOD languages was used to extract cross-
lingual phone posteriorgrams [27] or cross-lingual BNFs [27],
[28] of a target low-resource language as the learned feature
representation. In [16], [28], an OOD ASR system was used
to generate phone labels for the target language speech. These
cross-lingual labels served as supervision for training a DNN-
BNF model. This idea is applied in our present study.

There is evidence that the above-mentioned cross-lingual
phone labels are complementary to labels obtained with unsu-
pervised learning [16], [28]. Specifically, cross-lingual phone
labels and DPGMM clustering labels for the target language’s
speech data were jointly used to train a DNN-BNF. The result-
ing BNF representation performed better than that extracted
by a DNN-BNF trained using either type of the labels. The
work in [52] adopted another way of combining unsupervised
and cross-lingual learning strategies; they used cross-lingual
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FIGURE 1. General framework of the proposed approach. The two colors
in the training phase represent the data sets used to train each model.

BNFs as input to train a correspondence autoencoder (cAE).
In our present study, the combination of unsupervised learning
techniques and cross-lingual knowledge transfer is done in a
different way by adopting a self-supervised learning front-end
followed by a cross-lingual phone-aware DNN-BNF back-
end.

C. ANALYSIS OF UNSUPERVISEDLY DISCOVERED SPEECH
UNITS

Few analyses on the effectiveness of subword modeling at the
phoneme level or of the linguistic relevance of the speech units
learned using AUD exist [53]-[55]. In [53], an analysis on
the consistency between individual discovered speech units
from an unknown language and the language’s true phoneme
inventories showed that while the learned speech units had a
good coverage of the phoneme inventories, some phonemes
with rapidly changing acoustics (e.g., diphthongs) could not
be well discovered. In contrast to [53], our analysis study
is based on the subword-discriminative feature representation
instead of based on a discrete set of learned units. Moreover,
our study also carries out performance analysis at the AF level
in addition to the phoneme level. A recent study [55] carried
out an analysis of the subword-discriminative feature repre-
sentations, similar to our present study, but with the purpose
of comparing the unsupervised learning approaches to infant
phonetic perception. A major difference between [55] and
ours is that [55] selected only three phone contrasts from a
target language, whereas our study conducts analysis on the
complete phoneme inventories. Finally, an analysis by [54]
showed that a visually-grounded model (not requiring tran-
scribed data) learns subword units that carry AF information,
such as vowel backness or stop voicing.

IIl. PROPOSED APPROACH TO UNSUPERVISED
SUBWORD MODELING

The general framework of the proposed approach to unsu-
pervised subword modeling is illustrated in Fig. 1. In the
training phase, for a target language with a certain amount of
untranscribed speech training data (marked in pink in Fig. 1),
an APC model as the front-end is trained with target untran-
scribed speech in a self-supervised manner, and used to extract
pretrained features for the target speech. Next, at the back-end,
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an OOD ASR system assigns one phone label to every frame
of the target language’s speech. This OOD ASR is trained
on a language different from the target language (marked in
blue). With APC pretrained features for the target untran-
scribed speech as input features and cross-lingual phone labels
as their corresponding target labels, a DNN-BNF model is
trained, in order to learn subword-discriminative features for
the target speech. In the testing phase, the DNN-BNF model is
used to extract BNF representations for test data of the target
language (marked in yellow) as the subword-discriminative
feature representation of the target language’s speech.

This study compares the proposed approach with other,
state-of-the-art approaches (see Section III-C for details). The
front-end APC pretraining method is compared with another
self-supervised learning method, i.e., FHVAE [24]. Their
comparison is made at front-end level. The whole pipeline
of the proposed approach is compared with a system con-
sisting of only the back-end DNN-BNF model (without an
APC front-end), a CPC approach [23] and a transfer learning
BNF system based on a cross-lingual AM [27]. Moreover, two
different languages will be used to train two different OOD
ASR systems for comparison.

A. APC PRETRAINING

In previous studies, feature representation learning techniques
were often adopted in order to suppress speaker variation
while retaining linguistic information [14], [16], [28]. In
contrast, APC adopted in the proposed approach is aimed
at learning a frame-level feature representation that retains
both phonetic and speaker information from the speech sig-
nal, while making the phonetic information and speaker in-
formation more separable for downstream phone or speaker
classification tasks, comparing to when spectral features are
used as frame-level representations [29]. In such a way, the
learned representation is considered to be less at risk of losing
phonetic information compared to that learned by methods
in [14], [16], [28].

Let {x1,x2, ..., xr} denote d-dimensional frame-wise fea-
tures for a set of untranscribed speech data for APC train-
ing, where T is the total number of speech frames. At each
time step ¢, the encoder of APC, denoted as Enc(-), reads
as input a feature vector x;, and generates a d-dimensional
output feature vector X; based on previous input features
X1y = {x1, X2, ..., X},

*; = Enc(r1y). &)

The goal of APC is to let £ be as close to x4, as possible,
where n is a pre-defined constant non-negative integer, known
as the prediction step. The loss function for APC training is
defined as,
T—n
Loss = ) 18 — Xt - @)
=1
With this loss function, the APC encoder learns information
that is relevant to predicting future frames. Intuitively, a large
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n encourages the APC model to encode global characteristics
in the original speech signal, while a small n lets the model
focus mainly on local smoothness in speech.

The APC encoder is implemented as a long short-term
memory (LSTM) RNN structure [56], as was done in [29].
Let L denote the number of LSTM layers, Equation (1) is
formulated as,

ho = x14, (3)
hy = LSTM (hj_y), 1 € {1,2, ..., L}, 4)
X =Why, &)

where W is a trainable projection matrix. The equations that
form LSTM(-) can be found in [56].

After APC training, hl = {hlf:T} is extracted as the learned
acoustic representation of the original speech, and is hence-
forth referred to as the APC feature. In principle, ' of an
arbitrary layer could be extracted as the learned representa-
tion. We follow [29] in using the representation from the top
layer as they showed that this gave the optimal performance
on phone classification tasks.

B. CROSS-LINGUAL PHONE-AWARE DNN-BNF

As shown in Fig. 1, the back-end of the proposed approach
is a DNN model with a low-dimensional intermediate hidden
layer, also known as the bottleneck layer. To train such a
DNN-BNF model, cross-lingual phone labels are obtained be-
forehand. Specifically, an OOD ASR system is applied to de-
code speech utterances of the target language’s training data.
The decoding results, i.e. hypothesized transcripts are gener-
ated for speech utterances. By applying forced alignment to
the hypothesized transcripts (i.e. OOD phone sequences as
labels) using the AM of the OOD ASR system, each frame
of the training utterance is assigned a phone symbol label
modeled by the OOD ASR. In this work the OOD ASR is
realized as a hybrid DNN-HMM architecture. As a result, the
cross-lingual phone labels are triphone HMM states” modeled
by the hybrid DNN-HMM. In principle, ASR systems with
other architectures could also be applied to generate decoding-
based labels for target unlabeled speech, such as connectionist
temporal classification (CTC) [57] and attention-based mod-
els [58].

The DNN-BNF model is then trained with the speech data
of the target language, using the pretrained APC features as
input features and the cross-lingual labels as target labels. The
training is done by minimizing cross-lingual phone prediction
error by using the lattice-free maximum mutual information
(LF-MMI) criterion [59]. After training, the DNN-BNF model
is used to extract the BNF representations of the test data
as the desired subword-discriminative feature representation.
The BNF representation is essentially the output of the bottle-
neck layer, as shown in Fig. 1.

2In the literature, they are also referred to as senones.
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C. COMPARATIVE APPROACHES

1) FHVAE

FHVAE is a self-supervised representation learning model
which does not need transcribed data in model training [24].
It disentangles phonetic and speaker information by capturing
the two types of information with latent sequence variables
z1 and latent segment variables zp respectively. The zq rep-
resentation from a well-trained FHVAE is extracted as the
desired speaker-invariant phonetic representation for unsuper-
vised subword modeling. The FHVAE model was applied
in [10] and achieved good performance in the ZeroSpeech
2019 Challenge [60], which is why we compare the APC
model against FHVAE in this study. Details of the FHVAE
model description is provided in supplementary material (see
Section S1-A).

2) CROSS-LINGUAL AM BASED BNF

Learning subword-discriminative feature representations by
exploiting cross-lingual knowledge transfer could be realized
in a different way than the back-end of our proposed approach
discussed in Section III-B. In our back-end, the DNN-BNF
model trained using unlabeled speech data of the target lan-
guage and cross-lingual phone labels is used to extract the
BNF representation. Alternatively, a DNN-BNF model trained
using labeled speech data of an OOD language can be lever-
aged to extract the BNF representation for the target lan-
guage [27], [61]. In essence, the method in [27], [61] leverages
a well-trained cross-lingual AM for transfer learning. Thus
this method is denoted as the cross-lingual AM based BNF, to
be distinguished from our back-end cross-lingual phone label-
ing based method. The cross-lingual AM based BNF method
does not rely on audio data of the target language for training,
which makes it fast in system development. Moreover, this
method is feasible in a stricter zero-resource scenario where
unlabeled audio data of the target language is unavailable for
training. We will compare our entire approach pipeline against
the cross-lingual AM based BNF method.

3) CPC

CPC is a self-supervised representation learning model which
does not require transcribed data in model training [23]. By
using a contrastive loss, the model is trained to distinguish fu-
ture speech frames from a set of negative examples. The CPC
model is able to capture phonetic information in speech while
suppressing noise and speaker variation [21], and achieves
good performance in unsupervised subword modeling [21],
[48], [62]. This is why we compare our approach to CPC.

IV. METHODS TO ANALYZE THE EFFECTIVENESS OF THE
PROPOSED APPROACH

This section describes our phoneme-level and articulatory
feature-level methods to analyze the effectiveness of the pro-
posed approach to unsupervised subword modeling. Both
methods are based on the ABX test [63]. Section I'V-A briefly
introduces the ABX test and its application as an overall
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performance measure in unsupervised subword modeling.
Sections IV-B and IV-C discuss the proposed phoneme- and
AF-level analyses methods respectively.

A. ABX SUBWORD DISCRIMINABILITY TASK
The ABX test was first proposed in [63] as as a human au-
ditory test. A, B and X are three audio signals. A listener is
presented with A, B and X, and is asked to make judgement
about whether X is more similar to A or to B.

The ABX test has recently been adopted as one of the
standard evaluation metrics in unsupervised subword model-
ing [11], [17], [60]. Specifically, A, B and X are feature rep-
resentations of three speech sounds. A and B contain triphone
sequences that differ only in the central phone, e.g. “a-p-i”
versus “a-t-i”. X contains either “a-p-i” or “a-t-i”. The ABX
error rate of a pair of triphone sequences x and y is defined as,

1
€@, y) =5l = y) + 0l —> xl, (6)

where

1
1= 3) = S @ = DISO)] 2 2 X

A€eS(x) BES(y) X eS(x)\{A}

1
(Mg x)=dm.x) + Eﬂd(A,X):d(B,X))- (7

Here 1 is the indicator function, S(x) and S(y) denote two sets
of speech sounds containing x and y, d(-, -) denotes dynamic
time warping (DTW) based dissimilarity between two speech
sounds. Frame-level dissimilarity measure for DTW scoring
can be the cosine distance, Kullback-Leibler (KL) divergence,
etc. Here, cosine distance is used throughout this paper. By
taking average of €(x, y) over all possible triphone sequences
x and y that share context phones and contrast the same central
phone pair, the phone pairwise ABX error rate is calculated.
By further taking the average of the phone pairwise ABX error
rates over all possible pairs of phones, the overall ABX error
rate is calculated.

B. PHONEME-LEVEL ANALYSIS

We define phoneme-level ABX error rate as follows. Let w
be a phoneme in phoneme inventory €2 of a target language.
The phoneme-level ABX error rate of w is then calculated as,

E(w) = Y elw o), (®)

12| — 1
o' eQ\{w}

where €(w, @) is the pairwise ABX error rate calculated as
mentioned in IV-A. £(-) is used as the measure of a subword-
discriminative feature representation’s effectiveness towards
each individual phoneme in a target language.

The present study also investigates the correlation be-
tween phoneme-level ABX error rate improvement achieved
by the back-end of the proposed approach and the qual-
ity of the cross-lingual phone labels used in the back-end.
Let W = {y1, ..., ¥y} denote M cross-lingual phones mod-
eled by an OOD ASR system, and {l; e V|t =1,2,...,T}
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denote cross-lingual phone labels for a certain amount of
target speech data generated by the OOD ASR. Let {g, €
Qt =1,2,...,T} denote the true phoneme labels for the
same speech data, where Q2 = {w1, ..., wy} is the set of N
phonemes in the target language. An N-by-M confusion ma-
trix E can be constructed, with its element ¢;; defined as,

ZzT:1 (g = wi, I = I,ij)
€ij = T
2[21 1(gr = wi)
Conceptually, e;; € [0, 1] represents the percentage of tar-
get speech frames of true phoneme w; that are labeled as
cross-lingual phone ;. As seen from Equation (9), elements
in every row of E sum up to 1. Ideally the row vector
[ei1,€i2, ..., e m]is a(quasi) one-hot vector, in which case
there exists a cross-lingual phone v, so that e; j is close to 1.
A large ¢;j, indicates high consistency between w; and v,
and is desired in the cross-lingual DNN-BNF model train-
ing, as the DNN-BNF model can be trained to map acoustic
features representing different speech realizations of w; to
very close representations in the cross-lingual phonetic space.
It is worth noting that the consistency being discussed here
measures to which extent speech frames of w; get the same
cross-lingual phone labels irrespective of the labels’ symbol.
Mathematically, jx = 'clrgmax’]‘.4= 1¢€ij» and the co-occurrence
probability between w; and v j,, denoted as p¢,(w;), is defined
as,

. 9

M
Peo(wi) = max e;j- (10)
In this study, p..(w;) is utilized as a measure of the cross-
lingual phone label quality of ;.

C. AF-LEVEL ANALYSIS
An AF-level analysis is carried out using the proposed ABX
AF discriminability task in order to evaluate how well a speech
feature representation is capable of distinguishing one AF
attribute from another. Analogous to the ABX subword dis-
criminability task as introduced in Section IV-A, let A and
B contain triphone sequences that differ only in the central
phone. Here the central phones of A and B are set to belong
to different AF attributes. For instance, take manner of ar-
ticulation (MoA): A could contain a sfop in the center (e.g.,
A could be /a p /), while B contains a fricative (e.g., /a f i/).
X contains a triphone sequence with its central phone being
either a stop or a fricative, but not necessarily “p” or “f”’. The
context phones of X are ‘“/a/” and ““/i/”. Possible realizations
of X could be “a g i,” “a z 1,” etc. Using Equations (6) and
(7), followed by taking the average over all possible triphone
sequences that share the context phones and contrast the stop
and fricative attributes in the central phones, the pairwise
ABX AF error rate between stops and fricatives is calcu-
lated. The attribute-level ABX AF error rate (e.g. the stop
attribute) can then be calculated by taking the average of all
pairwise ABX AF error rates involving that AF attribute.

The present study carries out AF-level analysis on two AFs
for consonants, i.e., MoA and place of articulation (PoA),
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TABLE 1. MoA (rows) and PoA (columns) for Each English Consonant. PoA
Abbreviations From Left to Right: Bilabial, Labiodental, Dental, Alveolar,
Postalveolar, Palatal, Velar, Glottal. MoA Abbreviations From Top to
Bottom: Affricate, Approximant, Fricative, Stop, Nasal

Consonants | BI LA DA AL PO PA VE GL
Af | CH, JH

Ap | W L R Y

Fr | FFV TH,DH S,Z SH,ZH HH
St | PB T, D K, G

Na | M N NG

TABLE 2. Tongue Height (rows) and Backness (columns) for Each English
Monophthong Vowel. Diphthongs are Excluded in This Study

Vowels | Front Central Back
Close 1Y, IH UW, UH
Mid EH ER, AH AO
Open AE AA

TABLE 3. Details of Two Training Sets in Libri-Light

| #utterances  #speakers  #hours
unlab-600 35,229 489 526
unlab-6K 362,816 1,742 5,273

and on two AFs for vowels, i.e., tongue height and tongue
backness. The mappings from an English phoneme to its AF
attributes are shown in Tables 1 (consonants) and 2 (vow-
els). In these two tables, each phoneme is represented as its
ARPABET symbol [64]. For the analyses of tongue height
and backness, all diphthongs are excluded, because it does
not have a stable tongue height or backness attribute but rather
during its production the articulators move from one position
to another.

V. EXPERIMENTAL SETUP

A. DATABASES AND EVALUATION METRIC

Training data for APC and DNN-BNF models are taken from
Libri-light [21], a recently developed and freely-available
English database to support unsupervised subword model-
ing. The unlab-600 and unlab-6 K sets from Libri-light are
adopted. Details of the two training sets are listed in Table 3.

Dutch and Mandarin training data for the development of
two OOD ASR systems are the Corpus Gesproken Nederlands
(CGN) [65] and Aidatatang_200zh (ADT) [51] respectively.
The training-test partition of CGN follows those in [66]. Its
training data contains 483 hours of speech covering con-
versational and read speech and broadcast news. ADT is a
read speech corpus. Its training data consists of 140 hours of
speech.

Evaluation data are taken from Libri-light and ZeroSpeech
2017 Track 1 [17]. The Libri-light evaluation data consists
of 4 sets: dev-clean, dev-other, test-clean, test-other. Speech
in dev-clean and test-clean have higher recording quality and
accents closer to US English than that in dev-other and test-
other.
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The ZeroSpeech 2017 evaluation data consists of three lan-
guages, i.e., English, French and Mandarin [17]. In this study,
the English evaluation data is chosen. The data are organized
into subsets of differing lengths (1 s, 10 s and 120 s).

The learned BNF representations, as well as APC pre-
trained feature representations are evaluated in terms of the
overall ABX error rate (see Section IV-A), for within-speaker
(X and A/B are spoken by the same speaker) and across-
speaker (X and A/B are spoken by different speakers) sepa-
rately. The across-speaker ABX task is more challenging, and
is particularly focused on measuring the robustness of learned
feature representations towards speaker variation. The within-
speaker task serves as a benchmark for the across-speaker task
by showing to what extent the ABX error in the across-speaker
performance is caused by speaker variation.

B. BASELINES AND TOPLINES

The official baseline systems of Libri-light and ZeroSpeech
2017 [17], [21] both use raw MFCC features. The official
topline of ZeroSpeech 2017 is a supervised system which
uses English labeled data to train an ASR system, followed
by generating phone posteriorgram as the learned feature rep-
resentation [17].

There is no official topline system provided for the Libri-
light database. In this work we created a supervised system
and used it as the topline of Libri-light. This system uses
960 hours of English labeled data from Librispeech [50] to
train a time-delay NN (TDNN) AM, from which the output
of the top TDNN layer is used as the learned representation.
Training of the TDNN AM is implemented based on the Kaldi
Librispeech recipe.? without modifying any parameters. The
TDNN AM consists of five 650-dimensional hidden layers.
The input to the TDNN consists of 40-dimensional high-
resolution MFCC features (HR MFCCs) appended by 100-
dimensional i-vectors. Frame labels needed to train the TDNN
AM are obtained by forced-alignment with a GMM-HMM
AM trained beforehand, also using Librispeech.

C. FRONT-END IMPLEMENTATION

The front-end APC model is implemented as a multi-layer
LSTM network. Residual connections are made between two
consecutive layers. Each layer has 100 dimensions. In order
to find the optimal number of LSTM layers and prediction
step n, layer numbers ranging in {3, 4, 5, 6}, with n ranging
in {1, 2, 3,4, 5}4 are tested when the model is trained with
unlab-600. These results are reported in supplementary mate-
rial (see Section S1-B). From Table S1 the optimal parameters
of LSTM layer number and n can be determined as 5 and 5
respectively. The two parameters are then fixed and the APC
model is trained with the unlab-6 K set from scratch. The input
features to APC are 13-dimension MFCCs with cepstral mean
normalization (CMN). The APC models are trained using an

3sS/local/nnet3/run_tdnn.sh
4Increasing n to larger than 5 was found leading to rapid ABX error rate
degradation in preliminary experiments.
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open-source tool by [29] for a fixed 100 epochs throughout
our experiments, with the Adam optimizer [67], an initial
learning rate of 0.0001, and a batch size of 32. After training,
output of the top LSTM layer is extracted as the APC feature
representation.

D. BACK-END IMPLEMENTATION

1) OOD ASR SYSTEMS

Two OOD ASR systems were developed, i.e., a Dutch ASR
and a Mandarin ASR. Both OOD ASR systems use a chain
TDNN AM trained in Kaldi [68] and a tri-gram LM trained
using SRILM toolkit [69]. The TDNN AM contains 7-layers,
including a 40-dimension bottleneck layer at the 6-th layer.
Three-way speed perturbation [70] is applied to the Dutch
(CGN) and Mandarin (ADT) training data respectively, be-
fore they are used to train the TDNN AM. The model is
trained based on the lattice-free maximum mutual infor-
mation (LF-MMI) criterion [59]. For Dutch, the input fea-
tures are 40-dimension HR MFCCs. For Mandarin, the in-
put features consist of HR MFCCs appended by pitch fea-
tures (MFCC+P) [71]. Frame labels for TDNN model training
are obtained by forced alignment using a GMM-HMM AM
trained beforehand. The numbers of modeled phones and tri-
phone HMM states in the Dutch TDNN AM are 81 and 3361,
respectively. The number of modeled phones in the Mandarin
TDNN AM is 119, including tone-dependent phones that are
used to describe the four tones plus a neutral tone in Mandarin.
The number of triphone HMM states in the Mandarin TDNN
AM is 3536.

The Dutch ASR obtained a word error rate (WER) of 8.98%
on the CGN broadcast test set. (This WER could be improved
upon by integrating an RNN LM. As Dutch ASR performance
is not the focus in this work, an RNN LM is not applied).
The Mandarin ASR obtained a character error rate (CER) of
6.37% on the ADT test set. The two ASR systems are used to
generate cross-lingual phone labels for the speech frames in
Libri-light unlab-600 and unlab-6 K sets.

2) DNN-BNF MODEL

Two DNN-BNF models are trained, one taking the Dutch
phone labels as training labels and one taking the Mandarin
phone labels as training labels.

The DNN-BNF model consists of 7 feed-forward layers.
Each layer has 450 dimensions except a 40-dimensional bot-
tleneck layer, which is located below the top layer. The DNN-
BNF model is trained based on the LF-MMI criterion. The
inputs to the DNN-BNF are the APC feature with its neigh-
boring frames, ranging from —3 to +3. After training, 40-
dimensional BNFs are extracted, and are evaluated in terms of
overall ABX error rate.. The BNF representations are named
as A-BNF-Du and A-BNF-Ma henceforth, where “-Du” and
“-Ma” denote using the Dutch and Mandarin training labels
respectively, and “A-" denotes APC features as input features.

For comparison, two other DNN-BNF models (one using
the Dutch phone labels as training labels and one using the
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TABLE 4. Configurations of the BNF Representations Implemented in the
Experiments

| M-BNF-Du | M-BNF-Ma | A-BNF-Du | A-BNF-Ma | C-BNF-Du | C-BNF-Ma
Method |

cross-lingual phone labeling | cross-lingual AM

TABLE 5. Overall ABX Error Rates (%) of the APC Features, FHVAE Features,
and the Official MFCC Baseline on Libri-Light. Bold Indicates the Best
Result. Data Within Brackets Indicates the Training Set for Each APC and
FHVAE Model

Acoustic | Libri-light | CGN | ADT Across-speaker
Input | MFCC | APC |  MFCC | MFCC+P System | dev-clean  dev-other test-clean  test-other | Avg.
Label | Du. ASR | Ma ASR | Du.ASR | Ma. ASR | CGN | ADT APC (unlab-600) [30] | 12.64 19.00 12.19 1875 | 15.65
APC (unlab-6K) 10.79 16.87 10.33 16.79 ‘ 13.70
MFCC baseline [21] 20.94 29.41 20.45 2850 | 24.83
) ) ) FHVAE (unlab-600) 18.41 25.66 17.79 25.65 | 21.88
Mandarin phone labels) are trained using HR MFCCs as Within-speaker
input features. Other training and model parameter settings  APC (unlab-600) [30] | 8.83 11.07 8.36 11.48 9.94
are unchanged. After training, again the BNFs are extracted APC (unlab-6K) 49 999 705 101 8.66
ged. g, agal MFCC baseline [21] ‘ 10.95 13.55 10.58 13.60 ‘ 12.17
and evaluated. The BNF representations are henceforth named =~ FHVAE (unlab-600) 10.30 13.15 10.21 1316 | 11.71

asM-BNF-Du and M-BNF-Ma, where “M-" stands for taking
MEFCC features as input features.

E. IMPLEMENTATION OF THE COMPARATIVE APPROACHES
1) FHVAE

Model parameters of FHVAE are chosen by referring to [47].
The FHVAE encoder and decoder are implemented as 2-layer
LSTM networks. Each LSTM layer has 256 dimensions. La-
tent segment variable z; and latent sequence variable z, are
both 32 dimensional. The inputs to FHVAE are fixed-length
speech segments, each of which consists of 20 frames. Frame-
level input features are MFCC with CMN. The FHVAE mod-
els are trained using an open-source tool by [24], with the
Adam optimizer [67]. The model is trained with unlab-600 in
Libri-light. A 10% subset of the training data is randomly
selected for cross-validation (CV). The training procedure
terminates if FHVAE'’s lower bound on the CV set does not
improve for 40 epochs. After training, z is extracted.

2) CROSS-LINGUAL AM BASED BNF
The cross-lingual AM based BNF representation is gener-
ated based on the TDNN AM of the OOD ASR systems
described in Section V-D1. To that end, speech features of
the English evaluation data are fed to the OOD (Dutch or
Mandarin) TDNN AM till its bottleneck layer. In this way,
two BNF representations are extracted, one from the Dutch
TDNN AM, and one from the Mandarin TDNN AM. The two
BNF representations are named C-BNF-Du and C-BNF-Ma,
respectively, where “C-" stands for the comparative approach.
To give an explicit comparison between the cross-lingual
AM based BNFs and BNFs from our proposed approach
(in Section V-D2), Table 4 lists their configurations. The
row “Acoustic” denotes the acoustic training data, the rows
“Input” and “Label” denote input feature representation and
frame labels used to train the respective systems.

VI. EXPERIMENTAL RESULTS

A. EFFECTIVENESS OF THE FRONT-END APC PRETRAINING
First, the APC and FHVAE methods are compared at the
front-end, i.e., without using the DNN-BNF back-end. Overall
across-speaker and within-speaker ABX error rates (%) of the
APC features, the FHVAE features, and the official MFCC
baseline [21] on the four Libri-light evaluation sets are listed
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in Table 5 separately and averaged over all evaluation sets
(right-most column). The APC models in this table are trained
with unlab-600.> and unlab-6 K respectively, and FHVAE is
trained with unlab-600.

The results show that when trained with unlab-600, APC
outperforms both the FHVAE feature representations and the
MFCC baseline. The lower across-speaker ABX error rate re-
sults for the APC features imply that they are more speaker in-
variant than the FHVAE features, even though the APC model
is not explicitly suppressing speaker variation as FHVAE is.

Table 5 shows for the APC model, when the amount of
training data is increased ten-fold by training on unlab-6 K,
the APC feature representation further improves by relative
ABX error rate reduction of 12.5% in the across-speaker con-
dition and 12.9% in the within-speaker condition.

B. EFFECTIVENESS OF THE PROPOSED APPROACH

Next, we compare the overall ABX error rates (%) of the
proposed approach, comparative approaches, and our created
supervised topline on the Libri-light evaluation sets. Table 6
shows the performances of the different approaches evaluated
on the four Libri-light evaluation sets separately and averaged
over all evaluations sets (right-most column), for the across-
speaker condition (top half of of Table 6) and within-speaker
condition (bottom half of Table 6). The systems CPC [21]
and CPC+DA [62] adopt the CPC model, and CPC+DA addi-
tionally applies data augmentation. Since CPC+DA [62] used
augmented audio data derived from Librispeech, the perfor-
mance of this system is listed under “Training set NOT in
Libri-light”. The topline system, C-BNF-Du and C-BNF-Ma
that are trained with Librispeech, CGN and ADT respectively
(see Table 4) are also listed under “NOT in Libri-light”. Sev-
eral observations can be made from this table:

1) The cross-lingual phone-aware DNN-BNF methods that
use the APC features as input features (A-BNF-Du and A-
BNF-Ma) consistently outperform systems with MFCC input
features (M-BNF-Du and M-BNF-Ma) on all evaluation sets.
This demonstrates the effectiveness of the front-end APC pre-
training in our proposed two-stage system framework. This
observation confirms our earlier findings in recent work [30],

5 APC trained with unlab-600 was also published in our recent study [30]
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TABLE 6. Overall ABX Error Rates (%) of the Proposed Cross-Lingual
Phone-Aware BNFs, Comparative Approaches, and Supervised Topline on
Libri-Light. Systems Listed Under “NOT in Libri-Light” Used Various
Different Datasets Other Than unlab-600 or unlab-6 K

Across-speaker

System | dev-clean  dev-other test-clean test-other | Avg.
Training set: unlab-600
M-BNF-Du 6.67 11.65 6.64 12.00 9.24
M-BNF-Ma 7.92 12.71 7.74 13.23 10.40
A-BNF-Du 6.18 11.02 6.03 10.94 8.54
A-BNF-Ma 7.00 11.80 6.84 11.81 9.36

PC 12.64 19.00 12.19 18.75 15.65
CPC [21] 9.58 14.67 9.00 15.10 12.09
Training set: unlab-6K
M-BNF-Du 6.06 11.30 6.12 11.35 8.71
M-BNF-Ma 7.80 12.39 7.60 12.95 10.19
A-BNF-Du 5.70 10.08 5.70 10.02 7.88
A-BNF-Ma 6.38 11.02 6.23 11.02 66
APC 10.79 16.87 10.33 16.79 13.70
CPC [21] 8.48 13.39 8.05 13.81 10.93
Training set NOT in Libri-light

opline 5.30 9.58 5.47 9.64 7.50
CPC+DA [62] 6.62 10.60 5.90 10.95 8.52
C-BNF-Du 7.17 11.20 6.89 11.40 9.17
C-BNF-Ma 9.92 14.91 9.83 15.34 12.50

Within-speaker

Training set: unlab-600
M-BNF-Du 4.97 6.94 .73 6.86 5.88
M-BNF-Ma 6.06 7.71 5.62 7.82 6.80
A-BNF-Du 4.77 6.69 4.49 6.43 5.60
A-BNF-Ma 5.25 7.14 5.21 7.09 6.17

PC 8.83 11.07 8.36 11.48 9.94
CPC [21] 7.36 9.39 6.90 9.59 8.31
Training set: unlab-6K
M-BNF-Du 4.70 6.58 4.36 6.37 5.50
M-BNF-Ma 5.94 7.65 5.69 7.7 6.76
A-BNF-Du 4.48 6.15 4.24 5.91 5.20
A-BNF-Ma 5.03 6.77 4.65 6.42 5.72
APC 7.49 9.99 7.05 10.11 8.66
CPC [21] 6.51 8.42 6.22 8.55 7.43
Training set NOT in Libri-light

opline 4.36 6.16 4.22 5.87 5.15
CPC+DA [62] 4.66 5.81 4.46 6.56 5.37
C-BNF-Du 5.50 7.50 5.27 6.86 6.28
C-BNF-Ma 7.63 .30 7.28 9.51 8.43

in which the training set for APC was unlab-600 (526 hours).
The present study shows that when the amount of training ma-
terial is scaled up to unlab-6 K (5273 hours), APC pretraining
brings even greater relative ABX error rate reduction than
when trained on unlab-600: the across- and within-speaker
relative error rate reductions from M-BNF-Du to A-BNF-Du
are 9.5% and 5.5%, respectively, when trained with unlab-
6 K, while they are 7.6% and 4.8% when trained with unlab-
600. Similarly, the across- and within-speaker relative error
rate reductions from M-BNF-Ma to A-BNF-Ma are 15.0%
and 15.4%, respectively, when trained with unlab-6 K, while
10.0% and 9.3% when trained with unlab-600.

2) The proposed A-BNF-Du system trained with unlab-600
is comparable to the state-of-the-art CPC+DA system [62].°
When A-BNF-Du is trained with the larger, unlab-6 K set,
it outperforms CPC+DA. Both A-BNF-Du and A-BNF-Ma
outperform CPC [21] trained on unlab-600 and unlab-6 K.
It should be noted that in contrast to our approach, the
CPC and CPC+DA systems do not require transcribed data
from OOD languages for training. The huge advancement
of CPC+DA [62] over CPC [21] indicates the effectiveness

©A more strict comparison between A-BNF-Du and CPC+DA should be
made under the identical training material setting, however performance of
CPC+DA trained with Libri-light datasets was not reported in [65].
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of adopting data augmentation techniques in the concerned
task. It would thus be interesting to investigate the efficacy
of integrating data augmentation and CPC with our current
system framework. We leave it for future study.

3) The best performance achieved by our proposed ap-
proach (A-BNF-Du) trained on unlab-6 K is only slightly in-
ferior to the supervised topline system (0.38% across-speaker
and 0.05% within-speaker absolutely). This is an encouraging
finding, as it indicates that on the task of discriminating be-
tween a pair of subword units of an unknown language, with a
sufficient amount of unlabeled data, our approach which does
not require any linguistic knowledge of the target language,
could perform on par with a supervised AM using transcribed
training data of that language.

4) In both the cross-lingual phone labeling method and the
cross-lingual AM based BNF method, using Dutch data as
OOD resources results in better performance than using Man-
darin data. For A-BNF-Du and A-BNF-Ma that adopt cross-
lingual phone labeling, the superiority of using Dutch data
over using Mandarin data was found in a recent work [30].
The present study demonstrates the same finding in the cross-
lingual AM based method by comparing C-BNF-Du and C-
BNF-Ma.

5) With 600-hour (or more) unlabeled training data of the
target language available, the cross-lingual phone labeling
method outperforms the cross-lingual AM based BNF method
which does not rely on target unlabeled speech data but re-
lies on OOD labeled speech data. This can be observed by,
for instance, comparing A-BNF-Du with C-BNF-Du, or by
comparing A-BNF-Ma with C-BNF-Ma. The superiority of
cross-lingual phone labeling is consistent over all the evalua-
tion sets and both the across- and within-speaker conditions.
This superiority can be partially explained as the first method
leverages both OOD transcribed data and in-domain unlabeled
data in system development, while the second method lever-
ages OOD transcribed data only.’

Interestingly, the superiority of cross-lingual phone label-
ing over cross-lingual AM based BNF is more prominent
when Mandarin data is chosen as OOD resource, compared to
when Dutch data is chosen. For instance, in the across-speaker
condition, the relative performance increase from C-BNF-Du
to A-BNF-Du (trained with unlab-6 K) is 14.1% relatively,
while for the Mandarin models this relative increase is 30.7%.
A possible explanation is that the cross-lingual AM based
BNF method has a language mismatch between training and
test acoustic data, while for the cross-lingual phone label-
ing method, the acoustic data during training and test are
both from the target language. A larger language mismatch
between the OOD language and the target language, e.g.
Mandarin-English has a larger mismatch than Dutch-English,
leads to larger negative effects on ABX performance.

7We do not claim that our method always outperforms the second one. In
our unpublished results, A-BNF-Du trained with a 13-hour subset of unlab-
600 performed worse than C-BNF-Du, which implies that large amounts of
unlabeled target training data are required in order to get a good performance
with our method.
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TABLE 7. Overall ABX Error Rates (%) of A-BNF-Du, A-BNF-Ma, the Official
MFCC Baseline, the Supervised Topline, and State-of-The-Art Systems on
the ZeroSpeech 2017 English Evaluation Sets. The Topline and SH That are
Trained With Supervised English Data are Marked With

Across-speaker

Within-speaker
1s 10s 10s

120s | Avg. | Is 120s | Avg.

Training set: unlab-600
A-BNF-Du 7.65 6.69 6.66 7.00 .52 77 4.68 99
A-BNF-Ma 8.19 7.33 7.30 7.61 5.97 5.39 5.37 5.58
APC 14.36  12.59 1249 | 13.15 .80  8.28 8.26 .78
Training set: unlab-6K

-BNF-Du 6.91 6.28 6.26 | 6.48 | 4.96 4.5 4.54 | 4.68
A-BNF-Ma 7.47 6.93 6.89 7.10 5.38 5.03 5.00 5.14
APC 2.00 10.79 10.70 | 11.16 | 8.32 7. 7.21 7.60
Training set: ZeroSpeech 2()]7 (45 homs)
CH [41] ‘ 8.03 5.6 5.5 5.5 ‘ 5.53
HE [14] 10. 1 8 7 8 5 9.10 6.9 6.2 6.0 6.37
Training set NOT in Libri-light or ZeroSpeech 20]7
Baseline [17] 23.4 23.4 23.4 3.4 12.0 12.1 12.1 12.1
T Topline [17] 8.6 6.9 6.7 7 40 6.5 5.3 5.1 5.63

SH [27] 7.9 7.4 6.9 7.40 5.5 5.2 4.9 5.20
CPC+DA [62] - 5.8 - - - 4.6 - -
C-BNF-Du 7.81 7.79 .78 7.79 5.59 5.58 5.60 5.59
C-BNF-Ma 10.60 10.62  10.57 | 10.60 | 7.67 7.58 7.56 7.60

C. ZEROSPEECH 2017 EVALUATION RESULTS

Finally, we tested our approach on the ZeroSpeech 2017
data. Overall ABX error rates (%) of the proposed approach
(A-BNF-Du and A-BNF-Ma), the cross-lingual AM based
BNF approach (C-BNF-Du and C-BNF-Ma), and the front-
end APC representation on the ZeroSpeech 2017 English 1 s,
10 s and 120 s evaluation sets are listed in Table 7 separately
and averaged over all evaluation sets. The official baseline
and topline of ZeroSpeech 2017, systems HE [14], CH [41],
SH [27] that are at the top of the ZeroSpeech 2017 leaderboard
and the system CPC+DA [62] (same as CPC+DA discussed in
Section VI-B) are listed in the table for comparison. The sys-
tems HE and CH utilized untranscribed speech data from the
ZeroSpeech 2017 training sets only. The system SH utilized
over 1300 hours of OOD transcribed data including 80 hours
of English data during training, so SH is a supervised system.
Please note that only the results on the 107s evaluation set of
the CPC+DA approach are reported in [62].

From Table 7 it can be seen that when trained with unlab-
600, A-BNF-Du outperforms the supervised topline system.
When trained with the larger, unlab-6 K set, both A-BNF-Du
and A-BNF-Ma outperform the topline. A-BNF-Du and A-
BNF-Ma perform better than the unsupervised systems CH,
HE and the supervised system SH both when trained with
unlab-600 and with unlab-6 K. The state-of-the-art system
CPC+DA performs better than our best system (A-BNF-Du,
trained with unlab-6 K) in the across-speaker condition on the
10 s evaluation set, while ours is better in the within-speaker
condition. A-BNF-Du and A-BNF-Ma both perform better
than APC in the unlab-600 and unlab-6 K training data set-
tings.

Table 7 shows A-BNF-Du and A-BNF-Ma representations
perform better than C-BNF-Du and C-BNF-Ma representa-
tions. It further confirms our finding in the previous section
that of the two cross-lingual knowledge transfer methods, the
cross-lingual phone labeling method (in the back-end of A-
BNF-Du and A-BNF-Ma) performs better. The superiority of
the cross-lingual phone labeling method over the cross-lingual
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AM based BNF method is more prominent when Mandarin
data is chosen as the OOD resource, compared to when Dutch
data is chosen. This is again in line with the finding in the
previous section.

VII. IN-DEPTH ANALYSES OF THE EFFECTIVENESS OF THE
PROPOSED APPROACH

The in-depth analyses of the performance of our proposed ap-
proach is conducted at two broad levels: at the phoneme level,
using the phoneme-level ABX error rate (see Section IV-B);
and at the AF level, using the pairwise and attribute-level
ABX AF error rates (see Section IV-C). These analyses aim to
uncover what phoneme and AF information is (not) captured
by the learned representation from our proposed approach,
which can be used to guide future research in further improv-
ing the proposed approach.

A. SETUP

The in-depth analyses of the performance of our proposed
approach are conducted on the dev-clean set from Libri-light.
This set contains 2703 utterances summing up to 5.4 hours.
The total number of frames is 1 934 785.

The A-BNF-Du and A-BNF-Ma representations generated
by our proposed approach trained using unlab-600 are chosen
for the analyses. Moreover, the front-end APC features trained
with unlab-600 and the official MFCC features are chosen for
analyses in order to compare against A-BNF-Du and A-BNF-
Ma.

The phoneme-level analysis uses the 39 English phonemes
in the CMU Dictionary [72]: these are 10 monophthongs, 5
diphthongs, and 24 consonants. Calculation of p.,(w;) (see
Equation (10)) depends on the ground-truth English phoneme
labels and the cross-lingual phone labels. The English true
phoneme labels for dev-clean are obtained by carrying out
a forced alignment using the English TDNN AM that is de-
scribed in Section V-B. Please note that during calculation
of pco(w;) using Mandarin cross-lingual phone labels, tone
symbols are removed, in order to make a fair comparison of
Peo(w;) between Dutch and Mandarin phone labels.

The AF-level analysis focuses on four AFs: MoA and PoA
for consonants, and height and backness for vowels. In the
analysis of each AF, t-SNE [73] is adopted to visualize the
distribution of the learned representations with respect to the
different attributes in an AF (e.g. fricative is an attribute in
MoA). The number of speech frames per AF for the visual-
izations is around 2400 for all four AFs as a trade-off between
computational complexity and avoiding sparsity of the visual-
ization plots. The number of speech frames per AF attribute is
equal for all attributes for the same AF, i.e., 500 for MoA, 300
for PoA, and 800 for vowel height and backness. The speech
frames are randomly chosen from dev-clean.

B. PHONEME-LEVEL ANALYSIS RESULTS

Phoneme-level ABX error rates (%) of A-BNF-Du, A- BNF-
Ma, APC, and MFCC representations are illustrated in Fig. 2
for the within-speaker (top panel) and across-speaker (bottom
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FIGURE 3. Distribution of phoneme-level relative ABX error rate reduction
(%) from MFCC to APC as the effect of front-end of the proposed approach
(higher is better). “Mono,” “Diph” and “Cons” are abbreviations of
Monophthongs, Diphthongs and Consonants.

panel) conditions separately. The phonemes are sorted (left to
right) based on the within-speaker relative error rate reduction
from MFCC to A-BNF-Du in descending order. The distribu-
tion of the phoneme-level relative ABX error rate reductions
(%) from MFCC to APC feature representations aggregated
for monophthongs, diphthongs, and consonants for the within-
speaker (left panel) and across-speaker (right panel) condi-
tions are shown in Fig. 3, and from APC to A-BNF-Du (red
boxes) and to A-BNF-Ma (black boxes) in Fig. 4. Figs. 3 and
4 reflect the phoneme-level ABX error reduction achieved by
the front-end and the back-end respectively. In Figs. 3 and
4, each triangle point represents an individual phoneme. The
horizontal dash-dotted line in each subfigure of Figs. 3 and 4
denotes the average of the phoneme-level relative error rate
reduction over all phonemes. The “+” inside each box marks
the mean value of all phonemes in that box.

Fig. 2 shows that diphthongs /OY/, /EY/, /AW/ and conso-
nants /NG/, /SH/, /Y/, /G/ benefit the most from the learned
A-BNF-Du representation of all 39 phonemes. In contrast,
monophthongs /UH/, /ER/, /EH/, /AH/, /AE/ and consonants
/R/ and /L/ benefit the least. Interestingly, phonemes with the
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FIGURE 4. Distribution of phoneme-level relative ABX error rate reduction
(%) from APC to A-BNF-Du (red) and from APC to A-BNF-Ma (black) as the
effect of back-end of the proposed approach (higher is better).

largest error rate reductions (left-most in Fig. 2) are not only
those having the highest error rates by the MFCC represen-
tation (e.g. /Y/ has a high error rate but /SH/ does not). In
general, performance improvements obtained from MFCC to
A-BNF-Du are larger for diphthongs than for monophthongs.
This can be clearly observed when comparing the orange
(denote monophthongs) and blue (denote diphthongs) stars in
Fig. 2. For consonants, the improvements vary greatly. As is
seen from Fig. 2, some consonants (/NG/ and /SH/) are among
the phonemes with the largest improvements, while some (/L/
and /R/) are among the least.

Fig. 3 shows that with front-end APC pretraining, all
phonemes show a positive error rate reduction (except the
monophthong vowel /EH/ in the within-speaker condition).
This demonstrates APC is effective not only from the per-
spective of overall ABX performance, which is shown in the
previous section, but also towards each individual phoneme.
Nevertheless, the gains differ for the different phonemes: one
diphthong /OY/ gains a huge improvement (over 60%) when
using APC in the within-speaker condition. while the biggest
improvements in the across-speaker condition were found for
three consonants: over 50% relative error rate reductions for
/Y/, ISH/ and /ZH/. At the same time, the two monophthongs
/EH/, /ER/ and consonant /L/ benefit little from APC pretrain-
ing in the within-speaker condition (less than 5%).

Fig. 4 shows that irrespective of using Dutch or Mandarin
labels as cross-lingual labels, diphthongs benefit the most
from the back-end cross-lingual BNF learning, followed by
consonants, while monophthongs benefit the least. Moreover,
using Dutch labels results in larger performance improve-
ments than using Mandarin labels on all three phoneme cat-
egories. The advantage of the Dutch labels over the Mandarin
ones is also illustrated in Fig. 2, where the majority of the
phoneme-level ABX error rates by A-BNF-Du are lower than
those by A-BNF-Ma (/Y/ and /UH/ are two exceptions in both
the within- and the across-speaker condition).

From Fig. 3 and Fig. 4, it can be observed that both
the front-end and the back-end of the proposed approach
bring larger performance improvements for diphthongs than
monophthongs. Recall in Fig. 2 we saw that A-BNF-Du
achieved larger performance improvements over MFCC for
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diphthongs than for monophthongs, we conclude that the
superiority of modeling diphthongs over monophthongs by
A-BNF-Du results from a combined effect of APC pre-
training and cross-lingual phone-aware DNN-BNF model
training. The larger reduction in error rates for diphthongs
than for monophthongs in the APC front-end can possibly
be attributed to APC pretraining being better at modeling
duration or at least longer sounds: diphthongs, which are
long sounds, and long monophthongs benefit the most from
APC pretraining in the within-speaker condition, i.e., /UW/
and /IY/ (not explicitly marked in Fig. 3), are both long
monophthong vowels, while short monophthong vowels such
as /UH/, /IH/ and /EH/ are among the monophthongs that
benefit the least. Moreover, consonants that benefit the most
from APC in the within-speaker condition are /NG/, /TH/,
/SH/, /Z/. None of them are sfops, which have a short time
duration.

To gain deeper insights on why the back-end DNN-
BNF model performs differently in capturing different target
phonemes’ information, Fig. 5 plots the correlation between
the phoneme-level ABX error rate reduction (%) from APC
to A-BNF-Du/-Ma and p., (%) for English phonemes. In line
with our expectation, a clear positive correlation for both the
A-BNF-Du (blue) and the A-BNF-Ma (pink) representations
and for both the within-speaker and the across-speaker condi-
tions can be observed: a high p.,(®) of an English phoneme w
indicates a high consistency of cross-lingual phone labels that
are assigned to frames of phoneme w. This means that frames
of the same sounds in the target language are consistently
assigned the same English label (irrespective of whether it is
the correct English label), thus ensuring reliable frame label
supervision for training the back-end DNN-BNF model to
create a subword-discriminative feature representation of w.

Furthermore, from Fig. 5, we can see that using Dutch
phone labels (blue marks) results in more English phonemes
getting a high p., than Mandarin phone labels (pink marks).
Specifically, in the case of using Mandarin labels, only for
/Bl peo 1s larger than 55% (see horizontal axis of either one
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sub-figure in Fig. 5), while this is the case for 7 English
phonemes (/S/, /M/, /K/, IN/, [P/, ING/, /G/) when using Dutch
labels. Interestingly, all of these are consonants. For monoph-
thongs and diphthongs, regardless of using Dutch or Mandarin
labels, their respective p, rarely exceeds 50% (/EY/ is the
only exception when using Dutch labels). This indicates that
both monophthongs and diphthongs are less likely to obtain
highly consistent cross-lingual phone labels than consonants,
which explains why monophthongs benefit less from back-end
cross-lingual DNN-BNF model training than consonants (see
Fig. 4): the frame label supervision for training the DNN-BNF
model is of less quality for monophthongs than for conso-
nants.

It is worth noting that diphthongs were substantially ben-
efiting from the back-end DNN-BNF model (see Fig. 4).
However, as mentioned above, diphthongs are less likely to
obtain highly consistent cross-lingual phone labels than con-
sonants, which appears to contrary to Fig. 4. Our explanation
is as follows: p., does not take into account the dynamic
characteristics of diphthongs. Specifically, when cross-lingual
phone labels are being generated by an OOD ASR system,
it might well be that the first half and second half of the
speech frames of a diphthong are labeled as two different
cross-lingual phones. This would result in a low p,, but does
little to no harm to training the back-end DNN-BNF model
to learn the representation of such a diphthong, because the
DNN-BNF would learn to represent the diphthong as a se-
quence of two consecutive phones. An example is the diph-
thong /OY/ modeled by A-BNF-Du, which is marked as the
top “+” in the left half of Fig. 5: while /OY/ gains the largest
within-speaker ABX error rate reduction (79.4%), p.,(/OY/)
is moderate (32.5%). Among all the speech frames of /OY/,
the Dutch phone [0]® occupies 32.5% of the frame labels, the
Dutch phone [j]° occupies 21.8%, and the rest are labeled as
other Dutch phones with smaller percentages.

C. AF-LEVEL ANALYSIS RESULTS: MANNER OF
ARTICULATION

Manner of articulation (MoA) attribute-level ABX AF error
rates (%) of the MFCC, APC, A-BNF-Du, and A-BNF-Ma
representations are shown in Fig. 6. MoA pairwise ABX AF
error rates (%) of A-BNF-Du and A-BNF-Ma representations
are listed in Table 8.

Fig. 6 shows that both A-BNF-Du and A-BNF-Ma repre-
sentations outperform MFCC and APC in capturing manner
of articulation information. This shows that our approach
proposed for modeling subword units implicitly learns in-
formation regarding manner of articulation of phonemes.
A-BNF-Du better captures stop and nasal information than
A-BNF-Ma, while A-BNF-Ma better captures affricate, ap-
proximant and fricative information. The comparison on the
average MoA pairwise ABX AF error rates for A-BNF-Du

SIPA symbol is [0:]. The vowel in oost (English translation: east).
9IPA symbol is [j]. The vowel in ja (English translation: yes).
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FIGURE 6. MoA attribute-level ABX AF error rate (%) of MFCC, APC,
A-BNF-Du, and A-BNF-Ma.

TABLE 8. MoA Pairwise ABX AF Error Rates (%) of A-BNF-Du and
A-BNF-Ma. Pink Numbers Denote Across-Speaker Error Rates, Black
Numbers Denote Within-Speaker Error Rates

(a) A-BNF-Du
| Af Ap Fr St Na | avg
Af - 2.96 19.69 16.76 2.43
Ap 3.98 15.04 14.28 14.51 14.01
Fr 22.65 16.44 - 25.70  12.04 :
St 18.69 15.88  27.48 - 16.70
Na 3.05 16.59 13.47 18.15 -
avg. ‘ 15.72 ‘
(b) A-BNF-Ma
| Af Ap Fr St Na | avg
Af - 2.62 18.54 17.01 2.23
Ap 3.26 - 14.21  13.76 14.74 13.96
Fr 20.68 15.68 - 25.61  12.08 :
St 19.22  15.36  28.13 - 18.82
Na 3.07 17.53  13.77  20.36 -
avg. | 15.64 |

and A-BNF-Ma (right-most column and bottom row in Ta-
ble 8) shows slightly lower average error rates for A-BNF-Ma
than for A-BNF-Du in both the within-speaker and across-
speaker conditions. This is in contrast to the phoneme-level re-
sults which showed consistently better results for A-BNF-Du
over A-BNF-Ma. Taken together, this suggests that manner
of articulation information is less language-dependent than
phoneme information.

Fig. 6 furthermore shows that stops and fricatives have
consistently higher ABX AF error rates than the other three
MoA attributes for MFCC, APC, A-BNF-Du, and A-BNF-Ma
representations. Table 8 shows that fricatives are often con-
fused with affricates and stops while stops are often confused
with fricatives. From an articulatory-acoustic point of view
this can be explained by stops being very short and highly
dynamic sounds. They start with a stretch of silence or low
noise (in the case of voiced stops) when the vocal tract is fully
closed, followed by a release that consists of noise caused
by turbulence of the air in the vocal tract. A fricative solely
consists of this noise, while an affricate can be seen as a
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FIGURE 7. T-SNE visualization of the frame-level MFCC, APC, A-BNF-Du
and A-BNF-Ma representations. Each color denotes a different MoA
attribute.

concatenation of a short stop and a short fricative, so has
acoustic characteristics of both.

Fig. 7 shows the t-SNE visualizations of the speech frames
when using the MFCC, APC, A-BNF-Du, and A-BNF-Ma
feature representations and labeling the frames with their
MoA attributes. Each color represents a different MoA at-
tribute, and each sample point stands for a speech frame.
This figure clearly demonstrates that using A-BNF-Du and
A-BNF-Ma as in our proposed approach results in MoA at-
tributes that form more explicit attribute-specific patterns than
with MFCC and APC (compare bottom two panels with the
top two panels).

For A-BNF-Du and A-BNF-Ma, the clusters of affricates,
approximants and nasals are more coherent than those of frica-
tives and stops. This is in agreement with the relatively higher
ABX AF error rates of fricative and stop as shown in Fig. 6.
Moreover, for the A-BNF-Du and A-BNF-Ma representa-
tions, affricates generally separate well from approximants
and nasals, and are less separable from fricatives and from
stops, which is in line with the articulatory-acoustic properties
of affricates, fricatives, and stops. Table 8 further confirms
this finding: MoA pairwise error rates of affricate-fricative
and affricate-stop are much higher than those of affricate-
approximant and affricate-nasal. By comparing visualizations
of A-BNF-Du and A-BNF-Ma with MoA attributes, no no-
ticeable difference is found.

D. AF-LEVEL ANALYSIS RESULTS: PLACE OF ARTICULATION
Place of articulation (PoA) attribute-level ABX AF error rates
(%) of MFCC, APC, A-BNF-Du, and A-BNF-Ma representa-
tions are shown in Fig. 8. PoA pairwise ABX AF error rates
(%) of A-BNF-Du and A-BNF-Ma representations are listed
in Table 9.

Fig. 8 shows that the A-BNF-Du and A-BNF-Ma rep-
resentations consistently capture place of articulation infor-
mation better than MFCC and APC for all PoA attributes
and for both the within- and across speaker conditions. This
demonstrates the effectiveness of our approach in capturing
information that distinguishes PoA attributes. A-BNF-Du per-
forms the best in capturing labiodental, alveolar and velar
information in both within- and across-speaker conditions,
while A-BNF-Ma performs the best in capturing bilabial,
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FIGURE 8. PoA attribute-level ABX AF error rate (%) of MFCC, APC,
A-BNF-Du and A-BNF-Ma.

TABLE 9. PoA Pairwise ABX AF Error Rates (%) of A-BNF-Du and
A-BNF-Ma. Pink Numbers Denote Across-Speaker Error Rates, Black
Numbers Denote Within-Speaker Error Rates

(a) A-BNF-Du

‘ BI LA DA AL PO PA VE GL ‘ avg.
BI - 20.01 18.58 2550  20.60 5.66 1572 12.70
LA | 23.05 - 16.72 2593  18.46 3.34 10.45 9.86
DA 2194 20.81 - 27.72 14.42 4.82 9.19 11.39
AL | 2845 29.09 32.66 - 2397 1361 21.17 1850 1474
PO 23.60 2129 1990 28.11 - 10.39 1325 17.70 :
PA 6.23 3.16 3.61 15.01 16.26 - 293 9.77
VE 1848 1241 11.56  23.84 1698 4.11 - 10.50
GL 15.09 1131 1427  21.67 18.87 8.74 11.58 -
avg. | 17.22 |

(b) A-BNF-Ma

‘ BI LA DA AL PO PA VE GL ‘ avg.
BI - 20.23 1796 2525 1848 4.14 1648  12.40
LA | 23.15 - 17.52  27.77 1793 3.38 12.52 10.09
DA | 21.50 22.18 - 2722  14.16 3.13 9.21 11.90
AL | 2847 3133 31.88 - 24.83  14.17 2451 19.81 14.98
PO 2190 2129 1848 2936 - 1099 1420 17.74
PA 5.70 2.54 4.83 1644  15.49 - 3.37 7.01
VE 1980 1532 12,67 2724 17.89 3.55 - 12.53
GL 15.14 1238 14.17 2359 19.87 9.38 14.02 -
avg. | 17.84 |

dental and palatal information in within-speaker conditions.
The comparison on the average PoA pairwise ABX AF error
rates for A-BNF-Du and A-BNF-Ma (right-most column and
bottom row in Table 9) shows little (less than absolute 0.25%)
difference in both the within-speaker and across-speaker con-
ditions. Moreover, Fig. 8 shows no clear advantage between
A-BNF-Du and A-BNF-Ma on PoA attribute-level ABX AF
error rates. This suggests that place of articulation information
is less language-dependent than phoneme information, as the
phoneme-level results showed consistently better results for
A-BNF-Du over A-BNF-Ma.

Fig. 8 shows that palatal has the lowest attribute-level ABX
AF error rate. This is due to low pairwise ABX AF error rates
between palatal and any other PoA attribute as shown in Ta-
ble 9. The fact that the A-BNF-Du and A-BNF-Ma are better
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FIGURE 9. T-SNE visualization of the frame-level MFCC, APC, A-BNF-Du
and A-BNF-Ma representations. Each color denotes a different PoA
attribute.

able to capture palatal information than information of the
other PoA attributes is likely due to the fact that palatal only
concerns a single phoneme (/Y/) with a clear acoustic pattern.
This is unlike the other PoA attribute that only consists of a
single phoneme: glottal (/HH/). The attribute-level ABX AF
error rate of glottal is much higher than that of palatal, and
is similar to velar. This is likely due to the very low energy
of /HH/ which makes it hard to distinguish the acoustics of
/HH/ from silence and other phonemes (such as the first parts
of stops).

Alveolar has the highest attribute-level ABX AF error rate
for A-BNF-Du and A-BNF-Ma, which is due to high pair-
wise ABX AF error rates between alveolar and any other
PoA attribute (see Table 9; except for the alveolar-palatal
pair). Bilabial and postalveolar also have high attribute-level
ABX AF error rates for A-BNF-Du and A-BNF-Ma: higher
than other attributes except alveolar. This is likely due to the
PoA attributes of alveolar, bilabial and postalveolar containing
phonemes with at least three different manners of articulation
(see Table 1), leading to highly diverse acoustics within each
of the PoA attributes.

Fig. 9 shows the t-SNE visualizations of the speech frames
when using the MFCC, APC, A-BNF-Du, and A-BNF-Ma
feature representations and labeling the frames with their PoA
attributes. Each color represents a different PoA attribute,
and each sample point stands for a speech frame. This fig-
ure clearly demonstrates that the PoA attributes form more
explicit attribute-specific patterns when using the A-BNF-Du
and A-BNF-Ma feature representations than with the MFCC
and APC representations (compare the top panels with the bot-
tom panels). The cluster of palatals is coherent in the A-BNF-
Du and A-BNF-Ma representations. The clusters of glottals
and velars are coherent in A-BNF-Du, and less coherent in
A-BNF-Ma. There are no coherent clusters of the other five
PoA attributes shown in A-BNF-Du and A-BNF-Ma. This is
consistent with Fig. 8 which shows palatals, glottals and ve-
lars having lower attribute-level ABX AF error rates than the
other five attributes in A-BNF-Du and A-BNF-Ma. Bilabials,
labiodentals, and dentals show overlap in both A-BNF-Du and
A-BNF-Ma.

Comparing the results of the MoA and PoA analyses shows
that the A-BNF-Du and A-BNF-Ma representations are better
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TABLE 10. Vowel Height Pairwise ABX AF Error Rates (%) of A-BNF-Du and
A-BNF-Ma. Pink Numbers Denote Across-Speaker Error Rates, Black
Numbers Denote Within-Speaker Error Rates. “cl, Mi, Op” Stand for “close,
Mid, Open”

(a) A-BNF-Du (b) A-BNF-Ma
| c Mi Op | avg. | «c Mi Op | avg.
cl - 2175 1599 cl 2828  16.08
Mi | 30.00 2506 | 29 mi | 3029 2471 | B2
Op | 1738 2847 Op | 1730 2853
avg. | 25.40 | avg. | 25.40 |

able to capture the underlying MoA and PoA information
than the MFCC and APC representations. At the same time
MoA information is better captured than PoA information
by the A-BNF-Du and A-BNF-Ma representations (compare
average pairwise ABX AF error rates in Tables 8 and 9).
This is in line with results found in [74] which showed that
a naive feed-forward DNN trained for the vowel-consonant
classification task captures manner of articulation information
better than place of articulation information (without being
explicitly trained to do so).

E. AF-LEVEL ANALYSIS RESULTS: VOWEL HEIGHT AND
BACKNESS

Our final analyses focus on the effectiveness of our ap-
proach in capturing vowel height and backness information.
Attribute-level ABX AF error rates (%) for vowel height
are illustrated in Fig. 10, and those for vowel backness are
illustrated in Fig. 11. Pairwise ABX AF error rates (%) of
A-BNF-Du and A-BNF-Ma are listed in Tables 10 and 11,
respectively.

Fig. 10 and Fig. 11 show that, for both vowel height and
backness, the attribute in the middle, i.e., mid in height and
central in backness, performs consistently worse than the
other attributes in both the within- and the across-speaker con-
ditions. This worse performance is due to the large confusion
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TABLE 11. Vowel Backness Pairwise ABX AF Error Rates (%) of A-BNF-Du
and A-BNF-Ma. Pink Numbers Denote Across-Speaker Error Rates, Black
Numbers Denote Within-Speaker Error Rates. “fr, Ce, Ba” Stand for “front,
Central, Back”

(a) A-BNF-Du (b) A-BNF-Ma
| Fr Ce Ba | avg | Fr Ce Ba | avg
Fr - 26.78 17.20 Fr 27.15 17.34
Ce | 2028 2196 | 2B e | 205 2344 | 2264
Ba 2112 2735 Ba 2147 2794
avg. | 25.90 | avg. | 26.25 |

FIGURE 12. T-SNE visualization of the frame-level MFCC, APC, A-BNF-Du
and A-BNF-Ma representations. Each color denotes a different vowel
height attribute.

of mid with close and open (see Table 10), and of central with
front and back (see Table 11).

Fig. 10 and Fig. 11 also show that, similar to what was
observed for MoA and PoA for consonants, A-BNF-Du and
A-BNF-Ma outperform MFCC and APC features in captur-
ing the attributes of vowel height and backness. Comparing
these results to the attribute-level ABX AF error rates for
MoA (Fig. 6) and PoA (Fig. 8) shows that the monophthong
vowel-related.! AF attributes achieved higher error rates than
the consonant-related ones (i.e., MoA and PoA). In fact, most
attribute-level ABX AF error rates for vowel height and back-
ness obtained from A-BNF-Du and A-BNF-Ma fall within the
20% — 30% range, whereas most of those of MoA and PoA
fall within the 10% — 20% range. This observation is in ac-
cordance with findings in the phoneme-level analysis, where
monophthongs are found to benefit less than consonants by
our proposed approach (see Section VII-B).

Fig. 12 and Fig. 13 show the t-SNE visualizations of
the frames when using the MFCC, APC, A-BNF-Du, and
A-BNF-Ma feature representations and labeling them with
vowel height and vowel backness respectively. Each color
represents a different attribute in vowel height or backness,
and each sample point stands for a speech frame. Both figures
show that the A-BNF-Du and A-BNF-Ma representations are
better than MFCC and APC in capturing information that
distinguishes vowel height and backness attributes, as they

19Diphthongs are excluded in the vowel height and backness analyses, see
Section IV-C
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FIGURE 13. T-SNE visualization of the frame-level MFCC, APC, A-BNF-Du
and A-BNF-Ma representations. Each color denotes a different vowel
backness attribute.

form more explicit attribute-specific patterns than with MFCC
and APC. Fig. 12 shows that for A-BNF-Du and A-BNF-Ma,
while there are noticeable overlaps between the mid-close
pair and between the mid-open pair, little overlap is observed
between the close-open pair. It indicates that the information
to distinguish the close and open attributes in vowel height are
well learned by the proposed approach. This is in contrast to
vowel backness (see Fig. 13) where there is extensive overlap
between front, central and back for A-BNF-Du and A-BNF-
Ma.

Interestingly, the improvement of A-BNF-Du and A-BNF-
Ma over MFCC in capturing vowel height and backness in-
formation seems not to be due to front-end APC pretraining.
Comparing APC with MFCC in Fig. 10 and Fig. 11 shows that
front-end APC pretraining has very limited or even a negative
effect on capturing vowel height and backness information,
especially in the within-speaker evaluation condition. This
is contrary to what was observed for consonant information,
where APC pretraining was found to be effective in capturing
MoA and PoA (see Fig. 6 and Fig. 8). These results are in
line with those observed in the phoneme analyses in Fig. 3,
where the efficacy of APC pretraining is more prominent on
consonants than on monophthongs.

VIIl. CONCLUSION
The present study addresses unsupervised subword modeling.
A two-stage learning framework that consists of an APC
front-end and a cross-lingual DNN-BNF back-end was
proposed to tackle this problem. To evaluate the proposed
approach, in addition to the widely adopted ABX subword
discriminability metric, a comprehensive and systematic
analysis was carried out at the phoneme-level and the
articulatory feature (AF)-level to investigate the type of
information that is (and is not) captured by the newly created
feature representations. In order to do so, new metrics that
focus on phoneme-level ABX subword discriminability and
attribute-level ABX AF discriminability have been proposed.
Experiments were conducted using two databases: Libri-
light and ZeroSpeech 2017. Using the overall ABX subword
discriminability metric, the experimental results show that
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our approach is competitive or even superior to the state-of-
the-art [62]. Front-end APC pretraining brings performance
improvement to the entire learning framework compared to
a system with only the DNN-BNF back-end. Performance
further increased when the amount of training material was
increased from 600 hours to 6000 hours. The proposed sys-
tem’s best performance, achieved by using 6000 hours of
untranscribed training data without any linguistic knowledge
of the target language, is very close to that of a supervised
system trained on 1000-hour transcribed data of the target
language. Moreover, the proposed back-end performs better
than a cross-lingual AM based BNF method in exploiting
cross-lingual knowledge transfer.

Subsequent in-depth analyses investigated what informa-
tion was captured by the newly created feature representations
and this was compared to the information captured by baseline
MEFCC features and front-end APC features. The phoneme-
level analysis showed that compared to MFCC, our two-stage
approach achieves larger improvement in capturing diphthong
information than monophthong vowel information, and this is
true in both the front-end and the back-end of our approach.
For consonants, the improvement in capturing phoneme in-
formation from MFCC to our approach varies greatly to dif-
ferent consonants. Our results showed a positive correlation
between the effectiveness of the back-end in capturing a target
phoneme’s information and the quality of cross-lingual phone
labels assigned to that target phoneme.

The AF-level analyses showed that the proposed approach
is better than MFCC and front-end APC features in captur-
ing manner and place of articulation information and vowel
height and backness information. In the analysis of MoA,
stop and fricative information are less well captured than
affricate, approximant, and nasal information. The analysis of
PoA showed that palatal is the best captured attribute, which is
partially explained by the palatal AF attribute only consisting
of a single phoneme /Y/, while most other PoA attributes
consist of multiple phonemes with multiple manners of artic-
ulation. The analyses indicate MoA is better captured by the
proposed approach than PoA which is in line with previous
research [74], and both MoA and PoA information are better
captured than vowel height and backness information. Com-
paring the outcomes of the analyses at the AF and phoneme
level suggests that AF information is less language-dependent
than phoneme information, which is in line with the linguistic
principles underlying articulatory features and phonemes.

In conclusion, both the front-end and back-end of the pro-
posed approach are effective in capturing information that
distinguishes individual phonemes. It demonstrates the impor-
tance of both the front-end and the back-end of our approach
in the task of unsupervised subword modeling. Regarding AF
information, the front-end is effective in capturing MoA and
PoA information, but is less well able to capture vowel height
and backness information. In contrast, the back-end is effec-
tive in capturing all the MoA, PoA, vowel height and backness
information. The phoneme-level and the AF-level analyses
both indicate monophthong vowel information is much more
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difficult to capture than consonant information. This suggests
that a possible direction to improve unsupervised subword
modeling is investigating methods that improve the effective-
ness of capturing monophthong vowel information.
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