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S U M M A R Y
Particle image velocimetry (PIV), a method based on image cross-correlation, is widely used
for obtaining velocity fields from time-series of images of deforming objects. Rather than
instantaneous velocities, we are interested in reconstructing cumulative deformation, and use
PIV-derived incremental displacements for this purpose. Our focus is on analogue models
of tectonic processes, which can accumulate large deformation. Importantly, PIV provides
incremental displacements during analogue model evolution in a spatial reference (Eulerian)
frame, without the need for explicit markers in a model. We integrate the displacements in a
material reference (Lagrangian) frame, such that displacements can be integrated to track the
spatial accumulative deformation field as a function of time. To describe cumulative, finite
deformation, various strain tensors have been developed, and we discuss what strain measure
best describes large shape changes, as standard infinitesimal strain tensors no longer apply
for large deformation. PIV or comparable techniques have become a common method to
determine strain in analogue models. However, the qualitative interpretation of observed strain
has remained problematic for complex settings. Hence, PIV-derived displacements have not
been fully exploited before, as methods to qualitatively characterize cumulative, large strain
have been lacking. Notably, in tectonic settings, different types of deformation—extension,
shortening, strike-slip—can be superimposed. We demonstrate that when shape changes are
described in terms of Hencky strains, a logarithmic strain measure, finite deformation can be
qualitatively described based on the relative magnitude of the two principal Hencky strains.
Thereby, our method introduces a physically meaningful classification of large 2-D strains.
We show that our strain type classification method allows for accurate mapping of tectonic
structures in analogue models of lithospheric deformation, and complements visual inspection
of fault geometries. Our method can easily discern complex strike-slip shear zones, thrust faults
and extensional structures and its evolution in time. Our newly developed software to compute
deformation is freely available and can be used to post-process incremental displacements
from PIV or similar autocorrelation methods.

Key words: Continental tectonics: compressional; Continental tectonics: extensional; Con-
tinental tectonics: strike-slip and transform; Fractures, faults, and high strain deformation
zones; Kinematics of crustal and mantle deformation; Mechanics, theory, and modelling.

1 I N T RO D U C T I O N

Determination of the cumulative strain of an object provides insight in the total shape change resulting from prolonged deformation, and aids
in the characterization of the type of deformation leading to deformed structures. A technique such as particle image velocimetry (PIV) allows,
by cross-correlating subsequent images, to obtain the incremental displacement field in between two time steps (e.g. Thielicke & Stamhuis
(2014)). From these displacements, incremental deformation can be derived. Image cross-correlation can be used to observe displacements
or deformation in physical analogue models of long-term tectonics. Applications range from mapping surface motions (Hampel et al. 2004),
for the determination of strain in the horizontal plane (Boutelier & Oncken, 2011), or in side view (Cruz et al. 2008), for the imaging of
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Mapping and classifying large deformation 985

mantle flow in models (Funiciello et al. 2006). Similar correlation techniques are used to detect near step-wise displacements from coseismic
deformation using optical satellite imagery (Kääb et al. 2017; Sotiris et al. 2018), SAR data (Morishita et al. 2017) or a combination of both
(Lauer et al. 2020).

As PIV provides displacements in an Eulerian (i.e. space-fixed) reference frame, to integrate large cumulative deformations we need
to convert these displacements to a Lagrangian (material-fixed) frame. Namely, we are primarily interested in the deformation of material,
rather than the deformation at a location in space through which material advects. One can use the Eulerian displacements to follow material,
provided that PIV-derived displacements are continuously available in time. Senatore et al. (2013) and (Stanier et al. 2016) show that PIV
analysis of deformation of granular material allows for high resolution mapping of cumulative strain. Recently, Boutelier et al. (2019)
illustrated the potential of integrated PIV displacements based on synthetic PIV results for simple shear zones, using appropriate finite strain
descriptions.

As an alternative to PIV, displacement detection methods have been used that rely on tracing passive markers that are placed on models
in a structured grid, manually (Schellart et al. 2003) or digitally (Fischer & Keating 2005; Cardozo & Allmendinger 2009; Duarte et al. 2013;
Guillaume et al. 2013; Chen et al. 2015); for a review see section 5.3 of Schellart & Strak (2016). Tracking of passive markers provides
Lagrangian displacements directly, but faults can be difficult to observe due to limited spatial resolution (Nilforoushan et al. 2008). PIV relies
on the presence of contrasting texture of the study object in view, and potentially allows for a higher spatial resolution of the deformation field
compared to methods where the deformation of an initially structured grid is traced through time. The achievable resolution depends mainly
on the contrast and spatial brightness frequency of the surface texture and image resolution, where there is a trade-off between resolution and
precision (White et al. 2003). PIV or similar autocorrelation techniques (digital volume correlation) can also be used to map displacements
in 3-D, for example using X-ray tomography to visualize internal deformation of analogue models (Adam et al. 2013; Poppe et al. 2019),
experiments on deformation of granular materials (Hall et al. 2010) or experimentally deformed rocks (Lenoir et al. 2007; Charalampidou
et al. 2011; Mao & Chiang 2016). For transparent media, stereoscopic PIV has also proven itself to image 3-D velocity fields in subduction
models (Strak & Schellart 2014). However, in our study we focus on 2-D deformation occurring in a horizontal plane, as our study materials
are not transparant, and we use planar view images to determine deformation.

In this paper we seek to infer how the different types of tectonic deformation—extension, shortening and strike-slip—contribute to
the cumulative deformation, documented through physical analogue modeling. A PIV-derived classification of the type of strain can so
complement visual inspection of the type of faulting (e.g. as in Willingshofer & Sokoutis 2009), as well as determine distributed deformation
in the absence of clear discrete faults.

When strains are small and rotations are negligible, such as holds for interseismic deformation measured using geodetic observations,
the type of strain can be obtained using the ratio between the principal strains, such as used by Kreemer et al. (2014) for the interpretation
of current day global deformation rates. For large strains this ratio no longer applies, as we show in Section 2.7. Studies have used derived
quantities as maximum shear strains (Cruz et al. 2008) or vorticity (Adam et al. 2005) to resolve shear strain in vertical model cross-sections,
or the first strain invariant to determine structures that deform under extension or shortening (Galland et al. 2016). To our knowledge, no
existing method allows the simultaneous discrimination of extension, shortening and strike-slip (simple shear), or combinations of those.

In this paper we will discuss various deformation tensors that are common, infinitesimal strain, or less common in the geophysical
modeling literature, finite strain and finite stretch. We will argue which tensors are best suited to describe large deformation and classify
deformation. Based on a finite stretch tensor, we formulate a classification of deformation that can properly discern distributed or localized
strike-slip, extension or shortening, or oblique combinations: transpression (strike-slip and orthogonal shortening) or transtension (strike-slip
and orthogonal extension). Using both synthetic and analogue models of tectonic deformation, we will show that it is possible to create high
resolution maps of finite strain and the type of strain.

2 D E F O R M AT I O N A NA LY S I S

2.1 Material displacements from time-variable spatial displacements

Given incremental displacement vector fields in time, in our case obtained by particle image velocimetry (PIV, Thielicke & Stamhuis 2014),
we want to determine the deformation field as a function of time. PIV provides the displacements in an Eulerian, space-fixed, undeformed,
reference frame, which we want to express in a Lagrangian, material-fixed, deformed reference frame. In a Lagrangian frame, displacements
refer to the particle path of material particles with respect to their initial positions. We define initial material points, from which we reconstruct
particle paths through time, using the Eulerian displacements. The left panel of Fig. 1 shows these, virtual, initial material points. For the
following time steps, material has advected, and these material points do no longer coincide with the PIV-derived Eulerian displacement
points, see the middle panel. Similar as Senatore et al. (2013), Stanier et al. (2016), Boutelier et al. (2019), Krỳza et al. (2019) we calculate
finite (i.e. cumulative) displacements by interpolating the Eulerian displacement fields.

The current location x of a point at epoch t that initially had the reference position X we construct as:

x = X +
t∑

i=1

δu(X, t), (1)
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986 T. Broerse et al.

Figure 1. Interpolation of Eulerian displacements to follow material and construct a Lagrangian displacement field. Left-hand panel: PIV-derived Eulerian
displacements (black arrows) and interpolated displacements (green arrows) on an initial material grid (black), representing virtual material points, at the first
epoch. Middle panel: PIV-derived Eulerian displacements (black arrows) and initial grid (black) and interpolated displacements on the deformed material grid
(green) at the second epoch. Right-hand panel: virtual particle paths from epochs 1 to 6, deforming, rotating and translating the initial grid (black) to the current
deformed grid (green). The displacement field is based on data as used in Section 5.

where δu(X, t) is the incremental Eulerian displacement at epoch t of the point that occupied position X in the reference state. We obtain
δu(X, t) by spatial bicubic spline interpolation (similarly as Stanier et al. 2016) as δu is provided on a regular grid by PIV. Fig. 1 shows how
the original material frame has been deformed by incremental displacements, and how interpolated displacements can be used to construct
particle paths. It is clear how for large deformation (i.e. translation, shape change, rotation) the Eulerian displacements quickly deviate from
the Lagrangian material displacements. Extension and shortening that occur during observation lead to heterogeneity of the spatial resolution
of the Lagrangian grid of virtual material points. A higher spatial resolution of the grid compared to the PIV displacement field can therefore
be useful to mitigate progressive resolution loss in regions with large cumulative extension.

The procedure assumes that the PIV-derived velocities do not contain outliers. In this study we remove outliers based on a threshold
displacement value as a function of the standard deviation of all displacement magnitudes (Thielicke & Stamhuis 2014), followed by a manual
check of remaining outliers (that occur mainly during periods of sedimentation).

2.2 Deformation measures

Throughout this manuscript we use strain and stretch as measures to describe shape changes. As a simple 1-D scalar measure, extensional
strain ε is:

ε = L − L0

L0
= �L

L0
(2)

with initial length L0 and final length L. Extensional strain ε may stand here for both positive strain, as well as negative, shortening, strain. The
range of possible 1-D strain values is [-1 , ∞], with 0 denoting no deformation. In dimensions larger than 1, multiple definitions are possible
for strain, depending on the reference frame and the magnitude of deformation (Sections 2.5.1 and 2.5.2). Stretch λ is a related measure that
we will use frequently in this manuscript and that is defined as:

λ = L

L0
= ε + 1, (3)

where the stretch is always positive, and a stretch of 1 denotes no deformation. For purely extensional deformation stretch relates to strain as
λ = 1 + ε. Engineering shear strain γ is related to the change in angle ψ of two, originally, perpendicular lines:

γ = tan(ψ). (4)

In 2-D, stretches have a clear relation to the strain ellipse, where the two orthogonal principal stretches λ1, λ2 form the axes of the strain
ellipse. The directions of these axes form principal axes, and along these directions the shape change can be defined by pure stretches (see
Fig. 4). Finally, we will make use of the area ratio dA/dA0 (i.e. dilatation from a 2-D perspective), which is a function of the principal stretches
as:

dA/dA0 = λ1λ2. (5)

2.3 Deformation gradient

From the Lagrangian positions in time we derive the deformation gradient F, a second order tensor that we will use later to derive all
deformation measures such as strain and stretch. Fig. 2 shows the relation between old and new element vectors (i.e. any line within a small
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Mapping and classifying large deformation 987

Figure 2. The deformation gradient F relates the deformed state to the undeformed state. A material vector dX that runs from point P to Q (i.e. a side of a
small material element) in the original configuration, to the material vector in the deformed configuration dx, with the material that first occupied points P and
Q now in points p and q. Displacement vectors u(P) and u(Q) provide the displacements between the two states.

unit of material) and displacements. The deformation gradient relates initial vectors of the undeformed material dX to the deformed, final
material vector dx, by (Malvern 1969):

dx = FdX (6)

This means that the components of deformation gradient tensor are defined as:

F = ∂x

∂X
. (7)

We can write the displacement u as the difference between current and reference coordinates:

u = x − X. (8)

Thus, the deformation gradient can be reformulated as a function of the displacements:

F = ∂

∂X
(X + u) = I + ∂u

∂X
= I + ∇u. (9)

Here ∂u
∂X or ∇u is the gradient of the displacement vector field, and I is the identity matrix, which represents the current state. This means that

the deformation gradient is a simple relation of the partial derivative of the displacement with respect to the reference coordinates. In 2-D the
deformation gradient becomes:

F =
[

1 + ∂u X
∂ X

∂u X
∂Y

∂uY
∂ X 1 + ∂uY

∂Y

]
(10)

When we regard the deformation as a product of rigid body rotation and translation and distortion, F captures all except the rigid body
translation, as rigid body translations do not lead to gradients in displacements.

Computation of the deformation gradient

In eq. (1) we have discussed the coordinates of points of which we have tracked the change in coordinates x. For the following, we define
quadrilateral elements (that in our implementation starts as squares in the undeformed state) and we apply the computation of F to these
elements. We make use of linear shape functions to determine the partial derivatives of the displacement ∂u

∂X (see Appendix A).
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988 T. Broerse et al.

Figure 3. Any homogeneous deformation F can be written as a succession of a simple shear parallel to x 	; an extension in x and an extension in y direction

; followed by an orthogonal rotation Q (Srinivasa 2012). Here, the change between initial line vectors dX (in this case the side vectors of a square) to final
initial line vectors dx (the deformed quadrilaterals) is determined by: dx = FdX. First row, incremental deformation, second row, cumulative deformation.

2.4 General deformation described with the deformation gradient

Any deformation that can be described by F, can be written as a serial combination of a simple shear, simple extensions along the x or y axes
and a rotation (Srinivasa 2012):

F = QF̃. (11)

Distortion F̃ contains all shape changes and Q is an orthogonal rotation matrix (QT Q = I). The distortion can very conveniently be written
as a successive multiplication of first a shearing motion followed by a biaxial extension (Freed et al. 2019):

F̃ = 
	 =
[

a 0
0 b

] [
1 γ

0 1

]
=

[
a aγ

0 b

]
. (12)

Fig. 3 shows an example of the resulting deformation with applying distortion and rotation. For example, shearing (simple shear) parallel to
x can be achieved by engineering strain γ �= 0. Subsequently, extension or shortening along x can be achieved with stretch parameter a > 1
and 0 < a < 1, respectively. Similarly extension along y can be achieved using stretch parameter b �= 1. Finally, rotation matrix Q rotates the
Cartesian reference frame x under a counter-clockwise angle θ to the new coordinates x′: x′ = Qx. With the rotation given by:

Q =
[

cos(θ ) −sin(θ )
sin(θ ) cos(θ )

]
(13)

We will use the formulation of the distortion F̃ in Section 2.7 to classify large shape changes (distortion) as combinations of shearing
and extensions.

2.5 Strain and stretch tensors

Different measures have been derived to uniquely decompose the deformation described by F into rotations and shape changes. We discuss a
few of these and argue which of these tensors are best suited to quantitatively describe large changes in shape.

2.5.1 Small deformation: infinitesimal strain

For small deformations, the product of successive deformations (see eqs 11 and 12) can be approximated by a sum of successive deformations.
In that case, we can write the deformation gradient as the sum of the current state I, shape changes ε and rotation ω (Allmendinger et al.
2011):

F = I + ε + ω. (14)
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Shape changes ε are expressed in terms of strain, a quantity closely related to the 1-D extension ε (eq. 2). When rotations ω—due to rigid
body rotations as well as due to shear—are small, we can describe shape changes using the Lagrangian infinitesimal strain tensor ε (in 2-D,
Malvern 1969):

ε =
[

εxx εxy

εxy εyy

]
=

[
∂ux
∂ X

1
2

(
∂ux
∂Y + ∂uy

∂ X

)
1
2

(
∂ux
∂Y + ∂uy

∂ X

) ∂uy

∂Y

]
(15)

with normal extensions εxx and εyy on the diagonals and the shear term εxy on the off-diagonals. The infinitesimal strain tensor can be written
as a function of the displacement tensor ∇u, and thus can be easily computed from the deformation gradient (F = I + ∇u) as:

ε = 1

2

(∇u + (∇u)T
) = 1

2

(
F + FT

) − I. (16)

Complementary to the strain tensor is the rotation tensor ω, which relates to the displacement tensor and strain as ∇u = ε + ω. For straight
material lines in deforming elements, the rotation differs depending on the orientation and ω represents the average rotation, integrated over
all orientations of a small piece of material and is defined as:

ω =
[

0 −ω

ω 0

]
=

[
0 1

2

(
∂ux
∂Y − ∂uy

∂ X

)
1
2

( ∂uy

∂ X − ∂ux
∂Y

)
0

]
(17)

which can also be written as a function of the deformation gradient:

ω = 1

2

(∇u − (∇u)T
) = 1

2

(
F − FT

)
. (18)

Example: small strains, rotation and shear

The infinitesimal strain expression (eq. 15) only makes sense as long as rotations are small, as rotations will affect the diagonal elements of
ε, even in the absence of shape changes. For an object under rigid body rotation with counter-clockwise angle θ (a = 1, b = 1, γ = 0), the
deformation gradient is:

Frot = Q =
[

cos(θ ) − sin(θ )
sin(θ ) cos(θ )

]
. (19)

Even in the absence of shape changes the infinitesimal strain then becomes non-zero, which demonstrates the physical insignificance of ε to
describe shape changes when cos(θ ) is no longer approximately 1:

εrot =
[

cos(θ ) − 1 0
0 cos(θ ) − 1

]
. (20)

A second case: for a material subject to simple shear, with shear parallel to x (a = 1, b = 1, γ > 0, θ = 0), the deformation gradient is:

Fss = 	 =
[

1 γ

0 1

]
(21)

and the infinitesimal shear becomes:

εss =
[

0 γ /2
γ /2 0

]
. (22)

Material that originally is parallel with the y-axis will elongate, due to the shear parallel to x, see the left-hand panel of Fig. 3. However, this
effect is absent in the infinitesimal strain, as εy is zero. For small strains this elongation along y may be small, and can thus be neglected.
But it will become significant for large shears (shown in Section 2.5.4). For objects undergoing large deformation, the infinitesimal strain
description can thus only be used for small cumulative rotations and small shears (we investigate in Section 2.5.4 when shear can no longer
be considered small). Notably, the summation of incremental strains is only possible when the principal strain axes do not change during
deformation (Malvern 1969), which again rules out application for materials subject to shear or rigid body rotations.

2.5.2 Large deformation: finite strain

For large deformations there are different strain definitions that are insensitive to rotations, and include extension resulting from shear on
diagonal components of strain. Finite strain is related to the squared length change, see for a derivation Malvern (1969) or Allmendinger et al.
(2011). For large strains it matters whether the strain is described with respect to the undeformed state E—Lagrange–Green strain tensor—or,
with respect to the deformed state E∗ —Almansi–Green strain tensor:

E = 1

2

(
FT F − I

) = 1

2

(
C − I

)
(23)
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990 T. Broerse et al.

E∗ = 1

2

(
FFT − I

) = 1

2

(
B − I

)
(24)

with right Cauchy–Green deformation tensor C and left Cauchy–Green deformation tensor B. The components of finite strain tensors E and
E∗ read (Malvern 1969):

Ei j = 1

2

(
∂ui

∂ X j
+ ∂u j

∂ Xi
+ ∂uk

∂ Xi

∂uk

∂ X j

)
(25)

E∗
i j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi
− ∂uk

∂xi

∂uk

∂x j

)
. (26)

The Lagrange–Green strain tensor contains partial derivatives with respect to the reference coordinates X while the Almansi–Green strain tensor
has partial derivatives with respect to the current coordinates x. When the off-diagonal terms of F are small, E and E∗ reduce to the infinitesimal
strain tensor ε (eq. 15). The finite strain tensors are insensitive to rigid body rotations as C = FT F = (

QF̃
)T

QF̃ = F̃T QT QF̃ = F̃T F̃.

Example: non-proportionality of principal finite strains with length change

The large strain tensors have the advantage that shear-induced extension is accounted for, but they have the drawback that principal strains
are not proportional with length change. For uniaxial extension (a > 1, b = 1, γ > 0, θ = 0), F = �, and the Almansi strain tensor becomes:

E∗
ue =

[
a2

2 − 1
2 0

0 0

]
. (27)

Hence, in the x-direction there is a finite strain (E∗
xx ) that is not proportional to the stretch: λ = 1 + ε = a �= E∗

xx + 1. Still, the principal
finite strains E∗

1 can be related to principal stretch by λi = √
1 + 2E∗

i (Malvern 1969), but more intuitive deformation tensors can prove more
useful (see the next section).

2.5.3 Large deformation: finite stretch

Instead of measures for strain, we make use of stretch tensors that are a decomposition of the deformation gradient F. Whereas for small
deformation, rotation ω and strain ε can be summed (eq. 14), for large deformation we can no longer assume that shapes stay approximately
constant after applying subsequent deformations (i.e. x �≈ X). Thus, instead of a summation as in Section 2.5.1, the deformation gradient F
can be written as a product of a rotation R (an orthogonal rotation tensor: RRT = I) and a symmetric, stretch tensor with positive principal
values (Malvern 1969). Thereby R has the form of the rotation matrix Q (eq. 13) that applies a rotation with angle θ . Depending on the order
of multiplication of rotation and stretching we can write F as:

F = RU = VR (28)

Here U is called the right stretch tensor and V is the left stretch tensor. Fig. 4 shows how U describes the shape change in the unrotated state
(the original configuration) while V provides the shape change after applying the rotation. Hence, V represents the shape change in the final
state, which is why it is our stretch tensor of choice. U and V are related to the Cauchy-Green deformation tensors (eq. 23) by:

U =
√

C V =
√

B (29)

U and V have the same principal values λi, and these are related to the principal values μi of C and B by λi = √
μi . The direction of the

principal axes of U and V are however different, due to the rotation of R, see Fig. 4. U and V are computed by polar decomposition, for which
we apply the Hoger & Carlson (1984) algorithm that provides a closed form solution, see appendix B. Because U and V are decompositions of
F, the principal finite stretches are proportional to length changes (as is not the case for finite strain, see previous section). Principal stretches
represent the extension in the principal directions, and are in the range [0 , ∞], with values smaller than 1 denoting shortening and values
larger than 1 extension. Because the stretch tensors U and V are symmetric, simple shear will introduce rotations, even in the absence of
proper rigid body rotations. R describes the mean rotation, i.e. averaged over all material line orientations [0, 2π ].

Interpretation of the stretch tensor

In 2-D, the left-stretch tensor has the form:

V =
[

Vxx Vxy

Vxy Vyy

]
. (30)

While the tensor components of V denote extensional (diagonal components) and shearing (off-diagonal components) deformation, the
individual tensor components are of limited use for intuitive interpretation of deformation, especially if rotation angle θ (of R) is large.
Because V is preceded by rotation R (eq. 28), the deformation described by V does not apply to material that was in the undeformed state
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Mapping and classifying large deformation 991

Figure 4. Sketch of the polar decomposition of the deformation gradient F into an orthogonal rotation R and symmetric stretch tensors V or U. Here we apply
the deformation of F to an initially square material element, with side vectors d X . The deformed configuration (right) leads to an element with side vectors
dx = FdX. The decomposition can be written as first a stretch U followed by a rotation R, or first a rotation R followed by a stretch V. Principal stretches λ

of V provide the stretch in the final, deformed, configuration, whereas stretches λ of U provide the stretch in the original configuration. Material axes provide
reference for the reader. We also show strain ellipses in black, that can be constructed using circle coordinates as dX. Principal stretches form the axes of the
strain ellipse, where the principal vectors of V construct a strain ellipse in the final state. Because V and U are symmetric tensors, the rotation angle of R is
non-zero for simple shear contributions.

oriented along X or Y, but rather to the material that is oriented along X or Y after the rotation by R (Fig. 4). The same arguments hold for U,
where the rotation by R follows after the deformation under U.

From a kinematic perspective, we prefer to represent the stretch tensors not in the chosen reference coordinate system, which may be
arbitrarily oriented compared to the deformation, but along the principal axes n:

V =
2∑
i

λi ni ⊗ ni , (31)

where the dyadic product ni ⊗ ni changes the basis, by rotating the reference coordinate system to the directions of the principal axes n. Any
second order tensor T can be rotated under a counter-clockwise angle to a different base with T′ = QTTQ, using rotation matrix Q (eq. 13).
Rotating back to the original frame occurs with T = QT′QT. Thus, a more intuitive way of describing the stretch in terms of its eigenvalues
is by changing the basis through a rotation of the coordinate system:

V = Q�QT (32)

where � = diag(λ1, λ2). The principal stretches have a clear physical meaning, as Fig. 4 shows: the principal stretch vectors are the axes of
the strain ellipse (e.g. Allmendinger et al. 2011). The principal strain magnitude can easily be expressed by subtracting 1 from λ1, λ2 (eq. 3).
Orthogonal rotation matrix Q (eq. 13) rotates to the first principal axis n1 under an angle:

� = atan2(n1(2), n1(1)). (33)

2.5.4 Infinitesimal versus finite strain

Infinitesimal strain well describes small deformation, which can be understood as deformation where the shape of the deformed state x does not
deviate significantly from the reference state X. We have briefly hinted at shortcomings of the infinitesimal strain tensor ε in Section 2.5.1 and
show here in more detail why many common quantities derived from infinitesimal strains are problematic for large deformations. Infinitesimal
strains are especially unfit to describe large simple strains or rotations, because the approximation that strain and rotation can be summed no
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992 T. Broerse et al.

Figure 5. The limited validity of infinitesimal strain ε (eq. 15) to describe increasing deformation in the case of simple shear, with engineering strain γ , that is
Fss = 	 (eq. 21). Left-upper hand panel: principal strains, ε1, ε2 (infinitesimal) and λ1, λ2 (finite), where ε1 does not capture the extension under large simple
shears. Also, ε2 linearly decreases with increasing γ , past the extensional strain limit of –1. The grey area depicts physically impossible values (Section 2.2).
Right upper-hand panel: the maximum shear gives the same values for γ max = ε1 − ε2 (infinitesimal) or γ max = λ1 − λ2 (finite). Left lower-hand panel: area
change in terms of dilatation (eq. 5). Dilatation using infinitesimal strains dA/dA0 = (ε1 + 1)(ε2 + 1) increasingly deviates for strains >0.1 from the exact
values from dA/dA0 = λ1λ2. Moreover the infinitesimal strain can lead to physically impossible values when the dilatation drops below the minimum possible
value of dA/dA0 = 0 (grey area). Lower right-hand panel: mean rotation, using infinitesimal rotation ω (infinitesimal, eq. 17) or angle θ from the rotation matrix
R (finite, eq. 28). Infinitesimal rotation is always proportional to γ for simple shear, while θ converges to π /2, which indicates the flattening of material under
simple shear and the alignment of all material orientations with the X-axis.

longer holds. A comparison between the the strain tensor ε and stretch tensor V provides insight when the use of ε introduces significant errors
to the interpretation of strain. Fig. 5 makes a comparison in terms of a number of scalar deformation measures: principal strains, maximum
shear strain, dilatation and rotation.

As both ε and V are symmetric tensors, the Mohr circle applies to both, so that we can derive the maximum shear strain as a function of
principal strains γ max = ε1 − ε2, or principal stretches γ max = λ1 − λ2.

Dilatation, area change, is the product of the principal stretches. In some studies the dilatation is represented by the divergence of the
displacement field (Galland et al. 2016; Schellart et al. 2019) (i.e. εxx + εyy). This can be understood as an approximation to the true dilatation
(eq. 5):

dA/dA0 = λ1λ2 = (1 + ε1)(1 + ε2) = 1 + ε1 + ε2 + ε1ε2. (34)

For small strains only, this reduces to:

dA/dA0 ≈ 1 + ε1 + ε2. (35)

The last two terms are equal to the first invariant of the strain tensor:

ε1 + ε2 = εxx + εyy (36)
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Mapping and classifying large deformation 993

The first invariant lacks the ε1ε2 term in eq. (34), which is why the divergence of the displacement field, or the first strain invariant, is not a
good measure for area change in case of large deformation.

As an example we deform material under a simple shear γ , that is Fss = � (eq. 21). Fig. 5 demonstrates that for strains >0.1, principal
strains, rotations and dilatation become increasingly unreliable when using ε instead of V. For γ > 2 infinitesimal strains even provide
physically impossible values for principal strains and dilatation (implying negative material vector lengths or negative area change). For
maximum shear γ max, both infinitesimal and finite tensors provide the same results. Infinitesimal rotation ω increases linearly with shear γ

(to the extend of >2π rotations), while θ correctly converges to π /2, which implies a gradual flattening of material under shear.

2.5.5 The shape change tensor of choice: V

To quantitatively describe shape changes, the left stretch tensor V, expressed in its principal space (eq. 32), is thus most appropriate as it
describes length changes as proportional stretches λ, which are directly related to the principal strains (eq 3). The length changes are provided
in the final configuration, and being in the principal space these are independent from the arbitrary orientation of the chosen reference frame.
The principal values of the finite strain tensors E and E∗ are not proportional to length change, and are thus a less likely choice for the
quantitative description of shape change. Infinitesimal strains ε are unfit for large stnorains in the case of rotations or simple shear. While the
right-stretch tensor U is similar in many ways to V, having the same principal stretch values, the direction of the principal axes are not in
the final deformed state (see Fig. 4). The principal stretches from V have the advantage that these are directed in the stretch directions in the
final, deformed configuration. In the following we will use the left stretch tensor V to discuss progressive deformation, after which we will
develop qualitative measures of shape change in Section 2.7.

2.6 Incremental vs. finite strain for progressive deformation

We can write the final deformation F as a product of incremental deformations Fi (e.g. Ramberg 1975; Allmendinger et al. 2011)

F = Fn ...F2F1. (37)

Because:

dx1 = F1dX

dx2 = F2dx1 = F2F1dX

dxn = FdX = Fn ...F2F1dX

Even though we can write the final deformation as a product of all previous incremental deformations, the final deformation is still insensitive
to the deformation path, as this information is lost in the product of eq. (37).

Example: Differences between incremental and cumulative shear strains

Incremental and finite stretches may diverge in terms of the ratio between principal stretches during progressing deformation. This is especially
the case for simple shear, but applies to any deformation that contains a shear component. During progressive simple shear (a = 1, b = 1, γ

�= 0, θ = 0) the incremental deformation gradient takes the form Fi = 	. Considering a constant incremental deformation gradient, the final
simple shear deformation gradient F(ss) after n increments becomes:

F(ss) =
[

1 γ

0 1

]n

=
[

1 nγ

0 1

]
. (38)

The principal stretches λ, of both U and V, provide us with a description of the stretch that is independent from the coordinate orientation, and
can be derived from the principal values μ of C (Malvern 1969), being solutions of the characteristic equation |C − μI| = (C11 − μ)(C22 −
μ) − C12C21 = 0. The left Cauchy–Green tensor for simple shear is:

C(ss) = FT
(ss)F(ss) =

[
1 nγ

nγ (nγ )2 + 1

]
. (39)

The principal stretches λ follow from solving the characteristic equation, using the definition of C(ss):

λ1(ss) = √
μ1(ss) =

√
2 + (nγ )2 + |nγ |√4 + (nγ )2

2

λ2(ss) = √
μ2(ss) =

√
2 + (nγ )2 − |nγ |√4 + (nγ )2

2
.
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994 T. Broerse et al.

Here λ1 is the largest principal stretch. For small deformation (λ1 − 1) ≈ −(λ2 − 1), i.e. ε1 ≈ −ε2, but for increasing n ε1 will exceed ε2 in
magnitude (see Fig. 7). Notably, the direction of the largest principal stretch of V, which provides the stretch in the deformed configuration,
starts at 45◦ for small shears (and thus incremental simple shear) and converges slowly to 0◦ for large strains (Allmendinger et al. 2011),
showing the gradual flattening of material and stretching in the direction of the X-axis.

The dilatation A/A0 for progressive simple shear is (eq. 5):

A/A0 = λ1(ss)λ2(ss) = 1

2

√(
2 + (nγ )2

)2 − (nγ )2(4 + (nγ )2) = 1

2

√
(nγ )4 + 4(nγ )2 + 4 − 4(nγ )2 − (nγ )4) = 1. (40)

Which confirms that simple shear is area preserving (isochoric), and that:

λ2(ss) = 1/λ1(ss). (41)

This shows that for simple shear the relative magnitude of the two principal stretches (or principal strains) is different for small or large
deformation.

2.7 Classifying strain type from continuum mechanics

Continuous vs. discrete deformation

Different types of incremental tectonic deformation lead to very distinct structures or fault patterns. Therefore, it is valuable to investigate the
type of incremental deformation that has led to the current, finite, deformed state. In our framework we observe all deformation as distributed,
because PIV averages deformation within a certain spatial window. Hence, up to this point, we have described deformation in a continuum
approach. For our application, deformation in crustal tectonics, deformation is dominantly localized along narrow shear zones, or faults, and
we aim to interpret continuous deformation as localized deformation. Especially, if a large fraction of the deformation is localized along
discrete faults, we would like to classify the deformation as due to slip on normal, strike-slip, or thrust faults. While faulting incorporates
shearing (simple shear) in three dimensions, in the semi-planar 2-D projection that we use, any deformation where the shear is in a vertical
direction, the planar projected deformation becomes essentially a stretch.

Fault or shear zone types

Our aim is to classify three end-member fault (discrete fracture or narrow shear zone) types based on the continuum mechanics description:
normal faulting, strike-slip and reverse/thrust faulting. While the end-member faults all involve shear, only strike-slip has a horizontal shear
component. The continuum description of strike-slip in the horizontal plane is simple shear (as in Fig. 3). Normal faulting will lead to
extension (stretch >1) of the horizontal plane surrounding the fault, in a direction perpendicular to the fault. On the other hand, reverse
faulting (or thrusting) will lead to shortening (stretch <1) of the area surrounding the fault, with shortening in the direction perpendicular
to the fault. For progressive deformation at reverse faults, footwall material that was first at the surface will be buried by the hanging wall
material and, therefore, no longer be at the surface. Subsequently, that material will no longer be visible with PIV, resulting in an accumulation
of virtual material points at the fault trace.

We furthermore consider two types of intermediate oblique faults: transtension, where faults experience strike-slip (simple shear)
and fault-perpendicular extension (normal faulting), and transpression, as combination of strike-slip and fault-perpendicular shortening
(reverse/thrust faults, Sanderson & Marchini 1984). We do not consider simple shear parallel stretching (Tikoff & Fossen 1999), which
would lead to stretching of the actual faults, and which may be more applicable to ductile shear zones rather than faults (Means 1989).
Stretching along one side of the fault only (e.g. Rutter et al. 2012) cannot be captured by the deformation gradient properly (as it concerns
a non-homogeneous deformation). If the displacement field is however of sufficient resolution to capture the fault and stretching domain
separately, the deformation can be adequately be described without fault-parallel deformation. In the following, we apply the same strain
types to distributed deformation as well.

Strain type: small deformation

For small, infinitesimal strains one can classify the type of strain by comparing the magnitudes and signs of the largest and smallest principal
infinitesimal strain, and the same holds for strain rates. Kreemer et al. (2014) defined a strain rate type measure (ε̇1 + ε̇2)/max(|ε̇1|, |ε̇2|). For
strike-slip both principal strain rates are similar in magnitude but different in sign, leading to a strain type value of close or equal to 0. For
extension and shortening one principal strain rate is dominant and its value will be positive or negative, leading to strain type values of 1 for
extension (>1 for extension in two directions), and –1 for shortening (<−1 for shortening in two directions).

Thus, based on the relative magnitude and signs of the largest and smallest magnitude principal strains (|εmax| > |εmin|) we can
discriminate between strain type end-members:

(i) isotropic area increase: εmax = εmin and εmax > 0 and εmin > 0
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Mapping and classifying large deformation 995

Figure 6. Strain type � as a function (eq. 43) of the angle φ between largest and smallest principal infinitesimal strains (|εmax| > |εmin|) (eq. 42) or logarithmic
finite stretches (|ln λ|max > |ln λ|min) (eq. 47). Based on the relation between the two principal values in the horizontal plane, in terms of magnitude and sign,
we can define a range of types of strain end-members: (a) isotropic area increase: εmax = εmin and εmax > 0 and εmin > 0, (b) uniaxial extension: εmax > 0 and
εmin = 0, (c) strike-slip (simple shear): |εmax| = |εmin| and εmax > 0 and sign(εmax) = −sign(εmin), (d) uniaxial shortening: εmax < 0 and εmin = 0 (e) isotropic
area decrease: εmax = εmin and εmax < 0 and εmin < 0 The strain type � is a continuous scale, and within a tectonic context we can expect intermediate,
oblique, strain types, notably transtension as an intermediate case between strike-slip and extension; and transpression as an intermediate between strike-slip
and shortening. All isochoric (area preserving) shears have the same strain type � as strike-slip/simple shear, we discuss implications in Section 6.3.

(ii) uniaxial extension: εmax > 0 and εmin = 0
(iii) strike-slip (simple shear): |εmax| = |εmin| and εmax > 0 and sign(εmax) = −sign(εmin)
(iv) uniaxial shortening: εmax < 0 and εmin = 0
(v) isotropic area decrease: εmax = εmin and εmax < 0 and εmin < 0

We adjust the Kreemer et al. (2014) model, initially for small deformation, and we further extend the model to large deformation in
Section 2.7, where we also discuss intermediate strain types. We define a Cartesian coordinate system, shown in Fig. 6, where the x-axis
represents the largest magnitude principal strain and the y-axis represents the smallest magnitude principal strain. To define a strain type
measure, we determine the (counter-clockwise) angle φ measured from the εmax-axis in the εmax, εmin space:

φ = atan2(εmin, εmax). (42)

Here εmax and εmin represent the principal strain values with the largest and smallest absolute values. The angle φ thus provides the counter-
clockwise angle between the two principal values, measured from the εmax axis. Fig. 6 gives a visual interpretation of angle φ, as a function
of the two principal strains (eq. 42). Angle φ being a discontinuous function, we convert φ into a continuous strain type measure � by:

� =

⎧⎪⎨
⎪⎩

−φ − 5
8 π if φ ≤ − 3

4 π

φ + 1
4 π if − 1

4 π ≤ φ ≤ 1
4 π

−φ + 3
4 π if φ ≥ 3

4 π

. (43)

� thus becomes centered around strike-slip (� = 0) and has a range [− π

2 , π

2 ], of which the limits correspond to isotropic area decrease and
isotropic area increase, respectively. At a later stage we will discuss how pure shear (irrotational shear), and oblique faults fit in the strain
type.
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996 T. Broerse et al.

Figure 7. Principal strains for progressive strain with constant incremental displacement gradients, for the cases (a) uniaxial extension (Fi : a = 1 + 3 × 10−2,
b = 1, γ = 0) (b) transtension (Fi : a = 1, b = 1 + 5 × 10−3, γ = 1.5 × 10−2) (c) strike-slip (Fi : a = 1, b = 1, γ = 3 × 10−2) (d) transpression (Fi : a = 1,
b = 1 − 5 × 10−3, γ = 1.5 × 10−2) (e) uni-axial extension (Fi : a = 1 − 8 × 10−3, b = 1, γ = 0) Left-hand panel: principal finite strains max(|λ − 1|) and
min(|λ − 1|) (thinner lines, only displayed if non-zero) and the strain type angle � based on finite strain (dashed lines). Here it is clear that � is not constant
for progressing strain for deformation including shear. The principal stretches can thus not be used to define a strain type for large deformation. Note: there is
a reversal for transpression of which principal stretch has the largest magnitude. Right-hand panel: logarithm of the principal strains lnλ. Here it shows that �

is constant with increasing deformation for strike-slip, extension and shortening; for transtension and transpression it is nearly constant. Colours correspond
to the infinitesimal strains from Fig. 6.

Strain type: large deformation

We now consider progressive deformation, leading to large, finite deformation. In considering the evolution of principal strains for progressive,
steady deformation, we assume a constant displacement gradient ∂u

∂X . This leads to a deformation gradient as function of number of increments
n:

F(n) = ( ∂u

∂X

)i
n + I = (

Fi − I
)
n + I. (44)

Fig. 7 shows the principal strain (λ − 1) evolution for a constant incremental displacement gradient, for the cases extension, shortening,
strike-slip and oblique combinations of extension and strike-slip: transtension; and shortening and strike-slip: transpression. We construct
incremental deformation gradients Fi using a rigid body rotation matrix Q, distortion matrices � (extension and shortening), � (strike-slip)
or the product �� (transtension and transpression). As we work with principal values, which are insensitive to rotation, we do not specify a
rotation angle in the following. We define simple shear γ along the X-axis, and extensional components along the Y-axis (e.g. perpendicular
to the simple shear direction: b �= 1; a = 1), see eq. (12).

From the left panel of Fig. 7, it is clear that for all cases that contain shearing, the largest principal strain λmax − 1 will increasingly
become dominant for progressing strain. Thus, the angle � (dashed lines) is not constant with increasing strain. Therefore we cannot use
finite strain to define a strain type in a similar way as for small deformation (eq. 42), as large shear and extension will have a seemingly
similar dominance of the largest principal stretch or strain.

From eq. (41) we know that the principal stretches for simple shear/strike-slip relate as λ2(ss) = 1/λ1(ss), which implies that:

lnλ2(ss) = −lnλ1(ss) (45)

Therefore, for strike-slip we can also make use of the logarithm of the stretch, and obtain a constant angle φ, irrespective of the magnitude of
the finite stretch. This logarithmic stretch is related to Hencky strain, which from the viewpoint of the deformed configuration, is defined as
(Xiao et al. 1997):

lnV =
2∑

i=1

(lnλi )ni ⊗ ni (46)
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with principal stretches λi and the respective eigenvectors ni of V, see also eq. (31).
In case of uniaxial extension or shortening, the finite stretch for a constant displacement gradient, or a constant incremental strain, has

always one principal stretch equal to one, and thus one zero principal strain. For uniaxial extension or shortening the angle � is thus constant,
irrespective of the magnitude of deformation. Trivially, the logarithmic principal stretch leads to the same constant �. The right-hand panel
of Fig. 7 shows that for a constant incremental displacement gradient and Hencky strains, our strain type measure is constant for strike-slip,
as well as extension and shortening. For oblique deformation we obtain a strain type based on the logarithmic Hencky strains that is nearly
constant with increasing strain. The change in � for oblique deformation is sufficiently small to be able to use the measure for qualitative
classification of the strain type. Because the strain type is constant for a certain type of deformation, irrespective of its size, the temporal
behaviour of deformation is not of importance for the strain classification. We can thus use the Hencky principal strains to classify the type
of strain, in a similar way as for small, incremental strains:

φ = atan2(lnλ(imin), lnλ(imax)). (47)

Here, imin and imax are the indices of the absolute minimum and absolute maximum principal stretch λ, such that |lnλ(imax)| > |lnλ(imin)|. The
continuous strain type � follows from φ using eq. (43).

In terms of Hencky strains, our definition for strike-slip covers both simple shear (rotational) as well as pure shear (irrotational) or
combinations of both, sub-simple shear, as these lead to ln λ2 = −ln λ1. On the other hand, it can be expected that for brittle deformation,
pure shear is partitioned along (oblique) strike-slip, thrust and extensional faults (e.g. Fossen 2016), see Section 6.3 for a discussion.

Another advantage of Hencky strains for large deformation is that lnλ spans a range between [−∞, ∞] instead of [0, ∞]. The Hencky
principal strains thus have a more symmetric distribution around 0 (no deformation) compared to λ, where shortening falls in the [0, 1] range.

We expect that in a tectonic context, isotropic area changes will not occur at shear zone scales. For faulting, extension, strike-slip and
shortening can be regarded as end-member models (Fossen et al. 1994). Localized isotropic deformation requires stretching in two orthogonal
directions, which cannot be accomplished with slip on faults. For more distributed deformation we expect that isotropic area increase may
occur, for example deformation due to gravitational collapse at topographic gradients (see Section 5.3). Isotropic deformation combined with
shear can not be discriminated from two orthogonal stretches with different magnitude, but the same sign.

3 A P P L I C AT I O N : S T R A I N T Y P E F O R RO TAT I N G E L E M E N T S U N D E R D I F F E R E N T
T Y P E S O F D E F O R M AT I O N

As a first test, we apply our strain type classification to individual square elements that we deform using a constant incremental deformation
gradient Fi , ranging from shortening, via transpression to strike-slip, and subsequently via transtension to extension. We also apply variable
rotation to illustrate the independence of the strain type on rigid body rotations.

Fig. 8 shows the principal stretches and direction of V (left-hand panel) and strain types (right-hand panel) for the final configuration.
The first 7 rows show a gradual change from shortening (left) to strike-slip to extension. The 2 last columns contain pure shear and no
shape change. The rows apply varying rotation, with the middle row no rotation, the upper rows clockwise rotation and the lower rows
counter-clockwise rotation. Mathematically, the progressive deformation F(n) at epoch n is defined as:

F(n) = QF̃ =
[

cos(θn) −sin(θn)
sin(θn) cos(θn)

] [
a aγ

0 b

]n

(48)

The strain types in Fig. 8 are consistent with the applied deformation gradient, with gradual transitions between shortening through
strike-slip to extension. Rotation has, as expected, no effect on the derived strain characterization.

4 A P P L I C AT I O N : S Y N T H E T I C RO TAT I N G S H E A R Z O N E

In the following test we define a shear zone (simple shear) that we rotate at the same time, to check whether our methods consistently
determine the deformation as strike-slip. We define the shear zone by defining Eulerian displacements δu on fixed, regularly spaced points.
First, we define strike-slip displacements d in the local, shear zone corotating frame, which are defined at epoch i as: x′(i) = Q(θ i)x. Rotation
matrix Q (eq. 13) is a function of angle θ i = 60 i

n .

d = �u

n
erf(x ′(i)b) (49)

Here �u is the final displacement after n epochs, erf the error function, x the coordinate perpendicular to the shear zone, with a range centered
around 0, and b is a parameter to scale the width of the shear zone. The displacement vector then becomes:[

δux

δuy

]
= Q

[
0
d

]
+ Q

[
x
y

]
−

[
x
y

]
, (50)

where the first term represents the rotated shear displacements, and the last two terms combined are the rotation contribution. Fig. 9 shows the
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998 T. Broerse et al.

Figure 8. Synthetic test using individual elements that are deformed using a constant incremental distortion tensor F̃ (eq. 48), shown after 20 steps. In the
x-direction we vary the distortion parameters, in the y-direction we vary the amount of rotation. Left-hand panel: principal stretches λ from left-stretch tensor
V, with the largest principal stretch in black, and the smallest in red. Right-hand panel: strain type � based on the logarithmic principal Hencky strains lnλ

(eq. 46). Distortion parameters used for the first seven columns, from left to right: a = 1, b = 1 + [ − 1, −2/3, −1/3, 0, 1/3, 2/3, 1] · 5 × 10−2 and γ = [0, 1/3,
2/3, 1, 2/3, 1/3, 1] · 5 × 10−2. The 8th column with pure shear has a = 1 + 5 × 10−2 and b = 1/a, γ = 0. The last column has a = 1, b = 1, γ = 0. Rotation
angle θ varies linearly between the rows between the values [ 2

3 π, − 2
3 π ].

Figure 9. Synthetic test, representing a counter-clockwise rotating shear zone, with results for three epochs: 20, 50 and 100 (final). Principal stretches λ of
left-stretch V tensor, with largest λ in black, the smallest in red. As some elements move outside the region for which we describe the Eulerian displacements,
we loose part of the model during deformation evolution.
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Mapping and classifying large deformation 999

Figure 10. Synthetic test, representing a counter-clockwise rotating shear zone, with results for 3 epochs: 20, 50 and 100 (final). Strain type � based on
Hencky principal strains lnλ, eq. (47). Elements with Hencky principal strain magnitudes below the 50 percentile, we render increasingly transparant.
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Figure 11. Model set-up: (a) Initial model set-up. All numbers are in centimeters. (b) Model configuration at the end of the experiment. Moving plate kinematics
include the first step of 4 cm of translation and the second step of combined translation/rotation resulting in total of 9 cm of northward translation and 4.5◦
clockwise rotation. (c) Strength profile for the model. Note that the orientation in model is geographical, with up being relative North.

evolution of the principal stretches and principal directions of V, also showing the increasing dominance of λ1 for progressive deformation.
Fig. 10 shows the consistently constant strike-slip strain type � for the full model and time span, unaffected by rigid body rotations.

5 A P P L I C AT I O N : A NA L O G U E M O D E L

In a final step, we analyse incremental displacements derived from successive images of an analogue, laboratory model of a coupled convergent
and strike-slip tectonic setting. We have designed a model setup such that different regions of the model experience a wide range of different
types of deformation: strike-slip faults (simple shear), normal faulting (extension) and thrust faulting (shortening). In the later stages of the
model evolution, a part of the model undergoes a clockwise rigid body rotation, which allows for testing of the strain type analysis to rotations.
A north–south horizontal velocity discontinuity in the middle of the model leads to a strike-slip zone, and a fixed indenter is responsible for
thrusting in the southern model domain in front of the indenter, see Fig. 11. Due to the evolution of topography in front of the indenter, we
expect to see normal faulting or distributed extension as well, due to gravitational collapse at topographic gradients. The experimental set-up
is relevant for many natural indentation settings, for example India or Arabia indentation into Eurasia (Tapponnier et al. 1982; Hubert-Ferrari
et al. 2003) or the lateral extrusion of the Alps (Ratschbacher et al. 1991), where shortening in front of an indenter is transferred around
the corner into strike-slip deformation along the lateral indenter margin. Our experimental setup merely serves as the proof of concept for
our strain analysis; further developed experiments are part of Krstekanić et al. that compares modeling results to natural cases of curved
strike-slip systems at the lateral ends of a rigid indenter.
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5.1 Analogue model experimental set-up

The laboratory model consists of a single 2 cm thick brittle layer made of dry quartz sand, sieved to grain sizes of 100–300 μm, with density
of ρ = 1.500 kg m–3, a coefficient of peak friction μP = 0.63 and cohesion of 10–40 Pa (Willingshofer et al. 2018). The length ratio L∗ =
Lmodel/Lnature = 1.5 × 10−6, which means that total thickness of 2.0 cm of our model scales to 13.3 km in nature. The strength profile as a
function of depth (inset of Fig. 11) follows the equations by (Brun 2002), where the strength profile represents the initial conditions.

Fig. 11 shows how we apply a horizontal velocity discontinuity to the quartz sand layer by one mobile and two fixed plastic plates/sheets.
For the description of the model we adopt a geographical coordinate system. The moving plate (green in Fig. 11) lies below the entire model
and is connected to an electric motor that applies a northward pull at a constant velocity of V = 10 cm hr–1. A narrow N–S cut in the middle
of this plastic plate (dashed green line in Fig. 11) allows for the translation and rotation of the moving plate around a fixed pin (red dot in
Fig. 11). This pin represents the pole of rotation and is fixed to the stable plate (blue in Fig. 11) at its northwestern corner. The third basal
plastic sheet, located north of the blue plastic plate, is also fixed (grey in Fig. 11). Directly north of the blue plate, the grey sheet is placed on
top of the moving plate, while in the northwestern part of the model it is located below the moving plate (Fig. 11), which is facilitated by the
cut in the moving plate.

Our set-up allows the moving plate to translate into the area north of the pin, imposing a convergent deformation south of the stable
region (i.e. blue plate in Fig. 11) as well as a clockwise rotation. With this configuration, velocity discontinuities are located at two locations:
(i) at the bottom of the model along the southern and western margin of the stable blue plate and (ii) along the contact between moving plate
and grey fixed sheet.

Applied displacements in the experiment fall in two distinct phases. In the first phase, the motor pull induces four cm of northward
translation, while translation guide bars (left-hand panel of Fig. 11) prevent rotation. The second phase starts when the moving plate hits
the rotation guide bar. At that moment, the translation guide bars are removed, enabling coupled rotational and translational movement of
the moving plate (right-hand panel of Fig. 11). When depressions deeper than 1 mm form, we fill them manually with alternating layers of
differently coloured sand, representing syn-kinematic sedimentation. We stop the experiment when the total clockwise rotation reaches 4.5◦

and the total northward offset along the western margin of the stationary blue plate is 9 cm (configuration as in right-hand panel of Fig. 11).

5.2 Tectonic structure analysis and PIV displacement analysis

The PIV analysis is based on top images of the full experiment, taken every 45 s. During this interval the N–S translation of the moving
plate is 1.25 mm. For the analysis we focus on the central part of the experiment (blue outlines of Video S1), which in the images measures
3254 times 1501 pixels. We analyse this area of interest using the software PIVlab (Thielicke & Stamhuis 2014). We pre-process images
using the PIVlab CLAHE filter and the auto contrast stretch to optimize the contrasts. For the PIV, the first pass uses an interrogation area
of 88 px, and a 50 per cent overlap of the interrogation areas. In subsequent two passes, the interrogation areas are 64, 32 px, respectively.
We post-process PIV-results by removing displacements that are larger than seven times the displacement standard deviation, and manually
remove outliers. PIVlab interpolates the resulting missing data.

Furthermore, we visually analyse fault structures in the final configuration. Offsets between passive marker lines that are east-west
oriented in the model indicate strike-slip faults. Normal and thrust faults result in topographic gradients, where normal faults have a visible
scarp. Cross sections taken after the model finishes, combined with the top view images, provide information of the faults with localized slip.
Video S1 contains a video of the model evolution. Images shown in Figs 12–15 have adjusted colour intensities for better contrast: we linearly
scale the original image RGB colour intensities in the 0.15–99.85 percentiles to the [0 1] intensity range, as the original colours span only a
limited part of the intensity range.

5.3 General model evolution

Initial deformation

Fig. 12 depicts the principal stretches λmax, λmin and our inferred strain type after 7.5 min of model evolution, next to the image at the same
time. Principal stretches >1 imply extensional deformation and are generally shown by the largest principal stretch λmax, while stretches <1
denote shortening deformation (eq. 31). The strain type � is based on the relative magnitudes of the logarithmic principal stretches (Hencky
strains), see Section 2.7. At this point in the model evolution the initial deformation is distributed in broad shear zones: along the N–S velocity
discontinuity with transtension bounded at two sides with transpression, rather than by pure strike-slip; indicated in Fig. 12 by (1). Gomes
et al. (2019) attribute the deformation in the latter shear zone to dilation of the granular material above the velocity discontinuity. In front of
the stable region, along the E–W oriented velocity discontinuity, two zones of shortening evolve. This early structural pattern consists of a
top-to-N basal thrust (2) and one top-to-S backthrust (3).
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Mapping and classifying large deformation 1001

Figure 12. Principal stretches λmax, λmin (λ = 1 represents no length change) and strain type � at 7.5 min of model evolution: shortening (red), strike-slip
(green) and extension (blue), with intermediate, oblique deformation at intermediate colours. Numbers indicate: (1) broad shear zone; (2) basal thrust and (3)
backthrust.

Development of faults

At ≈ 1 cm of northward displacement of the moving plate (after 15 min), strain localizes into narrow zones of deformation, as Fig. 13 shows.
Along the N–S oriented velocity discontinuity, this early deformation is accommodated by en-echelon NNE–SSW oriented Riedel R-shears
(4). Principal stretches λ in Fig. 13 show NNW–SSE deformation features (5) (P-shear structures), which are characterized by lower strain
than the R-shears. Inspection of the photos suggests that the strain levels in the connecting shear zones are too low to result in brittle failure, as
no fault structures have formed here. At the same time, the basal thrust (2) and backthrust (3) become sharper features above the E–W striking
boundary of the velocity discontinuity. Around the SW corner of the stable region, this distributed strike-slip deformation (6) connects and
transfers into thrusting accommodated by the basal thrust and backthrust system in which new thrusts start to develop (7). Above the basal
thrust, in its immediate hinterland, distributed extensional deformation takes place (8). This extension accommodates the transition between
the ramp and the upper flat segments of the basal thrust. With the progress of northward translation, additional en-echelon R-shears form,
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Figure 13. Principal stretches λmax, λmin (λ = 1 represents no length change) and strain type � at 15 min of model evolution: shortening (red), strike-slip
(green) and extension (blue), with intermediate, oblique deformation at intermediate colours. Numbers indicate: (2) basal thrust; (3) first backthrust; (4) Riedel
R-shear; (5) Riedel P-shear; (6) fault connecting basal-thrust and strike-slip zone; (7) new backthrust and (8) zone of extensional surface deformation.

visible in Fig. 13 as strain features with the same orientation as (4). The transpressional area at the sides of the shear zone, bounding the
Riedel shears, becomes slightly elevated when positive flower structures form.

Merging of strike-slip faults and new backthrusts

By the end of the northward translation stage (4 cm of moving sheet displacement, at about 30 min), all R-shears have become connected to
form a continuous strike-slip fault zone where the eastern fault (9) takes up most of the displacement, see Fig. 14. This process is also visible
in the incremental rotation ω in video S2. The previous fault that connected the strike-slip zone to the backthrusts (6) is well visible in the
cumulative deformation, but since the eastern strike-slip fault is now dominant (9), a new fault propagates toward the south (10) to connect
with the newest formed backthrust and thus cuts through the previously formed thrust wedge. The latter fault is short-lived, so its effect on
the cumulative deformation is small, but it is well visible in the top-view photo as well as in the incremental strain in video S2. To the SW
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Mapping and classifying large deformation 1003

Figure 14. Principal stretches λmax, λmin (λ = 1 represents no length change) and strain type � at 30 min of model evolution: shortening (red), strike-
slip (green) and extension (blue), with intermediate, oblique deformation at intermediate colours. Numbers indicate: (6) fault connecting basal-thrust and
western strike-slip fault; (8) zone of extensional surface deformation; (9) dominant strike-slip fault; (10) strike-slip propagation through the wedge and (11)
transpressional deformation on backthrust.

of the indenter, the backthrusts become progressively more transpressional (11), as shown by the orange colours in the strain type panel. The
distributed extensional deformation on top of the wedge (8) now occurs in large areas above the basal thrust.

Effect of concurrent translation and rotation

After the onset of rotation (starting after 30 min) and until the end of the experiment (63.8 min), the structural pattern becomes more complex.
Fig. 15 shows that in the north (i.e. north of the pole of rotation) a transpressional wedge forms, with oblique-slip thrusts (12) bounding the
strike-slip deformation zone. In the N–S deformation zone we find the main strike-slip fault (9) that accommodates most of the deformation
at the east of the shear zone. Fig. 16 clearly shows this combination of strike-slip and thrusting in cross-section a–a’. To the south of the
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Figure 15. Principal stretches λmax, λmin (λ = 1 represents no length change) and strain type � at the end of the model evolution (63.8 min): shortening (red),
strike-slip (green) and extension (blue), with intermediate, oblique deformation at intermediate colours. Numbers indicate: (2) basal thrust; (3) and (15) first
and most recent backthrust; (9) main strike-slip fault; (12) transpressional wedge; (13) transtensional basin and (14) normal faulting.

rotation pole, a transtensional basin opens (13) in response to the rotation. There, main dextral-normal faults control the subsidence of the
basin, while more distributed oblique-normal slip structures form within the basin (Fig. 16).

At the SW corner of the stable region, approximately N–S oriented normal faults (14) with a dextral slip component, accommodate the
transition from the highly elevated thrust wedge in the south and the low topography strike-slip zone along the western margin of the stable
region. All of these normal faults are connected with the main N–S oriented strike-slip/transtensional fault. At the end of the experiment,
the contractional wedge in the south is composed of the basal thrust (2) that accommodates most of the deformation, and numerous faults
in the back thrust system (3). The episodic transfer of shortening towards a newly formed backthrust (15), south of its successor, is visible
in video S2 that shows incremental infinitesimal strain and video S4 with strain type. At the same time, distributed extension occurs at the
slopes of the wedge (8), see also the visual interpretation from Fig. 16, cross-section c–c’. We also note three straight and alternating E–W
striking features west of the deforming area. These features are not due to real deformation, but rather seem to be a PIV-artefact, caused by
interference of the contrasting dark marker lines.
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Mapping and classifying large deformation 1005

Figure 16. Interpretation of the model in the final state. Left-hand panel: top view with inferred fault structures. The area with dark and yellow sand outlines
the basin where we applied sedimentation. Marker lines made with dark or yellow sand visually illustrate the translation of the moving part of the model.
Yellow lines overlaying the image show the locations of cross-sections. Right-hand panels: cross-sections at three different locations. The top two sand layers
have been added after finalizing the model to stabilize the model topography; the black dashed line indicates the original model topography. Cross-section a–a’
(top right) shows the main N-S dextral strike-slip zone, with superimposed thrust faults bounding the strike-slip zone and that formed during the later stage of
the model due to rotation. Cross-section b–b’ intersects the main N–S dextral strike-slip zone at the location of the opened basin, which is bounded by normal
faults. Cross-section c–c’ intersects the elevated thrusting wedge, showing six backthrusts, at this location, and the basal thrust that accommodates the largest
part of the convergence between the moving domain and the stable region.

5.4 Comparison with visual fault interpretation

To validate that our analysis of the cumulative deformation properly describes the incremental deformation, Fig. 17 (left-hand panel) overlies
the final strain type with the faults inferred from the visual inspection of the model surface and the cross-sections. The location of the
backthrusts and basal thrust at both sides of the frontal wedge coincides, as does the the gradual transition from the backthrusts towards
the N–S strike-slip zone. The inferred strike-slip and strike-slip faults correlate well, and the type of obliquity agrees for transpressional
and transtensional regions in the N–S shear zone. We also observe distributed extensional deformation on top of the wedge and NW of the
corner—with relatively small magnitudes, see the principal stretches in Fig. 15—where this is not visible in the images due to absence of
localized structures.

As an alternative validation of the strain type, we consider the dilatation field, which in 2-D conforms to area change and that provides
an additional view on extensional and shortening deformation (whereas it is insensitive to strike-slip). The right-hand panel of Fig. 17 shows
that areas of dilatation >1 correspond to areas with extensional strain types (or transtensional) and areas with a dilatation <1 correspond to
areas with shortening (or transpressional) strain types.
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1006 T. Broerse et al.

Figure 17. Final deformation, overlain by faults from visual analysis of fault structures, at the end of the model (64 min). Left-hand panel: strain type.
Right-hand panel: dilation (relative area change). A dilatation >1 indicates an area increase (extension/transtension) and a dilatation <1 indicates an area
decrease (shortening/transpression), it is insensitive to pure strike-slip.

5.5 Time evolution of deformation

We can also analyse the strain type in specific locations as a function of time. This provides a view on when a certain type of deformation was
active in a confined material region. Furthermore, it allows to investigate how the strain type evolves when different phases of deformation,
with possibly different strain types, affect the cumulative strain type. For this purpose the temporal evolution of cumulative strain type and
incremental strain type (based on the incremental strain tensor) can be compared. Figs 18 and 19 show the temporal evolution of the principal
stretches, dilatation and the strain types for a selection of points in the model.

The basal thrust

Point a (Fig. 18) is positioned in front of the basal thrust (the actual fault is located where multiple W–E material lines have converged),
and the evolution of the logarithm of the principal stretches λ (Hencky strains) shows how after 20 min in model time this part of the model
is increasingly shortened, ln(λmax) stays at a small value (i.e. λmax ≈ 1), while ln(λmin) becomes increasingly negative throughout the rest
of the model evolution. From the moment of accumulation of significant strain, the strain type refers to continuous shortening. While the
incremental strain type is more noisy, from the moment deformation increases, it indicates shortening in a single direction. The cumulative
and incremental strain types are thus in agreement for this location. The dilatation (being <1) is consistent with shortening as well, as the
surface area decreases gradually at this point.

Back thrusts

We focus on two back thrusts, point b focuses on the first back thrust that emerges, point c is located on a later fault. We can discern
relatively localized deforming regions, even though our method cannot detect discrete faults. The Hencky strains lnλ show a single direction
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Mapping and classifying large deformation 1007

Figure 18. Temporal evolution of principal stretches and strain type as well as dilatation of a few selected points: (a) along the basal thrust; (b) in the first
back thrust; (c) in a later back thrust; (d), along the fault that connects the basal thrusts to the strike-slip shear zone. Upper left-hand panel: strain type (final)
and overview of the selected areas. Left row: zoom on the strain type and the selected grid cell (which is outlined in red, neighbouring cells outlined in black).
Middle row: logarithm of the two principal stretches (Hencky strain) in time. Right row: dilatation (left axis) and strain type (cumulative) and incremental
strain type (based on the incremental Lagrange–Green strain, eq. 23) (right axis).

of shortening, with a clear time delay between the start of the model and the start of shortening. During a later phase (after 20 min), the
incremental strain type in point b hints at transtensional deformation, as the incremental strain type is generally in between strike-slip and
extension (right-hand panel). The dominant strain type in both b and c at the end of the experiment is however shortening, in agreement with
the observed thrust faults.

Connection between back thrust and strike-slip zone

From the southernmost back thrust, a thrust fault with oblique slip kinematics (Fig. 16) connects to the strike-slip zone, and we select here
point d. This point is subject to shortening from 10 min onward until 20 min. From the incremental strain type plot we can see that the
deformation becomes more oblique after 20 minutes and gradually becomes strike-slip, which renders the cumulative strain type to oblique
shortening (i.e. transpression).
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Figure 19. continued. Temporal evolution of principal stretches and strain type as well as dilatation of a few selected points: e, in one of the initial Riedel
R-shears; f, along the main strike-slip fault; g, on the wedge close to the basal thrust, where the deformation inverts from extension to shortening (along more
or less the same principal direction); h, in the extensional area at the western side of wedge. Left row: zoom on the strain type and the selected grid cell. Middle
row: logarithm of the principal stretches (Hencky strain) in time. Right row: dilatation (left axis) and strain type (cumulative) and incremental strain type (based
on the incremental Lagrange–Green strain, eq. 23) (right axis).

Strike-slip zone

An R-shear, sampled at point e (Fig. 19), shows strike-slip activity up to 30 min, after which the principal stretches stay more or less constant.
This specific point shows some signs of transtension, while neighbouring points to the west tend to more transpressional deformation. This
gradual change in obliquity is well visible in the other direction: points to the east contain a larger fraction of extensional deformation. The
strike-slip motion migrates further east after the R-shears connect (see the differences between Figs 13 and 14). Point f lies within the main
strike-slip fault, and shows most of the time purely strike-slip motion, exemplified by the equal magnitude of the two Hencky strains lnλ.
Only at the end the dilatation diverges slightly from 1.
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Mapping and classifying large deformation 1009

Extension on the thrust wedge

At the edges of the thrust wedge, we find distributed and localized extension. Distributed extension at the northern side of the wedge, where
point g initially shows extension as the largest Hencky strain is positive. After 20 min the influence of the basal thrust becomes noticeable,
and the negative Hencky strain becomes the largest in magnitude. Both dilatation and strain type show this reversal. The incremental strain
type, even though it is more noisy, shows this reversal, approximately 10 min before the extensional deformation is balanced by shortening
deformation in the cumulative strain (right-hand panel). At the transitional region between the high topography wedge and low topography
strike-slip region, we find point h, in a region with abundant normal faulting (Fig. 17). As both Hencky strains are positive, this point is subject
to bi-axial extension. The varying orientation of the normal faults in this area, Fig. 17, also hint at extension in more than one direction.

6 D I S C U S S I O N

6.1 Following material during translation, rotations and shape changes

The method that we apply to follow the displacement of material through time (e.g. Senatore et al. 2013; Stanier et al. 2016; Boutelier et al.
2019; Krỳza et al. 2019), building on spatial velocity fields derived from imagery (PIV), makes it possible to study deformation of a small
piece of material in an environment that is subject to large translations, rotations or shape changes. Compared to the method of Boutelier et al.
(2019) we improve the determination of the displacement gradient by using a bilinear interpolation through shape functions (appendix A),
which takes into account the gradual geometry change of the grid, similar as Senatore et al. (2013). By tracing material points in time we can
also determine the cumulative deformation, thereby increasing the signal-to-noise ratio significantly with respect to the incremental strain.
This is shown by our application to PIV-derived velocities of the analogue model of tectonic deformation. The time evolution of the stretch
tensor V and the rotation angle θ in Video S3 contains much less noise compared to the incremental strain tensor ε and the accompanying
rotation ω in Video S2.

We observe that the displacement in an area that does neither translate nor deform (the indenter) is almost normally distributed and
unbiased, having a near zero mean. Such random PIV displacement errors lead to random walk noise in integrated Lagrangian displacements
(Stanier et al. 2016). The standard deviation of the integrated displacement error grows by σu = √

nσui , with n the number of epochs
and σui the standard deviation of the incremental displacement error. PIV displacement errors are larger for moving areas compared to
stagnant areas (Thielicke 2014); non-deforming but translating regions may therefore be more indicative for uncertainties of strain derived
from displacements. We observe that in solely translating areas (southwest corner of the model) the strain is nearly normally distributed,
and centered around zero. Similarly, the finite stretch is again semi-normally distributed, where its standard deviation increases in time by
approximately

√
n. In this region we find that the incremental strain has σεi ≈ 6 × 10−3, the standard deviation of the finite stretch error

increases to σ V ≈ 5 × 10−2 at the end of the model run. The
√

n factor implies that the signal-to-noise ratio improves for continuously
deforming regions, whereas it gradually deteriorates for regions with discontinued deformation. Furthermore, strain in shear zones may be
underestimated for narrow zones, as PIV tends to distribute displacement over larger areas when the interrogation window is comparable
in width or wider than the shear zone (Boutelier et al. 2019). Next, PIV displacement errors are larger in shearing areas (Thielicke 2014;
Stanier et al. 2016), which makes it difficult to extrapolate strain errors from non-deforming areas to areas undergoing large deformation.
Still, integration of random errors in the cumulative stretch reduces the errors from incremental displacements, exemplified by the much
sharper and clearer patterns of finite deformation compared to those from the incremental deformation.

Creating Lagrangian displacements requires continuity of the tracked particle path, which means that for areas missing Eulerian
displacements the construction of Lagrangian displacements is discontinued (PIVlab applies interpolation for areas with outliers (Thielicke
2014), which is an acceptable solution when regions with outliers are small). Stanier et al. (2016) provide a solution for temporary data gaps,
by integrating PIV and the estimation of Lagrangian displacements, while applying PIV not strictly sequential. In this PIV approach, the
reference image is not updated every time step, but only when the loss cross-correlation, due to cumulative deformation, is becoming too
large. Such an approach would also allow for mitigating displacement data gaps.

6.2 Correct strain tensors for large deformation

We base our deformation analysis on the left-stretch tensor V that gives an exact description of the shape change that is described by the
displacement gradient (Section 2.5.3). Importantly, V is insensitive to rigid body rotations. The principal values from V (or from right-stretch
tensor U) describe the true length changes along the principal axes. Recently, Boutelier et al. (2019)) described PIV-derived finite deformation
by U. Contrastingly, the infinitesimal strain tensor ε (eq. 15) that has often been used to describe relatively large deformations (e.g. Hoth
et al. 2007; Adam et al. 2013; Sun et al. 2018; Poppe et al. 2019; Schellart et al. 2019), describes shape changes properly only for small
shears and small rotations. Especially, quantities such as principal strains, area change and rotation from the infinitesimal strain tensor no
longer hold for large shear (Section 2.5.4). For example, the rotation ω (eq. 17) applied to large deformations may lead to values that indicate
>2π rotations (Fig. 5), which is not possible with stationary strike-slip faults. In the absence of additional rigid body rotations, while the
rotation value itself implies an incorrect rotation beyond values >π /2, its value can still be proportional to a shear γ (as long as there are no
additional rotations, such as in Adam et al. (2013)). The degree to which infinitesimal strains lead to qualitatively wrong inferences, will thus
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depend on the setting. Similarly, the use divergence (εxx + εyy) (Schellart et al. 2019) or dilatation using ε, to discriminate between areas of
area increase or decrease, may lead to misinterpretations for large shear strains (Fig. 5).

6.3 Strain classification

For small strains, the type of strain (e.g. extension, shortening or strike-slip) can be determined from principal strains in a straightforward
way (Kreemer et al. 2014). However, for large strains this distinction between different types of strain can no longer be made based on
comparison of principal strains in a similar manner. We introduce the use of Hencky strains (logarithm of finite principal stretch, Section 2.7)
to characterize strain type. Doing so, we avoid the problem of changing ratios of principal stretches in finite shear deformation (i.e. strike-slip
in the horizontal plane), that occurs even for deformation that is constant in time (Fig. 7). Hencky strains provide a constant ratio for the
two principal strains for extension, strike-slip (simple or pure shear) and shortening, irrespective of the amount of deformation (Fig. 7). For
oblique deformation this ratio only slightly changes with increasing deformation, but for our qualitative measure of strain type we argue
this is only a minor issue. Our definition of strain type provides the same qualitative characterization of deformation, as the deformation
classification based on visual inspection of fault patterns (Fig. 17). More so, it provides a fully automated, temporal evolution of deformation
magnitude and strain type, and it is able to detect distributed deformation that does not lead to recognizable structures.

Scale dependence of pure shear

Our strain type provides the same interpretation for pure shear as well as simple shear in the horizontal plane (or combinations thereof as
sub-simple shear), as the relative magnitudes of the two Hencky strains will be the same for all types of isochoric shear: ln λmax = −ln λmin.
While the mean rotation in pure shear is zero, and in simple shear all material lines rotate except for the lines parallel with the direction of
shear, this has no effect on the strain type measure. Namely, our strain type measure only considers principal strain magnitudes, and does not
take into account principal direction changes. Even though pure shear in the horizontal plane may describe the style of deformation at large
scale, at smaller scales the presence of pure shear depends on whether this deformation localizes on faults or that deformation is distributed.
For example, the collision of India into Asia leads to both shortening in the convergence direction, as well as an orthogonal extension, leading
to extrusion of the indented Asia (Tapponnier et al. 1982). Such a deformation has at the large scale a strong pure shear component in the
horizontal plane (Fossen 2016), while at smaller scales the roughly E–W extrusion is accommodated by strike-slip faults and normal faults,
even though there is long-standing debate on what structures accommodate the extension (Searle et al. 2011; Wallis & Searle 2019). A similar
process of extrusion involving pure shear, where the escape of material occurs along (conjugate) strike-slip faults is found for the Eastern
Alps (Ratschbacher et al. 1991; van Gelder et al. 2017).

For crustal tectonics pure shear has thus a large scale dependence, where the necessity to discriminate between simple shear and pure
shear reduces when shear due to individual faults can be observed. When deformation is partitioned on individual faults, which accommodate
deformation by (oblique) strike-slip or normal or reverse faulting, our strain type will have no difficulty in describing those deformations (as
long as the spatial resolution is sufficient to discriminate individual structures). Only an area undergoing pure shear in a continuous sense
(without faults), for example in a ductile manner, or as elastic deformation (at small strains), is interpreted in our strain measure equally as
simple shear.

Strain type for subsequent phases of deformation

When asking the question whether cumulative deformation gives a good sense of episodical deformation related to slip on faults, we see in our
analogue experiments that the final strain type agrees with almost all inferred types of faults. Our strain measure based on logarithmic stretch
provides a way of assessing the type of deformation, either distributed, or localized (i.e. faulting), provided that no inversion of deformation
takes place. The finite stretch contains no information on the deformation path, so if for example left-lateral strike-slip faulting is followed
by right-lateral strike-slip on the same structure, or extension is succeeded by shortening (see point g in Fig. 19), the cumulative strain type
will not be representative for the deformation as occurred during the full observation period. Also, episodical deformation such as the Riedel
shears in the analogue model can be suppressed in the total deformation. In a similar way, shortening followed by a phase with strike-slip
(see point d in Fig. 18) is in the finite deformation indistinguishable from concurrent strike-slip and shortening (transpression). In these
instances, it would be preferred to divide the observation period into separate phases (each with its own deformation gradient F) to account
for opposite styles of deformation, while still making advantage of the integration of deformation that reduces the noise that may be dominant
in incremental deformation.

Previous approaches to interpret strain

The interpretation of a strain tensor is non-trivial, as tensor components strongly depend on the orientation of the reference frame (Sec-
tion 2.5.3). Diagonal components and off-diagonal components of the strain tensor are communicative, and vary according to the reference
orientation. Often in analogue modeling studies, strain is interpreted by inspecting individual strain tensor components, to derive extensional
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or shear components (e.g. Adam et al. 2005; Fischer & Keating 2005; Hoth et al. 2007; Boutelier & Oncken, 2011; Chen et al. 2015; Le
Corvec et al. 2014; Galland et al. 2016; Barcos et al. 2016). This approach is valid only when all deformation zones align with the Cartesian
reference frame, which limits the use to relatively simple models with straight and perpendicular deformation structures. Contrastingly,
principal stretches or strains are unique for a given deformation and have been used to analyse deformation in analogue models by Haq
& Davis (2009). Still, principal strains or stretches are inconclusive on shear contributions (in the horizontal plane: strike-slip). Likewise,
dilatation can be used as a measure for shortening or extensional deformation (Kettermann et al. 2016), but it is insensitive to shear. In the
absence of rigid body rotation, infinitesimal rotation ω (eq. 17) can be used to map small simple shears along strike-slip faults (Le Corvec
& Walter 2009; Hatem et al. 2017). However, for large deformations, ω is no longer proportional to the mean rotation of material (Fig. 5).
Even though maximum shear strain γ max will highlight shear zones (e.g. Cruz et al. (2008)), it is just as well sensitive to shortening or
extensional deformation. Different from the aforementioned approaches, our method can be applied to any deformation zone orientation, and
is independent from the chosen reference frame.

6.4 Decomposition of strain

In this study, we have developed a qualitative classification of strain, but we do not quantitatively decompose deformation into contributions
of shearing and extensional deformation. In recent literature there are multiple efforts to decompose deformation into contributions of shear,
extension and rotation. Wang et al. (2019) aim to separate rotations induced by shearing motions and rigid body rotations, based on analysis
of the minimum angular velocity in all directions in a small volume, called the Liutex method. Holmedal (2020) applies this model to
deformation of solids. The Liutex method however relies on the implicit assumption that shear rotations and rigid body rotations act in the
same direction (i.e. the induced vorticity or spin has the same sign). One could imagine a combination of a right-lateral strike-slip fault,
inducing a clockwise rotation within the shear zone, combined with a counter-clockwise rigid body motion. Such combination of opposing
rotations can be found in the Dinarides, where right-lateral strike-slip (van Unen et al. 2019) occurred simultaneously with counter-clockwise
rotations of Adria (Marton et al. 2003). Furthermore, as the Liutex model does not consider extensional motions, even though extensional
motions induce internal angular velocities as well (Allmendinger et al. 2011), it is of limited use for decomposing the deformation of solid
materials.

Other studies derived decompositions of a 3-D deformation gradient into a succesion of a single, volume preserving extension, a simple
shear, a rotation and a dilatation (Wang 1996), or alternatively, a dilation, a rotation and two simple shears (Zheng et al. 2000). As a description
of tectonic deformation in the horizontal (2-D) plane requires the inclusion of two orthogonal extensions, we cannot use these decompositions
to describe tectonic deformation in a physically meaningful way.

A recent, promising decomposition of deformation is the QR decomposition of F that allows for a separation of deformation into simple
shear, extension and rotation contributions (Srinivasa 2012; Freed et al. 2019, see eqs 11 and 12). For 2 dimensions, the extension contribution
includes two orthogonal components and a single simple shear contribution, together named the Laplace stretch. In Section 2.4, we apply
this scheme to describe a general deformation in the direction of the chosen reference Cartesian axes. In two dimensions, this implies that
the decomposed simple shear is always parallel to the x-axis. To describe shear in the horizontal plane on strike-slip faults, we would thus
first have to locally align the x-axis of our reference frame with each fault to obtain a meaningful decomposition of deformation. Namely, the
QR decomposition is possible in any chosen reference axis orientation (Freed & Srinivasa 2015). This implies the development of a spatially
and temporally varying definition of the reference axes, and we do not pursue that in this work as it would require the automatic detection of
fault structures. The Laplace stretch bears many similarities to the deformation tensor D used in structural geology (e.g. Fossen 2016), which
can be constructed when the orientation of a shear zone is known. Similarly, deriving slip orientations on faults (e.g. Leever et al. 2011)
from displacement fields requires a prior definition of fault orientations. As such this method works only when the spatial derivative of the
displacement field is determined perpendicular to a fault.

Hence, due to current unavailability of methods that allow a unique decomposition of deformation into a shear and two orthogonal
extension deformations (as in Fig. 3), our strain type measure provides an alternative in the form of a qualitative descriptor of the relative
amounts of shear and extensional (or shortening) deformation. For describing the magnitude of strain, we can still resort to the established
principal stretches λ (eq. 31) based on the left-stretch tensor V that can easily be related to principal strains, even though the principal stretches
are inconclusive to the type of strain.

6.5 Outlook

In this study, we have made use of an initial grid that is homogeneous throughout the full area of interest. During the subsequent time steps
the grid gradually deforms, which leads in general to an inhomogeneous spatial resolution of the derived deformation fields, as extensional or
shortening stretches have opposite effects on the grid side lengths. To prevent overly loss of spatial resolution in extensional areas (including
shear zones) we have implemented an homogeneous grid refinement with respect to the resolution of the displacement fields as provided
by the image correlation techniques. An efficient method to cope with the spatial resolution gradually becoming more inhomogeneous in
deforming areas is to use unstructured meshes that are initially inhomogeneous, with increased resolution in deforming regions. This suggests
the use of triangular meshes, for which the shape functions can be easily adapted.
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While we apply our strain measure in a context of analogue models of crustal tectonics, we think it has a potential to describe large
strains in high resolution displacement inversions of geodetic data of coseismic displacements (Lauer et al. 2020), geodetically observed
strain rates of glaciers (Lhermitte et al. 2020) or interpretation of 2-D deformation in numerical geodynamic models.

7 C O N C LU S I O N S

We have applied methods to update Lagrangian material displacements using incremental, space-based (Eulerian) displacements from image
correlation techniques. We show that the resulting displacement fields can be used to map high resolution strain fields involving large and
complex deformations.

In a similar way as for small strains, it is possible to use principal stretches to classify the type of strain that has led to finite deformation.
For this purpose, we introduce a novel use of logarithmic principal stretches, also known as Hencky strains, to qualitatively describe 2-D
plane deformation. Hencky strains have the desired property that the relative lengths between the two principal strains do not change during
constant incremental deformation.

Tectonic deformation, that is shortening, strike-slip or extension and their transpressional and transtensional transitions, can be adequately
described using our developed qualitative strain type measure. Due to the temporal and spatial continuous description, this measure can be
used to inspect the temporal evolution of strain, even in the absence of discrete structures.

AVA I L A B I L I T Y O F DATA

The data underlying this article (top-view and side-view images) are available in the Yoda data repository of the Utrecht University (Broerse
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A P P E N D I X A : S H A P E F U N C T I O N S F O R D E T E R M I N I N G T H E D I S P L A C E M E N T
G R A D I E N T

We use linear shape functions to determine the displacement gradient ∂u
∂X for quadrilaterals (deformed rectangles), an approach from finite

element analysis to determine deformation of elements. Shape functions provide a convenient method to determine to interpolate nodal

quantities, such as displacement, for deformed configurations. First, we define local coordinates s =
[
s t

]T
, shown by Fig. A1.

The global coordinates x =
[
x y

]T
in the current configuration are related to nodal coordinates xn = [x1 x2 x3 x4] by:

x(s, t) = xnN(s, t) (A1)
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Figure A1. Element definitions: node numbering and coordinate systems. Left panel: element in local coordinates s, where the element, even in deformed
state, retains its rectangular shape. Right panel: the same element in global coordinates x. Nodal coordinates relate to global coordinates as x = xn N(s, t).

with bilinear shape functions N (Hughes 2012):

N = 1

4

⎡
⎢⎢⎢⎣

(1 − s)(1 − t)
(1 + s)(1 − t)
(1 + s)(1 + t)
(1 − s)(1 + t)

⎤
⎥⎥⎥⎦ (A2)

For the validity of the bilinear shape functions the requirement holds that all angles between the element sides need to be less than 180◦, which
in practice means elements should be sufficiently small to prevent occurrence of angles larger than 180◦. Our elements are isoparametric,
which means that the shape functions not only interpolate the coordinates, but serve also as interpolation functions for other nodal quantities,
such as displacement.

We have the displacement values un available at each of the four nodal points, and we can interpolate these displacements anywhere
within the quadrilateral element using our shape functions N:

u(s, t) = unN(s, t) (A3)

where u =
[
u v

]T
and nodal displacements are:

un =
[

u1 u2 u3 u4

v1 v2 v3 v4

]
(A4)

Our main purpose here is to determine ∂u
∂X , that we can write as:

∂u

∂X
=

[
∂u
∂ X

∂u
∂Y

∂v

∂ X
∂v

∂Y

]
= ∂u

∂s

∂s

∂X
=

[
∂u
∂s

∂u
∂t

∂v

∂s
∂v

∂t

][
∂s
∂ X

∂s
∂Y

∂t
∂ X

∂t
∂Y

]
(A5)

We do not have access to ∂s
∂X but can compute ∂X

∂s using the shape functions. These two gradients are related as (Hughes 2012):

∂s

∂X
=

(∂X

∂s

)−1
(A6)

Such that the displacement gradient becomes:

∂u

∂X
=

[
∂u
∂s

∂u
∂t

∂v

∂s
∂v

∂t

][
∂ X
∂s

∂ X
∂t

∂Y
∂s

∂Y
∂t

]−1

(A7)

We can thus compute the displacement gradient as the product of the displacement gradient with respect to the local coordinates, and the
inverse of the gradient of the global coordinates X to the local coordinates ∂X

∂s , which is often called the jacobian J. Using eq. (A3) we compute
the elements of ∂u

∂s at the centroid of the element (s = 0, t = 0):

∂u

∂s
= un

∂N

∂s
(A8)

Furthermore, the partial derivatives of the shape functions are (at the centroid):

∂N

∂s
= 1

4

⎡
⎢⎢⎢⎣

t − 1
1 − t
1 + t

−1 − t

⎤
⎥⎥⎥⎦ ∂N

∂s
|0,0 = 1

4

⎡
⎢⎢⎢⎣

−1
1
1

−1

⎤
⎥⎥⎥⎦ (A9)
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∂N

∂t
= 1

4

⎡
⎢⎢⎢⎣

s − 1
s − 1
1 + s
1 − s

⎤
⎥⎥⎥⎦ ∂N

∂t
|0,0 = 1

4

⎡
⎢⎢⎢⎣

−1
−1
1
1

⎤
⎥⎥⎥⎦ (A10)

such that:

∂u

∂s
|0,0 = 1

4

[
−u1 + u2 + u3 − u4 −u1 − u2 + u3 + u4

−v1 + v2 + v3 − v4 −v1 − v2 + v3 + v4

]
(A11)

Subsequently, using eq. (A1), ∂X
∂s is:

∂X

∂s
=

[
Xn

∂N
∂s Xn

∂N
∂t

Yn
∂N
∂s Yn

∂N
∂t

]
(A12)

evaluated at the centroid, using eq. (A9) again:

∂X

∂s
|0,0 = 1

4

[
−X1 + X2 + X3 − X4 −X1 − X2 + X3 + X4

−Y1 + Y2 + Y3 − Y4 −Y1 − Y2 + Y3 + Y4

]
(A13)

Finally, we can determine the displacement gradient at the centroid by combining eqs A7, A11 and A13

∂u

∂X
|0,0 = 1

4

[
−u1 + u2 + u3 − u4 −u1 − u2 + u3 + u4

−v1 + v2 + v3 − v4 −v1 − v2 + v3 + v4

]
· (A14)

4

[
−X1 + X2 + X3 − X4 −X1 − X2 + X3 + X4

−Y1 + Y2 + Y3 − Y4 −Y1 − Y2 + Y3 + Y4

]−1

(A15)

As a last note on the determination of F: any deformation described of an element that is initially square leads to parallel orientation of
opposing quadrilateral sides when using F. In general deformed quadrilaterals will not have exactly parallel orientations. Deformation of the
quadrilaterals as obtained from eq. (1), will then start to deviate from displacement that can be calculated using F. Still F will hold for the
centroid of the quadrilateral. To minimize differences between the quadrilateral deformation and that described by F the elements should be
chosen sufficiently small.

A P P E N D I X B : P O L A R D E C O M P O S I T I O N O F T H E D E F O R M AT I O N G R A D I E N T I N 2 D

Analytic solutions exist for the decomposition of the deformation gradient F into the rotation tensor R and the right stretch tensor U as well
as the left stretch tensor V (Hoger & Carlson 1984). As the polar decomposition holds:

F = RU = VR (B1)

Knowledge on U and U−1 leads to V and R (recall that RRT = I) by:

R = FU−1 V = FRT (B2)

Hoger & Carlson (1984) provide expressions for U in closed form as well as its inverse, without the need to determine the tensor square root
of the right Cauchy-Green tensor C, as U = √

C.
Firstly the principal values μ of C:

μ1 =
C11 + C22 +

√
(C11 − C22)2 + 4C2

12

2
(B3)

μ2 =
C11 + C22 −

√
(C11 − C22)2 + 4C2

12

2
(B4)

From these the invariants of C and U can be calculated:

IC = μ1 + μ2 I IC = μ1μ2 (B5)

IU =
√

IC + 2
√

I IC I IU =
√

I IC (B6)

By inserting B3 into B5 we can further simplify the invariants and bypass the computation of principal values:

IC = C11 + C22 I IC = C11C22 − C2
12 (B7)

Then the right stretch tensor is:

U = (
C + I IU I

)
/IU (B8)
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and its inverse:

U−1 = −IU
C − (I IU + IC )I

I IU (I IU + IC ) + I IC
(B9)

Which we can insert in eq. (B2) again to obtain V and R. The rotation angle θ represented by R can be calculated using the four-quadrant
inverse tangent:

θ = atan2(R21, R11) (B10)

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/226/2/984/6195529 by Bibliotheek TU

 D
elft user on 05 July 2021


