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Abstract. The co-occurrence of (not necessarily extreme)
precipitation and surge can lead to extreme inland water lev-
els in coastal areas. In a previous work the positive depen-
dence between the two meteorological drivers was demon-
strated in a managed water system in the Netherlands by em-
pirically investigating an 800-year time series of water lev-
els, which were simulated via a physical-based hydrological
model driven by a regional climate model large ensemble.

In this study, we present an impact-focused multivariate
statistical framework to model the dependence between these
flooding drivers and the resulting return periods of inland
water levels. This framework is applied to the same man-
aged water system using the aforementioned large ensemble.
Composite analysis is used to guide the selection of suitable
predictors and to obtain an impact function that optimally de-

scribes the relationship between high inland water levels (the
impact) and the explanatory predictors. This is complex due
to the high degree of human management affecting the dy-
namics of the water level. Training the impact function with
subsets of data uniformly distributed along the range of wa-
ter levels plays a major role in obtaining an unbiased perfor-
mance.

The dependence structure between the defined predictors
is modelled using two- and three-dimensional copulas. These
are used to generate paired synthetic precipitation and surge
events, transformed into inland water levels via the impact
function. The compounding effects of surge and precipita-
tion and the return water level estimates fairly well reproduce
the earlier results from the empirical analysis of the same re-
gional climate model ensemble. Regarding the return levels,
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this is quantified by a root-mean-square deviation of 0.02 m.
The proposed framework is able to produce robust estimates
of compound extreme water levels for a highly managed hy-
drological system. Even though the framework has only been
applied and validated in one study area, it shows great poten-
tial to be transferred to other areas.

In addition, we present a unique assessment of the uncer-
tainty when using only 50 years of data (what is typically
available from observations). Training the impact function
with short records leads to a general underestimation of the
return levels as water level extremes are not well sampled.
Also, the marginal distributions of the 50-year time series of
the surge show high variability. Moreover, compounding ef-
fects tend to be underestimated when using 50-year slices to
estimate the dependence pattern between predictors. Overall,
the internal variability of the climate system is identified as
a major source of uncertainty in the multivariate statistical
model.

1 Introduction

Floods, wildfires, and heatwaves typically result from the
combination of several physical processes (e.g. Baldwin
et al., 2019; Manning et al., 2019; AghaKouchak et al.,
2020). The physical drivers of such processes are not nec-
essarily extreme or hazardous when occurring in isolation,
but they can lead to significant impacts when occurring alto-
gether, or in a narrow time range (Seneviratne et al., 2012).
Extreme events resulting from the combinations of phys-
ical drivers are referred to as compound events, and they
can be classified into different (not entirely exclusive) cat-
egories (Zscheischler et al., 2020). These compound climate
extremes are receiving increasing attention because of their
disproportionate economic, societal, and environmental im-
pacts, and because traditional univariate approaches can lead
to strongly biased estimates of the associated risks (Wahl
et al., 2015). However, many challenges still lay ahead in
order to properly understand (and predict) the complex chain
of drivers that leads to compound events. Estimating the de-
pendencies among drivers is challenging mainly due to the
limited amount of data available, especially for rare events
(Zscheischler et al., 2018). Moreover, the definition of multi-
variate extremes is not as straightforward as in the univariate
case. A paradigm shift from a classical top-down approach
adopted in many climate studies towards an impact-centric
perspective is needed (Zscheischler et al., 2018).

Compound flooding in coastal settings often originates
from a combination of storm-driven waves and surges and
blocked discharge of terrestrial water from, for example, in-
tense precipitation or snowmelt. Meteorological conditions
can lead to a (nearly) simultaneous occurrence of storm surge
or waves and a discharge peak when the area that gener-
ates the discharge is located close to the coast. These types

of events have the potential to occur in many coastal re-
gions across the globe (Ward et al., 2018; Couasnon et al.,
2020). Low-lying coastal regions are particularly suscepti-
ble to flooding caused by the interaction of different hazards
(i.e. compound flooding), including oceanographic, pluvial,
and/or fluvial hazards (Hendry et al., 2019). Thus, the as-
sessment of multivariate events has received increasing atten-
tion in the coastal engineering and management communi-
ties (e.g. Anderson et al., 2019; Serafin and Ruggiero, 2014;
Rueda et al., 2016; Wahl et al., 2015). The associated impacts
strongly depend on the catchment features and the character-
istics of the storms (Wahl et al., 2015). For discharge peaks
originating from remote precipitation or snowmelt inputs (for
instance in larger river systems), delays between the surge
and discharge peaks are usually due to the finite travel speed
of the discharge wave (Khanal et al., 2019b; Klerk et al.,
2015).

With the aim to obtain methods computationally less ex-
pensive than numerical simulations, statistical models have
been used to model compound events and estimate their
probability of occurrence. In some specific cases, bi- or mul-
tivariate distributions can be derived directly from physical
properties (e.g. the joint distribution between wave height
and wave periods in wind-sea states as a function of wave
steepness; de Waal and van Gelder, 2005). However, these
are often limited to idealized or very specific settings and rely
heavily on the selection of the marginal distributions. In con-
trast, copula-based methods (Sklar, 1959) have the advantage
to capture the dependence between a set of variables indepen-
dently from their marginal distributions (Genest and Favre,
2007), which explains why they have become a widely used
approach nowadays. In recent years, several copula-based
studies have been carried out to study compound flooding
events in coastal areas at different spatial scales (e.g. Couas-
non et al., 2018; Moftakhari et al., 2019; Jane et al., 2020).
For example, Bevacqua et al. (2017) developed and imple-
mented a conceptual statistical model to quantify the risk of
compound floods that result from the combination of storm
surge and high river runoff in Ravenna (Italy). At regional
scale, Wahl et al. (2015) assessed the historical changes in the
compound flooding due to precipitation and storm surge in
US cities and identified a significant increase in the number
of compound events over the past century in major coastal
cities. Accounting for climate change projections, Bevacqua
et al. (2019) showed how global warming can increase the
probability of compound coastal flooding in northern Eu-
rope. At a global scale, Couasnon et al. (2020) provided a
perspective of the compound flood potential from riverine
and coastal flood drivers, which highlighted the complex-
ity and large regional variability of such dependence struc-
tures. Dependence between ocean wave heights and storm
surges was recently investigated by Marcos et al. (2019) at
the global scale, showing that 55 % of the world’s coastlines
face compound storm surge wave extremes.
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This study is motivated by a near-flooding event in 2012 in
the Lauwersmeer reservoir in the Netherlands that was clas-
sified as a compound event (van den Hurk et al., 2015). This
multivariate event was characterized by a high inland (reser-
voir) water level (IWL) exceeding predefined warning levels
and resulted from the joint occurrence of heavy precipitation
on an already wet soil and a high storm surge impeding grav-
itational drainage over several consecutive tidal periods. In
terms of the categorization of Zscheischler et al. (2020), this
event can be classified as a multivariate, preconditioned, and
temporally compounding event, which illustrates the com-
plexity of this near-flooding event. The study by van den
Hurk et al. (2015) empirically assessed the return periods as-
sociated with compound extreme water levels with a single
model initial-condition large ensemble (SMILE) of regional
climate model (RCM) simulations covering 800 years under
present-day climate conditions. Using SMILEs is a physi-
cally based approach to increase the size of the database
and therefore increase the number of simulated extreme
compound events. Apart from van den Hurk et al. (2015),
SMILEs have been applied as a tool to investigate compound
events by, for example, Zhou and Liu (2018), Khanal et al.
(2019a), and Poschlod et al. (2020). This methodology al-
lowed van den Hurk et al. (2015) to demonstrate a positive
dependence between storm surge and heavy precipitation and
showed that the probability of occurrence of these extreme
water levels can be greatly underestimated if such depen-
dence is omitted.

Here, we develop a copula-based statistical framework to
model the extreme water levels in the Lauwersmeer reservoir,
including the dependence among the underlying drivers. Us-
ing the same aforementioned 800-year climate ensemble, we
reproduce the results empirically obtained by van den Hurk
et al. (2015) and provide additional insights into the under-
lying physical factors and modelling uncertainties in com-
pound analysis. Although the study is site specific, we ad-
dress two novel aspects that provide relevant insights for the
field of compound analysis.

First, we propose an impact-focused approach guided by
composite analysis to model the relationship between ex-
treme water levels and underlying drivers in a water sys-
tem with strong human management. We investigate the
strong impact of the definition and selection of the predictors
and discuss the interpretation of their dependence structures
in the context of this impact-focused approach (which dif-
fers from conventional driver-centric approaches). Flooding
events in managed water systems have been rarely explored
in the literature. Most compound flooding studies cover nat-
ural systems which typically exhibit a simpler relationship
between drivers and impact variables (e.g. Bevacqua et al.,
2017). Therefore, this study provides a novel insight for flood
risk management, which is growing in relevance in many
low-lying areas (IPCC, 2019) where sea-level rise increases
flood frequency (Moftakhari et al., 2017; Taherkhani et al.,
2020).

Second, we explore for the first time (to our knowledge)
the effect of internal (natural) climate variability on copula-
based compound event analysis. We investigate the effect of
using a 50-year subset of data on the estimation of depen-
dence structures (and other elements involved in the analy-
sis of compound events), ultimately assessing the accuracy
of the estimation of return levels. This is particularly rele-
vant as most compound climate extreme studies are based
on observations or simulated time slices with lengths well
under 50 years (e.g. Ganguli and Merz, 2019; Wahl et al.,
2015; Zheng et al., 2013). The global study of Ward et al.
(2018) showed that most available data sets of overlapping
discharge–surge have a median duration of 36 years, with
shorter to no observed records in most of Africa, South
America, and Asia.

2 Study area and data

Water management in the Netherlands is administered by re-
gional water boards, which are approximately aligned with
hydrological units. The study area comprises the water board
unit of Noorderzijlvest (1440 km2) situated in the north of
the Netherlands (Fig. 1), which has an average altitude close
to mean sea-level height. The Lauwersmeer reservoir stores
excessive water before it drains into the North Sea by grav-
ity during low tides. In January 2012, a combination of heavy
and prolonged rainfall on saturated soil during high-sea-level
conditions (blocking the free drainage) led to extreme IWL
accompanied by precautionary implications such as evac-
uation. Both precipitation and storm surge associated with
this event were mild extremes (with return periods of about
10 years, respectively), but IWL reached unusually extreme
levels.

In terms of the underlying meteorological patterns, ex-
treme winds with long fetch leading to high surges typically
occur in October–December as a result of deep and extensive
low-pressure systems moving from the North Atlantic re-
gion to central or northern Scandinavia (van den Hurk et al.,
2015). Most extreme precipitation events occur during the
summer months linked to slow-moving medium-sized low-
pressure systems over northern Germany or southern Den-
mark (van den Hurk et al., 2015). High IWLs are caused by
the interaction between these two patterns, which mostly oc-
cur in July–October. Additionally, Ridder et al. (2018) found
that the majority of these types of compound events are ac-
companied by the presence of an atmospheric river over the
Netherlands.

In this study, we build our statistical framework on the
same database that was developed and applied by van den
Hurk et al. (2015). The study by van den Hurk et al. (2015)
empirically estimated the return periods of IWL by applying
a physically based modelling chain. They used the climate
simulations of the 16-member ensemble of the RCM KNMI
RACMO2 (van Meijgaard et al., 2008, 2012) driven by the
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Figure 1. Overview of study site, including elevation around the area, approximate location of data collection sites, and extent of the
hydrological unit (HU) and the water board that Lauwersmeer reservoir belongs to. The station Lauwersoog (yellow dot) measures the surge,
and the IWL is observed inside the reservoir (red dot indicates approximate location of data collection). The bottom-right panel shows where
the study site is situated in the Netherlands.

global climate model (GCM) EC-EARTH 2.3 (Hazeleger
et al., 2012). Forced by historical emissions, the GCM was
run from 1850 to 2000 with 16 different perturbations of ini-
tial atmospheric conditions. This ensemble was dynamically
downscaled by the RCM at 12 km horizontal resolution for
transient runs from 1951 to 2000, resulting in 800 years of
historic climate. As the sixteen 50-year simulations only dif-
fer by the initial atmospheric conditions of the driving GCM,
the variability of the 16 time series can be interpreted as
model representations of the internal variability of the cli-
mate system (Deser et al., 2012; Hawkins and Sutton, 2009).

The bias of precipitation was adjusted for 5 d sums, and
the resulting rainfall intensities were spatially averaged for
the climate model grid cells enclosing the Noorderzijlvest
area. After bias adjustment of wind speed and calculating
a spatial average for the relevant area of the North Sea, a
regression equation was applied to estimate the surge. The
regression equation was calibrated to local surge conditions
at the station Lauwersoog (Fig. 1). The historical astronom-
ical tide between 1951 and 2000 using all known current
tidal constituents was added to the modelled storm surge data
for the complete period of 800 years. The sum of surge and
tide results in a time series of still water levels (SWLs) at
the North Sea. These regional simulations were then used to

drive RTC-Tools, which is a hydrological management simu-
lator (Schwanenberg et al., 2015) generating the correspond-
ing IWL time series at hourly resolution.

To assess compounding effects, van den Hurk et al. (2015)
constructed a randomized ensemble of independent drivers
by shuffling the time series of model-generated precipita-
tion and storm surge in a way that preserved climatologi-
cal characteristics but removed the correlation between surge
and precipitation. After adding the tidal cycle to compute
the SWL, the corresponding IWLs were derived by forcing
RTC-Tools with these shuffled time series of precipitation
and SWL. The study by van den Hurk et al. (2015) con-
cluded that the return period associated with the extreme
2012 IWL was almost 3 times larger for shuffled data than
for the original data, which indicated the presence of com-
pounding processes between precipitation and SWL leading
to higher IWL. This is also shown by comparing the empiri-
cal joint probability density functions (PDFs) of the original
and shuffled time series. However, the dependence of SWL
and precipitation was weaker for the largest IWL events,
which were dominated by specific neap tide conditions with
a low tidal range and consequently high values of the low
tides (van den Hurk et al., 2015).

Hydrol. Earth Syst. Sci., 25, 3595–3615, 2021 https://doi.org/10.5194/hess-25-3595-2021
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3 Methods

3.1 Conceptual model

The statistical model for estimating IWL has been developed
following four consecutive steps:

1. characterization of the compound event with a predic-
tand, representing the so-called “impact” (IWL), and a
set of predictors (conditioned to the impact variable),
representing the underlying drivers (precipitation and
SWL) of extreme IWLs;

2. development of an impact function that relates the pre-
dictand and predictors defined in step 1;

3. modelling of the joint probability distribution of the pre-
dictors, which implies finding the probability distribu-
tions to model their marginal behaviour, and identifying
the best copula(s) to model their dependence structure;

4. estimating the IWL return levels by randomly gener-
ating a large number of paired precipitation and SWL
synthetic events from the joint distribution obtained in
step 3, which is converted to IWLs with the impact func-
tion fitted in step 2.

To reproduce the findings of van den Hurk et al. (2015),
including the effect of the dependence between precipita-
tion and SWL on return levels, this procedure is applied to
both the original data set and the shuffled data (see Sect. 2).
We explored statistical models of two and three dimensions
(2D and 3D cases, respectively) to account for multiple pre-
dictors: a bivariate copula model accounting for the itera-
tion of precipitation and SWL and a trivariate (vine) cop-
ula model where we separate SWL into the astronomical tide
and the surge (or non-tidal residual). With this separation,
we investigate whether the difference in controlling physi-
cal processes of tide and surge affects the depiction of the
dependency structure causing compounding effects. The de-
sign of the analyses has followed an iterative process, with
repeated feedback between the different steps. The selection
of the predictors plays a crucial role in the consecutive steps
and the performance of the statistical modelling framework.
Specifically, the performance of the impact function is highly
sensitive to the selection of the SWL (or surge in the trivari-
ate model) predictor and has been a strong driver for the final
choice of predictors. The performance of the impact function
based on mean, minimum, and maximum SWL for differ-
ent temporal aggregations is given in the Supplement (see
Fig. S1 in the Supplement) and highlights the sensitivity to
the SWL predictor.

3.2 Selection of predictands and predictors

The series of annual maxima IWLs (WLmax) is chosen as
predictand to represent the impact and used to reproduce the

return level plots of van den Hurk et al. (2015). In the process
of predictors selection, three aspects were taken into consid-
eration: (1) the underlying physically driving processes, in-
cluding the proper representation of the compound nature of
precipitation and SWL (or surge and tide in the 3D case); (2)
the human management practices controlling IWL dynamics
in RTC-Tools (Sect. 2); and (3) the memory of the physical
system, including lags in the occurrence of drivers that might
potentially affect the magnitude of the impact.

The iterative process to select the predictors is guided by
the composite of all 800 WLmax and the underlying drivers
(Fig. 2). Peaks in precipitation and SWL are preceding the
occurrence of the annual WLmax. Opening and closing the
gates of the reservoir leads to periodic fluctuations of IWL.
The gates are opened during the low tide to lower IWL. If
the ocean water level exceeds IWL, the gates stay closed
and IWL rises due to collection of water from the surround-
ing watershed. For most of the 800 annual maximum events,
the gates stay closed for several subsequent tidal cycles (see
Fig. 2).

For the 2D case, we choose the following predictors: the
accumulated precipitation over 12 d prior to WLmax, noted
as P12 d,acum, and the minimum SWL over the 36 h prior to
WLmax, noted as ST36 h,min. For the 3D case, the precipita-
tion predictor is the same as in 2D case, but the SWL is
separated into tide and surge. In particular, we consider the
mean surge over 72 h prior to WLmax, noted as S72 h,mean,
and the minimum tide over 12 h prior to WLmax, noted as
T12 h,min (see Table 1). The time periods of aggregation, as
well as the choice of applying the arithmetic mean, mini-
mum, or the sum, were iteratively optimized according to the
performance of the impact function and its reproduction of
the return period curves (see Sects. 3.3 and 3.4). We tested
different temporal aggregations of the surge and tide predic-
tors in 12 h time steps between 12 and 96 h, as this duration
corresponds to the tidal cycle. The aggregation of precipita-
tion was tested from 1 d to 20 d. All possible combinations of
these predictors were used to drive the four impact function
approaches (introduced in Sect. 3.3) and were evaluated by
the trade-off between the performance metrics of the impact
function (see Sect. 3.3) and the ability to reproduce extreme
events exceeding the flood warning level (see Sect. 3.4).

The iterative process of predictor selection led to interest-
ing insights about the physical processes behind these com-
pound events. In terms of precipitation, Fig. 2 shows that
the duration of the median peak of accumulated precipita-
tion prior to WLmax is about 5 d, which agrees with the rele-
vant temporal range of precipitation directly affecting IWLs
identified by van den Hurk et al. (2015). Instantaneous con-
tribution of precipitation to IWLs due to direct rainfall on
the reservoir surface is small; therefore, a time lag is needed
to capture the contributions from surface runoff, streamflow,
and interflow caused by rainfall over the whole catchment.
However, the impact function performs better for a longer
aggregation time period (12 d). We argue that the precipita-
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Figure 2. Composite of flooding drivers and associated IWL response for the 2D (a) and 3D (b) cases, which are computed using all 800
annual maxima events. Solid lines represent the median of all values at a given time, whereas the shaded areas depict the values between the
5th and 95th percentiles. Vertical lines indicate the time windows used for the selected predictors (see Table 1).

Table 1. Selected predictors for the 2D and 3D cases.

2D case 3D case

P12 d,acum: accumulated precipitation over 12 d prior to WLmax P12 d,acum: accumulated precipitation over 12 d prior to WLmax
ST36 h,min: minimum SWL over 36 h prior to WLmax S72 h,mean: mean surge over 72 h prior to WLmax

T12 h,min: minimum tide over 12 h prior to WLmax

tion prior to 5 d helps to better capture the system memory
induced by soil moisture storage, as early rainfall can af-
fect WLmax by saturating the soil. Indeed, one of the factors
contributing to the largest event in 2012 was soil saturation
caused by above-normal rain in the preceding weeks (van den
Hurk et al., 2015). This is shown by the 95th percentile pre-
cipitation envelope in Fig. 2 that has a peak lasting more than
5 d and has a non-zero plateau for a time lag above 9–10 d.

For the 3D case, the level of the low tide during the an-
tecedent 12 h cycle to WLmax is clearly identified as a poten-
tial predictor. It varies over time due to astronomical cycles
and thus contributes to the timing of the reservoir drainage.
The contribution from the surge is better captured by taking
the average over the previous 72 h, which perfectly matches

the duration of the surge peak observed in Fig. 2b (for both
mean and extreme percentiles). It is reasonable to obtain
a representative time lag of 72 h as 3 d is the mean dura-
tion of cyclones over east-central Europe (Bartoszek, 2017).
When surge and tide are considered together (i.e. SWL; 2D
case), a trade-off between the contribution of surge and tide
is achieved by considering the minimum SWL over an inter-
mediate time period of 36 h. Figure 2a shows that for most
of the 800 events the reservoir gates were closed for at least
three tidal cycles (equaling 36 h). Differing time periods (12,
24, 48, 60, and 72 h) yield a worse performance of the impact
function (see Fig. S1). The minimum of the SWL is taken to
account for the human management of the system. In a nat-
ural system, the SWL would directly affect the maximum
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V. M. Santos et al.: Multivariate statistical modelling of water levels 3601

IWL (e.g. Bevacqua et al., 2017), leading to the mean or the
maximum SWL as likely predictors. In the study area, the hu-
man management results in the reservoir gates being opened
at minimum SWL. This relationship is also reflected by the
performance of the impact function for minimum, mean, and
maximum SWL of 36 h as predictors (see Fig. S1).

Due to our impact-focused approach (see Sect. 3.1), the
chosen predictors are conditioned to WLmax. This deviates
from other studies in which an n-way sampling approach is
followed (i.e. conditioning to one of the (extreme) driving
variables at a time) (e.g. Ward et al., 2018). The n-way ap-
proach is usually followed when information about the im-
pact variable is limited and/or when the focus is on identify-
ing the driver that contributes most to compounding effects.
Conditioning the drivers on the impact variable guarantees
an optimal training of the impact function (Sect. 3.3), and
all extreme IWLs leading to a significant impact are cap-
tured, including those that might not result from the com-
bination of extreme univariate events. Figure 3 compares the
distributions of P12 d,acum, ST36 h,min, and T12 h,min to the distri-
bution of the corresponding univariate annual maxima. The
selected predictors have notably lower values than the cor-
responding annual maxima, especially for precipitation and
tide variables. In contrast, the conditioned SWL distribution
is closer to their corresponding annual maximum distribu-
tion, which agrees with the dominant role of SWL as flood-
ing driver leading to extreme IWLs (as seen in Sect. 3.3).

3.3 Impact function

The impact function is designed to reproduce WLmax given
a set of predictors (see Sect. 3.2). We explored different ap-
proaches, including multiple linear regression (MLR), ran-
dom forest (RF) (Meinshausen and Ridgeway, 2006), and ar-
tificial neural networks with stochastic gradient descent for
regression (NN) (He et al., 2015; Phan, 2015). The number
of trees in the RF approach was set to 50, after performing a
sensitivity analysis assessing the overall performance of the
approach (estimated as root-mean-square error (RMSE) via
k-fold validation), depending on the number of trees. We se-
lected 50 trees, as larger values did not lead to an increase
in performance. The learning process of the NN used here
is based on stochastic gradient descent, and the applied acti-
vation function is the sigmoid function. The architecture of
the network is as follows: input layer with two (2D case) or
three (3D case) neurons, two hidden layers with eight neu-
rons each, and output layer with one neuron. The different
regression models are evaluated by means of the RMSE, the
mean absolute error (MAE), the linear (Pearson’s) correla-
tion coefficient r , and the error associated with return level
estimates. This procedure was carried out for different sets
of predictors in order to minimize the deviations between
the WLmax simulated by the RTC-Tools and the WLmax esti-
mated via the impact functions.

For the 2D case (Table 1), all impact function approaches
simulate WLmax with an RMSE of 9 cm or less, an MAE
of 7 cm or less, and r greater than 0.7 (see Fig. S2 in the
Supplement). RF exhibits the best performance by means of
r = 0.88, MAE= 4 cm, and RMSE= 6 cm. However, none
of these approaches reproduce well the extreme water levels
exceeding 0 m, which have the largest impact (see Fig. S3
in the Supplement). This is due to the optimization process
of the regression models, which uses a cost function penal-
izing the squared error of the estimated water level for each
of the 800 annual maxima. The 800 annual maxima are not
evenly distributed across the range of water levels between
−0.5 and 0.22 m: 82 % of the samples feature water levels
below −0.1 m, and 94 % of the events show water levels be-
low 0 m. Hence, the optimized regression models are biased
to reproducing WLmax between −0.5 and −0.1 m.

To overcome the underestimation of the most extreme
events, we apply a bin-sampling strategy to train the impact
function, optimizing the number of bins and samples per bin
in an iterative manner. All 800 values are divided into 12
classes (“bins”) according to their WLmax and distributed in
5 cm steps (see Table 2). From each of these bins, 10 samples
(9 for the highest bin) are randomly drawn, and the param-
eters of the impact function are optimized for the subset. To
avoid any bias due to the randomized selection, this proce-
dure is bootstrapped 1000 times, and the mean of the result-
ing parameters is taken for the final impact function. For the
regression models based on machine learning (RF, NN), the
implementation of this bin-sampling approach is not easy,
as a simple combination of the bootstrapped parameters is
not straightforward. For MLR, a combination of the linear
regression factors of the 1000 random runs can well be con-
structed by applying the arithmetic mean. Consequently, we
opt for MLR as the model of choice to define the impact func-
tion. This results in the final two-dimensional linear regres-
sion:

WLmax = − 0.1639+ 0.3998 · ST36 h,min

+ 0.0027 ·P12 d,acum. (1)

The comparison of WLmax simulated by the RTC-Tools
and WLmax estimated via Eq. (1) is shown in Fig. 4. After
standardization of the predictors by X̃ = (X−X)/Xsd, where
X and Xsd are the corresponding mean and standard devia-
tion, the dominant role of SWL compared to precipitation is
evident:

WLmax = − 0.1932+ 0.1033 · S̃T36 h,min

+ 0.0639 · P̃12 d,acum. (2)

For the 3D case (Table 1), we obtained:

WLmax = − 0.2645+ 0.4652 · S72 h,mean+ 0.3434 · T12 h,min

+ 0.0028 ·P12 d,acum. (3)

https://doi.org/10.5194/hess-25-3595-2021 Hydrol. Earth Syst. Sci., 25, 3595–3615, 2021



3602 V. M. Santos et al.: Multivariate statistical modelling of water levels

Figure 3. Density histograms for precipitation (a), SWL (b), and low tide (c) associated with all hourly time series (blue), with selected
predictors (conditioned to WLmax) (pink), and with the corresponding univariate annual maxima (green).

Table 2. Distribution of the bin-sampling classes.

Bin WL1 WL2 WL3 WL4 WL5 WL6 WL7 WL8 WL9 WL10 WL11 WL12

WLmax [m] <−0.4 (−0.4, (−0.35, (−0.3, (−0.25, (−0.2, (−0.15, −(0.1, (−0.05, (0, (0.05, > 0.1
−0.35) −0.3) −0.25) −0.2) −0.15) −0.1) −0.05) 0) 0.05) 0.1)

No. of samples 31 55 109 122 136 123 82 63 32 27 11 9

Figure 4. WLmax obtained by RTC-Tools vs. WLmax obtained us-
ing MLR with the bin-sampling approach for the 2D case (see Ta-
ble 1).

which has the following standardized version:

WLmax = − 0.1972+ 0.1110 · S̃72 h,mean+ 0.0644 · T̃12 h,min

+ 0.0663 · P̃12 d,acum. (4)

The 3D impact function shows slightly better performance
metrics than in the 2D case (r: 0.76, RMSE: 0.085 m, MAE:
0.066 m vs. r: 0.71, RMSE: 0.091 m, MAE: 0.071 m; see
Fig. S4 in the Supplement). However, the 2D model better
reproduces the extreme events over the flood warning level,

which is 7 cm Normaal Amsterdams Peil (NAP). For these
events, the RMSE of the 2D model amounts to 0.034 m,
whereas the RMSE of the 3D model amounts to 0.078 m.
This agrees with the performance of the return level estima-
tions: the 3D model performs slightly worse (generally more
tendency to underestimate than the 2D model; see Figs. S3
vs. S5).

3.4 Joint probability density function and return levels

The joint distribution of the selected predictors is modelled
via a copula function (Sklar, 1959; Nelsen, 2007) (see Sect. 1
in the Supplement). The selection of the marginal distribu-
tions and the dependence structure of the predictors is cru-
cial for a robust assessment of WLmax. The overall method-
ology to obtain the return level estimates is similar between
the 2D and 3D cases (see Sect. 3.1) and implemented as fol-
lows. (1) To separate marginal and dependence modelling,
data are ranked and transformed to be uniform in the unit
(hyper)square using rank statistics; (2) copula family and pa-
rameters are fitted to these uniform data with the maximum
pseudo-likelihood estimator (Kojadinovic and Yan, 2010);
(3) a total of 40 copula types are considered (VineCopula R
package, version 2.3.0), selecting the one leading to the low-
est Akaike information criterion (AIC) (Schepsmeier et al.,
2015). The adequacy of the selected copula model is as-
sessed using a goodness-of-fit test based on Kendall’s pro-
cesses (Genest et al., 2009; Wang and Wells, 2000); (4) suit-
able marginal distributions for the (unranked) defined pre-
dictors are identified, testing a wide range of distributions
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commonly used in hydrologic analysis and selecting the one
with the best fit (lowest AIC; Sakamoto et al., 1986); (5) the
joint probability distribution of the considered predictors is
obtained with the best fitted copula(s) and marginals; (6) as-
suming that the selected copula accurately represents the tails
of the distribution (an inherent assumption of the majority of
studies of this type), simulated events from this joint distribu-
tion are obtained by sampling uniform data from the copulas;
(7) sampled events are converted to real units with the previ-
ously fitted marginals; and finally (8) the obtained synthetic
samples are used to estimate WLmax via the impact function
explained in Sect. 3.3. Note that the fitted marginals are in-
tentionally not used for the copula fitting in order to make the
choice of the copula(s) totally independent from the choice
of the marginal(s) (Genest and Favre, 2007).

Once water levels have been calculated, the associated re-
turn periods are obtained using Weibull plotting positions
(Makkonen, 2006). Compounding effects are assessed by
comparing the return levels obtained by fitting the copula
model and the marginals to the dependent and the shuffled
(independent) data (Sect. 2). Copula models are used to gen-
erate many synthetic events of paired precipitation and surge
(up to 100 000) to produce stable return level estimates of
WLmax up to a 10 000-year return period. Although produc-
ing a 10 000-year data set from 800 years of empirical data
entails dealing with large uncertainties, especially for the
highest return levels, we chose that number because it es-
tablishes the standard level of protection in many places in
the Netherlands, especially those exposed to severe flooding
(Bouwer and Vellinga, 2007).

4 Results and discussion

The results of the statistical modelling framework are pre-
sented here. We find that the model with three predictors (3D
case), i.e. precipitation, surge, and tide, does not generally
outperform the model with two predictors (2D case), i.e. pre-
cipitation and SWL (see Table 1). Even though the impact
function of the 3D model shows slightly better performance
metrics than the impact function of the 2D model, the 2D
model shows a closer reproduction of the extreme events over
the flood warning level (see Sect. 3.3). Based on this evalua-
tion and following the parsimony principle, results of the 2D
case are presented in the article, leaving most of results of
the 3D case in the Supplement.

4.1 Dependence structure between SWLs and
precipitation

In order to better understand the underlying factors leading
to WLmax, this section explores the dependence structure be-
tween SWL and precipitation (2D case) using Kendall’s rank
correlation coefficient (τ ) (Kendall, 1938) and the joint PDF
(probability density function) of ST36 h,min and P12 d,acum. Dif-

ferent sources of variability are assessed, with a special focus
on the internal variability of the climate system.

4.1.1 Interpretation of τ : dependence vs. independence

The τ estimate between the defined predictors, i.e. ST36 h,min
and P12 d,acum, for the dependent data set amounts to −0.05,
differing from zero correlation at the 95 % significance level.
To further investigate the compound nature of the two predic-
tors, the same correlation is calculated using the shuffled (in-
dependent) data. In this case, τ amounts to −0.15. The neg-
ative τ between ST36 h,min and P12 d,acum is arguably related
to the positive contribution of both the SWL and precipita-
tion to IWL and therefore the negative slope of the WLmax
isolines as a function of these predictors: lower values of
one driver can be compensated by higher values of the other
driver to generate a given water level. This is illustrated with
a simple theoretical example in Sect. 2 in the Supplement
(and Fig. S6 in the Supplement). This example highlights that
when drivers positively contribute to increasing the impact,
then impact-focused predictors (i.e. predictors conditioned to
the impact) can have a negative τ for positively correlated
drivers. This example also illustrates that comparing the τ
between conditioned predictors with that obtained from an
independent data set provides information about the depen-
dence pattern among drivers. In our study, the τ obtained
from the predictors of the dependent case exceeds that ob-
tained from the independent case by +0.10, which arguably
indicates a positive dependence pattern between SWL and
precipitation. Similarly, the corresponding joint PDFs (see
Sect. 3.4) show the increased probability of having both ex-
treme ST36 h,min and P12 d,acum (leading to extreme IWLs) as
obtained from the original data, in comparison to the inde-
pendent case (see shaded orange area in Fig. 5). This agrees
with the findings of van den Hurk et al. (2015) obtained em-
pirically.

In summary, as a result of our impact-focused approach,
the correlation between the defined predictors (the explana-
tory variables of the impact function) does not duplicate the
dependence between drivers (precipitation and SWLs) lead-
ing to extreme IWLs. Such conditioning complicates the in-
terpretation of the dependence structure and compound ef-
fects but optimizes the performance of the impact function
and hence the performance of the statistical modelling of
return level estimates. It is therefore important to distin-
guish between the correlation/dependence between the se-
lected predictors and the correlation/dependence between the
drivers (although the former informs the latter). There is cer-
tainly a number of ways one could define the drivers to bet-
ter portray such dependence, but regardless of that, when
broadly speaking about positive dependence/correlation be-
tween drivers, one would refer to the increased likelihood of
concurrent drivers that contribute to impactful events, i.e. the
so-called “compound effects”. As illustrated by the example
in the Supplement and shown in Fig. S6, positive compound
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Figure 5. Scatter plot of ST36 h,min and P12 d,acum and its joint PDF corresponding to original data (black) and shuffled data (red). Shaded

orange area highlights the increased probability of extreme ST36 h,min and P12 d,acum for the original data.

effects are not necessarily associated with positive values of
τ between the corresponding conditioned predictors. Com-
pound effects can still be investigated by comparison with es-
timates obtained from shuffled (independent) data, expressed
by either τ or the associated return level estimates (as shown
in Sect. 4.2). For example, the positive dependence between
surge and precipitation is not depicted by the plain correla-
tion between ST36 h,min and P12 d,acum but by the positive shift
between the corresponding correlations obtained for the orig-
inal and shuffled data. Moreover, although such dependence
has an impact on IWL return levels (Sect. 4.2), the fact that
τ between ST36 h,min and P12 d,acum is weak also indicates that
the dependence between drivers is not very strong.

4.1.2 Seasonal variability

To increase process understanding and strengthen the link be-
tween the statistical framework and the physical processes,
we investigate the seasonal variability of the dependence
structure between ST36 h,min and P12 d,acum; τ is lowest dur-
ing winter (DJF: −0.13), increases in spring (MAM: 0.01)
and summer (JJA: 0.10), and drops again in the fall (SON:
0). This variability is caused by the underlying physical fac-
tors leading to extreme IWLs, which depend on the season-

ality of surge and precipitation in this area, as explained in
Sect. 2 (see also Fig. S7 in the Supplement). In general,
SWL contributes more to WLmax than precipitation, which
is explained by the dominant role of surge (see Sect. 3.3).
The monthly frequency of the annual maximum of the min-
imum SWL over 36 h time windows (without being condi-
tioned to WLmax) shows the highest values between Septem-
ber and December (see Fig. S7b), which is similar to the sea-
sonal course of the monthly frequency of WLmax events (see
Fig. 6). In winter, the contribution of SWLs intensifies, and
it becomes the most predominant driver. This agrees with the
lowest seasonal correlation between ST36 h,min and P12 d,acum
obtained for this season. In summer, the likelihood of heavy
precipitation increases (see Fig. S7b), which increases the
chance of compound surge and precipitation leading to ex-
treme IWLs, which is reflected in a larger correlation be-
tween ST36 h,min and P12 d,acum in this season.

We also investigated separating the WLmax events into sea-
sonal clusters to build the impact function. It did not lead to
an improved model representation of WLmax events in terms
of RMSE (not shown) but led to increased uncertainty for
large return periods due to a smaller statistical sample. The
latter was particularly critical for spring and summer, as the
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Figure 6. Frequency of WLmax events occurring each month (a), monthly mean of WLmax (b), ST36 h,min (c), and P12 d,acum (d).

number of annual maxima events is unevenly spread over the
annual cycle, and few of these events occur in the warmer
seasons. The majority of WLmax occurs in the fall (Fig. 6a)
for which IWL is also larger (Fig. 6). Therefore, we continue
our analysis with all-year results and ignore the seasonal sig-
nature of IWL return levels.

4.1.3 Variability as a function of tides

The correlation between SWLs and precipitation varies as a
function of the tide elevation, as shown in Table 3. There
is a tendency of intensified positive dependence between

ST36 h,min and P12 d,acum for higher T12 h,min, i.e. for smaller
tidal ranges and higher low tides. This is apparent for both
the surge predictor in the 3D case (S72 h,mean) and the SWL
predictor (ST36 h,min) in the 2D case. This result is in contrast
with findings of van den Hurk et al. (2015), who argued that
surge and precipitation had a weaker correlation for most ex-
treme WLmax which they attributed to low tidal range be-
tween high and low tides, as extreme IWLs tend to occur in
neap tide conditions.

Indeed, there is a positive dependence between T12 h,min
and WLmax (τ = 0.10), which is reflected by a positive shift
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Table 3. τ estimate between ST36 h,min and P12 d,acum, as well as
S72 h,mean and P12 d,acum, as a function of T12 h,min.

T12 h,min range ST36 h,min S72 h,mean

T12 h,min < 10th percentile −0.08 −0.13
T12 h,min < 50th percentile −0.06 −0.09
T12 h,min > 50th percentile −0.02 −0.02
T12 h,min > 90th percentile 0.08 0.15

of the low tides prior to WLmax with respect to the distri-
bution of all low tides (see Fig. 3c). Also, the upper 10th
percentile of T12 h,min occurs in the fall season (Fig. S8 in
the Supplement), when the largest water level events tend
to occur (Fig. 6). This is consistent with the lower ampli-
tude in the major tidal constituents in September/October in
the North Sea (Gräwe et al., 2014). However, P12 d,acum and
particularly ST36 h,min have a greater impact on WLmax than
T12 h,min. This is reflected in their respective rank correlation
coefficients: τ = 0.23 (P12 d,acum and WLmax) and τ = 0.42
(ST36 h,min and WLmax) (τ = 0.36 for S72 h,mean and WLmax).

Moreover, we argue that it is not evident whether the cor-
relation between surge and precipitation is weaker for ex-
treme IWL return levels. The tail of the return level plot is
affected by sampling variability. As an example, we calcu-
lated the variation of the range of uncertainty in estimat-
ing the 800-year return level by sampling 800 and 100 000
events, respectively, from our statistical framework for both
the independent and dependent cases. We empirically obtain
that, with a single 800-year realization, there is a probabil-
ity of 12 % of the 800-year return level from original data to
be smaller than the 800-year return level based on the shuf-
fled data. However, when sampling 100 000 events, the prob-
ability is virtually zero. A visualization of this example is
given in Fig. S9 in the Supplement. This indicates that esti-
mates about the variability of the role of driver dependence
on generating high IWLs might be subject to sampling un-
certainty for return periods of similar value as the length of
sample size. In any case, clustering by tides reveals that a
weaker correlation between ST36 h,min and P12 d,acum is more
likely to happen with lower T12 h,min and therefore larger tidal
ranges. Separating the statistical analysis into tidal clusters
did not lead to improvement in terms of RMSE (not shown),
but we further investigate the tide effect in the 3D case (see
Sect. 4.2).

4.1.4 Climate variability

The internal climate variability can have profound effects
on the evaluation of compound flooding hazards, as the de-
pendence structure and correlation of predictors is highly
modulated by how climatic variables affect those predic-
tors. To assess the effect of the internal variability of the
climate system on the estimation of the correlation between

the selected predictors, the correlation between ST36 h,min and
P12 d,acum is estimated for each individual member of the
SMILE (50 years per member) (Fig. 7a). The correlation
ranges between−0.18 and 0.04, and its mean is−0.05 (equal
to the value obtained using 800 years of data). However, none
of these values are statistically significantly different from
zero, given that reducing the sample size increases the chance
of obtaining non-statistically significant correlation estimates
at a given significance level (here 95 %).

The correlation difference between original and shuffled
data (which indicates the positive dependence between surge
and precipitation; see Sect. 4.1.1) is largely affected by cli-
mate variability. Figure 7b–k shows the variability of τ and
its statistical significance (at the 95 % confidence level) for
the shuffled data, which leads to a range of the correlation
difference from −0.26 to 0.36 accounting for all 10 shuf-
fles. This indicates that internal climate variability has a pro-
nounced impact on the estimation of compound effects. Sec-
tion 4.2 further investigates this matter in terms of the return
levels estimates.

4.2 Return water level estimates: compound effects
and climate variability

In this subsection, the proposed statistical framework is eval-
uated in terms of the IWL return levels, using the empirical
estimates provided by van den Hurk et al. (2015). We also de-
scribe the results from the marginal and dependence analysis,
as well as the sensitivity of the three methodological com-
ponents (impact function, marginal distributions, and depen-
dence assessment) to internal climate variability represented
by the inter-run variability across the 16 SMILE members.

4.2.1 Joint probability density function

To estimate WLmax based on the 2D model, the normal and
the Weibull distributions are selected as the best-fit proba-
bility distributions to fit the marginals for SWL and precip-
itation, respectively. To represent the joint behaviour of the
two selected predictors, the rotated Tawn type-I copula is
selected with associated negative τ (−0.05). As explained
in Sect. 4.1.1, a negative τ for the predictors is compatible
with positive dependence between drivers due to the impact-
focused approach. The Tawn copula is an asymmetric exten-
sion of the Gumbel copula. This asymmetry feature agrees
with the scatter plot in Fig. 5. When ST36 h,min is low, WLmax
events occur for relatively high P12 d,acum (compared to the
other WLmax events), while ST36 h,min does not need to be par-
ticularly high when P12 d,acum is low. This is due to the asym-
metric contribution of P12 d,acum and ST36 h,min to WLmax with
the surge predictor being the dominant predictor, as seen in
Sect. 3.3.

Similarly, in the 3D case a normal distribution fits both tide
and surge accurately, and precipitation is well described by a
Weibull distribution. The vine structure that most accurately
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Figure 7. Variability of copula fitting among the sixteen 50-year runs for original (a) and shuffled data (b–k). Red dots indicate the indepen-
dence test is rejected.

describes the dependence between these three variables con-
tains the following bivariate copulas: rotated BB1 (270◦) (de-
pendence between P12 d,acum and T12 h,min), Frank (depen-
dence between T12 h,min and ST72 h,mean), and rotated Clay-
ton (90◦) (dependence between T12 h,min given ST72 h,mean,
and P12 d,acum given T12 h,min). A visual representation of the
structure of the regular vine is given in Fig. S10 in the Sup-
plement.

4.2.2 Compound effects

Generally, the calculation of return periods for independent
drivers might be performed by forcing an independence cop-
ula or by randomly sampling from the fitted marginals di-
rectly (Genest and Favre, 2007). However, we selected the
predictors conditioned to WLmax in order to ensure a close
reproduction of WLmax calculated by the impact function.
This step affects the correlation between the predictors (see
Sect. 4.1.1 and Fig. S6), which is why zero correlation be-
tween SWL and precipitation does not equal to zero corre-
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lation between ST36 h,min and P12 d,acum. In fact, τ associated
with ST36 h,min and P12 d,acum obtained from the shuffled data
(independent case) amounts to −0.15. Hence, our statistical
framework cannot reproduce the return period curves of the
shuffled data when using an independent copula to describe
the dependence structure between ST36 h,min and P12 d,acum.
Therefore, to quantify the compound nature of WLmax, we
used the return levels estimated from the independent drivers
(shuffled data) as reference.

To assess the independent case, we use the predictors de-
fined in Table 1 and obtained from the shuffled data (see
Sect. 2) and we follow the same procedure as for the de-
pendence case to obtain the corresponding IWL return lev-
els. Results for both cases are shown in Fig. 8 (2D case)
and Fig. S11 in the Supplement (3D case), where IWL re-
turn level estimates are compared against the empirical esti-
mates by van den Hurk et al. (2015). Both 2D (Fig. 8) and
3D (Fig. S11) approaches reproduce compounding effects
with high skill, as shown by a comparison between the em-
pirical and simulated data for equivalent return periods via
RMSE. The RMSEs of the 2D case (dependence and shuf-
fles) amount to 0.02 m, where the RMSEs of the 3D case
(dependence and shuffles) amount to 0.019 m. The small dif-
ference of 1 cm between the performance of the 2D and 3D
cases shows that adding complexity to our framework can
only slightly improve the performance. The almost equiva-
lent performance of both models led us to present the sim-
pler model in the article as a preferable choice, and we leave
the more complex model in the Supplement. In addition, as
seen later on in Sect. 4.2.3, the 3D model is more sensitive to
climate variability uncertainty.

Despite overall good performance, both 2D and 3D ap-
proaches differ slightly from the empirical data for the high-
est return periods. However, as noted in Sect. 4.1.3., the tail
of the return plot is sensitive to the number of simulations
used to obtain such estimates (see Fig. S9). This explains the
disagreement between the modelled and the empirical esti-
mates for large return periods (modelled lines are more par-
allel than empirically estimated lines), as we obtained these
curves by simulating larger samples (100 000 events) than the
empirical analysis (800 events).

4.2.3 Climate variability

In Sect. 4.1.4 we showed the effect of the climate variability
on the predictors’ dependence structure by exploring τ . Here,
we explore the effect of climate variability on each compo-
nent of our statistical framework: the impact function, the
marginal distribution, and the copula function. In particular,
we investigate the impact on (1) the estimates of IWL return
levels corresponding to the dependence case (Fig. 9) and (2)
the ratio of the estimated return periods from the shuffled
predictors (RPs) to those derived by accounting for depen-
dence between predictors (RPd) (Fig. 10). This ratio indicates
the bias in return period calculation if dependence between

drivers was ignored and is used as a proxy of the compound
effects, i.e. the increased probability of extreme IWL due
to the positive dependence between SWLs and precipitation.
Table 4 specifies the settings used to produce Figs. 9 and 10.

First, Fig. 9a shows IWL return level estimates for the bi-
variate case, and associated variability computed from all
subsets of 50 years for each component. Large uncertainty
intervals surround the average of values based on these 50-
year subsets, and this average return period curve is shifted
downwards compared to the 800-year reference curve ap-
proach. The general tendency of the regression model to sim-
ulate lower return levels, especially for high return periods,
is mainly caused by the fact that we cannot perform the bin-
sampling approach with only 50 years of data. Indeed, not
performing the bin-sampling procedure when using the en-
tire data set (800 years of data) leads to a very similar result
(Fig. 9b). The training of the impact function by means of
bin-sampling eliminates the tendency to simulate lower re-
turn levels, as shown in Fig. 9c where the proposed function
(Eq. 1) is applied while using 50-year ensembles for marginal
and copula fitting. Yet, uncertainty is not reduced when us-
ing the bin-sampling approach with 800 years, which illus-
trates that most uncertainty related to internal climate vari-
ability is introduced by other framework components. Simi-
lar to Fig. 9a and c, Fig. 10a and c show the variability of the
return period ratio when 50-year ensembles are used for all
framework components and when the impact function with
bin sampling is applied, respectively. Return period ratios are
likely to vary significantly when only 50 years of data are
available as noted by the large green intervals (Fig. 10a and
c). Furthermore, there is a tendency to underestimate com-
pounding effects even when the impact function with bin
sampling is used (Fig. 10c).

Second, the effect of climate variability on copula fitting
and its impact on the estimation of IWL return levels are
shown in Fig. 9d. Here, we apply the optimally trained im-
pact function and use the entire data set to fit the marginals
while using 50 years of data for the copula fitting. As ex-
pected, the copula fitting does not generate significant differ-
ences between the 50-year runs as τ becomes virtually zero
for all 50-year runs (see Sect. 4.1.4, Fig. 7a). This low vari-
ability induced by copula fitting, however, does not imply
that bivariate copula models are generally unaffected by cli-
mate variability. In this study, copulas do not play a signifi-
cant role in the estimation of IWL return periods for the 2D
dependence case. While there is dependence among drivers,
Kendall’s τ for the 800 years of the selected (conditioned)
predictors is very close to zero. Hence, shortening the data set
length does not affect the reliable estimation of IWL in terms
of copula modelling for the dependence 2D case. Nonethe-
less, climate variability does affect the estimation of IWL for
the shuffled data (not shown) due to the inherent variability
in the corresponding τ and copula fitting (Fig. 7b–k). This
suggests that the use of short records probably affects the
estimation of compound effects. Indeed, Fig. 10d clearly il-
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Figure 8. IWL return level against estimated return period using a bivariate copula model (2D case). Blue and red dotted lines depict the
dependence and independence cases, respectively. Transparent red denotes confidence intervals, which account for the uncertainty range
between the 5th and 95th percentiles, as computed from all shuffles. Light blue dots and orange dots represent the return values empirically
obtained by van den Hurk et al. (2015).

Table 4. Settings used in subpanels of Figs. 9 and 10 to assess climate variability (green).

50-year runs 800-year ensemble

Subpanels Impact function Copula SWL PDF Precipitation PDF Impact function Copula SWL PDF Precipitation PDF

a x x x x
b x x x x∗

c x x x x
d x x x x
e x x x x
f x x x x

∗ Impact function based on MLR with standard sampling; i.e. the bin-sampling approach is not implemented.

lustrates that the use of small samples to fit the copulas tends
to lead to an underestimation of compound effects. Climate
variability also causes a large uncertainty of return period ra-
tios when copulas are derived from 50-year time series.

Third, to explore the effect of climate variability on
marginal fitting, we tested and fitted different suitable proba-
bility distributions to the marginals of all 50-year ensembles,
while using 800 years for copula fitting and the optimally
trained impact function to transform simulations. A compar-
ison between Figs. 9e, 10e, 9f, and 10f shows the uncertainty
associated with SWL and precipitation data marginal fitting.
We find that most uncertainty in estimating IWL return lev-
els is associated with the fitting of the SWL distribution
(Fig. S12a in the Supplement). This uncertainty is reflected in
the IWL estimates, since the SWL is the predominant driver.
Furthermore, comparing Fig. 10d–f reveals that the tendency
to underestimate compounding effects in Fig. 10d is mainly
introduced by the copula fitting. Hence, short records might

hinder a proper estimation of compound effects due to poor
copula fitting.

An analogous uncertainty analysis was performed for the
trivariate case (Fig. S13 in the Supplement), examining the
uncertainty associated with each component of the proposed
statistical framework. Although generally similar insights
were obtained as for the bivariate uncertainty assessment,
some differences are worth mentioning. For instance, copula
fitting (Fig. S13c) presents larger uncertainty intervals than
for the bivariate case. As the predictors are defined differ-
ently in the trivariate case, the correlation between them has
also changed and has become crucial to reproduce IWL de-
pendence curves. In addition, separating SWL into surge and
tidal range reveals that marginal fitting uncertainty is mostly
caused by surge, followed by tides (see Fig. S12c and d).
Although tidal range is an important factor determining the
occurrence of extreme IWL in our study case, the surge is the
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Figure 9. IWL return level against estimated return period using a bivariate copula. Blue dots depict the return level estimates obtained
using the proposed statistical framework (using 800 years of data). Transparent green illustrates the uncertainty associated with internal
climate variability, represented by bounds computed using the 5th and 95th percentiles from all 50-year ensembles. Opaque green shows the
median value computed from all ensembles. This is assessed for each component of the methodology: (a) 50-year ensembles are used for all
components; (b) same as (a) but MLR impact function is trained with standard sampling using 800 years of data; (c) same as (b) but using
bin-sampling approach; (d) 50-year runs are used for copula fitting only; (e) 50-year runs are used for SWL marginal fitting only; and (f)
50-year runs are used for precipitation marginal fitting only (see Table 4).

most important variable explaining the behaviour of IWL (as
seen in Sect. 3.3, Eq. 4).

In summary, we find that the internal variability of the cli-
mate system represented by the variability between the six-
teen 50-year members induces a large uncertainty range at
every step of our statistical framework. The impact func-
tion cannot be properly calibrated with 50-year data. Fur-
thermore, compound effects tend to be underestimated when
applying short records to fit the copula.

5 Conclusions

In this study we developed an impact-focused copula-based
multivariate statistical framework that produces robust esti-
mates of compound extreme inland water return levels (IWL)

for a highly managed reservoir in the Netherlands. This work
was motivated by a near-flooding event in 2012, which was
empirically analysed by van den Hurk et al. (2015) based
on a single model initial-condition large ensemble (SMILE)
consisting of a set of sixteen 50-year simulations. Like in
van den Hurk et al. (2015), we used these 16 members as
800 years of current climate conditions that account for the
internal variability of the climate system. In particular, we
defined simulations of the IWL as the impact variable and
still water level (SWL) and precipitation as the underlying
drivers. To assess compounding effects, we used a random-
ized ensemble of independent drivers which van den Hurk
et al. (2015) obtained by shuffling the 50-year runs, thereby
removing the correlation between surge and precipitation but
preserving their climatological characteristics.
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Figure 10. Compound effect (estimated as ratio between return periods as obtained from shuffled and original data) against IWL return
level using a bivariate copula. Blue dots depict the values obtained using the proposed statistical framework (using 800 years of data).
Transparent green illustrates the uncertainty associated with internal climate variability, represented by bounds computed using the 5th and
95th percentiles from all 50-year ensembles. Opaque green shows the median value computed from all ensembles. This is assessed for each
component of the methodology: (a) 50-year ensembles are used for all components; (b) same as (a) but MLR impact function is trained with
standard sampling using 800 years of data; (c) same as (b) but using bin-sampling approach; (d) 50-year runs are used for copula fitting only;
(e) 50-year runs are used for SWL marginal fitting only; and (f) 50-year runs are used for precipitation marginal fitting only (see Table 4).

The high degree of human management in the system stud-
ied poses a challenge to select suitable predictors and subse-
quently developing an impact function that is skilful at pre-
dicting IWLs as a function of such predictors. We considered
bivariate and trivariate models (which were implemented af-
ter separating SWL into surge and tidal ranges), resulting
in similar performance at reproducing the return levels by
van den Hurk et al. (2015). Predictors were selected after
an iterative process (guided by composite analysis) to opti-
mize the performance of the impact function and return level
estimates. After testing several options, we defined WLmax
(annual maxima of IWL) as predictand, and the 12 d cumu-
lative precipitation and 36 h minimum SWL prior to WLmax
as predictors. The resulting impact function is a multilinear
regression model with a bin-sampling approach that gives

more weight to the most extreme IWL events in the calibra-
tion process. SWL, and in particular surge, is found to be the
predominant driver.

Our statistical model shows that, although not very strong,
the dependence structure between drivers (SWL and precip-
itation) contributes to increased IWL return levels, as was
found empirically by van den Hurk et al. (2015). Due to the
conditioning of the proposed predictors on the impact vari-
able, the positive dependence is implicitly assessed by com-
paring the joint probability distributions and return level es-
timates to results obtained from the shuffled (independent)
data. Some extreme IWLs are primarily driven by surge (es-
pecially those occurring in winter), but compound processes
increase for other seasons. A copula-based multivariate sta-
tistical framework is generally able to capture the complex
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compound nature of precipitation and SWL and to repro-
duce extreme IWL return levels at the local scale, also under
conditions where the strong management of the hydrological
system was not explicitly represented in the underlying data.

Furthermore, we performed a unique uncertainty assess-
ment to explore the impact of internal climate variability
on the return water level estimates. The use of a subset of
50 years of data (which is the typical maximum record length
available from observational records) was tested for different
components of our framework, namely the impact function,
the copula fitting, and the marginal fitting. Using an impact
function with standard sampling leads to a consistent under-
estimation of the return levels, as the bin-sampling approach
is not feasible for 50 years of data. The marginal fitting of
surge is the factor that most contributes to uncertainty of the
return level estimates. For the 2D case, copula fitting with
small samples does not lead to additional uncertainty in the
return level estimates. However, low variability provided by
copula models is due to their insignificant role in the estima-
tion of IWL return level for the dependence 2D case, as cor-
relation between the selected predictors (conditioned to IWL
annual maxima) is close to zero. Indeed, the 2D case could be
simplified with an independent copula with no major impact
on return level estimates. Yet, dependence models are still
crucial to reproduce and understand compounding effects, as
the dependence structure does play a significant role when
modelling the shuffled data. The use of 50-year subsets leads
to a tendency to underestimate the increased probability of
extreme IWL due to inherent positive dependence between
SWL and precipitation. For the 3D case, increased depen-
dence between the predictors and a larger model complexity
leads to increased uncertainty induced by copula fitting when
shorter records are used. We emphasize that these findings
are highly case specific and dependent on the chosen sta-
tistical framework. However, this case study illustrates that
internal variability can be a major source of uncertainty for
estimation of extreme IWLs and the associated compound
effects.

Although the results presented here are site specific, the
general framework can be transferred to other locations,
given the availability of relatively long overlapping records
of flooding drivers and impact variables. If the size of
the database needs to be extended prior to developing a
multivariate statistical framework, a regional climate model
(RCM) SMILE and a hydrological management simulator
to derive empirical estimates could be used (e.g. van den
Hurk et al., 2015). Depending on the size of the ensem-
ble and spatial resolution of the RCM, large computational
resources may be required. Defining appropriate predictors
leading to a satisfying performance of the impact function
depends on the hydrological characteristics and management
of a given system. For systems with low or no management,
we would expect a more straightforward construction of an
impact function, but appropriate lags between drivers and
impacts should be accounted for. Characterizing probabil-

ity distributions that precisely describe the marginals and fit-
ting copulas that accurately capture the dependence structure
largely depend on data availability.

The proposed framework assumes that waves are not an
important driver of extreme IWLs, and only low-frequency
sea-level components are accounted for. This is reasonable
considering the characteristics of the study area: (1) shelter-
ing effects of barrier islands protecting from extreme wave
climate and (2) shallow waters inducing wave breaking for
large wave heights. In contrast, surge is a relevant driver of
extreme SWLs in such shallow water environments. How-
ever, if our framework were to be implemented in areas ex-
posed to extreme waves, ocean wave predictors would need
to be included in the model. Yet the proposed framework de-
scribed in Sect. 3 would still be valid.

The surge is calculated from the meteorological forcing for
all relevant timescales, from daily to multi-annual, using the
empirical relationship between surge and model-generated
wind. Apart from the astronomical tide, no other sources of
variability are incorporated into the sea-level records. There-
fore, the main limitation of this study is the exclusion of
long-term nonstationary sea-level processes, such as sea-
level rise which plays a large role in increasing extreme
SWLs (Taherkhani et al., 2020). However, since our focus
is on the assessment of historical extreme sea-level climate
with the focus on the effect of climate variability, this as-
sumption is reasonable.

We conclude that larger sample sizes than what we would
typically obtain from observational data are needed in order
to reproduce representative extreme IWL statistics. Further-
more, observations are one possible realization of the climate
system within its boundaries of internal variability. There-
fore, short records present challenges to properly estimate
the relationship between predictors and predictand, marginal
distributions, and dependence patterns. Large sample sizes
made available from the application of SMILEs are valuable
to investigate compound events and quantify the associated
uncertainties induced by internal variability.

Data availability. The SMILE data are identical to the data set
used by van den Hurk et al. (2015), but they are not made
publicly accessible due to the large volume and associated cost
for a (semi-)permanent repository. Any reasonable request for
access to the SMILE data can be addressed to Bart van den
Hurk. Post-processed quantities used for the analysis described
in this paper are available at https://github.com/victor-malagon/
CF_theNetherlands_data (last access: 14 October 2020) and
https://doi.org/10.5281/zenodo.4088763 (Santos, 2020).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/hess-25-3595-2021-supplement.
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