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Abstract—Manufacturing defects in FinFET SRAMs can cause
hard-to-detect faults such as Random Read Faults (RRFs).
Detection of RRFs is not trivial, as they may not lead to incorrect
outputs. Undetected RRFs become test escapes, which might lead
to no-trouble-found devices and early in-field failures. Therefore,
the detection of RRFs is of utmost importance. This paper
proposes test solutions to detect RRFs and reduce test escapes.
To achieve this, we first statistically analyze the failure rate due
to RRFs, followed by an experimental study of stress conditions’
(SCs) impact on detecting RRFs, such as test algorithms, supply
voltage, and temperature. Based on the results, we propose a
new Design-For-Testability (DFT) scheme for FinFET SRAMs to
detect such faults using SCs that improve the detection rate of
RRFs. This scheme introduces a negligible area and test time
overhead while significantly enhancing RRF detection. Hence,
using the proposed DFT leads to reduced test escapes and,
consequently, higher-quality FinFET SRAMs.

Index Terms—Memory Testing, Test Escapes, SRAM, FinFET,
DFT

I. INTRODUCTION

FinFET technology has been used to continue the scaling
down of technological nodes according to Moore’s Law.
The complex structure of FinFETs provides improved short-
channel behaviors while overcoming the planar CMOS tech-
nology’s sub-threshold leakage [1]. Nevertheless, the process
to manufacture such an intricate structure may also introduce
defects in the transistor’s features, such as opens in fins [2],
pinholes in the oxide [3], and opens in the 3D gate [4].
These defects may affect FinFET SRAMs and cause Hard-
to-Detect faults [5] such as Random Read Faults (RRFs), i.e.,
a significantly reduced bit line swing [6]. In the presence of
an RRF, it is impossible to guarantee that the Sense Amplifier
(SA) will output the cell’s content – some RRFs will lead to
incorrect outputs, while others will not. Tests that rely on fault
observation (e.g., March tests) can only detect RRFs that cause
incorrect functional behavior. However, it is still essential to
detect RRFs that do not lead to incorrect read outputs as they
become test escapes, which are a known cause of no-trouble-
found devices [7] and in-field reliability issues [8]. Therefore,
new high-quality methodologies to detect RRFs are essential
to reduce test escapes and improve the quality and reliability
of FinFET memories [9].

Unlike deterministic faults, i.e., faults that always lead to
incorrect functionality, detecting RRFs is challenging. March

This work is supported by European Union’s Horizon 2020 Research and
Innovation through RESCUE project under grant 722325.

algorithms such as SS, AB, and FFDD [10–12] can easily
detect deterministic faults; however, they can detect only the
portion of RRFs that will lead to incorrect behavior. Therefore,
more complex test solutions (e.g., more extreme stressing
conditions and Design-for-Testability (DFT) circuits) must be
used when targeting RRFs. Examples of such test solutions
are schemes that change how read operations are executed
[13–15], and schemes that monitor memory parameters [16–
18]. However, both approaches have limitations; the former
may over-test the memory due to inappropriate stresses, thus
leading to yield loss, while the latter may be negatively
impacted by process variation (PV) effects, thus leading to
test escapes. Hence, a DFT that reduces test escapes due to
RRFs while minimizing yield loss is still missing.

This paper addresses these problems by proposing test
solutions to reduce RRF test escapes in FinFET SRAMs. First,
we statistically assess the expected incorrect output rate due
to RRFs. We show that the failure rate can be modeled by
the distribution of random variations (e.g., PV, noise) during a
read operation. We then conduct simulation experiments with
a FinFET SRAM under various stressing conditions (SC) to
identify which lead to the highest RRF detection. Finally, we
propose a new DFT scheme that uses the identified SCs to
maximize RRF detection. Furthermore, calibration schemes
can be easily integrated into this scheme to overcome PV
effects and avoid over-testing. Compared to the state of the
art, this DFT efficiently improves the detection of RRFs with
minimal area overhead and yield loss by using appropriate SCs
only. The main contributions of this paper are as follows:

• A model to estimate RRF’s failure rate.
• An extensive experimental analysis of the SCs’ impact

on RRF detection.
• A new DFT scheme for RRFs that uses ideal SCs to

maximize fault detection and minimize yield loss.
• Validation and evaluation of the proposed DFT scheme.

This paper is organized as follows. Section II proposes a
model to estimate RRF failure rate. Section III explores the
RRF’s detection dependency on SCs. Section IV introduces a
DFT to improve the detection of RRFs. Section V presents a
brief discussion on the DFT and its limitations. Finally, Section
VI concludes the paper.
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II. RRFS AND THEIR IMPACT

A. Causes & Definition

SRAMs are volatile memories consisting of a cell array
and peripheral circuitry. The cell array consists of rows and
columns of cells connected horizontally by word lines (WLs)
and vertically by pairs of bitlines (BL and BL). The peripheral
components (decoders, sense amplifiers (SAs), output latches,
write drivers, prechargers) provide write and read capabilities
to the SRAM. SRAMs can be designed using FinFET devices,
which are three-dimensional, multi-gate transistors [1]. During
their manufacturing process, small particles and lithography
inconsistencies can result in defects in their structure [19],
e.g., partial opens, misplaced connections, and damaged fin
structure [2–4]. These defects may impact a cell’s ability to
discharge its BLs during a read operation and hence impact
the cell’s BL swing, which is the voltage difference between a
BL pair when the SA is enabled, i.e., BL swing = |BL−BL|.
A Random Read Fault (RRF) occurs when this swing is too
small for the SA to guarantee a correct output, resulting in a
random output, i.e., either ‘0’ or ‘1’ [6].

The Fault Primitive notation [20] describes RRFs as faults
in which the read output element (R) is expressed as ?. For
example, 〈1r1/1/?〉 denotes a read ‘1’ operation that does not
impact the cell’s content but returns a random value. When the
output matches the cell’s content, the RRF is not detected.
Because RRF detection is not guaranteed by performing a
sequence of write and read operations, they are classified
as Hard-to-Detect faults [15]. If not detected, RRFs become
test escapes, a known cause for no-trouble-found components
reliability issues [7, 8]. Therefore, detection of RRFs is critical
to assure high-quality FinFET SRAMs.

B. Expected Failure Rate Analysis

It is statistically expected that some RRFs will lead to
correct outputs and thus test escapes. The remaining will lead
to a failure, i.e., the SA will not output the expected logic
value, thereby enabling RRF detection. Two primary metrics
determine the read operation outcome: the SA offset and
BL swing. The SA offset is the voltage shift that creates a
mismatch in the SA’s cross-coupled inverter pairs’ strengths.
In a PV-free SA, this offset is 0 V. However, PV will cause one
pair to be stronger than the other, offsetting the SA towards the
logic value ‘1’ or ‘0’. The SA outputs the correct value only if
its offset is smaller than the BL swing; we name this voltage
difference as ∆V, where ∆V= BL swing−SA offset voltage.
Consequently, if ∆V < 0, the SA outputs the incorrect value.
For example, an SA with 3 mV offset will correctly output
the cell’s content if the BL swing is greater than 3 mV. We
use the variation of these two parameters that form ∆V(i.e.,
SA offset and BL swing) to express the failure rate.

We first consider SA’s offset variation. In this work, we use
a traditional 6T SA design; an in-depth discussion of the SA’s
implementation will be given in Section IV-B. We performed
Monte Carlo (MC) analysis (20,000 simulations) on the SA,
and obtained a (rounded) mean (µ) offset of 0 V and a standard
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Figure 1. Expected failure rate for a given BL swing.

deviation (σ) of 6 mV. The probability that the SA’s offset
variation is within or outside a given range can be calculated
by the cumulative distribution function [21]; the probability
that this variation is outside an nσ range (i.e., the SA’s offset
is greater than |nσ|, where n = 1, 2, 3...) is given by 1 −
erf(nσ/

√
2), where erf is the error function

erf (z) =
2√
π

∫ z

0

e−t2dt.

We then relate nσ to the BL swing, i.e., SA’s input. The
probability that the SA offset is greater than σ, 2σ, etc, is by
default the probability that the SA offset is greater than 6 mV,
12 mV, etc. This failure rate function is plotted in Fig. 1; it
represents the probability of an incorrect output value (i.e.,
failure) for a given BL swing input. Likewise, it also shows
the likelihood of no failure, and thus test escapes.

A second failure rate can be estimated based on BL swing
variation. Consider a defect that bridges a column’s BL pair;
every read operation on this column will be impaired. If the
impact is significant, this defect will cause RRFs. Nonetheless,
the BL swing among this column’s cells will slightly vary
from one to another due to PV; some cells will lead to
correct outputs, while others will not. Considering that the
SA voltage offset is fixed after manufacturing, the probability
p of incorrect output becomes a function based on the BL
swing variation from one cell to another. In details, p is
the probability that the BL swing variation will counter the
voltage difference between mean BL swing in the column and
the SA’s offset, i.e., p = Pr(BL swing variation < −∆V).
Furthermore, we can use p to estimate the failure rate after a
sequence of read operations in the same column but different
cells. As each cell has a different BL swing, there is a
possibility that after n read operations in the column, one of
these variations will annul ∆V, leading to an incorrect output.

We illustrate this failure rate with the following example.
Consider that a defect bridging both BLs reduces the col-
umn’s mean BL swing from its nominal value to 15 mV.
Furthermore, consider that, after manufacturing, the SA is
offsetted 5 mV due to PV. Accordingly, the ∆Vin this col-
umn is ∆V= 15 − 5 = 10 mV. Once ∆V is defined, we
measure the standard deviation of the BL swing variation
among cells. After MC analysis of 20,000 read operations,
a BL swing variation of σ = 4.913 mV was observed. We
use this variation’s cumulative distribution function to find
the probability of BL swing variation annulling ∆V. For
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Figure 2. Expected failure rate after n read operations for two scenarios.

∆V= 10 mV, the probability of incorrect output is p =
Pr(BL swing variation < −10 mV) = 2.09%. Thus, there
is a 2.09% chance that the BL swing will be smaller than the
SA’s offset, and consequently, trigger an incorrect output. We
can then use equation 1–(1− p)n [21] to estimate the failure
rate after performing n read operations based on the probability
p of a single read operation; after 25 operations, the failure
rate is around 40%, and 87% after 100 operations, as shown
in Fig. 2. Additionally, a second failure rate for an exemplary
case where ∆V = 6 mV is also plotted. As ∆V is smaller than
the first case, the probability that the BL swing will annul ∆V,
i.e., Pr(BL swing variation < −6 mV), is higher than before
(namely 11.09%). Accordingly, the number of read operations,
and therefore effort, required to guarantee an incorrect output
(i.e., 100% failure rate) and detect the RRF is much smaller.

Finally, the same model can also estimate the failure after
n read operations on the same cell. In this case, variations in
the BL swing must originate from dynamic effects that will
change the cell’s BL swing from one read operation to another,
such as white, flicker, and temperature noise. Based on these
analyses, we conclude the following:

• The probability of an incorrect output increases as more
read operations are performed, which justifies the indus-
try’s hammering techniques to test memories.

• Smaller BL swings lead to higher failure rates. Hence, an
efficient way to improve RRF detection is by reducing the
BL swing, which can be achieved by applying specific
stresses or using dedicated Design-for-Testability (DFT)
circuits.

• Reducing the BL swing reduces test effort and time (blue
curve in Fig. 2). A smaller BL swing results in a smaller
∆V and a bigger p, leading to fewer read operations
necessary to achieve a higher failure rate.

III. RRF DETECTION DEPENDENCY ON STRESS
CONDITIONS

This section estimates the impact of stress conditions SCs
on the detection of RRFs. We first introduce a classification
of SCs, followed by a description of the simulation setup, and
finally, the detection results.

A. Classification of Stress Conditions

SCs are applied during testing to boost fault sensitization
and detection. They can be categorized into two classes:
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Figure 3. A 6T cell and the injected resistive defects: opens, shorts, bridges.

algorithm-related and environment-related [22]. Algorithm-
related stresses specify the algorithm applied to the memory
cells; they include all SCs derived from writing and reading
operations. Examples of algorithm-related SCs are as follows:

• Base Test (BT): A BT is a sequence of operations (reads
and writes) applied to a memory cell.

• Address Order (AO): The AO is the address sequence
generated by an addressing method (e.g., increasing (⇑),
decreasing (⇓), binary, hamming distance, H2/H3/HN1
[23]) that defines how the algorithm accesses addresses.

• Address Direction (AD): The AD indicates how the
AO is applied considering rows and columns. The most
common ADs are fast-row and fast-column [22].

• Data Background (DB): DB is the pattern of ones and
zeros as seen in the memory array. The most known DBs
are Solid, Checkerboard, and Row/Column Stripe [22].

Environment-related SCs use additional stress sources to
change the operating conditions of the memory. These include
[22], but are not limited to:

• Voltage Stress in the entire circuit (e.g., changing the
supply voltage) or a peripheral (e.g., write driver, SA).

• Timing Stress in the entire circuit (e.g., changing fre-
quency) or specific components (e.g., write driver, SA)
to change memory operations’ timing.

• Temperature Stress by either increasing or reducing
temperature from its nominal value.

B. Simulation Setup

Memory model: the netlist is described using the predictive
technology model (PTM) 14 nm FinFET SPICE library [24].
The array comprises 128 rows and 64 columns; each column
has a write driver, SA, and prechargers. Capacitive loads are
applied to BLs and word lines to emulate a 1 kB memory. The
memory operates on a nominal clock frequency of 2 GHz and
contains a timing circuit to generate control signals.

Injected defects: Twenty-eight single-cell resistive defects
have been injected in the cell, as shown in Fig. 3. They are
either Resistive-Open (RO), Resistive-Short (RS), or Resistive-
Bridge (RB) defects [25].

Experiments: Each defect was swept with increasing sizes
(i.e., resistances) to identify the size range in which RRFs
are triggered. Each simulation scenario (i.e., using stress
conditions X and injecting defect Y of size Z) was simulated
100 times using MC simulations; from these, a mean BL



swing and a detection rate are calculated. For example, the
scenario of using fast-row and checkerboard SC and injecting
OC03 of size 20 kΩ was simulated 100 times applying PV
effects. These effects are modeled using Pelgrom’s model [26]
and simulated using a voltage source on the transistor’s gate
contact of transistors. Measure commands are used to estimate
the BL swing and check the cell’s content. An RRF occurs if
the BL swing is reduced and the cell’s content has not flipped
during the read operation. Contrarily, a Read Destructive fault
occurs when the cell’s content is destroyed; even if the read
operation outputs a random value, the fault is detected by
performing a second read on this same cell.

C. Detection Results for Algorithm-Related SCs

We focus on RRF detection only; the SCs discussed below
may impact other types of faults differently. Experiments have
shown that three algorithm-related SCs had little impact on
RRF detection: base test, address order, and address direction.
BT comprises only read operations; write operations are only
used to initialize the cells. AO stress did not impact RRF
detection; linear addressing methods ⇑ or ⇓ had the same
outcome. Finally, fast row and column AD led to a marginal
detection rate gain – less than 1% improvement. Nonetheless,
DBs proved to impact RRF detection significantly. Hence, we
explore two DB stresses: solid and checkerboard. In the solid
DB, all cells in the array store the same logic value, e.g.,
0000.../0000.../. In the checkerboard DB, adjacent cells have
opposite logic values, e.g., 0101.../1010../.

Thirteen defects sensitized RRFs: OC03, OC11, OC08,
OC11, OC13, SC01, SC02, SB02, SW02, BC01, BC03, BC05,
and BC08. We focus on OC03, OC11, and BC05 as they have
defect size ranges in which only RRFs are sensitized, i.e., a
severely reduced BL swing and no impact on the cell’s content.
Thus, the detection of these defects is only achieved through
RRF detection. Fig. 4 depicts these defects’ detection rates.
BC05’s detection rates after 2 and 10 read operations (ops.) are
also plotted; it is expected that its detection rate increases as
more read operations are performed in different cells from the
same column. Furthermore, the figure also shows the expected
failure rate presented in Section II-B. We can see that solid
DB does not detect RRFs, i.e., the read output always matched
what was expected; this is due to the output latch and its own
DB. Because the BL swing is too small to influence the SA,
the output latch influences the SA to remain in its current
logic state. As the expected read output never changes, RRFs
will not lead to incorrect read outputs, becoming test escapes.
Therefore, to improve test algorithms’ (e.g., March tests) RRF
detection, they must include checkerboard DB stress.

As expected, the detection rate of BC05 improved after con-
secutive read operations on the defective column. Furthermore,
we can notice that the detection rate when using checkerboard
DB matches the expected failure rate behavior, but with a
shifted starting point depending on the defect. Thus, additional
parameters, variations, and conditions must still be included
in the expected failure rate to estimate incorrect outputs due
to RRF accurately.
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D. Detection Results for Environment-Related SCs

Environment-related SCs set the memory’s operating condi-
tions. Reducing frequency can boost RRF detection; a higher
frequency leads to a smaller WL enable period, reducing
the BL swing and increasing incorrect outputs. However, our
memory uses self-timing circuits to limit WL enable period.
Therefore, in our experiments, altering frequency did not
affect RRF detection. Nevertheless, temperature and voltage
improved RRF detection. While both scenarios had similar
results, the detection gain was more significant for supply
voltage than temperature; we focus on the former’s results.

We have observed that supply voltage does not alter the
relation between BL swing and detection rate, i.e., a given BL
swing led to a similar detection rate. However, altering supply
voltage changes the BL swing for a given defect size. Thus,
there were significant changes in the relation between defect
size and detection rate. Fig. 5 shows OC11’s and BC05’s
(2 ops.) detection rates for varied defect sizes and supply
voltages; defect OC03 is omitted as it experiences the same
impact as BC05. For OC11, increasing the supply voltage
reduces the BL swing. Since reducing the BL swing is one
of the best approaches to improve RRF detection, increasing
the supply voltage boosts detection of RRFs caused by OC11.
On the other hand, a reduced supply voltage leads to a smaller
BL swing when considering defect BC05. Hence, the supply’s
voltage impact on the detection ultimately depends if changing
the supply voltage will reduce or increase the BL swing.

Based on the experiments using different types of SCs, we
conclude the following:

• SCs impacts BL swing and SA’s amplification differently
and must be considered when estimating RRF failure rate.

• Checkerboard data background is a must to detect RRFs.
• Performing more read operations boosts RRF detection.
• Testing in different operating conditions is a must to

obtain the highest RRF detection rate possible.
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IV. PROPOSED DFT TO DETECT RRFS

A. Concept

The DFT technique proposed in this work targets RRFs by
creating a mismatch in the SA. Additional PMOS transistors
are inserted into the SA and activated during test-mode read
operations to skew the SA’s amplification towards the opposite
value that is being read. Fault-free read operations will easily
overcome the DFT’s mismatch, and the SA will output the
correct cell content. On the other hand, when RRFs occur, the
SA will fail to overcome the DFT’s mismatch and output the
opposite expected logic value.

B. Implementation

The DFT is implemented in two parts, as shown in Fig. 6.
The first part consists of 1-fin PMOS transistors in the SA’s
pull-up network. Only one transistor is enabled at a time to
create a mismatch towards the opposite logic value expected
from the read operation. For example, P6 is activated during
a read ‘0’ operation and charges node A since it is expected
that BL will discharge this same node. During amplification,
the SA becomes less likely to amplify based on the BL swing
and more likely based on the DFT configuration, i.e., opposite
of the expected value. The RRF is then detected if the SA
indeed amplifies to and outputs the opposite expected value.
The second part is two 3-input NAND gates that generate the
controlling signals based on the enable SA signal (En SA) that
generates the SAE signal; hence, both DFT and SA have the
same timing scheme. Furthermore, two signals configure the
DFT. The test mode signal enables the DFT, while dft mode
indicates the current read operation, i.e. dft mode = ‘0’ during
a read ‘0’ operation and dft mode = ‘1’ during a read ‘1’.

C. Detection Results

Fig. 7 shows the DFT’s RRF detection for a given BL swing
under different supply voltages; algorithm-related SCs have
been set to fast-row AD and checkerboard DB. Without the
DFT, supply voltage does not change the relationship between
the detection rate and BL swing; hence, only the detection rate
for 0.8 V is shown. However, a considerable increase in this
relation is observed when using our DFT, leading to higher
RRFs detection for a given BL swing; the most significant
gain is obtained with a supply voltage of 0.7 V. Nevertheless,
we also analyze the DFT’s detection based on defect size,
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as shown in Fig. 8; this analysis proves necessary as supply
voltage’s impact on BL swing changes from defect to defect.
While we see that BC05’s RRF detection rate is indeed the
highest when reducing supply voltage, the same is not valid
for OC11. Although there is a significant detection gain when
using the DFT at 0.7 V supply voltage, the highest coverage is
still achieved at 0.9 V. Therefore, using the DFT with reduced
and increased supply voltage is the best approach.

V. DISCUSSION

Applicability: there are situations in which the costs of
increasing RRF detection are not justified. In non-critical
applications in which some defects are allowed, it is cheaper
to adapt SCs to increase RRF detection rather than modifying
sensitive areas such as the SA. Notwithstanding, for critical
applications such as automotive and aerospace, 0 defective
parts per million becomes a must; in these scenarios, the
costs of modifying circuits to include DFTs are acceptable.
Therefore, the DFT’s applicability is a trade-off between fault
coverage and test cost. Furthermore, the DFT can also be
used during the memory’s prototyping, characterization, and
validation to identify the occurrence of RRFs and obtain
knowledge of the memory’s yield before its mass production.

Applicability to scaled FinFET memories: to the best
of our knowledge, there are no public works investigating
RRFs in further-scaled FinFET memories (e.g., 7 and 5 nm).
However, RRFs will likely be (at least) as relevant in further-
scaled memories as in 14 nm memories. With the scaling down
of supply voltage and increased parasitics, even slight envi-
ronmental noise will likely lead to random faulty behaviors.
Thus, our DFT is applicable to improve the detection of RRFs
in further-scaled FinFET memories.



Applicability to emerging memories: RRFs also impact
emerging memory technologies such as RRAM and STT-
MRAM. However, a DFT for these memories may be less
critical as algorithms can already provide sufficient RRF detec-
tion due to higher cycle-to-cycle variability [27]. Nevertheless,
such DFT can still improve the detection of RRFs regardless of
memory type; the only requirement for this DFT is a memory
that uses an SA with an amplification phase.

Calibration Capabilities: the DFT offers many ways to cal-
ibrate its detection rate. Run-time calibration can be achieved
using different SCs. Post-silicon calibration is possible by
changing the DFT timing to adjust the mismatch and hence
detection; this can be implemented with a dynamic delay
selector on the control gates, like the calibration in [15].

Overhead: the overhead introduced by the proposed DFT
scheme are negligible. The DFT’s control comprises only
two 3-input NAND gates, which is negligible compared to
other peripheral circuitry. Furthermore, the two 1-fin PMOS
transistors introduced into each SA represent an area overhead
of only 2.5% of the SA; this overhead is even more negligible
considering the cell area covered by a single SA. The DFT
does not introduce any test time overhead as it can be enabled
throughout all read operations. Hence, it is possible to combine
the algorithm’s fault coverage with the DFT’s RRF coverage
with the same effort and zero time overhead.

Comparison with state of the art: compared to tradi-
tional March algorithms, our DFT significantly improves the
detection rate of RRFs as it introduces additional stress into
the SA. Compared to monitoring hardware schemes [16–18],
our scheme significantly reduces hardware complexity, area
overhead, and over-testing due to PV. Finally, schemes that
change read operations’ behavior (such as the DFT proposed
in this work) have proven to be a suitable solution to de-
tect RRFs; nevertheless, the way they are implemented may
cause drawbacks. The scheme presented in [14] introduces
unrealistic stress in the circuit to change the WL enable time,
which may increase over-testing by up to 30%, according to
the authors. Our solution aims at reducing over-testing by
introducing minimal stress possible into the SA, i.e., only
one 1-fin PMOS transistor. Finally, the DFT in [15] focus on
the pre-charge of SAs. However, many additional transistors
in the SA are necessary to counter the pre-charge, leading
to additional noise and increased hardware complexity. We
overcome this problem by focusing on the amplification phase
instead, enabling the detection of RRF with less effort.

Drawbacks & Limitations: the main drawback is the
increased SA design complexity. Due to additional transistors
in the SA, further routing, coupling, and leakage issues may
occur. A more negligible drawback is the impact on BL swing
due to additional capacitive load in the SA: fault-free read
operations have shown a mean BL swing decrease of 0.2 mV
(from 160.2 mV to 160 mV), an impact of only 0.12%.
Finally, the DFT’s main limitation is its lack of parametric
control. As it is a functional test solution, it still requires an
incorrect functional behavior to detect RRFs. To fully detect
all parametric deviations on the BL swing, a parametric test

solution that identifies reduced BL swings is required.

VI. CONCLUSION

In this work, we have presented an analysis of the oc-
currence and detection of Random Read Faults (RRFs) in
FinFET SRAMs. We have shown that the failure rate of RRFs
is directly related to the bit line swing (BLS), the number
of read operations performed, and stressing conditions (SCs).
Furthermore, we have proposed a new DFT scheme to detect
RRFs by mismatching the SA during the amplification phase.
The DFT significantly improves RRF coverage, thus leading
to reduced test escapes and higher quality FinFET SRAMs.
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