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Negative stacking fault energies (SFEs) are found in face-centered cubic high-entropy alloys with
excellent mechanical properties, especially at low temperatures. Their roles remain elusive due to the lack
of in situ observation of nanoscale deformation. Here, the polymorphism of Shockley partials is fully
explored, assisted by a new method. We show negative SFEs result in novel partial pairs as if they were in
hexagonal close-packed alloys. The associated yield stresses are much higher than those for other
mechanisms at low temperatures. This generalizes the physical picture for all negative-SFE alloys.
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Low to negative stacking fault energies (SFEs) are
frequently found for high-entropy alloys (HEAs) in theory,
particularly for the alloys with excellent mechanical proper-
ties such as CoCrFeNiMn [1–4] and CoCrNi [5–9].
Negative SFEs are difficult to identify in experiment, but
their existence is indicated by the rich twin and various
close-packed nanostructures [10]. In theory, Ising models
connect the negative SFEs with the lower energy of a
hexagonal close-packed (hcp) structure relative to a face-
centered cubic (fcc) structure [11]. For example, the hcp
Cantor alloy (CoCrFeNiMn) is indeed thermodynamically
more stable than the fcc one at cryogenic temperatures [12].
Alloys are usually synthesized at high temperatures when
the fcc structure is more stable than the hcp structure and
then quenched down to room or cryogenic temperatures
where the stability is probably reversed. The phase tran-
sition from fcc to hcp can be kinetically too slow to see.
However, the hcp phases under high pressures are indeed
formed and retained in CoCrFeNiMn [13,14] and
CoCrFeNi [15] even when the pressures were removed.
It is widely acknowledged that low to negative SFEs
usually result in wide stacking faults (SFs) and large
distances between partial dislocations. The mechanical
implications of low SFEs have been studied [16,17], but
those of negative SFEs are still elusive and urgently need
further experimental [18] and theoretical explorations.

Partial dislocations can shape the microstructure and
mechanical properties of fcc materials. The abundant
Shockley partials and their polymorphism in these HEAs
request all intrinsic geometric freedoms (see details below)
for a complete description of dislocation geometry. Here,
we propose a new notation system that can unambiguously
describe all possible dislocation geometries. Assisted by it,
our theoretical analysis shows a large SF width is not the
only effect of negative SFEs but one of them. The other
consequences include a novel dislocation geometry similar
to a dissociated dislocation in an hcp structure [Figs. 1, (d),
Case C], where the two partials switch their positions in
Case O. It is similar to the Lomer-Cottrell lock but with
partials on the same slip plane. The special situation of
Case C, i.e., when the coupled partials are far away, is
common in fcc materials with negative SFEs that include
HEAs. It is fundamentally interesting to check whether this
new mechanism plays a role in the excellent mechanical
properties of HEAs. This mechanistic study is based on a
new density functional theory (DFT)-informed multiple-
equal-fraction-dislocation (MEFD) formulation [19] and
two solute solution strengthening models [16,17].
Full exploration for novel dislocation geometry by

a new notation system.—The extremely plentiful configu-
rations of the partials are exemplified by CoCrNi [20,21],
CoCrFeNiMn [20], and Al0.1CoCrFeNi [22] in Fig. 1(a).
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Their geometries cannot be definitely described by Burgers
vector only, where the positions of the SFs relative to the
partials are ignored. This text-book notation system works
well for alloys of positive SFEs, since the relative positions
of two partials and one SF are always well-defined.
Problems arise when partials are abundant and unbound
when SFEs are extremely low to negative. There are three
intrinsic geometric freedoms needed for a definite descrip-
tion of an arbitrary number of partials: (i) Burgers vectors
b⃗i, (ii) line directions s⃗i, and (iii) the position of partials
relative to the SFs. The choice of Burgers vectors is
described by the Thompson’s tetrahedron; the line direction
is in principle arbitrary if symmetry permits; both can be
clearly described by the text-book notation system.
However the relative positions of the partials is not defined,
which is indispensable for alloys with negative SFEs.
A new notation system is proposed here for a complete

description of the extremely diverse dislocation geometries
[Fig. 1(b)]. The new symbol combines the Burgers vector
of a partial and the SF position. For example, when an
SF is to the right of the partial b⃗1, we denote it by b⃗�1,
b⃗�1 ¼ b⃗1 þ SF; when it is to the left, �b⃗1 ¼ SFþ b⃗1. [The
properties of the new notation system and its applications to
describe cases in Fig. 1(c) and beyond are provided in the
Supplemental Material [23].] The new system considers all
intrinsic geometric freedoms in a simple manner, but the
impact is profound. It is useful to describe a more complex
geometry in which three or more partial dislocations are
involved. The line direction s⃗ is arbitrary in theory. A
general discussion of arbitrary directions is straightforward

but outside the scope of this work. Here, we only consider
the two partials with the same line direction.
The new building blocks of starred Burgers vectors

(partials) double in number, which greatly increases the
possibilities of combinations of partials. We can mechan-
ically play with the building blocks to find a new
geometry and then check if they can be a new mechanism
with physical meaning. Arguably the easiest way to find a
new geometry is to switch the positions of partials in
known configurations. For example, we can switch the
two partials in Case A, which results in Case C [Fig. 1(c)].
This is similar to a dissociated dislocation in an
hcp structure, which can exist in alloys with negative
SFEs. As a new type of dislocation geometry in fcc
structures, it provides the basis to understand deformation
behavior.
The broken equilibrium: Case O.—In the classic Case O,

three forces determine the distance between the two
Shockley partials, i.e., the interactions of edge components
FeðxÞ, screw components FsðxÞ, and the attractive force

through SFEs FγðxÞ. Assuming b⃗�1,
�b⃗2 are the Burgers

vectors of the two partial dislocations, s⃗ is the line direction
of the whole dislocation, G is the shear modulus along the

Burgers vector b⃗ of the whole dislocation, and ν is
the Poisson ratio, we have Fe¼½G=2πð1−νÞ�ð1=xÞ
ðb⃗�1× s⃗Þð�b⃗2× s⃗Þ>0, Fs¼ðG=2πÞð1=xÞðb⃗�1 · s⃗Þð�b⃗2 · s⃗Þ<0,
and Fγ ¼ −xγ0 < 0. Here, γ0 represents the SFE. The
equilibrium distance x0 is calculated by

(a) (d)

(b) (c)

FIG. 1. Full exploration for novel dislocation geometry by a new notation system. (a) Nanoscale close-packed stackings formed by
partial dislocation motions are exemplified by CoCrNi [20,21], CoCrFeNiMn [20], and Al0.1CoCrFeNi [22]. The profuse partials are
highlighted. (b) The new notation system and its comparison with the text-book notion. (c) Four possible configurations of Shockley
partials in fcc concentrated alloys. The blue arrows indicate the Burgers vectors of Shockley partials. (d) The configurations of Case C
and Case O are illustrated with atomic resolution.
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Feðx0Þ þ Fsðx0Þ þ Fγðx0Þ ¼ 0: ð1Þ

When the SFE is negative, i.e., Fγ ¼ −xγ0 > 0, the force
associated with the SFE becomes repulsive and has the
same sign as Fe. The equilibrium of Eq. (1) is, however,
broken. The only attractive force from the screw compo-
nent, Fs, is smaller than Fe, but there is an extra repulsive
force term from the SFE. The total force is thus

FeðxÞ þ FsðxÞ þ FγðxÞ > 0: ð2Þ

Obviously, there is no solution for x. We will confirm this
information again from the numerical solution of a revised
Peierls-Nabarro model.
When Shockley partials are profuse, it is possible that

one of the partials has a pure screw character. For example,
when the right partial is purely screw with the SF to its left
(�b⃗3), Fe ¼ 0, we can find a new equilibrium distance
x0 ¼ −Fs=γ0. An equivalent case is when the left partial is
a screw dislocation, which yields the same equilibrium
distance. Here, we focus on a special case, i.e., when the
two partials have mixed characters but meet each other
from an opposite direction.
The new equilibrium: Case C.—The huge number of

partials may meet each other and form new couples in the
configuration of Case C [Fig. 1(c), (d), Case C), which can
be expressed by �b⃗1 þ b⃗�2 ¼ �b⃗�. The configuration of Case
C is similar to the dissociated basal hai dislocation on the
basal plane in hcp if the principle of nearsightedness is
adopted. Transforming the Case C in fcc into the hcp basal
hai dislocation with the bulk hcp energy as the new zero
energy reference, we again have a positive SFE and the
associated force Fγ ¼ −xγ0 < 0. The new equilibrium
distance would be x0¼ðGb=γ0Þðb=24πÞ½ð2þνÞ=ð1−νÞ�
[consequence of Eq. (1)]. Unlike Case O, here the shear
modulus G and Poisson ratio ν of hcp rather than fcc are
needed, assuming that a dislocation can only feel the
interactions of its nearest-neighbor layers. This assumption
has been adopted for dislocation-solution interactions
[49,50]. The Poisson ratios of the hcp and fcc structures
are stably close to 0.3, particularly for the materials with the
same constitutions and crystal structures. With the above
preparation, Case C in fcc materials can be transformed into
Case O in hcp ones. The great advantage of this trans-
formation is (i) the minus sign of the SFE can be dropped
and (ii) the dislocation geometry of Case C can be eva-
luated by classic dislocation theory.
Higher yield stresses in Case C indicated by generalized

SFEs.—A generalized SFE (GSFE) is a very useful concept
associated with SFEs that provides insights into the
mechanical properties. Accurate GSFEs are calculated by
DFT (Fig. 2), which can be used to fit the five-point γ
surface [24] or its simplified two-point expression
γðxÞ ¼ γ0 sin2ðπxÞ þ ðγu − γ0=2Þ sin2ð2πxÞ, where γ0; γu
are the stable and unstable SFEs. This expression can be

easily used to evaluate the effect of SFEs on dislocation
geometry and strengthening. Also, the shear modulus can
be well evaluated by the slopes of GSFE curves, which are
substantially different for hcp and fcc [12]. For Case O, a
Shockley partial has to overcome the barrier along the
direction x ¼ 0 to 1=4; while for Case C, a larger barrier of
the reversed direction has to be overcome. The GSFE
curves of hcp and fcc show that the “valley” is deeper for
hcp partials than for fcc ones (arrows in Fig. 2), indicating a
larger critical resolved shear stress (CRSS) of Case C than
Case O.
The γ surface or GSFE curve is reconstructed for Case C.

Two steps are needed: (i) drop the minus sign of the SFE,
and (ii) add an SFE to the unstable SFEs γu. Step (i) is
based on ANNNI models, which state that the SFEs for the
intrinsic SF I1 in hcp [51] and the intrinsic SF in fcc are

γhcp ≈ −4J1 þ 4J2 − 4J3 ≈ −4J1 − 4J3; ð3aÞ

γfcc ≈ 4J1 þ 4J3 ≈ −γhcp: ð3bÞ

The extensive data of Hu et al. shows J2 is about J1=10
to J1=3 [52]. As a reasonable approximation, γhcp ≈ −γfcc.
This results in two coupled correspondences, i.e., (i) a
negative SFE in hcp corresponds to a positive one in fcc and
(ii) a negative SFE in fcc corresponds to a positive one in
hcp. The above idea allows us to treat an fcc problem with a
negative SFE as an hcp one with a positive SFE. This
finding directly attributes the different yield stresses of
Cases O and C to the different shear moduli of fcc and hcp
phases.
Dislocation geometry by MEFD calculations.—It is not

convenient to simulate the atomic structure of Case C using
atomistic simulations or DFT, since the fcc matrix is less
stable than hcp at zero K. We use a revised Peierls-Nabarro
model with the MEFD formulation for this purpose. The
most important input for the model is the γ surface

(a) (b)

FIG. 2. The minimum energy paths for dislocation motions.
Minimum energy paths of GSFEs for (a) CoCrFeNi and
(b) CoCrFeNiMn. The insets in (a) illustrate the atomic arrange-
ments before and after Shockley partial glides, the geometries of
which are the same for CoCrFeNiMn albeit with different atomic
occupations. For both alloys, the maximum shear stress in Case C
(right slope, dashed line in yellow) is larger than in Case O (left
slope, dashed line in black), indicating a higher yield stress of
Case C than the classic one.
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introduced in the preceding section. The MEFD formu-
lation is used to solve the Peierls-Nabarro equation [19],
which has been successfully used to study Mg [19], HEAs
[53], and two-dimensional materials [25]. A total of seven
parameters are optimized using the particle swarm opti-
mization algorithm [11,24,26] that has been implemented
in the dislocation-simulation toolkit [27].
Figure 3 shows the optimized dislocation core geometry

using DFT-computed GSFEs and elastic constants. The
core structures in the new Case C are different from the
structure in the classic Case O due to the dominant
attractive interaction between partials. In Case O, the
interaction is either negligible or repulsive. The geometric
difference is more significant in Cantor alloy than in
CoCrFeNi. For Cantor alloy, the half-width w of each
partial in Case C is slightly wider than the half-width w in
Case O. The equilibrium distance between partials for both
alloys in Case C is about 8.5 Burgers vector; while for Case
O, the distance is theoretically infinite, which is consistent
with the classic analytical model.
Mechanical consequences of the novel mechanism

and magnetic states.—The GSFE curves indicate Case C
has a higher CRSS than the classic Case O. Here we
directly evaluate their mobility using two widely accepted
models. The influence of magnetic states, which are
sensitive to the local arrangements of the close-packed
planes, is also discussed. Okamoto et al. [17] found that the
yield stress normalized by shear modulus G for a given
alloy follows a rule σy=G ¼ k · MSAD1=2, where k ≈ 1.3 ×
10−3 MPa/pm for fcc HEAs, and MSAD represents the
mean square atomic displacement. The rule can be recast
into σy=ðk · MSAD1=2Þ ¼ G. For different cases (O, C)

and different magnetic states, G or equivalently
σy=ðk · MSAD1=2Þ is different. (See the Supplemental
Material [23] for computational details.) The shear moduli
G are calculated by bulk moduli and a Poisson ratio of 0.3.
The rescaled yield stresses σy=ðk · MSAD1=2Þ for the six
different situations are shown in Fig. 4. The magnetic states
substantially change the rescaled yield stresses in both
Cases O and C. The most significant feature is that Case C
(A2,B2,C2) offers a much higher yield stress than Case O
(A1,B1,C1) for the Cantor alloy, while the experimental
value lies in between. In contrast, the yield stresses for the
CoCrFeNi alloy in Cases O and C are less different and
comparable to the influence of the magnetic states. The
strengthening effect of magnetism was discussed in [20].
Here, we directly quantified its effect on yield stresses.
We consider a special situation of Case C when the

two partials are far away, which is common in experiment
[Fig. 1(a)]. The temperature-dependent yield stresses are
calculated for the new mechanism (Case C) in two HEAs
(Fig. 4) using the Varvenne model [16]. The new mecha-
nism indeed provides a much larger yield stress than the
classic mechanism (Case O) for CoCrFeNiMn. At cryo-
genic temperatures, a 50% higher yield stress is predicted
for Case C (paramagnetic state), which better agrees with
the experimental measurement for the alloy. This gives
another effect induced by the negative SFEs in the HEA,
which is intrinsic to the new Shockley pairs. The yield
stress is more affected by the different mechanisms but also
substantially tuned by the magnetic states. For example, the
yield stress of the paramagnetic state is larger than the other

(a) (c)

(b) (d)

FIG. 3. The dislocation cores computed by a revised Peierls-
Nabarro model. Both the classic [(a),(c)] and new [(b),(d)]
configurations of Shockley partials in the Cantor and CoCrFeNi
alloys are calculated. The partial distance of the classic configu-
ration (Case O) is theoretically infinite, which is reset as 10b for
better visualization.

(a) (b)

(c) (d)

FIG. 4. The mechanical consequences of the new mechanism.
The magnetic-state-dependent yield stresses for the new and
classic configurations of dislocations, i.e., yield stresses at zero K
[(a),(b)] and at finite temperatures [(c),(d)]. The letters represent
magnetic states, and the numbers are for different cases (O and
C): A-Ferrimagnetic, B-Antiferromagnetic, C-Paramagnetic; 1-
Case O, 2-Case C. Both measured yield stresses (dots) and
calculated ones using experimental elastic constants (yellow line,
“Exp.”) are presented.
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two states in Case C. In contrast, the variance of yield stress
due to the new mechanism is comparable to the magnetic
states for CoCrFeNi. Further experimental investigations
on the probability or density of the new configuration
(Case C) are still needed.
In summary, we fully explore the geometric and

mechanical implications of negative SFEs in high-entropy
alloys and add fundamentally new ingredients to under-
stand their excellent mechanical properties. We identify a
new dislocation geometry assisted by a notation system
invented here. The new configuration of Shockley partials
and its special case are expected to be found for all alloys
with negative SFEs, which are systematically studied using
state-of-the-art DFT simulations and multiscale models and
compared to available experimental measurements. The
new dislocation geometry results in a higher yield stress at
cryogenic temperatures than the traditional mechanisms for
CoCrFeNiMn and agrees better with the experiment, which
can be activated below the cross-over temperature of the fcc
and hcp free energies. The interplay between the new
mechanism and various magnetic states of atoms is directly
evaluated, showing that magnetism can substantially tune
the magnitudes of yield stresses. Our study demonstrates
that negative SFEs provide a new group of mechanisms, in
addition to the known effects, such as wide SFs. This
generalizes the physical picture and lays the foundation for
the design of all novel negative-SFE alloys.
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