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To the Editor:

Age-related Clonal hematopoiesis (ARCH) is an inevitable
consequence of ageing, which arises when an ageing

hematopoietic stem cell (HSC) acquires a somatic mutation
that confers a competitive growth advantage, leading to its
gradual expansion [1]. ARCH-associated mutations typi-
cally target genes associated with acute myeloid leukemia,
most frequently the epigenetic regulators DNMT3A and
TET2 [2]. When a substantial proportion of the blood cells
carries such a pre-leukemic mutation in an otherwise normal
immuno-hematopoietic system, this state is also referred to
as Clonal Hematopoiesis of Indeterminate Potential [3].

Next to its role in acute myeloid leukemia, ARCH has
also been associated with a broad spectrum of age-related
low-grade inflammatory syndromes [4], including type 2
diabetes, chronic obstructive pulmonary disease, cardio-
vascular disease, and all-cause mortality. Somatic mutations
accumulate in the HSC over the course of a lifetime [5],
thus effectively tagging each individual HSC and its off-
spring with a unique “genetic barcode” [1]. Acquired
somatic mutations are heterozygous, and because a mutated
clone contributes to only a fraction of the total peripheral
blood, somatic mutations have an allele balance (between
alternate allele and reference allele) that is consistently
lower than the 1:1 ratio observed for germline heterozygous
mutations. The variant allele frequency (VAF) of each
somatic mutation is representative of the fraction of blood
cells generated by the HSC that carries the variant/mutation.

By applying this paradigm, we previously found that
~65% of the peripheral blood from a healthy 115-year-old
female (W115) was derived from a single HSC [6]. Finding
extensive ARCH in a healthy 115-year-old was unexpected
given the association between ARCH and all-cause mor-
tality, but it was in line with our previous observations that
the association between ARCH and all-cause mortality
seems to wane in the oldest old [7]. Together, our findings
led us to question whether the ARCH was recently estab-
lished prior to the 115-year-old’s death, or whether it had
taken many years for the mutated HSC to gradually popu-
late the majority of her peripheral blood. Also, we
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questioned whether the mutated HSC contributed to all
blood cell types or to specific blood cell types. Furthermore,
it was unclear to what extent immune function was com-
promised in a hematopoietic system dominated by a single
mutated HSC clone.

To address these questions, we investigated ARCH in a
second centenarian female who died at 111 years (W111),
and whose blood showed no signs of hematological
malignancies. This time, we investigated ARCH long-
itudinally, using W111-blood samples collected at ages 103,
110, and 111 years. By comparing deep sequencing data
from DNA derived from blood and a skin biopsy collected
at age 110, we identified 650 putative somatic mutations
that were present in blood and absent in skin (see supple-
ment for methods/results/mutation-lists). For a subset of
these mutations we successfully designed a targeted
amplicon resequencing panel which allowed us to confirm
the somatic origin of 307 mutations. These mutations served
as genetic markers for clonal tracing in blood samples taken
at different time points or different sorted immune subsets.

The density distribution of the VAF of these 307 somatic
mutations exhibited multiple peaks, indicative of a sub-
clonal architecture (Fig. 1A, line PB1). Lineage analysis
inferred five clonal events within a single clonal lineage in
which a founding clone A brought forth subclone B, which
brought forth subclone C, from which two independent
sister-clones D and E originated (Fig. 1B). Based on the
VAF distribution of variants assigned to founding clone A
(and thereby to subclones B-E) we determined that at age
110, ~70–75% of the peripheral blood was generated by the
clone and its subclones (Fig. 1A, line PB1).

We screened the somatic mutations for candidate driver
mutations using the definitions compiled by Jaiswal et al.
[2], and identified and confirmed a splice-donor site muta-
tion in intron 11 of DNA (cytosine-5)-methyltransferase 3 A
(DNMT3A, NM_022552.4, chr2:25,469,028_C > T, c.1429
+ 1 G > A), which was previously observed in patients with
hematopoietic or lymphoid malignancies (COSM5945645).
Based on its VAF of 0.38 the DNMT3A mutation was
assigned to founding clone A, such that this mutation may
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have driven the initial clonal expansion [8]. Among the
remaining somatic mutations, we did not identify putative
driver mutations that could explain the successive subclonal
expansions B-E, possibly due to undetected or incomplete
knowledge of driver mutations [1]. Alternatively, impair-
ment of DNMT3A function, a key epigenetic regulator, may
lead to ‘epimutations’ that improve the replicatory fitness of
an HSC [9]. Also, the DNMT3A mutation may lead to
enhanced HSC-proliferation upon bone marrow stress, such

as inflammation or environmental stimuli. In such a sce-
nario, the clonal architecture could represent the history of
reactivation of otherwise quiescent HSCs [10].

To explore whether the contribution of each subclone to
the peripheral blood changed over time, we investigated the
VAFs of the 307 mutations identified at age 110 years in the
peripheral blood samples collected at ages 103 and 111.
VAFs were inter-correlated between timepoints (Fig. 1A).
The inferred clonal lineage implies that all somatic muta-
tions in clone A are present in its clonal descendants B-E,
and all somatic mutations in B are present in C-E, but not A
(Fig. 1B). After adjusting for these interdependencies, we
observed that temporal changes in dominance of subclones
A-C are largely explained by changes in dominance of
subclone E (Fig. 1C). While clonal event D exhibits a near
equal contribution of ~16.5% of the cells to peripheral
blood at age 103, 110, and 111 years, clonal event E nearly
tripled its clonal contribution from 6.1% at age 103–17.9%
of the peripheral blood cells between ages 110 and 111.
Meanwhile, clone B becomes less dominant: its contribu-
tion to peripheral blood decreases from 15.7% at age 103 to
10.7% at ages 110 and 111. Concluding, we observed a
complex subclonal architecture with ongoing dynamics
during the 9-year timeframe of our sampling, and we
reconstructed a possible path of subclonal evolution
(Fig. 1D).

Next, we investigated to what extent the somatic muta-
tions were present in the major cell subsets of peripheral
blood sampled at age 110 (PB1) and age 111 (PB2). We
observed that the DNMT3A-mutated HSC contributed to the
majority of the myeloid cells (78–87%) and to a small
proportion of T-cells (11%) and B-cells (6–7%) (Fig. 1E).
Moreover, the HSC contributed to a significantly larger
proportion of CD4+ T-cells (22%) than CD8+ T-cells (6%).
We also observed differences between the subclonal con-
tributions to cell subsets (Fig. 1F). Specifically, subclones A
and B generated a disproportionally high fraction of T-cells,
while subclone E generated a disproportionally low frac-
tion. The necessity to continuously regenerate short-lived
myeloid cells may lead to a myeloid bias in the offspring
generated by the newer subclones [11]. T-cells, however,
are known to live tens of years, to uphold long-term
immunity against specific antigens. Therefore, T-cells gen-
erated by older clones, possibly years prior to sampling,
may lead to a relative higher contribution of the active
HSC-clone to T-cells.

Ageing of the T-cell compartment, immune-senescence,
has been postulated as a major factor underlying a reduced
life expectancy [12]. Indeed, W111’s peripheral blood
shows clear signs of an aged immune system: using flow
cytometry, we found increased fractions of senescent CD4+

and CD8+ T-cells relative to middle aged controls (Fig. 2A
and Supplement), and a myeloid shift, (i.e., high myeloid to

Fig. 1 Deep sequencing of longitudinal samples reveals the clonal
architecture within the peripheral blood of an elderly subject with
age-related clonal hematopoiesis. Blood samples from W111 were
collected at three time points, age 103 (timepoint 0), 110 (timepoint 1),
and 111 (timepoint 2) respectively, and included peripheral blood
(PB0, PB1, PB2), as well as its flow sorted subsets: granulocytes (G),
monocytes (M), T-cells (T), CD4+ T-cells (T4), CD8+ T-cells (T8)
and B-cells (B). Numbers signify time points 0, 1 and 2. A Horizontal
lines PB0, PB1, PB2: the density distribution of the variant allele
frequency (VAF) of the 307 confirmed somatic mutations at ages 103,
110 and 111. With clone A as the founding clone, the median VAF of
variants in clone A represents 0.5x the median contribution of the
clone and its subclones to the peripheral blood. Colored lines connect
the same mutations measured at the different timepoints. Using Sci-
Clone, mutations were assigned to five independent clonal events (A-
E) and colored accordingly. See supplement for in-depth methods and
results. B Left: Modeling with SCHISM indicated that these five clonal
events most likely occurred consecutively within a single clonal
lineage that terminates into two independent sister-clones D and E.
These were derived from a shared ancestral subclone carrying muta-
tions associated with clonal events (A–C). The number of somatic
mutations supporting each subclonal event are listed next to the clones.
Right: to estimate the contributions of each subclone to peripheral
blood, we corrected for the interdependencies introduced by the shared
clonal descendance: all somatic mutations in clone A are present in its
clonal descendants (B–E), and all somatic mutations in (B) are present
in (C–E), but not (A). C Median VAFs after subtractions of the
median VAF of the descendant clonal event indicates that changes in
dominance of subclones A-C are largely explained by changes in
dominance of subclone E and notably not by subclone D. D Recon-
struction of subclonal evolution. Time frames A–E correspond to the
periods in which passenger mutations (crosses) were accumulated until
a clonal event driving expansion (bolt) was encountered. Widths of the
time frames are roughly proportional to the number of mutations
detected for each event. The y-axis reflects the relative contribution of
an HSC to overall peripheral blood production. ‘WINDOW’ refers to
our window of observation ranging from age 103 to 111, a 9-year
period characterized by the expansion of clonal event E. E Violin plots
of VAFs [%] in peripheral blood and its sorted subsets. The amplicon
panel of 307 somatic mutations were used to re-sequence DNA
derived from FACS-sorted immune subsets. The median VAFs
between different cell subsets collected at age 110 indicated a sig-
nificant higher clonal contribution to the myeloid branch (87.4% of the
granulocytes (G1VAF= 0.437) and 77.8% of the monocytes (M1VAF=
0.389)) compared to the lymphoid lineage (~10.6% of the T-cells
(T1VAF= 0.053), and ~7.4% of the B-cells (B1VAF= 0.037)). Re-
sequencing within the blood sample collected at age 111 indicated
that VAFs were significantly higher in CD4+ T-cells (22.2% of the
cells, T4.2VAF= 0.111) compared to CD8+ T-cells (6.4% of the cells,
T8.2VAF= 0.032, p < 0.001, Wilcoxon) and B-cells (6.0% of the cells,
B2VAF= 0.030, p < 0.001, Wilcoxon). F Fraction of mutated cells per
sorted cell subset derived from each subclone. Stacked bar plots per
subset add up to 100%.
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B lymphocyte ratios), particularly due to lowered B-cell
levels (Fig. 2B). However, we were surprised to find that at
ages 110 and 111 years, the fraction of naive CD4+ T-cells
was only slightly decreased and that the fraction of naive
CD8+ T-cells was comparable relative to middle aged
controls (Fig. 2B). Moreover, at age 110 years, we observed
recent thymic emigrants in W111’s peripheral blood,
although at lower levels compared to middle aged controls
(Fig. 2C) [13]. Furthermore, while T-cell proliferation is
often undetectable after 85 years [14], we detected ongoing
T-cell proliferation in the peripheral blood of W111 at
levels comparable to that of middle-aged healthy controls
(Fig. 2D). In vivo and in vitro proliferation assays con-
firmed that W111 had preserved the capability of mounting
a vigorous naive T cell response (Fig. 2E and Supplement).
We found that W111 still demonstrated functional T-cell
immunity, which may have, at least in part, contributed to
her extreme longevity. The marked contribution (~22%) of
the stem cell clone to the CD4+ T-cell subset (Fig. 1E)
combined with well-preserved T cell immunity led us to
question whether in some individuals, ARCH may be a

benign consequence of aging. These findings are in line
with a recent report by Hashimoto et al. [15], who observed
clonally expanded CD4+ T-cells in 7 supercentenarians.
While Hashimoto et al. attributed this clonal T-cell expan-
sion to a sustained antigenic stimulation, our findings sug-
gest benign ARCH as a competing explanation. In fact, we
can take this one step further and speculate that ARCH may
actually contribute to maintaining a functional T-cell
immunity.

We acknowledge that our observations in a single heal-
thy supercentenarian preclude any inference of causality
between ARCH and an unexpectedly functional T-cell
immunity. However, the presented findings warrant future
research of ARCH in large cohorts of aged healthy indivi-
duals in relation to phenotypic and functional parameters of
adaptive immunity.
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