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Summary 
 
As oil production continues worldwide, more oil fields require complex EOR methods to achieve outlined 
recovery factors. Reservoir engineers are dealing more often with problems involving thermal multiphase multi-
component flow models tightly coupled with complex phase behavior. Such modeling implies the solution of 
governing laws describing mass and energy transfer in the subsurface, which in turn requires the linearization of 
strongly nonlinear systems of equations. The recently proposed Operator-Based Linearization (OBL) framework 
suggests an unconventional strategy using the discrete representation of physics. The terms of governing PDEs, 
discretized in time and space, which depend only on state variables, are approximated by piece-wise multilinear 
operators. Since the current physical state fully defines operators for a given problem, each operator can be 
parametrized over the multidimensional space of nonlinear unknowns for a given distribution of supporting 
points. Onwards, the values of operators, along with their derivatives with respect to nonlinear unknowns, are 
obtained from the parametrization using multilinear interpolation and are used for Jacobian assembly in the 
course of a simulation. Previously, the distribution of supporting points was always uniform, requiring higher 
parametrization resolution to provide accurate and consistent interpolation of an operator around its most non-
linear regions in parameter space. In addition, when the resolution is low, the system can lose hyperbolicity 
causing convergence issues. In this work, we apply the prior knowledge of underlying physics to distribute the 
supporting points according to the tie-simplex behavior of the multiphase mixture in parameter space. The 
approach allows to decrease the parametrization resolution keeping the same accuracy. In addition, the OBL 
framework is extended to describe multisegment wells working under different controls. We test the accuracy of 
the developed framework for truly multi-component systems of practical interest. 
 
 



Introduction

The importance of numerical modeling for subsurface-related applications can hardly be overestimated.
Oil exploration and production, geothermal energy recovery, carbon dioxide sequestration have to deal
with a great level of uncertainty in geological description coupled with expensive capital investment
costs and high risks. Prior knowledge obtained from already developed reservoirs can’t be directly
applied to others. Computer modeling is an ultimate solution used to reduce the risks and improve the
productivity of underground reservoirs (Aziz and Settari, 1979).

There has always been the balance between accuracy and performance for computer simulation. Over-
simplified models can run in milliseconds but often divert with reality and produce meaningless results.
Equally useless are super-accurate models taking too long to generate results. There should be a balance
between the complexity of the model and the capability to produce the simulation results in reasonable
time especially when forward simulation results are used in the inverse modeling process.

For decades, the complexity of computational devices available on the market has been increasing expo-
nentially (Schaller, 1997). Accordingly, the complexity of reservoir simulation models has also tremen-
dously increased. They may now require the coupled solution of equations describing different physical
and chemical phenomena, leading to highly-nonlinear systems with millions of variables solved numer-
ically (Garipov et al., 2016, 2018). The utilization of automatic differentiation is strongly suggested for
this simulation frameworks to be flexible and efficient Younis (2011). However, the automatic differ-
entiation always introduces an additional computational overhead which limits its application in inverse
modeling and requires additional effort to speed it up (Moraes et al., 2017).

On the other hand, parametrization is widely used to describe the dependencies of individual model
parameters on key variables. For example, multiphase fluid flow in porous media is often described
through phase relative permeabilities, compressibilities, and viscosities, which are parametrized as pres-
sure and/or saturation tables and serve as model inputs. Depending on nonlinear formulation, these
parameters are evaluated as direct functions of nonlinear variables (e.g. natural formulation of Coats,
1980) or using the inversion (e.g. molar formulation of Collins et al., 1992).

In addition, parametrization can be used to improve the performance of reservoir simulation. For exam-
ple, Voskov and Tchelepi (2009) proposed to describe complex multicomponent thermodynamic phase
behavior with an adaptive parametrization of tie-simplexes related to thermodynamic equilibrium as-
sumptions. Later, this idea was fully developed for compositional simulation in a parameterized tie-line
space (Zaydullin et al., 2013). In this approach, the correspondent properties are evaluated in the param-
eter space, forming a discrete representation of complex physical relations. In the course of a simula-
tion, the reference points from this representation are used to predict both values of properties and their
derivatives by multilinear interpolation reducing expensive phase behavior computations.

Further development of the parametrization technique was proposed in Voskov (2017). The Operator
Based Linearization (OBL) approach suggests parametrization of the combined operators in governing
equations based on primary nonlinear unknowns - state variables. This approach was successfully ap-
plied to general purpose petroleum problems (Khait and Voskov, 2017) and geothermal problems (Khait
and Voskov, 2018). In addition, it was extended for taking into account the buoyancy forces and for
performing parametrization in adaptive manner (Khait et al., 2018). The method benefits not only from
the increased computational performance but also due to the modular implementation of the simulation
code. The latter allows to develop the multi-scale compositional transport reconstruction in Ganapathy
et al. (2018) or implement an element-based formulation for reactive flow and transport in Kala and
Voskov (2018) without modification of the main computational engine.

In this work, we continue to extend the capabilities of OBL approach. We describe the benefits of a
tie-line-based parametrization against a uniform parametrization. Also, we implemented and tested a
multi-segment well model with various well controls in the OBL-based simulation framework.
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Modeling approach

In this section, we describe the governing equations and nonlinear formulations for a general composi-
tional reservoir simulation problem.

Conservation equations

The transport equations for an isothermal system containing nc components and np phases can be written
as:

∂

∂ t

(
φ

np

∑
j=1

xc jρ js j

)
+ div

np

∑
j=1

xc jρ jv j (1)

+
np

∑
j=1

xc jρ jq̃ j = 0, c = 1, . . . ,nc.

According to Voskov (2017), all terms of the equations can be represented as functions of coordinates in
conventional three-dimensional space ξξξ and in parameter space ωωω . The former defines spatial location,
whilst the latter defines physical state and, in fact, matches the set of primary nonlinear unknowns.

To describe the flow of each phase, we use Darcy’s law:

v j = −
(

K
kr j

µ j
(∇ppp j− γ j∇ddd)

)
, j = 1, . . . ,np, (2)

By applying a finite-volume discretization on a general unstructured mesh and backward Euler approxi-
mation in time, we can transform the conservation equations into

V

(
(φ ∑

j
xc jρ js j)

n+1− (φ ∑
j

xc jρ js j)
n

)
−∆t ∑

l∈LLL

(
∑

j
xl

c jρ
l
jT

l
j ∆ψ

l

)
+∆t ∑

j
ρpxc jq j = 0. (3)

Here we neglected capillarity, gravity and used a Two-Point Flux Approximation (TPFA) with upstream
weighting introducing the summation over all interfaces LLL connecting the control volume with its neigh-
bors. These assumptions are not required by the method, but help to simplify the further description.
Flux fluid properties xl

c j,ρ
l
j,T

l
j are dictated by the sign of ∆ψ l , which is equal to the difference in pres-

sures between two control volumes sharing interface l.

Operator form of governing equations

We can re-write Eq. 3 as the component of a residual vector in an algebraic operator form

rc(ξξξ ,ωωω,u) = a(ξξξ )(αc(ωωω)−αc(ωωωn))−∑
l

β
l
c(ωωω)bl(ξξξ ,ωωω)+θc(ξξξ ,ωωω,u) = 0. (4)

Here, we defined

αc(ωωω) = (1+ cr(p− pre f ))∑
j

xc jρ js j, (5)

a(ξξξ ) = V (ξξξ )φ0(ξξξ ), (6)

βc(ωωω) = ∑
j

xc j
kr j

µ j
ρ j, β

l
c(ωωω) =

{
βc(ωωω) if ∆ψ l > 0
βc(ωωω

l) otherwise.
(7)

bl(ξξξ ,ωωω) = ∆tT l(ξξξ )∆ψ
l, (8)

θc(ξξξ ,ωωω,u) = ∆t ∑
j

ρ jxc jq j(ξξξ ,ωωω,u). (9)
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The operator αc depends on the properties of rock and fluid, and independent of spatially distributed
properties (initial porosity) as in the case of the operator a. Similarly, the divergence operator is
present as a fluid-related operator βc independent of spatially distributed properties (permeability) and
the discretization-related operator b. The same approach can be applied for the well source/sink operator
θc.

Total velocity formulation

The total velocity formulation allows analyzing of the incompressible system by segregation of elliptic
and hyperbolic terms of mass conservation equation. The operator form of total velocity formulation
stays equal to Eq. 4, while only convection operators require modifications:

βc(ωωω) =

∑ j xc j
kr j

µ j
ρ j

Λ(ωωω)
, (10)

Λ(ωωω) = ∑
j

kr j

µ j
, Λ

l(ωωω) =

{
Λ(ωωω) if ∆ψ l > 0
Λ(ωωω l) otherwise.

(11)

bl(ξξξ ,ωωω) = ∆tT l(ξξξ )Λl(ωωω)∆ψ
l (12)

Nonlinear unknowns

The nonlinear solution of the equations 3 can be performed using different strategies (Voskov and
Tchelepi, 2012). In the overall molar formulation, suggested by Collins et al. (1992), the physical state
of a mixture with np phases and nc components is defined by nonlinear unknowns ωωω = [p,z1, . . . ,znc−1].
The following system of equations needs to be solved at every nonlinear iteration to satisfy thermody-
namic equilibrium:

zc−
np

∑
j=1

ν jxc j = 0, c = 1, . . .,nc, (13)

fc1(p,T,xxx1)− fc j(p,T,xxx j) = 0, j = 2, . . .,np, c = 1, . . .,nc, (14)
nc

∑
c=1

(xc1− xc j) = 0, j = 2, . . .,np, (15)

np

∑
j=1

ν j−1 = 0. (16)

This procedure is called the multiphase flash (Michelsen, 1982). For a given overall composition zc, the
solution of (13)-(16) provides molar fractions for each component xc j and phase fractions ν j. Once the
multiphase flash is solved, it can provide derivatives of all properties in (3) with respect to nonlinear
unknowns using the inverse theorem, see Voskov and Tchelepi (2012) for details.

Tie-line based parametrization for operator-based linearization

The OBL approach simplifies the description of fluid and rock properties by building approximation
interpolants for the operators αc,βc and θc within the parameter space of a simulation problem (see
Khait et al., 2018, for details). Those interpolants are then used in the course of simulation to obtain the
values and partial derivatives of the operators with respect to nonlinear unknowns for Jacobian assembly.
Uniform discretization of parameter space, which was used previously, proved to be a simple, efficient,
and robust approach. However in this approach, approximation quality and consequently the accuracy
of a simulation depend only on the number of supporting points, while their locations are prescribed
blindly.
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In this section, we describe tie-line-based non-uniform parametrization approach. The key idea is to
use the knowledge of the thermodynamic behavior of a system to discretize the parameter space more
efficiently. Using this parametrization, we can reduce interpolation error with the same parametrization
accuracy (number of supporting points).

Phase behavior representation in compositional space

We show the application of tie-line parametrization for a three-component isothermal system with two
hydrocarbon phases for the sake of simplicity. However, similar parametrization techniques can be
extended for multi-dimensional parameter space with multiple phases (Zaydullin et al., 2013; Iranshahr
et al., 2013). For each pressure within the interval of interest, we construct a ternary diagram for phase
behavior representation in compositional space.

An example of such representation is shown in Fig. 1. Here, the one-phase region is shown in green
and the two-phase region - in red. A tie-line is a key concept in the thermodynamical description of a
multiphase multicomponent mixture at equilibrium assumptions. It is a line within the two-phase region
between a bubble point Bi and a dew point Di with equal compositions of liquid and vapor phases.
Along with this line, overall compositions z and phase saturations S keep changing, but molar fractions
of components within phases x remain constant.

All tie-lines can be extended through one-phase region to the sides of the diagram covering the sub-
critical region C1LcrRcrC2 (see Fig. 1). If a critical point zcr exists for the system under given p,T , then
the tie-line which passes through that point has zero length and is called a critical tie-line. The part of
the one-phase region which is above the extended critical tie-line LcrRcr is called super-critical region.
The approach provides separate parametrization treatment for these regions. If the critical point doesn’t
exist for given p,T then we assume that the sub-critical region covers the entire compositional space
[C1,C2,C3].

Figure 1 Tie-line based compositional space parametrization.
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Sub-critical region parametrization

We use an extension of tie-lines to parametrize the entire sub-critical region. First, we obtain the number
of intermediate tie-lines between the critical LcrRcr and the base (longest) C1C2 tie-lines based on the
distance between their midpoints Mcr,M0 and discretization parameter ∆x:

nit =

⌈
|M0Mcr|

∆x

⌉
. (17)

Next, we split M0Mcr into nit +1 equal segments and get the midpoints Mi of intermediate extended tie-
lines LiRi, where i= 1 . . .nit . Now, for every intermediate tie-line, we place supporting points at Li,Bi,Di,
and Ri. Naturally, we also place them at C1,B0,D0,C2,Lcr,Zcr, and Rcr. The segments LiBi,BiDi, and
DiRi are evenly divided by the fixed number of supporting points into subsegments, similarly to M0Mcr.
As the result, each subsegment becomes shorter than ∆x. Segments C1B0,B0D0,D0C2,LcrZcr, and ZcrRcr
are treated in the same way.

Super-critical region parametrization

The super-critical region can’t be parameterized using tie-lines, because they neither exist nor extend
there. Instead, we apply a uniform parametrization with grid-lines parallel to the critical tie-line. First,
we determine the number of such lines:

nil =

⌈
|McrC3|

∆x

⌉
. (18)

Then, we split each of the segments LcrC3,RcrC3 into nil + 1 equal subsegments. Finally, we place
supporting points at C3,L∗i ,R

∗
i and along segments L∗i R∗i , so that the segments become sliced into the

equal subsegments shorter than ∆x. Later, we test tie-line-based parametrization against a uniform
parametrization proposed in Voskov (2017); Khait and Voskov (2017).

Multi-segment wells

In this section, we briefly describe the concept of multi-segment well and introduce additional OBL
operators to cover the two sets of well controls used in practice.

Space discretization

Following the general unstructured grid framework, a well is discretized by a set of well segment control
volumes, chained together by connections with high transmissibility. Any well segment can also be con-
nected with an arbitrary number of reservoir control volumes, representing well perforation. For well
discretization, we use connection-based approach, suggested by Lim et al. (1995). Each perforation is
characterized by geometrical transmissibility representing the connectivity of corresponding well seg-
ments to the reservoir, also referred to as well index. In addition, the top well segment is also connected
to a ghost control volume, which has exactly one connection and is used as a placeholder for well control
equations, see details in Jiang (2007).

A simple example is shown in Fig. 2. Reservoir control volumes are shown in gray; well control volumes
including the top segment w1 - in blue; well ghost control volume w0 - in red. The interface between
w0 and w1 is denoted as w. Black arrows represent connections between reservoir control volumes;
blue arrows - perforation connections; red arrows - intra-well connections. All well control volumes are
considered as the extensions of a reservoir and treated exactly the same way during Jacobian assembly,
except for w0. Each well segment is defined by a volume dependent on a wellbore diameter and a
segment length, while porosity of the control volume is set to 1. The flow in the multi-segment well is
following the homogeneous flow in an idealized tube without roughness and slip (Jiang, 2007).
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Figure 2 Example of multi-segment well discretization for structured reservoir.

BHP well control

One of the two most common controls for wells in reservoir simulation is fixed bottom hole pressure. 
The following system of equations is applied to w0 control volume instead of Eq. 4 in order to maintain 
target pressure ptarget :

p− ptarget = 0, (19)

zc− zup
c = 0, c = 1, . . .,nc−1, zup

c =

{
zin j

c for injector
zw1

c for producer
(20)

Rate well control

Another common way to define well regime is to specify volumetric phase rate at surface conditions.
In order to parametrize this rate, we first define the state at separator (or surface) conditions using the
overall composition of the flux β w

c over interface w, which is evaluated according to 7:

ωωω
SC = [pSC,T SC,

β w
1

∑
c

β w
c
, . . .,

β w
nc−1

∑
c

β w
c
] (21)

Now, we can obtain target rate introducing rate operator ζ j(ωωω):

Q j =

bw
∑
c

β w
c

dt
S j(ωωω

SC)

ρt(ωωωSC)
=

bw

dt
ζ

w(ωωω), ζ
w
j (ωωω) =

{
ζ j(ωωω) for injector
ζ j(ωωω

w) for producer
(22)

Next, we write down equations for control volume w0 to maintain target rate Qtarget
j :

bw

dt
ζ

w
j (ωωω)−Q j = 0, (23)

zc− zup
c = 0, c = 1, . . .,nc−1, zup

c =

{
zin j

c for injector
zw1

c for producer
(24)
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Numerical results

Here we present the numerical experiments using the simulation framework based on OBL.

Tie-line based parametrization

The quality of a parametrization approach can be assessed using the accuracy of the interpolator built
on that parametrization. Previously, the piecewise multilinear interpolation was used, since supporting
points were distributed over parameter space in a uniform manner. This condition is no longer valid
with the tie-line-based parametrization approach. Therefore, in order to compare the tie-line-based
parametrization and uniform parametrization, we apply the Delaney triangulation to the set of supporting
points and then use a barycentric interpolation based on triangular simplices in both cases (Weiser and
Zarantonello, 1988; Zaydullin et al., 2013). The accuracy of an interpolator I can be checked directly
at any point of parameter space by absolute difference between interpolated value and true value. A
generalized error can be obtained by multiple application of this procedure at every point in set ΩΩΩ,
covering densely the entire parameter space: The error is computed in every point of compositional
space as L2 norm of operator for components:

||Eα ||i =

√
∑

nc
c=1(IαD

c
(ωωω i)−αc(ωωω i))2

max j,c |αc(ωωω j)|
. (25)

Here, IαD
c

is the interpolant of operator αc in discrete parameter-space ΩΩΩ
D, c corresponds to the compo-

nent and ωωω i corresponds to the distributed points in the compositional space.

We demonstrate the results of the approach modeling fluid mixture of CO2, NC4, and C10 at three par-
ticular pressures of 20, 60, and 100 bars, while the temperature is fixed at 345◦K.

Phase diagrams for the mixtures at all 3 pressures are shown in Fig. 3. In Fig. 3,a, the two-phase region
occupies almost the entire parameter space. The Fig. 3,b shows the phase behavior at p = 60 bars. Here,
two-phase region has reduced, but the extension of two-phase still parameterize the entire compositional
space. Similar diagram was generated for p = 100 bars in Fig. 3,c. Here, the two-phase and entire
sub-critical regions occupy a smaller portion of the compositional space and the large portion of space
is present in critical region.

Figure 3 Ternary diagram for the system CO2,NC4,C10 at p = 20, 60 and 100 bars, T = 345◦K.

Fig. 4 and Fig. 5 show the norm of combined operators α and β at different pressures respectively. These 
figures confirm that the thermodynamic properties of  the system dictate the behavior of  accumulative 
and flux o perators. The border between one-phase and two-phase regions accounts for the most abrupt 
changes in operators values. With growing pressure, the two-phase region shrinks and the nonlinearity 
increases, especially for the convection operator β .

In Fig. 6 and 7, we demonstrate the normalized interpolation errors for α operator Eα (ωωω) in case 
of adaptive and uniform parametrization respectively. The correspondent mesh is also shown for both
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Figure 4 Euclidian norms of accumulation operator α at p = 20, 60 and 100 bars.

Figure 5 Euclidian norms of convection operator β at p = 20, 60 and 100 bars.

types of parametrization. It can be clearly seen how the tie-line-based mesh adapts to the shape of the 
two-phase region.

For the meaningful comparison of errors, the number of supporting points in uniform and adaptive 
parametrizations should be equivalent. This is easy to control in uniform parametrization but more diffi-
cult in adaptive, since the number and density of supporting points depend on the form of the two-phase 
region. In the following comparison, we generate adaptive parametrization first with fixed parameters. 
Next, we select the resolution of uniform parametrization to match the number of points in adaptive 
parametrization as close as possible. This approach lets us compare the errors consistently.

The number of points for adaptive parametrization at pressures p = 20, 60 and 100 bars is 46, 36 and 
51 points respectively. To compare the errors, the resolution of uniform parametrization was tuned to 
generate 45, 36 and 55 points for these pressures respectively. Based on analysis of the error map, the 
main error is concentrated at the boundary of the two-phase region and more pronounced for the uniform 
parametrization. In case of convection operator β , the error in adaptive parametrization is closer to 
the errors in uniform parametrization, see Fig. 8 and Fig. 9 for adaptive and uniform parametrization 
respectively.

The maximum errors of a combined operator are considered for sensitivity analysis as

‖Eα‖= max
i
‖Eα‖i. (26)

The variation of error with the increase in the number of supporting points is shown on semi-log plot on
the x-axis. Five intervals are chosen between parameterizing distance ∆x = 0.1 and ∆x = 0.01. Since
the nonlinearity is strongly correlated with the two-phase shape, the error behaves non-monotonically at
higher pressure for both parametrizations. However, in the most cases, the error at lower resolutions for
the adaptive mesh is smaller than the error for the uniform mesh. At lower ∆x, the difference in errors
between uniform and adaptive mesh reduces since the proximity between supporting points increases.
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Figure 6 Errors for adaptive parametrization of accumulation operator α at p = 20, 60 and 100 bars.

Figure 7 Errors for uniform parametrization of accumulation operator α at p = 20, 60 and 100 bars.

Figure 8 Errors for adaptive parametrization of convection operator β at p = 20, 60 and 100 bars.

Figure 9 Errors for uniform parametrization of convection operator β at p = 20, 60 and 100 bars.
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Figure 10 Mean error comparison for accumulation operator with various parametrization resolutions 
at p = 20, 60 and 100 bars.

Figure 11 Mean error comparison for flux operator with various parametrization resolutions at p = 20, 
60 and 100 bars.
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Multi-segment wells

Another source of error comes from operators involved into the approximation of properties for well
controls. Multi-segment wells provide the most accurate solution when cross-flow effects coupled with
complex phase behavior occur in the reservoir model. In order to mimic these conditions, we took a
synthetic model comprised of three layers with lateral permeabilities of Kxy =100, and 500 mD, while

vertical permeability was set as Kz =
Kxy

100
. Each layer consisted of 10x10 grid blocks of 100x100x10m

with the porosity of 25%. The initial oil was made of 3 components C1, C4, and C10 at correspond-
ing compositions: 1% of methane, 35% of n-butane, and 64% of n-decane. The description of phase
behavior and properties was based on Peng-Robinson Equation of State (Peng and Robinson, 1976).

Two vertical multi-segment wells with three segments each were placed at the opposite corners of the
model. Each segment was connected to the correspondent layer with different well indexes of 10, 20
and 30. We injected a mixture of 99% of C1 and 1% of C4 at a constant gas rate Qg = 1.5e5 sm3/day.
The production well operates at a constant oil rate Qo = 800 sm3/day with minimum BHP constraint of
10 bar. In order to model single-phase gas injection into a single-phase liquid, we set the initial pressure
was P0 = 60 bars and temperature T0 = 77o C. The simulation period was 4000 days.

The comparison between OBL simulator denoted as DARTS, and ADGPRS with multi-segment well
model is shown in Fig. 12, 13. The two results match very well. Injector BHP climbs up due to gas
compressibility till breakthrough happens after roughly 1600 days of simulation, as it can be seen from
Fig. 12. After that injection pressure rapidly drops, while producer can’t satisfy oil rate control anymore
after roughly 2300 days of simulation and therefore switches to BHP constraint of 10 bar.

Figure 12 BHP for injector and producer provided by DARTS and ADGPRS.

Producer gas and oil rates comparisons are shown in Fig. 13. There is a very good match between 
DARTS and ADGPRS results. Producer gas rate starts at 0, then rapidly increases after the breakthrough 
and falls back after the producer switches to BHP control. Production oil rates provided by DARTS 
and ADGPRS multi-segment well model (denoted as ADGPRS_ms) match well. The results provided 
by ADGPRS standard well model, denoted as ADGPRS_std, underestimates oil production after the 
breakthrough and illustrates the substantial difference between the two well models in this case.

In order to test the same physical set up in a highly heterogeneous reservoir, we took the top layer 
of SPE10 test case (Christie and Blunt, 2001) and applied inverted 5 spot well pattern. The reservoir 
initial physical state and injection mixture were the same as in the previous case. Injection well started 
with BHP control at 180 bar, and after 500 days switched to gas rate control Qg = 2300 sm3/day with 
maximum BHP constraint of 199 bar. Production wells, placed at the corners, operated with gas rate 
control Qg = 200 sm3/day with minimum BHP constraint of 30 bar. The simulation period was 2500 
days.
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Figure 13 Producer oil and gas rates provided by DARTS and ADGPRS.

Figs. 14, 15, 16 , 17 demonstrate close match between DARTS and ADGPRS results. Injection well 
switched to gas rate control after 500 days of simulation and reached BHP limit by roughly 1900th day, 
as it can be seen in Fig. 14. P1 and P2 production wells happened to perforate low permeable reservoir 
area producing negligible amounts of fluids, so we omit their r esults. BHP for P3 and P4 are shown in 
Fig. 15. For P3 it remains constant throughout the simulation, while for P4 it starts raising after 1500 
days of simulation - the well switches to gas rate constraint after the breakthrough. This is confirmed by 
Figs. 16 and 17. Oil production rate immediately decreases while gas production rate increases till it’s 
limit of Qg = 200 sm3/day once the breakthrough is reached for P4. A small increase of gas production 
rate by the end of simulation indicates the breakthrough for P3 well.

Figure 14 Injector BHP and gas rate provided by DARTS and ADGPRS.

Conclusions

The Operator-Based Linearization approach proves to be an effective way to deal with complex mul-
tiphase flow in porous m edia. In this work, we extended the OBL approach farther and improved the 
approximation accuracy by introducing adaptive parametrization in the physical space of a problem. In 
particular, for a compositional problem with three components, we have placed the supporting points 
along with a discrete set of tie-lines in the two-phase region. Next, we performed triangulation and 
applied the reconstruction of OBL operators based on barycentric interpolation. This approach was 
tested for the range of pressures and demonstrated a reasonable improvement comparing to the uniform 
parametrization and piecewise multilinear interpolation.

In addition, we extended the OBL approach and introduce a multi-segment well model. We utilized 
conventional accumulation and flow operators to describe the flow between segments. For rate controls,
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Figure 15 P3 and P4 BHP provided by DARTS and ADGPRS.

Figure 16 P3 and P4 oil rates provided by DARTS and ADGPRS.

Figure 17 P3 and P4 gas rates provided by DARTS and ADGPRS.
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we introduced additional sets of phase rate operators which depend on both reservoir and separator
conditions. These operators translated the solution at the last segment into the rate control or constraint.
We tested our multi-segment model for several realistic scenarios and demonstrated a good match with
the reference results. The future work will include an extension of adaptive parametrization to multiple
components and farther improvement of the parametrization accuracy.

Nomenclature

ddd depths (positive downwards)

ppp j pressures of phase j

γ j gravity term for phase j

µ j viscosity of phase j

ρ j molar density of phase j

q̃ j rate of phase j per unit volume

v j velocities of phase j

kr j relative permeability of phase j

q j rate of phase j

s j saturation of phase j

xc j molar fraction of component c in phase j

K permeability tensor

α accumulation operator

β flux operator

ξξξ spatial coordinate

∆ψ l pressure difference across interface l

ν j overall molar fraction of phase j

ωωω state coordinate (nonlinear unknowns)

ωωω l state coordinate of the adjacent across interface l control volume

ωωωn state coordinate on the previous time step

φ porosity

θ source/sink operator

u well control variables

xxx j molar fractions of components within phase j

ζ phase rate operator

fc j fugacity of component c within phase j

q j source of phase j

T l the geometric part of transmissibility across interface l

Tj transmissibility of phase j

V volume of control volume

zc overall molar fraction of component c
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