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CHAPTER 1

Introduction

1.1 The Dutch Railway Network and Train Traffic Disruption
The Dutch railway network is the busiest in Europe, with more than twenty-
five active train operators as of 2015 ([ProRail, 2015a]). In 2014, the network
operated 3.2 million train services and carried, on average, 1.1 million passen-
gers each day totalling 145 million kilometres of passenger journeys for the
year ([ProRail, 2015b]). Figure 1.1 shows the main-line train service map of the
Netherlands, based on the 31 October 2012 timetable. This very dense network
is managed and maintained by ProRail, the Dutch state-owned company whose
main task is to assure that the railway system is reliable and safe for train oper-
ations. This includes producing and maintaining the railway timetable.

In practice, it is unavoidable that the operation of a railway system encoun-
ters unexpected incidents which disrupt the timetable. Depending on the length
of the incident, different measures need to be taken to handle the situation dur-
ing the downtime. Shorter incidents may require only timetable adjustment,
while longer incidents may additionally require rolling stock and crew adjust-
ment. These disruptions are the focus of this thesis.

Disruption length needs to be defined in a more precise manner. Adapting
from highway traffic modelling (Highway Capacity Manual [2010]; Pereira et al.
[2013]), we have divided it into four periods.

1. Reporting time is the interval between the actual occurrence of the incid-
ent and the moment when it is reported to the operator.

2. Latency time is the interval between the reporting time and the moment
when the repair team arrives at the site.

3. Repair time is the time needed for the repair team to solve the problem.

4. Recovery time is the time needed for the train service to return to normal.

1
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Figure 1.1: Overview of Dutch train services in 2013.. Source: ProRail

The first three periods represent the time when a section of railway is unavailable
due to the unexpected incident. During the recovery time, the affected section
has been reopened for train operation but traffic is still disrupted due to the
earlier closure. The goal of this thesis is to construct a prediction model for the
moment an affected section is ready to be reopened for use. Assuming that the
reporting time is instantaneous, our focus is on the latency and repair time.
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1.1.1 Types of Disruption
Many different unexpected incidents can disrupt operational train traffic. In
general, these can be grouped into two types: technical and non-technical.

A complex railway network like the one in the Netherlands comprises a lot of
different technical components. For example, as of 2012 the Dutch network con-
sisted of 7,033 km of railway tracks, 2,731 level crossings, 7,195 switches (sets
of points) and 11,683 signals ProRail [2015b]. These components fail over time
for many different reasons, in a stochastic manner, and it is important to have
the situation under control. The best way to do this is to prevent failures from
happening in the first place, which is done through maintenance work. However,
it is not uncommon to encounter situations where unexpected failures occur out-
side the maintenance schedule. Disruptions caused by such failures are said to
be of a technical nature.

The various types of technical disruption are listed below, along with the
number of registered urgent incidents on the Dutch railway network between
1 January 2011 and 30 June 2013 which we observe in our database (to be dis-
cussed shortly).

1. Switch (points) failures (2,974).

2. Track Circuit (TC) failures (2,113).

3. Signal failures (706).

4. Rail bar problems (592).

5. Rail foundation problems (285).

6. Interlocking problems (132).

7. Information and communication technology (ICT) problems (69).

8. Problems with rolling stock’s electrical power (319).

9. Problems with power (not related to rolling stocks) (133).

10. Physical problems at stations (6).

As this historical data shows, the two predominant types of technical incid-
ent are switch and TC failures. In this thesis, two disruption-length models
for incidents caused by these two types of failure are constructed. Models for
other technical incidents can be constructed in a similar fashion, by following
the model construction procedure we present here.

Other events can also disrupt train traffic. For instance, suicides and train
collisions are not caused by the failure of any technical components but they
still hinder traffic. Incidents of this type are said to be non-technical in nature.

Non-technical incidents caused by suicide are observed particularly frequently
in the Netherlands, with 425 recorded in our database for the years 2011−2012.
After such an incident, the site is declared a crime scene and the police first con-
duct an investigation. Once they have released the site, all technical components
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are checked by a repair team and the scene is cleared of any human remains
before the section is reopened for operation.

A disruption-length model for incidents caused by suicide has not been con-
structed because ProRail experts believe that the disruption length in such cases
is more or less certain: 120 minutes1.

1.1.1.1 The Track Circuit (TC)

The TC is part of the train safety system, its task being to detect whether a block
or section of track is occupied or not. It is the most commonly used train detec-
tion system in the Dutch railway network, as shown in Figure 1.2.

Figure 1.2: Map of the train detection systems installed across the Dutch railway network.
Source: ProRail

A TC has an electric current source at one end of the section and a detection
device at the other end. The current flows along the section, through the rails.
Sections are separated by joint insulators which keep the current flowing within
their corresponding section. A track relay acts as the detection device. The track
relay is in an up position when the section is clear and drops when the section is
occupied. Specifically, the axles of the train produce a short circuit between the
two rails so that the relay does not receive any current and hence the section is
detected as occupied (Pachl [2004]). This is illustrated in Figure 1.3.

A TC system consists of many different electrical components. Failure of
any of these leads to the corresponding section being erroneously detected as
occupied and so disrupts train traffic. Sometimes, however, an external cause

1Our database (to be described shortly) cannot be used to confirm this belief because it is based
solely on the work of repair teams. This means that it does not contain full information about dis-
ruptions caused by suicide.
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Figure 1.3: How the track circuit system works.

(a) An unoccupied block or section.

(b) An occupied block or section.

also leads to the same problem. The following are the main components of a
TC and some external factors which can cause problems (Visser and Steenkamp
[1981]).

1. Joint insulator. A joint insulator, depicted in Figure 1.4(a), separates two
consecutive sections of railway with an insulator made of nylon plates and
linings, so that the 75-hertz detection alternating current in one section
does not flow to the adjoining one. If the joint insulator fails, the detection
current in one section can flow into the next. Two common causes of this
situation are:

(a) Coins. A frequent problem with the insulation function is when someone
deliberately puts conductive material on the joint insulator, most usu-
ally coins, thus allowing electric current from one section to flow into
the next. To solve the problem, the repair team only needs to remove
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the conductive material from the joint insulator.

(b) Splinters/grinding chips and insulator problem. Other conductive
foreign objects may also fall accidentally onto the joint insulator. Most
frequently, the material that cause this is a splinter, a tiny piece of
metal from the magnetic track brake or a train, or a grinding chip
deposited from the overhead line or from interaction between the
wheels and the rails. To solve this problem, the repair team needs to
clear the splinter or chip from the joint insulator. It may also need to
replace the nylon plates and linings to renew the insulating function
of the insulator.

Figure 1.4: Two components of the TC.

(a) An insulated joint at Utrecht Centraal Sta-
tion.

(b) A B2 Vane Relay.

2. Relay cabinet. A relay cabinet contains a few electrical components, such
as a B2 vane relay (Figure 1.4(b)), a CR/VTB relay, a capacitor, a trans-
former, a fuse and wiring. Failure of any of these requires the repair team
to replace the defective component with a new one.

3. Arrester. An arrester protects the TC from high voltage and creates a safe
current path should the catenary2 be disrupted and fall onto the track. A
faulty arrester is replaced with a new one.

4. Cable. Cable problems arise if the cable itself is broken, its insulation is
damaged or it is stolen for its valuable copper. Whatever the case, the
faulty cable has to be replaced.

5. Track-side electrical junction box. The trackside electrical junction box
connects the heavier trackside cable from the track circuit with the long,
thinner cable to the relay cabinet. If it fails, it has to be replaced by a new
box.

6. Impedance bond. In an electrically powered railway system, the rail is
also used to carry the return traction direct current (DC) of 1500 volts. The

2An overhead wire used to transmit electrical power to trains.
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impedance bond permits this DC traction current to pass between sections
while blocking the track circuits alternating current (AC) of 75 hertz to stay
within its respective section. When there is problem with an impedance
bond, the repair team needs to replace it with a new one.

7. External Reasons. Some external factors which quite commonly cause TC
problems.

(a) Human Error. Sometimes, a worker makes an unintended mistake that
leads to an erroneous section occupation detection. For example, they
accidentally change the setting of a component during maintenance
work. There is no one specific action needed to solve such a problem:
that depends on what mistake has been made.

(b) Adjustment problem. Sometimes, none of the components fails but the
TC setting is not correct −most of the time due to high ambient tem-
perature or too low ballast resistance. In this case, the engineering
staff need to correct the setting by readjusting it. Hot days are there-
fore likely to produce more TC problems than average. On the after-
noon of 28 June 2011, for instance, the temperature in the Nether-
lands exceeded 30oC. As a result, on that day 19 urgent TC problems
were detected on the Dutch railway network − well above the daily
average of 2.32. Some remarks in the database indicated that high
temperature played a role in these incidents.

(c) Short Circuit. This problem occurs when an object causes a short cir-
cuit between the rail and the soil. The type of action needed depends
on the degree of damage caused.

1.1.1.2 The Switch

A switch, set of points or a turnout3, is an assembly of rails, movable points,
and a frog, which creates the tangential branching of tracks and allows trains
to switch from one track to another (Pachl [2004]). A mechanism to move the
points from one position to another is also present by the switch. In the past the
mechanism was in the form of a lever, which needed to be moved manually by a
human operator. Nowadays, it is a remotely controlled electric motor.

The moving mechanism of a switch is divided into three different processes:
steering, switching and controlling. Figure 1.6 represents the flow of these pro-
cesses, starting from the top left of the diagram. When a traffic controller chooses
a switch position (left or right), this command is forwarded to the point motor.
This is the steering process. The motor then commands the point machine to
move the switch blade to the desired position. This is the switching process.
Once the blade is correctly adjusted, the point machine receives this informa-
tion and relays it back to the traffic controller, who is notified that the switch is
now in the desired position. This is the controlling process.

3The term “turnout” is commonly used in civil engineering when referring to this mechanism
(Pachl [2004]). In this thesis, however, the term “switch” is used.
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Figure 1.5: Switch number 279B and 283B at Rotterdam Centraal Station.

Figure 1.6: The moving mechanism process of a switch. Source: ProRail.

The most common problem with switches, which often leads to disrupted
train traffic, is failure of their moving mechanisms caused by failure of any of
the underlying processes. At ProRail, a switch is said to be “not in control”
(NIC) when this situation occurs. Other, less frequent, switch-related problems
include fractures of the rails, movable points or frogs and displacement of the
substructure. ProRail distinguishes eight different types of NIC situation, as
follows (with their ProRail’s codes).

1. Train safety (steering) (NIC-TB-S). A steering problem with the train safety
system takes the form of an erroneous switch occupation detection where,
when it happens, the switch must be adjusted to the correct position. The
system also contains several small electrical components, such as fuses, re-
lays and wiring, which can break over time. If they do, they need to be
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replaced.

2. Steering circuit (NIC-1). A failure of the steering circuit can be caused
by loose wiring or polluted devices. In this case the wiring needs to be
fastened or the devices cleaned. As well as the electrical components listed
above, the system also includes small parts such as sensors, hand cranks
and motors, which need to be replaced when they are broken.

3. Point machine (steering) (NIC-2). This problem occurs during the com-
mand transmission from the point motor to the switch blade. It is usually
caused by friction wear of the point machine’s gears. In this case the entire
point machine must be replaced.

4. Blockage (NIC-3A and NIC-3B). The blade’s movement can be hindered
by a foreign object blocking the switch. The object can be external, e.g. an
ice block or a stone (NIC-3A), or internal, e.g. a bolt or a screw (NIC-3B).
When this occurs, the blockage needs to be removed from the switch. Once
that has been done, the repair team needs to check the switch to make sure
it is now working properly.

5. Point machine (controlling) (NIC-4). This problem occurs during detec-
tion of the moved blade. It can be caused by an expired control rod in the
point machine, which needs to be replaced.

6. Circuit control (NIC-5). A defective circuit controller causes the switch’s
status to not be updated, even though it is already in the desired position.
In this case the circuit controller needs to be replaced.

7. Train safety (controlling) (NIC-TB-C). A control problem with the train
safety system occurs during confirmation of the moved switch position.
This is usually caused by a defective component in the circuit control of
the train safety system. In this case the defective component needs to be
replaced.
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1.1.2 Disruption Response Process
When a disruption occurs on the Dutch railway network, the disruption res-
ponse process involves three main actors.

1. The Train Traffic Controller (Treindienstleider (VL)). When a disruption
occurs, it is their responsibility to provide a safe working environment for
the repair team by keeping the line clear during the repair.

2. The Disruption Registration Center (Storingsmeldcentrum (SMC) ). Its
task is to register the disruption and to keep relevant parties informed of
progress in dealing with it.

3. The contractors (aannemers). In the Netherlands, several companies are
contracted to perform repair work following incidents on different parts of
the railway network. The four biggest are Strukton, ASSET Rail, BAM and
Volker Rail.

Two other parties are also involved in the process, but somewhat less directly
than the three mentioned above.

1. The Back Office. This receives information about the disruption and its
predicted length from the SMC. Its task is to build a scenario on how to
manage traffic during the period of disruption. For example, by rerouting,
diverting4 or cancelling trains. It then communicates this scenario to the
train traffic controller, to assist them in managing train operations.

2. The General Leader (De Algemeen Leider). If the disruption is considered
as having a major impact, the Back Office asks the algemeen leider to attend
in person to supervise the ongoing situation on site, e.g. overseeing repairs
or assisting passengers.

Representatives of all these parties are stationed at the Operational Control
Centre Rail (OCCR) in Utrecht, where they work together to manage traffic dur-
ing disruptions when the regular timetable is no longer being followed. Their
goal is is to return traffic to normal as soon as possible.

Figure 1.7 presents a flowchart of the disruption response process for tech-
nical disruptions in the Netherlands. When a disruption occurs, the VL and
SMC receive information about it. When it is serious, i.e. it impacts clients (the
train operators, and hence passengers), a rough prediction of its length is made.
This is called the “P1” prediction and is based on the average length of the same
disruptions in the past.

In the meantime, the repair team from the relevant contractor is informed by
the SMC about the disruption and is tasked to carry out repairs. From now on
the OCCR is in close communication with the repair team, which informs the
VL about its estimated time of arrival at the disruption site (the latency time).
Once there, the team has 15 minutes to diagnose the problem, after which it

4When a train is diverted, it is on time but not running on its original route. When a train is
rerouted, it is not on time and not running on its original route.
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is required to make a prediction, using its own judgement, regarding the time
needed for the repair. This is called the “P2” prediction. It is received by the
SMC and is forwarded to the Back Office. The repair team is allowed to update
its prediction later, in which case it is referred to as the “P2a” prediction. Each
time an update is made, the information is forwarded to the Back Office.

Once a final prediction can be made, the repair team is required to update
the OCCR again. This is the so-called “P3” prediction. Upon completion of
its work, the repair team informs the OCCR that the problem is solved and the
disrupted train traffic can be resumed. It is then required to register information
about the disruption on an administrative form to be stored in a SAP database.
Unfortunately, this procedure does not include recording the repair workers’
own predictions.

In current practice, therefore, the uncertainty surrounding the length of a
disruption is dealt with by means of a series of predictions based on the repair
workers own expertise and judgement. The goal of this thesis is to construct
a prediction model which assists the OCCR by updating the disruption-length
forecast every time new information about the situation is available, in a manner
similar to the way the “P1”, “P2”, and “P3” predictions help them now. This
model is based on historical data, the source of which is described in the next
section.

1.1.3 The SAP Database
The data used in this thesis comes from the SAP database. This is an Excel-
based database in which each column represents a specific piece of information
and each row represents a recorded incident. All disruptions that involve the
contractors are recorded in this database.

The following are the information items from the SAP database which are of
importance in this thesis.

1. System. This column specifies the type of disruption.

2. Contractor and Trace. These columns specify the responsible contractor
and its subdivision for each disruption.

3. Priority. This column specifies the priority of the incident, using integer
values from 1 (major disaster) to 9 (least urgent).

4. Contractor informed time. This column shows the time the contractor was
informed about the disruption.

5. Repair team arrival time. This column indicates the time the repair team
arrived at the disruption site. The interval between the contractor in-
formed time and the repair team arrival time is the latency time.

6. Function recovery time. This column indicates the time the failure was
repaired and train traffic over the blocked section could be resumed. The
interval between the repair team arrival time and the function recovery
time is the repair time.
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7. Operational points from/to.In the database, the disruption site is recorded
as between two ”operational points”5 at which GPS information is avail-
able. The coordinates of the disruption site are estimated to be the average
of the two operational points’ coordinates.

8. Contract type. In the Netherlands, there are currently two types of con-
tract between ProRail and its contractors. The older “output-based con-
tract” (Output-procescontracten, OPC) is based on the amount of work the
contractor performs, whilst the newer “performance-based maintenance
contract” (Prestatiegericht Onderhoud, PGO) introduces a penalty if the work
takes too long. The contract type is indicated in this column.

9. Remark. This column contains free-text information about the incident,
provided by the repair team when filling in the SAP form.

The training set used to construct our model is incident data collected between
1 January 2011 and 30 June 2013 . To validate the model, a second set of data
has been used. The test set for disruptions more likely to occur in the summer
contains incidents between 1 May 2014 and 31 October 2014, while that for dis-
ruptions more likely in the winter contains incidents between 1 October 2014
and 31 March 2015.

The SAP database also contains information about the cause of the incidents.
Unfortunately, however, this is not recorded properly and is often presented as
unstructured text that is hard to interpret. For instance, the cause of 67% of the
urgent incidents caused by TC failures, one of the incident types that will be of
interest later on in this thesis, is recorded either as “unknown” or “other”. This
is a huge setback for our research, because this information is a crucial factor
influencing repair time.

Fortunately to overcome this problem, information can be extracted from the
non-standardized “Remark” column to some degree. By manually reading and
looking for the right key words in each incident’s entry, a diagnosis of the prob-
lem can sometimes be made. In performing this labour-intensive work, we were
supervised by a track circuit expert and a switch expert from ProRail, who as-
sisted us in defining the principal causes of TC problems (see subsection 1.1.1.1)
and switch problems (see in Subsection 1.1.1.2) respectively, and in identifying
the common key words for them. Of course, because the comments in the “Re-
mark” column are written as free text, there is no standardization in the richness
of the information they contain. At one extreme, some incidents are recorded
with large amounts of explanatory detail. At the other, none at all is provided.
Nevertheless, in this way we were able to reduce the proportion of “unknown”
TC incidents to 30%. How this work was undertaken and how we made our
decisions concerning that remaining 30% of the data will be described in more
detail later in this thesis.

Material from other databases has been also used to complement that avail-
able in the SAP system. Information about the location of level crossings is

5The Dutch railway network is marked with operational points across the system: railway sta-
tions, junctions, bridges, etc.
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used to approximate the distance between the estimated disruption site and the
nearest level crossing. Information about the hourly frequency of trains passing
each operational point is used to determine the density of traffic at disruption
sites. Since weather is one factor of interest in the thesis, we have also consul-
ted the hour-by-hour national weather data published by the Royal Netherlands
Meteorological Institute (Koninklijk Nederlands Meteorologisch Instituut, KNMI)
and available at: http://www.knmi.nl/nederland-nu/klimatologie/uurgegevens.

1.2 Modelling Disruption Length
A vast number of different mathematical algorithms and models proposed for
recovery from a disrupted situation are available in literature. Cacchiani et al.
[2014] provide an overview in which some of the cited works mention the un-
certainty of disruption length. Given information about disruption length, the
algorithms seek an optimal solution to recover from the disrupted situation in
the form of timetable, rolling stock or crew rescheduling. This means that in-
formation about disruption length is crucial input for any of these algorithms
and models to work.

However, disruption length is very uncertain: it is difficult to tell exactly how
long a disruption will last. To tackle this, disruption length is going to be rep-
resented here as a probability distribution. This allows us to generate random
samples of disruption length. This approach is relatively new in railway opera-
tion, but has been used in several earlier studies on highway traffic engineering.
For instance, Golob et al. [1986], Giuliano [1989] and Sullivan [1997] use the
log-normal distribution and Nam and Mannering [2000] use the Weibull distri-
bution. In railway operation, Meng and Zhou [2011] model disruption length
on a single-track rail line in China with the normal distribution, while Schranil
and Weidmann [2013] model railway disruption length in Switzerland with the
exponential distribution.

0 100 200 300 400 500 600 700 800 900
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Disruption Length

C
D

F

TC Failures

 

 

Data

Normal Fit

Exponential Fit

(a) Distribution of TC Disruption Length.

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Disruption Length

C
D

F

Switch Failures

 

 

Data

Normal Fit

Exponential Fit

(b) Distribution of Switch Disruption Length.

Figure 1.8: Observed distributions of disruption length (in minutes) in the data.

Figure 1.8 presents the distributions of disruption for TC failures (Figure
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1.8(a)) and switch failures (Figure 1.8(b)) in the Netherlands6. The observed
distributions in the data are represented by the blue lines in both figures. The
normal and exponential distribution are fitted using the standard maximum-
likelihood approach and the results are presented as the dashed red curves and
the dotted black curves, respectively. Both plots indicate that the distributions
do not represent the disruption length we observe in the data.

Moreover, several factors influencing disruption length are considered. Our
goal is to construct a joint distribution between the disruption length and these
influencing factors for each disruption type, based on historical data. A predic-
tion of disruption length can be made by conditioning this joint distribution on
the observed values of the influencing factors, resulting in the conditional dis-
tribution of disruption length. Having a conditional distribution as the model
output enables the OCCR to choose different quantiles of the distribution as the
predictions of disruption length so as to optimize train traffic during disruption,
depending on the situation.

1.2.1 Modelling the Joint Distribution and the Copula
It is often difficult to build a joint distribution that fits a set of data. Consider a
model that involves only continuous variables. Formally, let X = (X1, . . . ,Xn) be a
continuous random vector with realization x = (x1, . . . ,xn).

One possible joint distribution model is the multivariate normal distribution.
In this case, the joint density, f1,...,n(x1, . . . ,xn), is defined as

f1,...,n(x1, . . . ,xn) =
1√

(2π)n|Σ|
exp

(
−1

2
(x−µ)TΣ−1(x−µ)

)
(1.1)

where µ is the mean vector of X, Σ denotes the covariance matrix, and |Σ| denotes
the determinant of Σ. Notice that there are constraints in this model. First of
all, Σ must be positive-definite. Moreover, this model only considers pairwise
interactions between the variables as represented in Σ. Thirdly, each margin Xi
as well as each higher dimensional margin must be normally distributed.

Another possible joint model is the multivariate t-distribution (see, e.g. Nada-
rajah and Kotz [2005]). However, the margins of such a model are constrained
to be t-distributed.

In practice, it might be the case that the marginal distributions of Xis are of
different types. A popular way to solve this problem is by applying the copula. A
copula is the n-dimensional joint distribution in the unit hypercube of n uniform
random variables Ui . The theorem of Sklar [1959] serves as the basis of copula
application. It states that any cumulative distribution function of (X1, . . . ,Xn),
denoted as F1,...,n, can be rewritten in terms of the corresponding copula C as:

F1,...,n(x1, . . . ,xn) = C(F1(x1), . . . ,Fn(xn)) (1.2)

where Fi(xi) denotes the marginal distribution of the i-th variable. Consequently,

6In this thesis, disruption length is presented in minutes.
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(a) Density of a normal copula with ρ =
0.7167 (r = 0.7).
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(b) Density of a Clayton copula with θ =
2.1316 (r = 0.7).

Figure 1.9: Densities of two bivariate copulas.
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(a) Density contour plot of the normal cop-
ula in Figure 1.9(a).
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(b) Density contour plot of the Clayton cop-
ula in Figure 1.9(b).

Figure 1.10: Density contour plots of two bivariate copulas.
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0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Scatter plot of data sampled from a
Clayton copula in Figure 1.9(b).

Figure 1.11: Scatter plots of data from the two bivariate copulas.
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the copula representation of the joint density f1,...,n(x1, . . . ,xn) is:

f1,...,n(x1, . . . ,xn) = c(F1(x1), . . . ,Fn(xn)) · f1(x1) · . . . · fn(xn) (1.3)

where c is the copula density. Moreover, the copula satisfying equation (1.2)
is unique if the variables are continuous. However, if at least one variable is
discrete, the copula is not unique.

In equation (1.3), note that the marginal densities fi are separated from the
copula density c. Therefore, in this case the joint density f1,...,n can be modelled
by modelling the copula c without any constraints on the marginal distributions.

When n = 2, there are many copula families that are available and easy to use
(see, e.g., Nelsen [2006] and Joe [2014]). We next present two of those often used
in practice.

Example 1.2.1. (bivariate normal copula). The bivariate normal, or Gaussian,
copula is defined as follows:

Cρ(u1,u2) = Φρ(Φ−1(u1),Φ−1(u2)) (1.4)

where Φ−1 denotes the inverse cumulative distribution of a univariate standard
normal distribution and Φρ denotes the joint cumulative distribution of a bivari-
ate normal distribution with zero mean and correlation ρ. The copula density
can be derived from equations (1.3) and (1.1) for n = 2, which result in:

cρ(u1,u2) =
1√

1− ρ2
exp

(
−
ρ2Φ−1(u1)2 − 2ρΦ−1(u1)Φ−1(u2) + ρ2Φ−1(u2)2

2(1− ρ2)

)
. (1.5)

Example 1.2.2. (bivariate Archimedean copula). The bivariate Archimedean
copula has the following representation:

Cθ(u1,u2) = ψ−1
θ (ψθ(u1) +ψθ(u2)) (1.6)

where ψθ denotes the generator function that is continuous, strictly decreasing,
convex, and satisfies ψθ(1) = 0.

When the generator function is ψθ(u) = 1
θ (u−θ − 1) where θ ∈ [0,∞), (1.6)

becomes:
Cθ(u1,u2) =

(
u−θ1 +u−θ2 − 1

)−1/θ
. (1.7)

This copula is known as the Clayton copula (Clayton [1978]) and is interesting
for some applications because it captures the lower tail dependence between the
variables.

Figure 1.9 presents the density of a bivariate normal copula (Figure 1.9(a))
and a Clayton copula (Figure 1.9(b)) when the Spearman’s rank correlation between
U1 and U2 is r = 0.77. Figure 1.10 presents the contour plots of the two copula
densities. It can be seen that the two copulas behave very differently, even when
the rank correlations are the same.

7This corresponds to ρ = 0.7167 for the normal copula and θ = 2.1316 for the Clayton copula.



18

Consequently, the samples of (U1,U2) generated from the two copulas would
also look very different. Figure 1.11 presents the scatter plots of 2000 samples
from the two copulas depicted in Figure 1.9.

When n ≥ 3, a few copula families are available.

Example 1.2.3. (multivariate normal copula). The multivariate normal copula
is an extension of the bivariate normal copula and is defined as follows:

CR(u1, . . . ,un) = ΦR(Φ−1(u1), . . . ,Φ−1(un)) (1.8)

where Φ−1 is as in the bivariate case and ΦR denotes the joint cumulative dis-
tribution of a multivariate normal distribution with zero mean and correlation
matrix R, which is positive-definite. Moreover, all k-margins of the copula, with
k < n, are constrained to be k-variate normal copula as well.

Example 1.2.4. (multivariate Archimedean copula). The bivariate Archimedean
copula can be extended to the multivariate case as follows:

Cθ(u1, . . . ,un) = ψ−1
θ (ψθ(u1) + . . .+ψθ(un)). (1.9)

McNeil and Nešlehová [2009] show that ψ−1
θ needs to be n-monotone8, i.e. dif-

ferentiable up to the order n− 2, to satisfy:

dk

dtk
(−1)kψ−1

θ (t) ≥ 0, k = 0,1, . . . ,n− 2

and dn−2

dtn−2 (−1)n−2ψ−1
θ (t) is non-negative, non-increasing and convex on (0,∞). If

ψ−1
θ is n-monotone for any dimension n, the generator is said to be completely

monotone (Kimberling [1974]).
Note that all k-margins of a multivariate Archimedean copula are identical,

i.e. C(u1, . . . ,uk ,1) = ψ−1
θ (

∑k
i=1ψθ(ui)) with the same dependence parameter θ.

This constraint makes this copula less attractive from an application point of
view.

Example 1.2.5. (nested Archimedean copula). Joe [1997] presents the construc-
tion of an n-dimensional copula Cn by nesting n−1 bivariate Archimedean cop-
ulas. This copula is defined iteratively for n > 2 by:

Cn(u1, . . .,un;ψ1, . . . ,ψn−1) = ψ−1
1 (ψ1(u1) +ψ1(Cn−1(u2, . . . ,un;ψ2, . . . ,ψn−1))

= ψ−1
1 (ψ1(u1) +ψ1 ◦ψ−1

2 (ψ2(u2) +ψ2(Cn−2(u3, . . . ,un;ψ3, . . . ,ψn−1)))

...

= ψ−1
1 (ψ1(u1) +ψ1 ◦ψ−1

2 (ψ2(u2) + . . .ψn−2 ◦ψ−1
n−1(ψn−1(un−1) +ψn−1(un)) . . .)).

(1.10)

Note that ψ−1
n−1(ψn−1(un−1) +ψn−1(un)) corresponds to (1.6).

8McNeil and Nešlehová [2009] use the term “d-monotone” which corresponds to the d-
dimensional joint distribution. In this thesis, we adjust the term to “n-monotone” because our joint
distribution is n-dimensional.
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With this approach, asymmetries in the joint distribution can be modelled by
choosing a different bivariate Archimedean copula for eachψk . However, McNeil
[2008] shows that ψk−1 ◦ψ−1

k has to be completely monotonic for k = 2, . . . ,n − 1
which means that ψk cannot be chosen independently.

Therefore, while a copula helps in separating the marginal densities fi from
the dependence structure (represented by the copula density c), the construction
of c when n ≥ 3 is still difficult. Depending on the chosen technique, marginal
constraint or functional constraint needs to be satisfied in the model construc-
tion. In the next subsection, we present a modelling strategy which avoids these
problems as it involves a set of algebraically independent bivariate copulas. This
strategy uses a graphical structure called “vines” and is shown to be very useful
in the model construction when n ≥ 3.

1.2.2 Vines
Note that with the standard decomposition and the condition of positive (condi-
tional) densities, the joint density can be rewritten as:

f1,...,n(x1, . . . ,xn) = f1(x1) · f2|1(x2|x1) · . . . · fn|1,...,n−1(xn|x1, . . . ,xn−1) (1.11)

where fn|1...,n−1 denotes the conditional density of Xn given X1, . . . ,Xn−1. There
are many different possibilities to decompose the joint density.

Let V denote the conditioning set of the j-th term on the right-hand side of
(1.11) and V\i denotes V without Xi . Each term fXj |V for all j such that i < j on
the right-hand side of (1.11) can be rewritten with a bivariate copula as follows

fXj |V =
fXj ,Xi |V\i
fXi |V\i

= cji|κ(FXj |V\i ,FXi |V\i ;V\i)fXj |V\i (1.12)

where κ denotes the index of all variables in the set V\i and Cji|κ denotes the
bivariate copula between Xj and Xi conditioned on the variables in V\i with
copula density cji|κ. The second equality in (1.12) comes from the copula repres-
entation of the joint density as in (1.3).

With this approach the full joint density can be modelled with a set of (con-
ditional) bivariate densities that are represented with a set of bivariate copu-
las. Note that the (conditional) bivariate densities are algebraically independent
where the bivariate copulas can be chosen freely and do not depend on each
other. This is called the “copula-vine” approach (Kurowicka and Cooke [2006]).

The joint density decomposition can be represented graphically using a struc-
ture called “vines”, which was introduced in Cooke [1997] and developed fur-
ther in Bedford and Cooke [2002]. A vine is a nested set of n− 1 trees consisting
of nodes and (undirected) edges where the edges of the i-th tree are the nodes of
the (i + 1)th tree. In this thesis, we consider only a special form of vine; that is,
the regular vine in which two edges in tree i are joined by an edge in tree i + 1
only if they share a common node in tree i.

The following example illustrates the copula-vine approach in three dimen-
sions.
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Example 1.2.6. Consider three continuous random variables X1,X2,X3 whose
joint density is decomposed and represented with three bivariate copulas C12,
C23 and C13|2 as:

f1,2,3(x1,x2,x3) = f3(x2)f3|2(x3|x2)f1|2,3(x1|x2,x3)

= f1,3|2(x1,x3|x2)f2(x2)

= c13|2(F1|2(x1|x2),F3|2(x3|x2);x2)f1|2(x1|x2)f3|2(x3|x2)f2(x2)

= c13|2(F1|2(x1|x2),F3|2(x3|x2);x2)c12(F1(x1),F2(x2))c23(F2(x2),F3(x3))

f1(x1)f2(x2)f3(x3) (1.13)

Figure 1.12: A regular vine on three variables.

Figure 1.12 illustrates a vine structure that represents the decomposition in
(1.13)9. The first tree is coloured red. In this tree, the nodes correspond to
the variables and the edges correspond to the unconditional bivariate copula
C12 and C23. The red edges become the nodes of the second tree whose edge,
coloured blue, corresponds to the conditional bivariate copula C13|2.

To sample the joint distribution of (X1, . . . ,Xn), we next present a procedure
on the vine structure in Example 1.2.6. For more details, interested readers are
referred to Kurowicka and Cooke [2006].

In the procedure, we assume the marginal distributions Fi to be continuous
and invertible so that one can use them to transform each variable into uniform
(0,1). Therefore, without loss of generality X1,X2,X3 are uniform on (0,1).

First, three independent uniform (0,1) variablesU1,U2,U3 are sampled. Then:

x1 = u1,

x2 = C−1
2|1:x1

(u2),

x3 = C−1
3|2:x2

(C−1

3|2
∣∣∣C1|2:x2 (x1)

(u3)),

where Cj |i:xi denotes the cumulative distribution function of Xj given Xi = xi
under the copula Cij and C−1

j |i:xi
denotes its inverse.

9To save space, the bivariate copula Cij |k is presented as ij |k in all vine figures in this thesis.
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In general the copula Cji|κ in (1.12) depends on the conditioning variables
V\i . When the copula is assumed not to depend on V\i , the copula is said to
be “constant” with respect to the conditioning variables (otherwise it is “non-
constant”). The choice of whether the conditional copula is constant or non-
constant affects the constructed joint density, as illustrated in the following ex-
ample.

Example 1.2.7. Consider the three dimensional vine structure in Example 1.2.6.
Let Xi be standard normally distributed, C12 and C23 be the normal copulas
with parameters ρ12 = ρ23 = 0.8, and C13|2 be normal copula with parameter
that depends on X2 as ρ13|2(x2) = 0.9cos(π · x2). The joint density is computed
with equation (1.13).

(a) Isosurface of the joint distribution. (b) Contour slice of the joint distribution.

Figure 1.13: The generated joint distribution of (X1,X2,X3) with non-constant C13|2.

(a) Isosurface of the joint distribution. (b) Contour slice of the joint distribution.

Figure 1.14: The generated joint distribution of (X1,X2,X3) with constant C13|2.

Figure 1.13(a) shows several layers of isosurfaces, which represent the points
(x1,x2,x3) in the 3D space with constant density f1,2,3(x1,x2,x3). Figure 1.13(b)
presents the contour of the joint density when sliced at various values of X2.
Note that the slices are all ellipses, but with different eccentricities. Figure
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1.13(b) shows how the correlation betweenX1|X2 andX3|X2 changes from strongly
positive when X2 is small to strongly negative when X2 is large. This is a direct
implication of the functionality of ρ13|2 with respect to X2.
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Figure 1.15: Bivariate copulas of the samples of (X1,X2,X3) with non-constant conditional
copula.
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(b) Copula parameters and the function of
ρ13|2(x2).

Figure 1.16: Rank correlations and copula parameters between X1|X2 and X3|X2 for the ten
different groups of X2.

If C13|2 is constant, the resulting joint distribution will be different. For in-
stance, consider a second joint distribution where C13|2 is normal with constant
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ρ13|2 = 0 (that is the “average” correlation of the first example) and everything
else is as before. Spanhel and Kurz [2015] show that this is the closest constant
copula in terms of the Kullback-Leibler distance to the non-constant copula in
the first example. Again, the joint density is computed with equation (1.13). This
construction results in the trivariate normal distribution.

Figure 1.14(a) shows several layers of isosurfaces, which represent the points
(x1,x2,x3) in the 3D space with constant density f (x1,x2,x3). In this case, the
isosurfaces are all elliptical. Figure 1.14(b) presents the contour of the joint
density when sliced at various values of X2 and the constant behaviour of ρ13|2
is observed. Note that all slices are ellipses with constant eccentricities.

Therefore, the choice of constant or non-constant conditional copulas in the
model construction might lead to very different joint distributions.

Given a set of data, however, it is not easy to distinguish whether the un-
derlying joint distribution is constructed using constant or non-constant condi-
tional copulas. Figure 1.15 presents the scatter plots of the bivariate copulas of
the 2000 samples generated from the joint distribution depicted in Figure 1.13.
It can be seen that the dependence between (X1,X3) is not represented by the
bivariate normal copula. This is because this pair is modelled through the con-
ditional copula which is normal but non-constant.

Using the vine structure in Example 1.2.6 to model the samples’ joint distri-
bution, one needs to decide whether to model the conditional copula C13|2 with
constant or non-constant copulas. One way to determine this is by dividing the
data into, for instance, ten groups by discretizing X2 with equal length. For each
group, the rank correlation or the copula parameter between X1|X2 and X3|X2 is
computed along with the confidence bound. By comparing these rank correla-
tions or the copula parameters, it is possible to conclude whether the conditional
copula can be modelled as a constant copula. Figure 1.16 shows the results. Kurz
[2013] presents several tests which can be used to identify whether the constant
conditional copula assumption can be used in a set of data.

It can be seen that the conditional copula C13|2 cannot be modelled as a con-
stant copula. The function ρ13|2(x2) = 0.9cos(π ∗ x2) is plotted as the blue line in
Figure 1.16(b) and is captured by the confidence bounds of the copula paramet-
ers.

Thus far, we have only considered the joint distribution construction of con-
tinuous variables. In the next subsection, we briefly discuss model construction
when some of the variables are discrete, resulting in a mixed discrete-continuous
joint distribution. This is the main topic of this thesis and is discussed in more
detail in Chapter 2.

1.2.3 Discrete Variables
Consider three random variables X1,X2 and X3, where X1 and X2 are Bernoulli
with P(Xi = 0) = pi for i = {1,2} and X3 is continuous with marginal distribution
F3.

Example 1.2.8. Consider the bivariate joint distributions of (X1,X2) and (X2,X3).
To represent them with copulas, we introduce two latent variables U1 and U2,
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(a) Unit square corresponding to
(U1,U2).

(b) Unit square corresponding to
(U2,F3).

Figure 1.17: Unit square corresponding to the latent variable (U1,U2) and (U2,F3).

which are uniform on (0,1) such that P(Xi = 0) = F(Ui ≤ pi) = pi . In this case the
Sklar’s equation (1.2) becomes:

P(X1 ≤ 0,X2 ≤ 0) = FU1,U2
(p1,p2) = C12(p1,p2) (1.14)

for (X1,X2) and:

P(X2 ≤ 0,X3 ≤ x3) = FU2,X3
(p2,x3) = C23(p2,F3(x3)) (1.15)

for (X2,X3). The copulas C12 and C23 are not unique and are only constrained at
that part of the unit square indicated by the blue point and line in Figure 1.17.

Furthermore, the joint distribution of (X1,X2,X3) can also be represented
with the copula-vine approach.

Example 1.2.9. Using the vine structure in Figure 1.12 to represent the joint dis-
tribution, the joint probability can be rewritten as:

P(X1 = x1,X2 = x2,X3 = x3) = f3(x3)P(X2 = x2|X3 = x3)P(X1 = x1|X2 = x2,X3 = x3)

= f3(x3)


x2∑
sj=0

(−1)sjC2|3:x3
(P(X2 ≤ x2 − sj ))


x1∑
sj=0

(−1)sjC
1|2:x2

∣∣∣F(X3≤x3 |X2=x2)
(P(X1 ≤ x1 − sj |X2 = x2))


(1.16)

where Cj |i:xi denotes the conditional copula of variable Xj given Xi = xi which
can be computed from the copula Cij . The expressions F(X3 ≤ x3|X2 = x2) and
P(X1 ≤ x1 − sj |X2 = x2) can be computed as:

F(X3 ≤ x3|X2 = x2) =

∑x2
sj=0(−1)sjC23(P(X2 ≤ x2 − sj ),F3(x3))

P(X2 = x2)
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and:

P(X1 ≤ x1 − sj |X2 = x2) =

∑x2
si=0(−1)siC12(P(X1 ≤ x1 − sj ),P(X2 ≤ x2 − si))

P(X2 = x2)
,

respectively.
Note that the conditional copula C13|2 used to compute the third term in

(1.16) can be different for X2 = 0 and X2 = 1, which corresponds to the non-
constant copula-vine approach in the fully continuous case.

As in the fully continuous case, choosing constant or non-constant condi-
tional copula C13|2 affects the constructed joint distribution. The following ex-
ample illustrates this.
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(b) F(X3 ≤ x3|X1 = 0,X2 = 1)
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(c) F(X3 ≤ x3|X1 = 1,X2 = 0)
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(d) F(X3 ≤ x3|X1 = 1,X2 = 1)

Figure 1.18: The conditional distribution F(X3 ≤ x3|X1 = x1,X2 = x2) given different realiz-
ations of X1 and X2.

Example 1.2.10. Consider P(X1 = 0) = P(X2 = 0) = 0.5 and X3 uniform on (0,1)
where the joint distribution of (X1,X2,X3) is constructed with the vine struc-
ture in Figure 1.12, i.e. the joint probability is in the form as in Example 1.2.9.
Moreover, let C12 and C23 be the bivariate normal copula with parameters ρ12 =
ρ23 = 0.8.

We construct two joint models. The first applies non-constant conditional
copulaC13|2 where the copula is normal with parameters ρ13|2=0 = 0.6 and ρ13|2=1 =
−0.6 which correspond to the conditioning variable X2 = 0 and X2 = 1, respect-
ively. In the second model, C13|2 is taken to be constant where the copula is
normal with parameter ρ13|2=0 = ρ13|2=1 = 0.
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Figure 1.18 shows the conditional distribution F(X3 ≤ x3|X1 = x1,X2 = x2) of
the two joint models. The plots show that the choice of constant or non-constant
conditional copula affects the conditional distribution.

We have seen that the copula-vine approach can be used to construct very
complicated joint distribution. Different bivariate copulas from different famil-
ies can be used in the construction, and non-constant conditional copulas can be
considered to add a further layer of complexity. Furthermore, the approach can
be used when the variables are continuous, discrete or mixed.

1.2.4 Parameter Estimation and Model Simplification
1.2.4.1 Parameter Estimation

Given a set of data, the copula parameters of the copula-vine model can be es-
timated. The estimation is sequential, starting from the first tree, which consists
of pairs of unconditional copula. When both discrete and continuous variables
are present in the model, there are three types of pair: continuous, discrete and
mixed discrete-continuous. The copula parameter is computed using equation
(1.2), (1.14) or (1.15).

After all parameters in the first tree are estimated, we estimate those in the
second tree. This is done by computing the pseudo-samples of the margins using
the already estimated copulas in the first tree10. For instance, the parameter of
Cij |k is computed as in the first tree, using pseudo-samples of Xi |Xk and Xj |Xk
computed using the copulas Cik and Cjk with parameters estimated in the pre-
vious step.

The estimation goes up to the higher trees in the same fashion until all para-
meters in the copula-vine model are computed.

1.2.4.2 Model Simplification

In the presence of data, we are interested in the copula-vine model which “best”
represents that data. The flexibility of the copula-vine approach in modelling
highly complicated joint distribution is especially useful when a highly com-
plicated dependence structure is present in the data. Sometimes, however, the
model does not need to be this complicated in order to represent the data effect-
ively. In other words, a “parsimonious” model is desirable.

There are two possible approaches to obtain a parsimonious model. In the
“forward” approach, information regarding insignificant parameters is already
known and so only the significant ones are estimated. Such information may be
available in the form of (conditional) independence statements between the vari-
ables and might come from, for instance, the model setup, experts’ knowledge
or by testing (conditional) independence from the data.

A popular way to illustrate the (conditional) independence statements between
a set of variables is by using a directed acyclic graphical structure called the

10The term “pseudo-samples” is used because these “samples” are not directly observed in the data
but can only be computed after certain other parameters have first been estimated.
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Bayesian network (BN). The graphical structure of a BN contains the (condi-
tional) independence statements between the variables where the absence of an
arc between two nodes corresponds to (conditional) independence between the
two variables the two nodes represent. Underlying the graphical structure are
the conditional probabilities between the variables, which specify the variables’
relationships.

When all the variables are continuous, the conditional probabilities are in
the form of conditional densities from which a joint density between the vari-
ables in the BN (with the conditional independence statements) is constructed.
Kurowicka and Cooke [2005], extended in Hanea et al. [2006] and Hanea et al.
[2010], show that the copula-vine approach can be used for this purpose. This
type of BN model is called the “copula Bayesian network”.

Example 1.2.11. Let X1,X2,X3 be continuous variables as in Example 1.2.6. Con-
sider two BN structures representing these three variables as in Figure 1.1911.
The vine structure in Figure 1.12 can be used to model these two BNs.

(a) Structure 1. (b) Structure 2.

Figure 1.19: Two BN structures of three continuous variables X1,X2,X2.

The absence of an arc between X1 and X3 in Figure 1.19(a) implies condi-
tional independence between X1 and X3 given X2. This means that the copula
C13|2 in the decomposition in equation (1.13) is constant with respect to the vari-
able X2 and is the independence copula where c13|2(F1|2(x1|x2),F3|2(x3|x2)) = 1.

In Figure 1.19(b), the absence of an arc between X1 and X2 implies indepen-
dence between the two variables. This means that the copula C12 is the in-
dependence copula so c12(F1(x1),F2(x2)) = 1 in the decomposition in equation
(1.13).

Sometimes the (conditional) independence information is unknown. In this
case, the “backward” approach can be used. Under this, all parameters are con-
sidered initially and then the insignificant ones are removed from the model. To
determine the significance of a parameter, parametric bootstrapping can be per-
formed. The parameter’s confidence bound can then be computed. With this, the
decision whether or not to remove the parameter from the model can be taken.

Several copula-vine software packages are available for use in practice. When
the conditional copulas can be assumed to be constant, the R package VineCopula
can be used to fit a regular copula-vine model to a set of data (Schepsmeier et al.

11The indices above the arcs represent the bivariate copulas used to represent the arcs, just as in
Figure 1.12.
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[2015]). When the bivariate copulas can be assumed to be the normal copu-
las, the UNINET 12 software developed at Delft University of Technology can be
used13. UNINET has already been successfully applied in several other fields
involving continuous variables, such as aviation safety modelling (Morales Na-
poles [2009]), fire safety (Hanea and Ale [2009]), and oil reservoir simulation
(Hanea et al. [2013]; Zilko [2012]).

In this thesis we are going to construct a railway disruption-length model
with the help of copulas. Moreover, some of the influencing factors (presented
in Chapter 3) turn out to be discrete variables resulting in a mixed discrete-
continuous model that needs to be dealt with. The next subsection presents sev-
eral studies concerning the use of copulas in other transport research fields, as
well as examples found in the literature of copula modelling in a mixed discrete-
continuous setting.

1.2.5 Literature Study
1.2.5.1 Copulas and BN in Transport Research

The use of copulas in railway research is still fairly new. However, it is not a
foreign concept in transport research generally. Srinivas et al. [2006] use several
different copula families to model the dependence between vehicle axle weights.
Wan and Kornhauser [1997] construct a copula-based model to predict travel
time for use in a routing decision-making problem. Ng and Lo [2013] model
the air-quality conformity in transportation networks with copulas. These three
studies show the benefits to be gained by modelling the dependence between
variables with copulas.

One approach we consider in this thesis is the copula Bayesian network. Un-
der this, the disruption-length model is represented graphically as a BN. To
quantify the conditional probabilities represented by the BN structure, we use
the multivariate normal copula. The copula parameter R is estimated using the
maximum-likelihood approach.

In transport research, BN modelling has been used in several studies but in a
different setting where all the variables were discrete. For instance, Gregoriades
and Mouskos [2013] quantify accident risk in road traffic in Cyprus and Chen
et al. [2015] construct a dependence model of travellers’ preference for toll road
utilization in Texas with BNs. In the railway field, Oukhellou et al. [2008] use the
technique to perform broken-rail diagnosis. In the case of continuous variables
in Gregoriades and Mouskos [2013], the variables are discretized to obtain a fully
discrete model. Because all the variables are discrete, these studies quantify the
conditional probabilities with the conditional probability table (CPT).

Our second approach is to construct the disruption-length model with the
copula-vine by considering several non-constant conditional copulas. This ap-
proach is new in railway research.

12UNINET is available at www.lighttwist.net/wp/uninet.
13All BN figures in the thesis are created using UNINET.
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1.2.5.2 Copula Parameter Estimation with Discrete and Continuous Variables

A popular way to estimate the copula parameter is by finding an empirical de-
pendence measure, for instance Kendall’s tau, τ , or the Spearman’s rho, ρ, and
equating it to the copula parameter. This approach is based on the assumption
that the empirical dependence measure is a one-to-one mapping with the copula
parameter. Chapter 5 of Nelsen [2006] provides some of these relationships for
several copula families.

This approach works well when the variables are continuous. When some
of the variables are discrete, however, Genest and Nešlehová [2007] have shown
that it is highly biased. Nevertheless, the maximum likelihood technique can
still be used, even though it is much more computationally expensive.

Maximum-likelihood estimation of copula parameters for the n-dimensional
discrete model requires an approximation of multidimensional integral or eval-
uating 2n finite differences of the copula to find the value of the probability mass
function. Due to computational costs, many copula applications on discrete
models have only worked on lower dimensional problems. Nikoloulopoulos
and Karlis [2008] construct a four-dimensional Bernoulli distribution with the
help of several different copula families with three parameters, while Song et al.
[2009] build a trivariate discrete distribution with the normal copula. In both
cases, the copula models work well and the authors highlight that the depend-
ence structure between the variables come not only from the copula but also
from the margins.

Nikoloulopoulos [2013] proposes the computation of rectangle probabilities
using the simulated maximum-likelihood approach method. This new approach
has been shown in Nikoloulopoulos [2015] to be applicable in dimensions of
up to 225 even though computational burden becomes heavy as dimension and
sample size increase. Another alternative technique to estimate the parameters
uses the Bayesian methods, as proposed by Smith and Khaled [2012]. However,
this technique is also computationally intensive.

The copula-vine approach with constant conditional copula is used to con-
struct the multivariate discrete distribution in Panagiotelis et al. [2012]. It is
shown here that this approach reduces the computation cost of calculating the
probability mass function to 2n(n−1) evaluations only, which makes this model
applicable even for very high-dimensional problems. With this approach, un-
like in the fully continuous setting, it is “easier” to detect from the data whether
the constant conditional copula assumption holds or not. This is because more
samples are observed for each state of the conditioning variable(s) from which
a copula needs to be fitted. Zilko and Kurowicka [2016] explore the model con-
struction with non-constant conditional copulas and some of their results are
presented in Chapter 2 of this thesis.

As in the purely discrete models, problems are also encountered when the
models are of mixed discrete and continuous type. Most applications of copulas
available in the literature are to low-dimensional problems. Song et al. [2009]
model bivariate mixed binary discrete (disposition) and continuous (severity of
burn injury) variables with a normal copula. De Leon and Wu [2010] propose
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two strategies to compute the maximum likelihood for a bivariate mixed dis-
crete and continuous distributions, with a simulation study and an application
to the same dataset as in Song et al. [2009]. He et al. [2012] use the normal
copula to construct two and three-dimensional mixed discrete and continuous
models, each with one discrete variable to study the relationship between the
genotype (discrete) and a few continuous phenotypes, such as cholesterol dens-
ity and protein concentration. Stöber et al. [2015] construct a six-dimensional
mixed discrete and continuous model with five binary variables and one con-
tinuous variable representing six chronic diseases by following the copula-vine
approach with constant conditional copulas as described in Panagiotelis et al.
[2012].

1.2.6 Model Comparison
In this thesis we need to test whether the distribution of a continuous random
variable can be modelled with a distribution from a parametric family. For in-
stance, early in this section we fit the distributions of disruption length in the
data to the normal and exponential distribution. Plotting the fitted and empir-
ical distributions, as in Figure 1.8, indicates that neither parametric distribution
represents the disruption length we observe in the data. Goodness-of-fit tests
can be performed for this purpose.

For a one-dimensional case, many goodness-of-fit tests are available. The
two we will use most in this thesis are the Kolmogorov-Smirnov (KS) test and
the Cramér-von Mises (CvM) test. Let F denote the hypothesized distribution of
a random variable X whose empirical distribution is F̂. The KS test measures:

sup
x
|F̂(x)−F(x)|

while the CvM test measures:∫ ∞
−∞

[F̂(x)−F(x)]2dF(x).

From each test, the p-value is computed to determine whether there is evidence
in the data that F is not close enough to F̂. The p-value measures how extreme
the observed difference is. When the p-value is lower than a significance level α,
the difference between F and F̂ is too high to be explained by noise in the data
and so the test concludes that F cannot be used to represent F̂. In this thesis, we
choose α = 0.05 as the significance level.

Performing the KS and CvM tests to the fitted normal and exponential distri-
bution of the disruption length yields p-values in the order of 10−3 or lower. This
confirms our observation that neither distribution is appropriate to represent the
disruption-length data.

The two-sample KS and CvM tests are also available. Instead of testing the
fit of a parametric distribution to a set of data, these measure whether the dis-
tributions of two sets of data are close to each other or not. The two-sample KS
and CvM tests are used in Chapter 3 of this thesis.
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The joint models constructed in this thesis are copula-based. Once a copula
is fitted, it is of interest to perform goodness-of-fit test to see whether the copula
can indeed be used to represent the data. The following goodness-of-fit tests are
used throughout this thesis.

1.2.6.1 The Kullback-Leibler (KL) Divergence Test

Let the joint probability of n discrete variables P = P(X1 = x1, . . . ,Xn = xn) be
modelled with the copula CR as:

Q = P(X1 = x1, . . . ,Xn = xn) =
1∑

s1=0

. . .
1∑

sn=0

(−1)
∑
i siCR(P(X1 ≤ x1−s1), . . . ,P(Xn ≤ xn−sn)).

The KL test measures the difference between P and Q as:

DKL =
∑
x1

. . .
∑
xn

P log
( P
Q

)
(1.17)

with the null hypothesis P = Q tested against the alternative P , Q. Under
the null-hypothesis for large enough number of samples N , 2 ·N · DKL is chi-
squared distributed from where the p-value can be computed (see, e.g., Cover
and Thomas [2006]).

1.2.6.2 The Probability Integral Transform (PIT) Test

We follow the presentation of the test in Breymann et al. [2003]. The test is
based on the Rosenblatt probability integral transform (Rosenblatt [1952]). The
null hypothesis of the PIT test is that CR models the dependence of the joint
distribution of n continuous variables against the alternative hypothesis that this
is not the case.

Let U = (Ũ1, . . . , Ũn) be random vector with uniform margins. Then, define
U1, . . . ,Un as:

U1 = Ũ1, U2 = CR[1,2]
(Ũ2|Ũ1), . . . , Un = CR(Ũn|Ũ1, . . . , Ũn−1) (1.18)

where CR denotes a copula with parameter R and R[1,2] is an element of R corres-
ponding to the dependence between the first and second variables. If the copula
represents the data well, Ui are uniform on (0,1) for each i and are independent.
This means that the test-statistic:

V =
n∑
i=1

(
Φ−1(Ui)

)2
, (1.19)

is chi-square distributed with n degrees of freedom. The vector U is obtained
from data by transforming the margins to uniform using their marginal distri-
butions.

Berg [2009] shows that the PIT test performs well in testing the normal cop-
ula hypothesis. Because this is the copula we are interested in, the PIT test is
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used in this thesis. Several other copula goodness-of-fit tests, along with their
power comparisons, are available in Berg [2009].

However, when the marginal distributions are estimated with the empirical
distributions, Dobrić and Schmid [2007] report a reduced power of the test to
reject a wrong null hypothesis.

One common assumption in the copula-vine approach is the constant condi-
tional copula assumption. The following test can be used to check whether this
is validated by the data.

1.2.6.3 The Vectorial Independence Test

In the case of continuous variables, a test developed by Quessey [2010] can be
used to test the assumption of constant conditional copula. The null hypothesis
of this test is the independence between (U,V ) = (FXj |V\i ,FXi |V\i ) and Z = V\i and
is tested against the alternative hypothesis where independence does not hold.

Therefore, under the null hypothesis, for (u,v,z) ∈ [0,1]n,

CU,V ,Z(u,v,z) = CU,V ,Z(u,v,1)CU,V ,Z(1,1,z). (1.20)

Kojadinovic and Holmes [2009] and Quessey [2010] measure the difference between
the left-hand and the right-hand sides of (1.20) using the CvM test-statistic. Un-
der the null hypothesis, the test statistic should be zero. To indicate whether
the observed test statistic in the data is close enough to zero or not, Kurz [2013]
estimates the p-value based on the work of Quessey [2010]. For further details,
readers are referred to Kurz [2013].

In this thesis, several possible disruption-length models are constructed and
comparisons made between them. Two models can be compared against each
other by checking their likelihoods. In principle, a model with higher likelihood
represents the data better. However, the number of model parameters should
be considered as well. A fair model comparison takes into the account both the
likelihood and the number of parameters.

The following are five different ways to compare competing models’ likeli-
hoods and their respective number of parameters. They can be used as means
for model selection.

1.2.6.4 The Akaike Information Criterion

The Akaike information criterion (AIC) is introduced in Akaike [1974]. For each
model, its AIC score is computed as:

AIC = 2k − 2ln(L) (1.21)

where k denotes the number of parameters involved in the model and L denotes
the model’s likelihood. Different models are compared against each other using
their respective AIC scores. In principle, the model with the higher likelihood,
and hence the lower AIC score, is the better model. Note that the AIC “penal-
izes” a model with a higher number of parameters.



Introduction 33

1.2.6.5 The Bayesian Information Criterion

Another popular criterion for model comparison is the Bayesian information cri-
terion (BIC) or Schwarz criterion. This is introduced in Schwarz [1978] and is
defined as:

BIC = k ln(N )− 2ln(L) (1.22)

where N denotes the number of samples and k and L are as in (1.21). As with
the AIC, the preferred model is the one with the lower BIC score.

While the AIC and BIC can be used to determine which of two competing
models is the better one to represent the data concerned, they do not indicate
“how much better” one is than the other. In other words, the significance of the
observed difference between the two models cannot be concluded from either
the AIC or the BIC.

For this reason, a number of statistical tests have been developed. Three of
these are presented next.

1.2.6.6 The Likelihood Ratio Test

The likelihood ratio test compares the ratio of the likelihoods of the two compet-
ing models. To use it, the two competing models have to be nested. Two models
are said to be nested if one can be transformed into the other by imposing con-
straints on the first model’s parameters. If not, the two models are non-nested.

The test statistic is:

LRT = −2ln
(
LS
LG

)
(1.23)

where LS and LG denote the maximum likelihood of the simpler and the more
general model, respectively. The maximum likelihood of the more general model
will always be greater than or equal to that of the simpler model. The signific-
ance of the difference in the two likelihoods is then tested. Wilkes [1938] shows
that the test statistic LRT is asymptotically χ2-distributed with degrees of free-
dom equal to the number of parameters difference between the two models.

While the likelihood ratio test is useful when two competing models are nes-
ted, in practice they often are not. Two tests which do allow comparison of
competing non-nested models are presented below.

1.2.6.7 The Vuong Test

The Vuong test, introduced by Vuong [1989], also uses the likelihood ratio to
measure the difference between the two competing models.

Consider two competing models F and G with parameters α and β, respect-
ively. It tests whether the mean of the likelihood ratios between the two models
is close to one, indicating that both are equally close to the data. Vuong [1989]
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shows that, under general conditions, the following holds in the null hypothesis:

Z =
LR̃N (α,β)
√
Nωn

=
LRN (α,β)−KN (F,G)

√
nωn

D−→N (0,1) (1.24)

where LRN (α,β) = ln(LF)− ln(LG) is the difference between the log-likelihoods of
the two models, KN (F,G) is a correction factor accounting for the difference in
the number of parameters between the two models, N is the number of samples,
and ωn is the standard deviation of the individual log-likelihood ratio. The
null hypothesis of the test is that Z is standard normally distributed while the
alternative hypothesis states that it is not. Vuong [1989] suggests the use of
a correction factor corresponding to the AIC, KN (F,G) = a − b, or to the BIC,
KN (a,b) = a−b

2 ln(N ), where a and b are the number of parameters of model F and
G, respectively.

1.2.6.8 Clarke’s Distribution-Free Test

As an alternative to the Vuong Test, Clarke [2003] proposes a paired sign test
to measure the difference between the individual log-likelihoods from two non-
nested models. Under the null hypothesis, half of the individual likelihoods of
one model should be larger than the other model’s. The test statistic is:

B =
N∑
i

I

(
log

(
LFi
LGi

)
> 0

)
(1.25)

where N is the number of samples, LFi and LGi are the individual likelihoods
of sample i, respectively, and I is the indicator function. The null hypothesis is
that B is distributed binomially with parameters N and p = 0.5. This is tested
against the alternative hypothesis where B is not binomially distributed with
parameters N and p = 0.5. To account for the different number of parameters
between the two models, Clarke [2003] proposes applying the average correction
factor to the individual log-likelihood ratios with either the AIC (a/N and b/N
to model F and G, respectively) or the BIC ( a

2N ln(N ) and b
2N ln(N ) to model F

and G, respectively).

1.3 The Disruption-Length Models in Practice
The constructed joint distribution is conditioned on the observed values of the
influencing factors. The result is in the form of the conditional distribution of
disruption lengths. Therefore, the model output is in the form of a probability
distribution.

In practice it is difficult to implement a train traffic optimization algorithm
with a stochastic disruption-length input, especially with a highly complex rail-
way network like the one in the Netherlands. Consequently, the optimization al-
gorithm is often simplified and takes a deterministic value of disruption length
as its input. In our case, this means that one value needs to be chosen from
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the conditional distribution of disruption length to be taken as the disruption-
length prediction.

Statistically, choosing the mean of this distribution minimizes the mean-
squared error (MSE) of the prediction while choosing the median minimizes
the average absolute deviation. However, the chosen prediction affects the train
traffic and the passengers, who are the end customers of ProRail. A prediction
that is optimistic (too short) might have different impact on the customers than
a prediction that is pessimistic (too long). Therefore, it is of model application
importance to study the impact of different choices of prediction on the train
traffic and the passengers.

To investigate this issue, a study has been performed in collaboration with
the Department of Transport and Planning at Delft University of Technology.
The chosen disruption-length model was applied, together with a train short-
turning model and a passenger-flow model, in a disrupted train traffic in the
region of Houten, the Netherlands. This disrupted area is part of the important
A2 railway corridor, connecting Amsterdam and Eindhoven via Utrecht and ’s-
Hertogenbosch (Den Bosch)14.

In the study, the disruption completely blocked a section of line between
Utrecht-Lunetten and Houten stations, so that no train service could run between
them until the problem was solved. Naturally, this would impact train traffic and
the passengers travelling in the region. The short-turning model computed the
optimal train timetable during the disruption, based on the chosen prediction
of its length. The passenger-flow model then used this timetable to compute
passenger movements around the area.

The results are presented in Chapter 4 of this thesis.

1.4 Thesis Organization
The rest of the thesis is organized as follows:

In Chapter 2 we study the use of copulas in fully discrete and mixed discrete-
continuous settings. The copula-vine approach is adapted to construct such a
mixed model, and an algorithm to fit the model parameters is proposed. The
algorithm is also tested in several simulation studies to observe its behaviour.

The application part of this thesis starts in Chapter 3, the main topic of which
is the construction of the TC disruption-length model. We begin the chapter
with data analysis to determine the important factors influencing latency and
repair times. With these identified, a small number of candidate disruption-
length models for TC failures are considered and compared to determine which
is most appropriate to predict the length of a disruption to the railway. The
construction of the switch disruption-length model follows the same pattern and
is also presented briefly in this chapter.

In Chapter 4 we show how the disruption-length model we develop in this
thesis can be used in the real world. The practical challenges are also presented.

14The full corridor extends to Alkmaar in the north-west of the Netherlands and Maastricht in the
south-east.
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The disruption-length model is used in a collaboration with the short-turning
and passengers-flow models, that are developed by two PhD candidates in the
Department of Transport and Planning of Delft University of Technology. The
three models are applied in a disrupted train traffic in the Houten area. A num-
ber of case studies are considered from which some preliminary conclusions are
drawn.

Finally, this thesis closes with a summary and recommendations, which we
present in Chapter 5.



CHAPTER 2

Copula In A Mixed Discrete-Continuous
Model1

In this chapter we concentrate on theoretical issues concerning the use of copulas
for purely discrete and mixed discrete-continuous models. We are interested
in the normal copula in particular, because this is the one intended for use in
the railway disruption-length models later on. The goal is to construct a model
that allows fast and accurate prediction of our variable of interest for different
combinations of values of other variables in the model.

For the purely discrete models, we start by considering the multivariate Ber-
noulli distribution. We study the possibility of representing the dependence of
such distribution with the multivariate normal copula, the one which corres-
ponds to the copula Bayesian network model. The challenges and problems of
such an approach are investigated. After that, the copula-vine approach pop-
ular in fully continuous dependence modelling is adapted to the multivariate
Bernoulli case. This is a more flexible approach, which allows more paramet-
ers to be involved and so means that, in theory, a more accurate model can be
constructed.

Next, we extend our study by considering some variables to have more than
two states. Eventually, we end up with a mixed discrete-continuous problem.
Again, the copula-vine approach can be adapted to the mixed discrete-continuous
setting.

To estimate the parameter values of the mixed discrete-continuous copula-
vine model, a sequential algorithm is proposed. The performance of this al-
gorithm, including the consideration of some possible copula and vine structure
misspecifications, is tested in low-dimensional problems.

1The first part of this chapter is based on Zilko and Kurowicka [2016].
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2.1 Multivariate Bernoulli Distribution with Copulas
Let X = (X1, . . . ,Xn) be a random vector taking values in {0,1}n and x = (x1, . . . ,xn)
be a realization of X. The joint probability is

P(X1 = x1,X2 = x2, . . . ,Xn = xn) = p(x1,x2, . . . ,xn)

= p(0,0, . . . ,0)
∏n
j=1(1−xj )p(1,0, . . . ,0)x1

∏n
j=2(1−xj ) . . .p(1,1, . . . ,1)

∏n
j=1 xj (2.1)

where all the p’s must add up to 1. The marginal distribution of Xi is

P(Xi = 0) = pi =
∑

x1,...,xi−1,xi+1,...,xn∈{0,1}
p(x1, . . . ,xi−1,0,xi+1, . . . ,xn).

Another popular representation of a multivariate Bernoulli distribution is the
log-linear expansion. Taking the logarithm of the probability in (2.1) and col-
lecting the appropriate terms leads to:

logp(x1,x2, . . . ,xn) = logp(0,0, . . . ,0)+
∑
i

uixi+
∑
i,j

uijxixj+
∑
ijk

uijkxixjxk+. . .+u12...nx1x2 . . .xn.

(2.2)
The u-terms in (2.2) represent the two, three, . . ., n-way interactions between the
variables (see, e.g., Whittaker [1990]) and can be obtained from the probabilities
as follows:

u1 = log
p(1,0,0, . . . ,0)
p(0,0,0, . . . ,0)

,

u12 = log
p(1,1,0, . . . ,0)p(0,0,0, . . . ,0)
p(1,0,0, . . . ,0)p(0,1,0, . . . ,0)

, (2.3)

u123 = log
p(1,1,1,0, . . . ,0)p(1,0,0,0, . . . ,0)p(0,1,0,0, . . . ,0)p(0,0,1,0, . . . ,0)
p(1,1,0,0, . . . ,0)p(1,0,1,0, . . . ,0)p(0,1,1,0, . . . ,0)p(0,0,0,0, . . . ,0)

.

The interactions between the variables contain information about depend-
ence. The term u12 is also known as the log cross-product ratio (cpr) between
variables X1 and X2. Note that the cross-product ratio cpr(X1,X2) can be rewrit-
ten in terms of conditional probabilities of variables X1 and X2 given that all
remaining variables X3, . . . ,Xn equal zero. Moreover, u123 is the logarithm of the
ratio of the cross product ratio of variables X1,X3 given X2 = 1, and the cross
product ratio of X1,X3 given X2 = 0.

The symbol uij represents the two-way dependence between the variables
Xi and Xj . However the dependence between Xi and Xj is also affected by all
higher-order interactions containing these variables.

Example 2.1.1. (the trivariate Bernoulli Distribution). The trivariate Bernoulli
distribution of (X1,X2,X3) is

P(X1 = x1,X2 = x2,X3 = x3) = p(0,0,0)(1−x1)(1−x2)(1−x3) . . .p(1,1,1)x1x2x3 (2.4)
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for x1,x2,x3 ∈ {0,1}. Its log-linear expansion is:

logp(x1,x2,x3) = u∅ +u1x1 +u2x2 +u3x3 +u12x1x2 +u13x1x3 +u23x2x3 +u123x1x2x3.
(2.5)

where u∅ = logp(0,0,0) and the u-terms are as presented in (2.3).

The conditional distribution ofX1 andX3 givenX2 = x2 is a bivariate Bernoulli
distribution. Let the log cross-product ratio of this conditional distribution be
denoted as u13|2=x2

. When u13|2=x2
= 0, the variables X1|X2 = x2 and X3|X2 = x2

are independent. Moreover, when u13|2=x2
= 0 for both realizations of x2 = 0 and

x2 = 1, the variables X1 and X3 are conditionally independent given variable
X2. Note that u13 = u13|2=0 and u123 = log

(
cpr(X1,X3 |X2=1)
cpr(X1,X3 |X2=0)

)
. Hence X1 and X3 are

conditionally independent given variable X2 if and only if u123 = 0 and u13 = 0.
The above relationships can be generalized for higher-order interactions and

allow independencies and conditional independencies to be read from the log-
linear expansion by examining the u-terms. Moreover, if the random vector
(X1, . . . ,Xn) has the Bernoulli distribution, then it is easy to see that the condi-
tional distributions are also Bernoulli.

The dependencies between variables with Bernoulli distributions are con-
tained in the u-terms of their log-linear expansions. In this thesis, we consider
modelling these dependencies by means of copula. Our study starts with the
simplest case possible, the bivariate Bernoulli distribution.

2.1.1 Bivariate Bernoulli Distribution with Copulas

To illustrate how copulas are used to model discrete distributions and to present
the graphical interpretation of equation (1.2), a bivariate Bernoulli random vec-
tor (X1,X2) with margins p1,p2 is considered. Moreover, let U1 and U2 be uni-
form random variables with copula C. The probability mass function of (X1,X2)
can be represented in terms of the latent variables U1 and U2 with copula C as
follows:

P(X1 = x1,X2 = x2) =


p(0,0), U1 ≤ p1,U2 ≤ p2;
p(0,1), U1 ≤ p1,U2 > p2;
p(1,0), U1 > p1,U2 ≤ p2;
p(1,1), U1 > p1,U2 > p2.

(2.6)

Figure 2.1 shows the above construction graphically. The two axes in Figure
2.1 correspond to the latent vector (U1,U2). The range U1 ∈ (0,p1] in the vertical
axes corresponds to the realization X1 = 0; andU2 ∈ (0,p2] on the horizontal axes
to X2 = 0. The mass in the bottom left rectangle is P(X1 = 0,X2 = 0) = p(0,0).

In this case, equation (1.2) takes the form:

P(X1 ≤ x1,X2 ≤ x2) = C(P(X1 ≤ x1),P(X2 ≤ x2)). (2.7)
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Figure 2.1: The unit square corresponding to the latent variables (U1,U2)

Since P(X1 ≤ 1,X2 ≤ x2) = P(X2 ≤ x2) = C(1,P(X2 ≤ x2)) for x2 ∈ {0,1} and
P(X1 ≤ x1,X2 ≤ 1) = P(X1 ≤ x1) = C(P(X1 ≤ x1),1) for x1 ∈ {0,1} hold for any
copula, the only constraint on C to realize the distribution of (X1,X2) is:

p(0,0) = P(X1 ≤ 0,X2 ≤ 0) = C(P(X1 ≤ 0),P(X2 ≤ 0)) = C(p1,p2). (2.8)

For continuous random vectors, there exists a unique copula that models the
dependence of the joint distribution. However, this copula is constrained to
satisfy the Sklar’s theorem in every point of the unit hypercube. In the bivariate
Bernoulli case, where the constraint is at only one point in the unit square, any
copula satisfying (2.8) will be appropriate to model the dependence of (X1,X2).

The bounds on copulas satisfying (2.8) have been presented in Carley [2002].
The upper (lower) Carley bound belongs to the family of copulas constructed as
a shuffle of the upper (M) and lower (W ) Fréchet bounds, where M = min(u,v)
and W (u,v) = max(u + v − 1,0) for (u,v) ∈ (0,1)2 (Nelsen [2006]). The mass in M
and W is concentrated uniformly on the diagonal and anti-diagonal of the unit
square, respectively. For (U1,U2) with copulaM (W ), the Spearman’s correlation
is ρ(U1,U2) = 1(−1). The following example illustrates this.

Example 2.1.2. Consider a bivariate Bernoulli random variable with p1 = 0.4,
p2 = 0.8, and p(0,0) = 0.37. The upper and lower Carley bounds of all copulas
satisfying (1.2) for this case are shown in Figure 2.2. The mass of the lower and
upper Carley bound copulas is distributed uniformly along the anti-diagonal
and diagonal lines in the Figure 2.2, respectively. Both copulas satisfy (2.8) be-
cause the mass in the bottom left-hand rectangle (0,p1]× (0,p2] = (0,0.4]× (0,0.8]
is 0.37.

The correlation of the lower Carley bound is −0.7962, while the correlation
of the upper Carley bound is 0.9644. Therefore, when p1 = 0.4,p2 = 0.8 and
p(0,0) = 0.37, the correlation of any copula satisfying (2.8) varies from as low as
−0.7962 to as high as 0.9644.

If a one-parametric copula family has already been chosen to work with, the
non-uniqueness problem of the copulas satisfying (2.8) is avoided. However, one
might then face the problem of non-existence of a copula in the chosen class that
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Figure 2.2: The lower and upper Carley bounds with their corresponding correlation.

satisfies equation (2.8). The theorem below gives the conditions a copula has to
satisfy in order to be able to recover a bivariate Bernoulli distribution.

Theorem 2.1.1. Let (X1,X2) be a Bernoulli distributed random vector. Let Cθ be a
one-parametric copula that is continuous with respect to θ and satisfies:

lim
θ→θL

Cθ(u,v) =W (u,v) and lim
θ→θU

Cθ(u,v) =M(u,v) for (u,v) ∈ (0,1)2

for some θL and θU , where W (u,v) and M(u,v) are the lower and upper Fréchet
bounds, respectively. Then, there exists a θ which satisfies:

Cθ(P(X1 ≤ 0),P(X2 ≤ 0)) = Cθ(p1,p2) = p(0,0) = P(X1 ≤ 0,X2 ≤ 0). (2.9)

Proof. Since any copula at point (p1,p2) has to lie between the lower and upper
Fréchet bounds at (p1,p2), p(0,0), it has to satisfy:

W (p1,p2) ≤ p(0,0) ≤M(p1,p2). (2.10)

Since limθ→θL Cθ(p1,p2) = W (p1,p2), limθ→θU Cθ(p1,p2) = M(p1,p2), and Cθ
is continuous with respect to θ, inequality (2.10) together with the Intermediate
Value Theorem guarantee the existence of θ ∈ [θL,θU ], such that equation (2.9)
is satisfied. �

Corollary 2.1.2. The bivariate normal copula as in equation (1.4) is continuous with
respect to the parameter ρ and:

lim
ρ→−1

Cρ(u,v) =W (u,v) and lim
ρ→1

Cρ(u,v) =M(u,v).

Therefore, according to Theorem 2.1.1, the solution to equation (2.9) exists for the
normal copula.
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Figure 2.3: Plot of the parameter of the normal copula versus the joint probability of variables
X1 and X2.
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The corollary above states that one can always find a normal copula which
corresponds to a bivariate Bernoulli random variable. We concentrates mainly
on the normal copula as this is the one we intend to use in the disruption-length
models later on.

Figure 2.3 (left) shows the relationship between the parameter of the normal
copula and the probability p(0,0) = P(X1 = 0,X2 = 0) of Bernoulli distribution
with margins p1 = 0.4 and p2 = 0.8. The joint probability p(0,0) is bounded by
max(p1 + p2 − 1,0) and min(p1,p2). When p(0,0) = 0.37, as in Example 2.1.2, the
parameter of the normal copula is ρ = 0.4868. Figure 2.3 (right) illustrates the
relationship between the parameter of the normal copula and p(0,0) in case of
different univariate margins.

The normal copula is often applied in practice. However, the relationships
between the margins, p(0,0), and the parameters of other copulas can be found as
well. These relationships are not available in straightforward analytic form, but
in the bivariate case they can be calculated easily. Figure 2.4 illustrates the rela-
tionship between p(0,0) and Spearman’s correlations realized by normal, Frank’s
and Student-t copulas in the case of bivariate Bernoulli distribution, as in Ex-
ample 2.1.2, showing that the relationships differ slightly for different copula
families.
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Figure 2.4: Plot of the Spearman’s correlation of the copula versus the joint probability between
variables X1 and X2.
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Example 2.1.3. Consider a copula Ct , where t ∈ [0,1) and is defined as:

Ct(u,v) =
{

max(u + v − 1, t), (u,v) ∈ [t,1]2;
min(u,v), otherwise

(2.11)

as in Exercise 2.10 of Nelsen [2006].

Figure 2.5: Copula Ct with t = 0.37 as in equation (2.11) representing the bivariate Bernoulli
distribution in Example 2.1.2.
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Obviously, limt→0Ct(u,v) = W (u,v) and limt→1Ct(u,v) = M(u,v). Moreover,
rewriting Ct as a function of t yields:

Ct(u,v) =


u + v − 1, for 0 ≤ t ≤max(0,u + v − 1);
t, for max(0,u + v − 1) ≤ t ≤min(u,v);
min(u,v), for t ≥min(u,v).

This means that Ct is a continuous function with respect to t.
According to Theorem 2.1.1, therefore, the solution to equation (2.9) exists

for this copula. With t = 0.37, this copula represents the bivariate Bernoulli
distribution in Example 2.1.2 and is depicted in Figure 2.5.

The next example shows that not every copula family can be used to recover
a given bivariate Bernoulli distribution.
Example 2.1.4. The Morgenstern copula defined as:

Cθ(u,v) = uv(1 +θ(1−u)(1− v)) (2.12)

where (u,v) ∈ (0,1)2 and θ ∈ [−1,1] is known to not span the entire lower and
upper Fréchet bounds (Nelsen [2006]). Therefore, the Morgenstern copula might
not satisfy equation (2.9) for some choices of p1, p2, and p(0,0). It is easy to see
this for the maximum value of θ = 1, Cθ=1(0.4,0.8) = 0.3584, which means that
the bivariate Bernoulli distribution in Example 2.1.2 cannot be obtained with
this copula.

Figure 2.6: The log cross product ratio and rank correlation of bivariate Bernoulli with varying
p2 ∈ (0,1).

Next, we check whether the properties of the latent random vector (U1,U2)
translate to equivalent properties of its corresponding Bernoulli distributed vari-
ables (X1,X2). The example below shows that, in contrast to continuous vari-
ables, two Bernoulli distributions constructed with the same copula have very
different dependencies.
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Example 2.1.5. Let a bivariate normal copula with parameter ρ = 0.4868 be a
distribution of latent variables U1,U2. We fix the first margin as p1 = 0.4 and the
second margin can vary: p2 ∈ (0,1). For each p2, the log cross-product ratio and
rank correlation of the corresponding Bernoulli distribution are calculated.

As presented in Figure 2.6, it turns out that both values are different for dif-
ferent choices of p2. Moreover, the minimum log cross-product ratio is obtained
at p2 = 0.4459 and the maximum rank correlation is obtained at p2 = 0.4375.

Example 2.1.5 shows that dependencies of a Bernoulli distributed random
vector depend not only on the copula, but also on the marginal distributions.
This observation is in line with previous contributions, in Denuit and Lambert
[2005], Mesfioui and Tajar [2005], and Nešlehová [2007].

2.1.2 Trivariate Bernoulli Distribution with Copulas

In the case of a three-dimensional Bernoulli distribution, the Sklar’s equality
(1.2) takes the following form:

P(X1 ≤ x1,X2 ≤ x2,X3 ≤ x3) = C(P(X1 ≤ x1),P(X2 ≤ x2),P(X3 ≤ x3)).

Given that the univariate margins of the Bernoulli random vector (X1,X2,X3)
are fixed and all probabilities have to add up to 1, a copula C needs to satisfy the
following four equations:

P(X1 ≤ 0,X2 ≤ 0,X3 ≤ 0) = C(P(X1 ≤ 0),P(X2 ≤ 0),P(X3 ≤ 0)),
P(X1 ≤ 0,X2 ≤ 0,X3 ≤ 1) = C(P(X1 ≤ 0),P(X2 ≤ 0),1),
P(X1 ≤ 0,X2 ≤ 1,X3 ≤ 0) = C(P(X1 ≤ 0),1,P(X3 ≤ 1)), and
P(X1 ≤ 1,X2 ≤ 0,X3 ≤ 0) = C(1,P(X2 ≤ 0),P(X3 ≤ 1)),

(2.13)

to model the dependence of (X1,X2,X3). The second, third, and fourth equa-
tions of (2.13) correspond to the three bivariate margins of the copula. The first
equation completes the information needed to construct a trivariate Bernoulli
distribution.

Consider a normal copula CR with a symmetric and positive definite matrix
R of bivariate correlations:

R =

 1 ρ12 ρ13
ρ12 1 ρ23
ρ13 ρ23 1

 .
It is easy to see why there might be a problem with the existence of a normal
copula that realizes a given trivariate Bernoulli distribution. The three correla-
tions in the correlation matrix are determined by the second, third, and fourth
equations in (2.13), and each can be computed as in Section 2.1.1. These three
correlations have to (i) form a positive definite matrix R and, if this is the case,
(ii) satisfy the first equation in (2.13). In the following example, these problems
are highlighted.
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Example 2.1.6. Consider two trivariate Bernoulli distributions, both with mar-
gins P(X1 = 0) = 0.4, P(X2 = 0) = 0.8, and P(X3 = 0) = 0.2. The probabilities of
the second distribution are presented in brackets.

• P(X1 = 0,X2 = 0,X3 = 0) = 0.01 (0.0100)

• P(X1 = 1,X2 = 0,X3 = 0) = 0.16 (0.1855)

• P(X1 = 0,X2 = 1,X3 = 0) = 0.02 (0.0011)

• P(X1 = 1,X2 = 1,X3 = 0) = 0.01 (0.0034)

• P(X1 = 0,X2 = 0,X3 = 1) = 0.36 (0.3789)

• P(X1 = 1,X2 = 0,X3 = 1) = 0.27 (0.2256)

• P(X1 = 0,X2 = 1,X3 = 1) = 0.01 (0.0100)

• P(X1 = 1,X2 = 1,X3 = 1) = 0.16 (0.1855)

The bivariate margins of these distributions are:

• P(X1 = 0,X2 = 0) = 0.37 (0.3889)

• P(X1 = 0,X3 = 0) = 0.03 (0.0111)

• P(X2 = 0,X3 = 0) = 0.17 (0.1955)

Note that the bivariate margin of (X1,X2) of the first trivariate Bernoulli has
already been discussed in Section 2.1.1.

From the last three equations in (2.13), we find ρ12 = 0.4868,ρ13 = −0.4868,ρ23 =
0.1340 for the first distribution and ρ12 = 0.7,ρ13 = −0.7,ρ23 = 0.6 for the second.
The correlations obtained for the second distribution do not form a positive-
definite matrix. While a positive-definite matrix is formed with the correlations
of the first distribution, with this parameter CR(0.4,0.8,0.2) = 0.0298 , 0.01 =
P(X1 = 0,X2 = 0,X3 = 0). This means that neither distribution can be recovered
with the trivariate normal copula.

A Bernoulli distribution inherits some properties from its corresponding cop-
ula. However, it is not easy to specify conditions under which a Bernoulli dis-
tribution can be constructed with a given copula. Conditions under which the
construction is possible can be found only in some special cases.

Proposition 2.1.3. If the trivariate Bernoulli distribution (Y1,Y2,Y3) obtained from
a trivariate normal copula CR has margins P(Yi = 0) = 0.5 for all i ∈ {1,2,3}, then
the three-way interaction u123 is zero.

Proof. Since the normal copula realizes the trivariate Bernoulli distribution of
(Y1,Y2,Y3) and ∀y1, y2, y3 ∈ {0,1} when P(Yi = 0) = 0.5, the radial symmetry of
the trivariate normal distribution implies:

p(y1, y2, y3) = p(1− y1,1− y2,1− y3)

Therefore, in this case we obtain:

u123 = log
(
p(1,1,1)p(1,0,0)p(0,1,0)p(0,0,1)
p(1,1,0)p(1,0,1)p(0,1,1)p(0,0,0)

)
= log

(
p(0,0,0)p(0,1,1)p(1,0,1)p(1,1,0)
p(1,1,0)p(1,0,1)p(0,1,1)p(0,0,0)

)
= 0.

�
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By the construction of the Bernoulli distribution from a copula, we can im-
mediately obtain the following result.

Proposition 2.1.4. If the margins of the Bernoulli distribution are P(Xi = 0) = 0.5
for all i ∈ {1,2,3} and the distribution has a radial symmetry, i.e. p(x1,x2,x3) =
p(1−x1,1−x2,1−x3) for xi ∈ {0,1}, then (X1,X2,X3) can be realized with a trivariate
normal copula.

Proof. Since the margins are equal to 0.5, writing p(1,1,1) in terms of p(0,0,0)
leads to:

p(1,1,1) = −0.5+p(0,0,0)+p(0,0,1)+p(0,0,0)+p(0,1,0)+p(0,0,0)+p(1,0,0)−p(0,0,0).

Because of the radial symmetry, the above equation becomes:

p(0,0,0) =
P(X1 ≤ 0,X2 ≤ 0,X3 ≤ 1) +P(X1 ≤ 0,X2 ≤ 1,X3 ≤ 0) +P(X1 ≤ 1,X2 ≤ 0,X3 ≤ 0)− 0.5

2
.

The numerator of the right-hand side of the above equation is determined from
the second, third, and fourth equations of (2.13). Therefore, the first equation of
(2.13) is automatically satisfied by the parameters obtained from the other three
equations. �

Proposition 2.1.5. If the three-way interaction of a trivariate Bernoulli distribution
(X1,X2,X3) is zero and P(Xi = 0) = 0.5 for all i ∈ {1,2,3}, then a trivariate normal
copula is able to realize (X1,X2,X3).

Proof. The proof can be found in the Appendix. �

Proposition 2.1.5 implies that a zero three-way interaction does not guar-
antee the existence of a normal copula that corresponds to the given Bernoulli
distribution.

Let the latent vector (U1,U2,U3) be joined by a normal copula CR, such that
U1 and U3 are independent conditionally on U2. This happens when the correl-
ations in R are such that ρ13 = ρ12 · ρ23 (Whittaker [1990]). The example below
shows that the conditional independence of latent variables does not translate to
the corresponding Bernoulli random vector (Y1,Y2,Y3).
Example 2.1.7. Let (Y1,Y2,Y3) be a trivariate Bernoulli distribution realized by
a bivariate normal copula C with parameters ρ12 = 0.5, ρ13 = −0.5, and ρ23 =
ρ12 · ρ13 = −0.25 and let P(Y1 = 0) = 0.4, P(Y2 = 0) = 0.8, and P(Y3 = 0) = 0.2. We
have that U2, U3 are conditionally independent given U1.

The variables Y2|Y1 and Y3|Y1 where (Y1,Y2,Y3) is constructed with copula
C are not conditionally independent. In fact, the u-terms of the distribution of
(Y1,Y2,Y3) are: u123 = −0.1408 , 0 and u23 = −0.7485 , 0.

Even when P(Yi = 0) = 0.5 for all i ∈ {1,2,3}, the conditional independence
of the latent variables does not translate to conditional independence of the Y ’s.
With the same correlation matrix as above and all margins equal to 0.5, the u-
terms are: u23 = −0.6491 , 0 and u123 = 0.

Corollary 2.1.6. From Proposition 2.1.5, if X1 and X3 are conditionally independent
given X2 and the margins are P(Xi = 0) = 0.5 for all i ∈ {1,2,3}, then (X1,X2,X3) can
be recovered with a trivariate normal copula.
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2.1.3 The Non-Constant Conditional Copula-Vine Approach

In the previous subsection we investigated the existence of a normal copula
for a given Bernoulli distribution and showed that, in general, it is not easy to
give conditions which assert the existence or non-existence of the normal copula
for a specified Bernoulli distribution.

In this subsection, we adapt the use of the copula-vine approach, as presented
in subsection 1.2.2, to model a multivariate Bernoulli distribution. Panagiotelis
et al. [2012] have investigated this approach for a general multivariate discrete
distribution. Analogous to the density decomposition in equation (1.11), the
joint probability mass function of (X1, . . . ,Xn) can be decomposed as, for instance:

P(X1 = x1,X2 = x2, . . . ,Xn = xn) = P(X1 = x1) ·P(X2 = x2|X1 = x1) · . . . ·
P(Xn = xn|X1 = x1, . . . ,Xn−1 = xn−1).

(2.14)

Following the same notation as in subsection 1.2.2, each term P(Xj = xj |V) on
the right-hand side of (2.14) can be rewritten as:

P(Xj = xj |V = v) =
P(Xj = xj ,Xi = xi |V\i = v\i)

P(Xi = xi |V\i = v\i)
. (2.15)

This is the discrete analogue to the density representation in equation(1.12).
Again, just as in the fully continuous case, the numerator of the right-hand side
of (2.15) can be rewritten and then expressed with the bivariate copula:

P(Xj = xj ,Xi = xi |V\i = v\i) =

xj∑
sj=0

xi∑
si=0

(−1)(sj+si )
P(Xj ≤ xj − sj ,Xi ≤ xi − si |V\i = v\i)

(2.16)

=

xj∑
sj=0

xi∑
si=0

(−1)(sj+si )CXj ,Xi |V\i
(
P(Xj ≤ xj − sj |V\i = v\i),P(Xi ≤ xi − si |V\i = v\i)

)
.

For i , k < j, the arguments of the copula on the right-hand side of the above
expression can also be expressed with the copula:

P(Xj ≤ xj − sj |V\i = v\i ) =

∑xk
sk=0(−1)skCXj ,Xk |V\i,k

(
P(Xj ≤ xj − sj |V\i,k),P(Xk ≤ xk − sk |V\i,k)

)
P(Xk = xk |V\i,k)

.

(2.17)

Note that the decomposition above is performed sequentially until the condi-
tioning set V is empty. Naturally, as in the fully continuous case, all (conditional)
copulas appearing in this decomposition can be organized using a regular vine
(Kurowicka and Cooke [2006]).
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In Panagiotelis et al. [2012], the assumption has been made that all condi-
tional copulas do not depend on the conditioning variables. In general, however,
the conditional copulas do not have to be constant so the following conditions
have been proposed in Panagiotelis et al. [2012] to ensure the existence of con-
stant conditional copulas for the multivariate Bernoulli case.

Proposition 2.1.7. Let pj,(1), . . . ,pj,(κ1) denote the ordered κ1 distinct values of P(Xj ≤
0|V\i = v\i) and pi,(1), . . . ,pi,(κ2) denote the ordered κ2 distinct values of P(Xi ≤
0|V\i = v\i). A constant bivariate copula C exists over the conditioning set V\i = v\i
if it solves

P(Xj ≤ 0,Xi ≤ 0|V\i = v\i) = C
(
P(Xj ≤ 0|V\i = v\i),P(Xi ≤ 0|V\i = v\i)

)
for each member in the conditioning set. For this to happen, all of the (κ1 + 1)(κ2 + 1)
values of P(pj,(a),pi,(b))−P(pj,(a−1),pi,(b))−P(pj,(a),pi,(b−1)) +P(pj,(a−1),pi,(b−1)) must
be non-negative.

Even if a constant conditional copula exists for the above construction, this
does not have to be a normal copula. To the best of the authors’ knowledge, there
is no result ensuring when the constant normal copula exists.

For large models the assumption of constant conditional copulas is under-
standable. In the case of moderate-sized models with variables that do not con-
tain many states, it might not be prohibitive to consider the non-constant con-
ditional copula-vine model. In such cases, different copulas can be specified for
each combination of conditioning variables in (2.16).

Theorem 2.1.8. Any multivariate Bernoulli random variables can be represented
with the bivariate normal copulas with the non-constant conditional copula-vine
model.

Proof. Since the conditional distribution of a multivariate Bernoulli distribution
is also multivariate Bernoulli and the copulas are allowed to be different, the
result follows immediately from Theorem 2.1.1. �

To illustrate how the non-constant conditional copula-vine model works, a
simple example on the trivariate Bernoulli variable is presented.
Example 2.1.8. Let (X1,X2,X3) be a trivariate Bernoulli distribution and let the
vine structure in Example 1.13 in Chapter 1 as shown in Figure 1.12 be chosen.
This means that two bivariate unconditional copulas, C12 and C23, are fixed.
Next, conditional copulas need to be specified for both realizations of variable
X2. These are denoted as C13|2=0 and C13|2=1.

The parameters of four bivariate normal copulas have to be such that equa-
tions (2.13) are all satisfied. The parameters ρ12 and ρ23 of the normal copula
C12 and C23 are found from the second and fourth equation of (2.13), respect-
ively. We find the parameter of copula C13|2=0 to satisfy the first equation and
C13|2=1 to the fourth equation as follows:

P(X1 ≤ 0,X2 ≤ 0,X3 ≤ 0) =P(X1 ≤ 0,X2 = 0,X3 ≤ 0)

=P(X1 ≤ 0,X3 ≤ 0|X2 = 0)P(X2 = 0)

=C13|2=0(P(X1 ≤ 0|X2 = 0),P(X3 ≤ 0|X2 = 0))P(X2 = 0)
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and

P(X1 ≤ 0,X2 ≤ 1,X3 ≤ 0) =P(X1 ≤ 0,X2 = 1,X3 ≤ 0) +P(X1 ≤ 0,X2 = 0,X3 ≤ 0)

=C13|2=1(P(X1 ≤ 0|X2 = 1),P(X3 ≤ 0|X2 = 1))P(X2 = 1)+

P(X1 ≤ 0,X2 = 0,X3 ≤ 0)

Since there is no constraint on copulas in the above representation, any cop-
ula can be chosen and all four equations in (2.13) are satisfied. These conditional
copulas correspond to P(X1 ≤ 0,X3 ≤ 0|X2 = 0) and P(X1 ≤ 0,X3 ≤ 0|X2 = 1);
both are bivariate Bernoulli distributions.

For the first Bernoulli distribution in Example 2.1.6, the parameters of the
normal copulas can be calculated as above and are equal to: ρ12 = 0.4868, ρ23 =
0.1340, ρ13|2=0 = −0.7612, and ρ13|2=1 = 0.8552. We see that the normal copula
parameters are very different for different realization of variable X2.

Moreover, (X1,X3|X2) cannot be represented with any constant conditional
copula. In this example, P(X1 = 0|X2 = 0) = 0.4625 > P(X1 = 0|X2 = 1) = 0.1500,
P(X3 = 0|X2 = 0) = 0.2125 > P(X3 = 0|X2 = 1) = 0.1500, and P(X1 = 0,X3 =
0|X2 = 0) = 0.0125 < P(X1 = 0,X3 = 0|X2 = 1) = 0.1000. This results in the
probability in the region ([0,P(X1 = 0|X2 = 0)]× [0,P(X3 = 0|X2 = 0)])\([0,P(X1 =
0|X2 = 1)] × [0,P(X3 = 0|X2 = 1)]) being negative, which is a violation of the
condition in Proposition 2.1.7.

For a joint normal copula, each marginal and conditional copula is normal
and the conditional copulas do not depend on the conditioning variables. This
property does not translate to the trivariate Bernoulli distribution (Y1,Y2,Y3) im-
plied by the normal copula. It is not always the case that the conditional copulas
C13|2=0 and C13|2=1 are equal.

Proposition 2.1.9. Let the univariate margins of a trivariate Bernoulli distribution
(X1,X2,X3) be P(Xi = 0) = 0.5 for all i ∈ {1,2,3}. The trivariate normal copula
realizes (X1,X2,X3) if and only if Cij |k=0 = Cij |k=1 for any combination of i, j,k ∈
{1,2,3} where Cij |k is a radially symmetric copula.

Proof. The proof can be found in the Appendix. �

According to Proposition 2.1.9, if C13|2=0 and C13|2=1 are the independent
copulas and the margins are 0.5, then the distribution of (Y1,Y2,Y3) can be rep-
resented by the normal copula and the variables Y1 and Y3 are conditionally
independent given variable Y2. However, the latent variables UY1

and UY3
are

not conditionally independent given UY2
. This is illustrated in the following ex-

ample.

Example 2.1.9. Let (Y1,Y2,Y3) be a trivariate Bernoulli distribution with P(Yi =
0) = 0.5 for all i ∈ {1,2,3} and both C13|2=0 and C13|2=1 be the independent copu-
las. Assume that the bivariate margins (Y1,Y2) and (Y2,Y3) are represented by the
bivariate normal copula with parameters 0.5 and −0.5, respectively. Y1 and Y3
are, thus, conditionally independent given Y2 and the trivariate normal copula
with parameters r12 = 0.5, r23 = −0.5, and r13 = −0.1736 represents the trivari-
ate Bernoulli distribution (Y1,Y2,Y3). However, r12 · r23 = −0.25 , −0.1736 = r13,
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which means that the latent variables UY1
and UY3

are not conditionally inde-
pendent given UY2

.

Any multivariate Bernoulli distribution can always be recovered using the
non-constant conditional copula-vine approach. This means that it can be con-
structed using building blocks consisting of bivariate normal copulas. This is not
the case, however, when the conditioning copulas in the copula-vine approach
are assumed not to depend on the conditioning variables, nor in the case of mul-
tivariate normal copula.

2.2 Mixed Discrete-Continuous Distributions with Copulas
In this section, we discuss the extension of the copula modelling to discrete dis-
tributions with more than two states and mixed discrete-continuous models. In
cases where the variables have more states, a copula used in the construction of
such a discrete distribution must satisfy more constraints.

2.2.1 Bivariate Case

We start the exposition with the simplest possible case: a bivariate discrete dis-
tribution (X1,X2) with one margin taking values on {0,1} and another taking
values on {0,1,2}. In this case, a copula C that realizes (X1,X2) must satisfy the
following conditions:{

P(X1 ≤ 0,X2 ≤ 0) = C(P(X1 ≤ 0),P(X2 ≤ 0)),
P(X1 ≤ 0,X2 ≤ 1) = C(P(X1 ≤ 0),P(X2 ≤ 1)). (2.18)

The normal copula cannot always represent (X1,X2) anymore because of the
over-determined system (2.18) that needs to be satisfied.

With more states of the variables, the problem deteriorates simply because
the number of equations in (2.18) increases while the number of parameters re-
mains the same. When X2 is continuous, it has an infinite number of states and
a copula C that is able to recover the distribution of (X1,X2) needs to satisfy the
following constraint for all realizations of X2:

P(X1 ≤ 0,X2 ≤ x2) = C(P(X1 ≤ 0),P(X2 ≤ x2)). (2.19)

Figure 2.7 illustrates the problems of finding a copula graphically for distri-
butions with more than two states. Figure 2.7(a) is when X2 has three states,
Figure 2.7(b) is when X2 has four states, and Figure 2.7(c) is when X2 is continu-
ous. The blue dots in Figure 2.7(a) and 2.7(b) show where in the unit square the
copula is constrained. When X2 is continuous, the copula is constrained at all
points on the horizontal blue line in Figure 2.7(c).

Using (2.19), to see whether the copula C can model the mixed discrete-
continuous bivariate variable (X1,X2), the conditional distribution of X2 given
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Figure 2.7: The unit square corresponding to the latent variable (U1,U2) for distributions of
X2 with different numbers of states.

(a) X2 with three states. (b) X2 with four states. (c) X2 continuous.

X1 should be compared with the conditional distribution of a copula:

P(X2 ≤ x2|X1 ≤ 0) =
C(P(X1 ≤ 0),P(X2 ≤ x2))

P(X1 ≤ 0)
. (2.20)

The following example illustrates this.

Example 2.2.1. Let (X1,X2) be a mixed discrete-continuous bivariate random
variable with X1 binary, P(X1 = 0) = 0.75, and X2 continuous with marginal
distribution P(X2 ≤ x2). Figure 2.8(a) shows the conditional distribution of the
latent variable U2 given U1 ≤ 0.75 for normal copulas with different parameters.
Figure 2.8(b) illustrates the conditional distributions as in (a) but with Frank and
Gumbel copulas used to model dependence between U2 and U1.

When the variable X1 is also taken to be continuous, the conditions on the
copula become:

P(X1 ≤ x1,X2 ≤ x2) = C(P(X1 ≤ x1),P(X2 ≤ x2)),

Figure 2.8: The conditional distribution of the latent variable U2 given variable U1 ≤ 0.75
with different copulas.
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which is none other than Sklar’s equation (1.2). In this case, the copula must
conform to all points in the unit square of the latent variable (U1,U2).

2.2.2 Multivariate Case

In the higher-dimensional case, it becomes even more difficult to find the copula
that generates the mixed model. The non-constant conditional copula-vine ap-
proach as presented in Section 2.1.3 can be seen as the most flexible model in this
case. The conditional probabilities in (2.16) containing only discrete variables in
the conditioning set have to be replaced by the following:

P(Xj = xj ,Xi ≤ xi |V\i = v\i) = (2.21)

=

xj∑
sj=0

(−1)sjP(Xj ≤ xj − sj ,Xi ≤ xi |V\i = v\i)

=

xj∑
sj=0

(−1)sjCXj ,Xi |V\i
(
P(Xj ≤ xj − sj |V\i = v\i),P(Xi ≤ xi |V\i = v\i)

)
(2.22)

where Xj corresponds to the binary variable, Xi corresponds to the continuous
variable, and V\i contains only discrete variables. In this case, the approach as
illustrated in Example 2.2.1 can be used for each combination of conditioning
variables in (2.22).

2.3 Modelling Mixed Data with the Copula-Vine Approach
In the previous section we have seen how the copula-vine approach can be used
to represent the joint distribution of mixed discrete-continuous variables. In this
section we discuss how that approach can be applied to construct a joint model
of a dataset with mixed discrete and continuous variables.

To apply the copula-vine approach, a regular vine structure first needs to

be chosen. With n variables, there are n!
2 2

(
(n−2)(n−3)

2

)
possible regular vine struc-

tures (Morales Napoles [2009]). This is due to the many possible decompositions
of the joint distribution which means that, even with only a moderate number
of variables in the model, the number of possible regular vines is already very
large. For instance, when n = 10, there are 487,049,291,366,400 possible regu-
lar vines.

To narrow down the set of possible regular vine structures, in this thesis we
choose to keep the purely continuous and purely discrete parts of the model
as sub-vines of the full vine. Let nd denote the number of discrete variables and
nc = n−nd the number of continuous variables. Even after clustering the continu-
ous and discrete variables (each with an already chosen regular vine structure),
there are still 2nd+nc−2 = 2n−2 different ways to merge these sub-vines together
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(Cooke et al. [2015]). Unless otherwise stated, in this thesis we merge the two
sub-vines by connecting the discrete and continuous nodes with the highest cor-
relation.

Next, bivariate copula families corresponding to the edges in the vine need
to be chosen. In principle, any such family can be fitted. In this thesis, we focus
on the bivariate normal copula because this is the one we intend to use later on
in the railway disruption-length models.

Once the vine structure and the bivariate copulas have been chosen, the
model’s parameters are estimated from data to obtain the full copula-vine model.

The likelihood of the constructed model is computed using the same decom-
position as in the purely continuous (equation (1.11) - (1.12)) and purely discrete
(equation (2.14) - (2.15)) cases, following the chosen vine structure and evalu-
ating each term in the decomposition as a bivariate (conditional) copula. The
likelihood, therefore, takes the form of a product of these bivariate (conditional)
copulas evaluated at the data points.

There are three possible cases for these bivariate (conditional) copulas between
the variables Xj and Xi :

1. When both Xj and Xi are discrete, we need to compute P(Xj = xj ,Xi =
xi |V\i = v\i). This can be done as in equation (2.16).

2. When both Xj and Xi are continuous, fXj |V\i ,Xi |V\i (Xj = xj ,Xi = xi |V\i = v\i)
can be computed as in equation (1.3).

3. When one of Xj or Xi is discrete and the other is continuous. If the discrete
variable is Xj , then the likelihood can be computed by multiplying the
probability P(Xj = xj |Xi = xi ,V\i = v\i)f (Xi = xi |V\i = v\i) of each sample.
The first term can be computed with the bivariate copula as follows

=

xj∑
sj=0

(−1)sjC
Xj |V\i=v\i

∣∣∣F(Xi≤xi |V\i=v\i )
(P(Xj ≤ xj − sj |V\i = v\i)) (2.23)

while the second term can be rewritten as another bivariate (conditional)
copula following the sub-vine corresponding to the set {Xi ,V\i}.

The copula arguments, which are the conditional distribution of Xj given the
variables in V\i , are expressed with bivariate copulas following the correspond-
ing sub-vine structure. Following the notation in equation (2.17), where Xk is an
element of V\i , there are four possible forms of the copula argument:

1. When both Xj and Xk are discrete, then P(Xj ≤ xj |V\i,k ,Xk) can be com-
puted as in equation (2.17).

2. When Xj is discrete and Xk is continuous, then:

P(Xj ≤ xj |V\i,k ,Xk = xk) = C
Xj |V\i,k

∣∣∣F(Xk≤xk |V\i,k )
(P(Xj ≤ xj |V\i,k)) (2.24)

as in equation (2.23).
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3. When Xj is continuous and Xk is discrete, then:

F(Xj ≤ xj |V\i,k ,Xk = xk) =∑xk
sk=0(−1)skCXj ,Xk |V\i,k (F(Xj ≤ xj |V\i,k),P(Xk ≤ xk − sk |V\i,k))

P(Xk = xk |V\i,k)
(2.25)

4. When both Xj and Xi are continuous, then:

F(Xj ≤ xj |V\i,k ,Xk = xk) = C
Xj |V\i,k

∣∣∣F(Xk≤xk |V\i,k )
(F(Xj ≤ xj |V\i,k)) (2.26)

as in the fully continuous case.

The decomposition is performed sequentially until the conditioning set V is
empty.

In a three dimensional case, the likelihood of the mixed discrete-continuous
data presented in Example 1.2.9 can be computed by taking the products of the
joint distribution representation in equation (1.16) computed for each sample.

2.3.1 An Algorithm to Obtain a Parsimonious Non-Constant Conditional
Copula-Vine Model

As mentioned in subsection 1.2.4, a copula-vine model (especially when non-
constant conditional copulas are considered) requires a high number of para-
meters resulting in a not parsimonious model. Some of these parameters might
not be significant and should not be included in the model.

Algorithm 2.1 is proposed for this purpose. Given a regular vine structure
and a set of bivariate copulas, this algorithm estimates the copula parameter
values from data. For each parameter value, the confidence bound is computed
through parametric bootstrapping and if the parameter is found to be insignific-
ant, it is removed from the model.

Note that Algorithm 2.1 only considers non-constant conditional copulas on
the pairs whose conditioning sets contain only discrete variables. In principle,
non-constant conditional copulas could be assumed on any pair with a non-
empty conditioning set.

2.3.2 Testing Algorithm 2.1
To test whether Algorithm 2.1 works, a small simulation study is performed.
Consider three binary discrete variables, X1, X2, and X3, with margins P(X1 =
0) = 0.6,P(X2 = 0) = 0.4, and P(X3 = 0) = 0.7, respectively, and three continuous
variables X4, X5, and X6 uniform on (0,1) . The six variables are joined together
with a vine with the structure depicted in Figure 2.9. Such a structure is a special
case of a regular vine called the D-vine.

The three discrete variables are shown as white rectangles and the three con-
tinuous variables as yellow rectangles. The edges in different trees are repres-
ented with different line styles. The red edges of the D-vine correspond to the
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Algorithm 2.1 An algorithm to obtain a parsimonious non-constant copula-vine
model

for tree = 1 to n− 1 do
if tree = 1 then
for each pair of nodes do

1. Estimate the parameter of the unconditional copula.
2. Re-sample the pairM times and find the parameter’s 95% confidence
bound.
3. If the confidence bound contains 0, set the parameter to 0.

end for
else
for each pair of nodes do

if all conditioning variables are discrete then
for each combination of conditioning variables values do

1. Estimate the parameter of the unconditional copula.
2. Re-sample the pair M times and find the parameter’s 95% con-
fidence bound.
3. If the confidence bound contains 0, set the parameter to 0.

end for
if all confidence bounds overlap then

4. Fit a constant conditional copula to the pair.
5. Re-sample the pair M times and find the parameter’s 95% con-
fidence bound.
6. If the confidence bound contains 0, set the constant parameter
to 0.

end if
else

1. Fit a constant conditional copula.
2. Re-sample the pair M times and find the parameter’s 95% confid-
ence bound.
3. If the confidence bound contains 0, set the parameter to 0.

end if
end for

end if
end for

purely discrete part of the model, the yellow lines correspond to the purely con-
tinuous part, and the rest represent the mixed pairs. The edges of the vine indic-
ate the conditioned|conditioning variables and they correspond to the bivariate
(conditional) copulas needed in the model. The red and blue edges in the second
and third trees correspond to the pairs where non-constant conditional copulas
can be applied. The pairs connected with the yellow and black edges are mod-
elled with constant conditional copulas.

A set of bivariate normal copulas with certain parameter values is chosen and
is used to generate datasets containing N samples from the D-vine structure. In
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Figure 2.9: A regular vine structure on six variables.

this thesis, we consider N = {100,500,1000,2000}. Algorithm 2.1 withM = 1000
is used to find the confidence bounds of the parameters of the bivariate normal
copulas based on these samples.

To see how the copula-vine models recover the data, for each N we observe
the following:

1. The log-likelihood.

2. The KL test for the eight-cell contingency table between the observed and
predicted frequencies of the three binary variables.

3. The PIT test to test the trivariate normal copula for the three continuous
variables.

The KL test and PIT test are goodness-of-fit tests of the discrete and con-
tinuous parts of the model, respectively. As for the mixed part of the model,
to author’s knowledge there is no usable goodness-of-fit test. We therefore test
the model by its performance in predicting the outcome of some variables given
observation of the others.

In practice, the variable of interest could be either the continuous variable,
the discrete variable, or a set of variables in the model. In the experiment, in
assessing the model’s performance we consider only the prediction of either a
continuous or a discrete variable. This choice is motivated by the application
part of this thesis, where the railway disruption-length model is used to predict
the disruption length.

Let the continuous variable X6 be of interest. To test the fit of the conditional
distribution of X6, for each data point the quantile of the conditional distribu-
tion corresponding to the observed X6 = x6 is computed. The model represents



58 Chapter 2

the data well if these quantiles are distributed uniformly on (0,1). This can be
measured by, e.g., the Kolmogorov-Smirnov (KS) test.

A natural choice for the prediction would be the mean of the conditional
distribution of X6, denoted as x̂6. The root mean square error (RMSE) of the
prediction is defined as:

RMSE =

√√√
1
N

N∑
i=1

(x̂6i − x6i)
2 (2.27)

where x6i denotes the i-th realization of X6, and x̂6i denotes the mean of the i-th
conditional distribution of X6. The closer the RMSE is to zero, the more accurate
the prediction is.

The coefficient of determination R2 is defined as

R2 = 1− RMSE
2

Var(X6)
. (2.28)

R2 indicates the proportion of the variance of X6 that is explained by the vari-
ables X1, . . . ,X5 through the copula-vine model.

If the discrete variable X1 is of interest, the conditional distribution of X1,
P(X1 = 0|X2, . . . ,X6), is computed from the copula-vine model. To make a pre-
diction of X1, a threshold needs to be chosen for P(X1 = 0|X2, . . . ,X6). If the com-
puted P(X1 = 0|X2, . . . ,X6) is lower than the threshold, i.e. the probability of
observing zero is “small”, then the model’s prediction of X1 is X̂1 = 1. Other-
wise, the prediction is X̂1 = 0. The threshold is chosen such that it maximizes,
for instance, the proportion of correct prediction, i.e.

P(Correct Prediction) = P(X1 = 0, X̂1 = 0) +P(X1 = 1, X̂1 = 1) (2.29)

for the given threshold.
Because X1 is binary, a popular way to make a prediction of X1 is by using the

generalized linear model (GLM) with the logit link (see, e.g., Nelder and Wed-
derburn [1972]). We shall also compare the performance of the predictions of X1
made with the copula-vine model and the GLM. The built-in function fitglm
in MATLAB is used to obtain the GLM. We consider up to two-way interactions,
and parameters found to be insignificant are removed from the GLM.

Therefore, additionally to statistics 1, 2, and 3 above, we look at the follow-
ing:

4. The fit of the conditional distribution of X6 by means of the KS test.

5. The RMSE and R2 values of the prediction of X6.

6. The threshold which yields the maximum proportion of correct predictions
of X1 and the proportion itself.

7. A comparison with a GLM with logit link to predict X1.
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Table 2.1: A summary of the copula-vine models’ performance for different numbers of samples
N .

N 100 500 1000 2000
1. Log-likelihood −116.88 −517.47 −1005.15 −2015.80
2. Discrete fit 0.2025 0.6604 0.6667 0.7500
3. Continuous fit 0.3893 0.4427 0.3716 0.2376
Continuous 4. Cond. dist. 0.5877 0.2713 0.8900 0.4085
prediction 5a. RMSE 0.1517 0.1284 0.1286 0.1250

5b. R2 0.7575 0.8186 0.8139 0.8112
Discrete 6a. Threshold 0.5 0.56 0.5 0.53
prediction 6b. Proportion 77% 77.20% 75.30% 74.35%

7. GLM 77.00% 78.80% 77.10% 77.20%

Table 2.1 summarizes the results.
The fitted copula parameters of the four models can be found in Table B.1 in

Appendix B. It is shown there that the true parameter values are captured by the
confidence bounds of all models. As would be expected, the confidence bounds
are the widest when N = 100 and narrow down as N grows. Consequently, the
model in which N = 100 has the most parameters set to zero.

Table 2.1 shows that the copula-vine models with parameters estimated using
Algorithm 2.1 perform well in representing the data with different numbers of
samples. The discrete part of the model is recovered well, as indicated by the
p-values of the KL test. The PIT test indicates that the continuous part is also
well-recovered2.

To predict the continuous variable X6, the model appears to benefit from a
higher number of samples, as seen from the generally decreasing behaviour of
the RMSE.

Figure 2.10: Proportion of correct prediction as a function of threshold value.
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(a) N = 500, sequential.
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(b) N = 2000, sequential.

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

Threshold

P
e

rc
e

n
ta

g
e

 (
%

) 
o

f
C

o
rr

e
c
t 

P
re

d
ic

ti
o

n

(c) N = 2000, full-optimized.

Figure 2.10(a) and Figure 2.10(b) show the proportion of correct predictions
(in %) of the variable X1 as a function of threshold value for N = 500 and

2The PIT Test rejects the null-hypothesis that the copula recovers the dependence between the
three continuous variables if any of the p-values evaluated from equation (1.18) or (1.19) is below
the significance level of 5%. It is therefore sufficient to show the smallest evaluated p-value to draw
a conclusion from the test, as presented in the table.
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N = 2000, respectively. The results in Table 2.1 for discrete prediction are ob-
tained from these figures by choosing the threshold that yields the maximum
proportion for each N . In predicting the discrete variable X1, however, the
model does not appear to benefit significantly from a higher number of samples.
Moreover, in terms of predicting X1, the performances of the copula-vine and
the GLM are similar for all N .

Algorithm 2.1 estimates the parameters sequentially. The model can be fur-
ther “improved” by performing a full optimization of all parameters in the model
together by maximizing the model’s likelihood. Only parameters that are not
zero after the sequential fitting are considered in the full optimization.

To test whether the improvement is significant, a copula-vine model withN =
2000 whose parameters are “fully-optimized” is constructed and compared with
the copula-vine model with sequentially-estimated parameters. The parameters
of the fully-optimized model can be found in Table B.2 in Appendix B. Table 2.2
summarizes the comparison between the two models.

Table 2.2: Comparing the copula-vine models with sequential parameter estimation and fully-
optimized parameter estimation for N = 2000.

Method Sequential Fully Optim.
1. Log-likelihood −2015.80 −2002.78
2. Discrete fit 0.7500 0.6412
3. Continuous fit 0.2376 0.2357
Continuous 4. Cond. dist. 0.4085 0.5502
prediction 5a. RMSE 0.1250 0.1267

5b. R2 0.8112 0.8058
Discrete 6a. Threshold 0.53 0.52
prediction 6b. Proportion 74.35% 74.10%

While the log-likelihood of the fully-optimized model is larger, the difference
in log-likelihood is not statistically significant, as we observe with the Vuong
and Clarke’s distribution-free tests (see subsection 1.2.6). The test-statistic Z
of the Vuong test is 1.6166 that is well within the 95% confidence bound of
(−1.96,1.96). The test statistic B of the Clarke’s distribution-free test is 1025, well
within the 95% confidence bound of (956,1044). Moreover, the fully-optimized
model does not outperform the sequential model in the prediction of continuous
or discrete variables.

Estimating the “fully-optimized” parameters is certainly computationally ex-
pensive. On top of approximately three hours of computation time needed to
sequentially estimate the parameters of the N = 2000 copula-vine model with
Algorithm 2.1, seven hours of computation are required to obtain the “fully-
optimized” parameters. In this thesis, all computation is performed in a com-
puter with an Intel(R) Core i5-3470 3.2 GHz processor and 8 GB RAM.

For these reasons, from hereon we consider only the “sequential” copula-vine
model.

In the experiment thus far, the GLM has only been used to predict the binary
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variable X1 because the continuous variables are uniform on (0,1). A limita-
tion of the GLM is that the conditional distribution of the dependent variable
is assumed to come from a distribution in the exponential family. However, the
uniform variables can be transformed into, say, the standard normal distribu-
tions by applying the inverse cumulative distribution function. In this case, we
use the GLM with the identity link to predict the transformed continuous vari-
able X6. Table 2.3 presents the performance of the GLM on the four transformed
datasets.

Table 2.3: Summary of the GLM performance in predicting the transformed variable X6.

N 100 500 1000 2000
GLM’s 4. Cond. dist. 10−4 10−17 10−34 10−72

continuous 5a. RMSE 0.1257 0.1248 0.1256 0.1235
prediction 5b. R2 0.8295 0.8286 0.8225 0.8156

Table 2.3 shows that the GLM produces good predicted mean as indicated by
the low RMSE3, even for small number of samples. By contrast with the copula-
vine models, however, the GLM does not recover the conditional distribution of
X6.

2.3.3 Misspecification in Modelling

In practice, wrong assumptions might be made during the construction of a
copula-vine model. For instance, the assumption of constant conditional cop-
ulas might be imposed while, in reality, are non-constant. Moreover, both the
underlying bivariate copula families and the vine structure are generally un-
known. The best copula family can be chosen by comparing a few different
families and choosing the one closest to the data, while the vine structure can
be chosen through a number of heuristic procedures (see Kurowicka and Joe
[2011]). In this subsection, we look at those situations in which a wrong constant
conditional copula assumption is made and in which either the copula family or
the vine structure is misspecified.

Example 2.3.1. (wrong constant copula assumption). Consider the previous
datasets constructed in the example in Subsection 2.3.2 and generated from a
non-constant Copula-Vine. From these, for eachN a constant copula-vine model
with the same vine-structure is constructed with a set of bivariate normal cop-
ulas representing all arcs of the vine. To do this, Algorithm 2.1 is run with
M = 1000, but every pair of nodes in the second tree and above is modelled
with a constant conditional copula. Table B.3 in Appendix B presents the fitted
parameters.

Table 2.4 summarizes the constant models’ fit and performance in prediction
for different values of N .

3The RMSEs are computed in the original uniform scale to enable comparison with the copula-
vine model’s performance as presented in Table 2.1.
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Table 2.4: Summary of the constant copula-vine models’ performance for different numbers of
samples N when the truth is non-constant.

N 100 500 1000 2000
1. Log-likelihood −117.9361 −518.60 −1011.12 −2030.96
2. Discrete fit 0.0017 < 10−17 < 10−17 < 10−17

3. Continuous fit 0.3893 0.4427 0.3716 0.2376
Continuous 4. Cond. dist. 0.3724 0.1223 0.8609 0.3945
prediction 5a. RMSE 0.1415 0.1294 0.1290 0.1257

5b. R2 0.7839 0.8157 0.8128 0.8088
Discrete 6a. Threshold 0.50 0.48 0.47 0.47
prediction 6b. Proportion 64% 74.20% 71.20% 71.55%

7. GLM 76% 78.80% 77.40% 77.20%

It is unsurprising that the discrete part of the data is not recovered by any
of the models. The continuous part is modelled exactly as in the non-constant
copula-vine models in subsection 2.3.2 because the parameters are estimated
sequentially.

The models predict the continuous variable X6 well for all N where the
quantiles of the conditional distribution of X6 are uniform (0,1) for any N . The
RMSE tends to decrease with higher N . However for N = {500,1000,2000},
the RMSEs are slightly higher than in the non-constant copula-vine models.
Moreover, the proportions of correct predictions of the binary variable X1 are
lower than in the non-constant copula-vine models.

Because the non-constant and constant copula-vine models are constructed
from the same datasets, the models’ likelihoods can be compared to see which
are the better ones for the data. The results are summarized in Table 2.5.

Table 2.5: Comparing the likelihoods of the non-constant and constant copula-vine models.

N 100 500 1000 2000

AIC
non-constant 255.76 1062.94 2042.30 4065.61
constant 251.87 1061.19 2046.24 4087.93

BIC
non-constant 284.42 1121.94 2120.82 4160.82
constant 272.71 1111.77 2105.13 4160.74

LRT (p-value) 0.5514 0.3237 0.0357 10−5

Vuong test’s Z −1.6735 −0.5104 0.8483 2.2205
(Conf. bound) (−1.96,1.96) (−1.96,1.96) (−1.96,1.96) (−1.96,1.96)
Clarke’s test’s B 26 227 467 1118
(Conf. bound) (40,60) (228,272) (469,531) (956,1044)

For low numbers of samples (N = {100,500}), all tests favour the constant
copula-vine models with the exception of the Vuong test which cannot distin-
guish which models are better. For N = 1000, from the AIC and likelihood ratio
test (LRT) we conclude that the non-constant copula-vine model is better. How-
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ever, BIC and Clarke’s test indicate otherwise. The Vuong test, again, cannot
identify which model is better. For N = 2000, all tests but the BIC state that the
non-constant copula-vine model is the better one.

In this example, the BIC always favours the constant copula-vine models
even though we know that these “underfit” the truth. This observation is in
line with findings in, e.g. Johnson and Omland [2004], Vrieze [2012], and Aho
et al. [2014], where the BIC tends to choose the simpler model.

Example 2.3.1 shows that the choice of constant or non-constant conditional
copula assumption affects the constructed copula-vine model. The models in
Example 2.3.1 underestimate the complexity of the data, which results in lower
likelihoods and in misfits in the discrete part of the models. In the example,
however, this does not severely affect the models’ predictive performance.

In the next example, we consider the situation when the copula family is
misspecified.

Example 2.3.2. (copula misspecification). Consider three binary variables X1,
X2, and X3, with margins P(X1 = 0) = 0.6,P(X2 = 0) = 0.4, and P(X3 = 0) = 0.7,
respectively, and three continuous variables X4, X5, and X6 uniform on (0,1) .
The six variables are joined together with a D-vine as in Figure 2.9.

The vine is sampled to obtain datasets containing N data points with a set of
bivariate Clayton copulas with given parameters values. As before, we consider
N = {100,500,1000,2000}. From the datasets, for each N a non-constant copula-
vine model with the same vine structure is constructed with a set of bivariate
normal copulas representing all arcs of the vine. To do this, Algorithm 2.1 is run
with M = 1000.

Figure 2.11: Scatter plots of the continuous variables in the generated data.
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(c) X4|X5 vs X6|X5.

Figure 2.11 presents the scatter plots of three continuous bivariate margins
for the data set with N = 2000. It can be seen that none of the copula is bivariate
normal.

Table B.4 in Appendix B presents the fitted parameters. It is shown there that
the fitted normal copula-vine models capture the true correlation values of the
parameters. Table 2.6 summarizes the models’ fit and performance in prediction
for different values of N .

Table 2.6 shows that the discrete part of the data is recovered well for all
N . This is an implication of the non-uniqueness of copulas in the fully discrete
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Table 2.6: Summary of the copula-vine models’ performance for different numbers of samples
N when the copula family is misspecified.

N 100 500 1000 2000
1. Log-likelihood −103.37 −621.18 −1183.33 −2376.99
2. Discrete fit 0.3464 0.5830 0.6885 0.5573
3. Continuous fit 0.0219 0.0037 0.0087 7.7275e − 4
Continuous 4. Cond. dist. 0.0084 0.0106 0.0013 1.6285e − 10
prediction 5a. RMSE 0.1844 0.1737 0.1686 0.1676

5b. R2 0.5485 0.6120 0.6426 0.6496
Discrete 6a. Threshold 0.58 0.41 0.46 0.46
prediction 6b. Proportion 86% 90.60% 88.60% 87.30%

7. GLM 66% 91.00% 89.60% 88.75%

models and because all the discrete variables are binary. Even though the data
is generated with bivariate Clayton copulas, copula-vine models with bivariate
normal copulas can still be used to represent the discrete data.

As we would expect, the continuous part is not recovered well as indicated by
the low p-values of the PIT test. Even when N = 100, this test already indicates
the misfit in the continuous part of the model.

Moreover, the models do not predict the continuous variable X6 well for all
N . We see that the quantiles of the conditional distribution ofX6 are not uniform
(0,1) for any N . As before, the RMSE tends to decrease with higher N .

Prediction of the discrete variable X1 does not appear to benefit significantly
from the higher number of samples in terms of the proportion of correct pre-
dictions. The copula-vine’s performance in predicting X1 is similar that of the
GLM.

Table 2.7: Comparison of the first and second copula-vine model for N = 2000.

Model First model Second model
1. Log-likelihood −2376.99 −1901.12
2. Discrete fit 0.5573 0.5573
3. Continuous fit 7.7275e − 4 0.8726
Continuous 4. Cond. dist. 1.6285e − 10 0.8612
prediction 5a. RMSE 0.1676 0.1607

5b. R2 0.6496 0.6777
Discrete 6a. Threshold 0.46 0.48
prediction 6b. Proportion 87.30% 87.15%

It is apparent that the bivariate normal copulas cannot be used to represent
the continuous part of this data. A better model can be obtained if a copula
family that better fits the continuous part of the data is used instead. Consider
a second model where the continuous variables are represented by the bivari-
ate Clayton copulas and the rest by bivariate normal copulas as before. The
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estimated parameter values of the second model can be found in Table B.5 in
Appendix B.

Table 2.7 summarizes the comparison between the first and second models
for N = 2000.

Both the Vuong test and Clarke’s distribution-free test conclude that the
second model is far superior to the fully bivariate normal copulas model. The
test-statistic Z of the Vuong test is −15.51, well below the 95% confidence bound
of (−1.96,1.96). The test-statistic B of the Clarke’s distribution-free test is 695,
outside of the 95% confidence bound of (956,1044).

The second model also recovers the conditional distribution of X6 well. Its
RMSE and R2 are slightly better than the first model, too. However, no signific-
ant improvement is observed in the second model’s prediction of variable X1.

From Example 2.3.2, we observe that, in the copula-vine model, it is im-
portant to fit the continuous part of the data well with the right copula family,
especially when the model is going to be used to predict a continuous variable.
For the discrete variables, on the other hand, the non-uniqueness of copulas
provides more “freedom” in the choice of which copula family to use.

The next example considers another situation in which the vine structure is
misspecified.

Figure 2.12: A C-vine structure on six variables.

Example 2.3.3. (vine structure misspecification). Consider three binary vari-
ables X1, X2, and X3 with margins P(X1 = 0) = 0.3,P(X2 = 0) = 0.7, and P(X3 =
0) = 0.4, respectively, and three continuous variables X4, X5, and X6 uniform on
(0,1) . The six variables are joined together with a vine depicted in Figure 2.12.
Such a structure is another special case of a regular vine called the C-vine.
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The vine is sampled to obtain datasets of N data points with a set of bivariate
normal copulas with parameters as in Table B.6 in Appendix B. As before, we
consider N = {100,500,1000,2000}.

In this example, the true vine structure is assumed to not be known during
model construction. To construct the copula-vine model, the discrete and con-
tinuous variables are clustered together, forming two sub-vine structures. In
each of these, the two pairs with the highest observed correlations are linked
in the first tree. The two sub-vines are merged by connecting the discrete-
continuous pair with the highest correlation. This results in the vine structure
as presented in Figure 2.13.

Figure 2.13: The chosen vine structure obtained from data by grouping the discrete and con-
tinuous variables separately and linking pairs with highest correlations in the first tree.

The resulting structure is a D-vine, which has fewer parameters than the
C-vine structure in Figure 2.12. In other words, the constructed copula-vine
models underestimate the complexity of the data.

Let Y1, . . . ,Y6 represent the variables in the D-vine structure, ordered from
left to right as presented in Figure 2.134. The parameters of the D-vine are es-
timated by executing Algorithm 2.1 with M = 1000 with the bivariate normal
copulas. Table B.7 in Appendix B presents the estimated parameters.

Table 2.8 shows that the discrete part of the data is recovered well by the
copula-vine models for all N . This is not surprising because the three discrete
variables are binary. However, the PIT test indicates that the normal copula does
not represent the continuous part of the data well. Note that in the true C-vine
structure in Figure 2.12, the dependence between the three continuous variables
is generated with non-constant bivariate normal copulas.

4In this example, C13|2 represents the conditional copula between Y1 and Y3 given Y2, which
corresponds to X2 and X1 given X3 in the C-Vine structure.
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Table 2.8: Summary of the copula-vine models’ performance for different numbers of samples
N when the vine structure is misspecified.

N 100 500 1000 2000
1. Log-likelihood −181.28 −773.90 −1568.69 −3502.69
2. Discrete fit 0.9581 0.9073 0.7864 0.8743
3. Continuous fit 0.0607 0.0315 0.0397 0.0312
Continuous 4. Cond. dist. 0.1192 0.0771 0.0695 0.0090
prediction 5a. RMSE 0.2728 0.2364 0.2375 0.2326

5b. R2 0.1919 0.3375 0.3219 0.3305
Discrete 6a. Threshold 0.5 0.46 0.47 0.46
prediction 6b. Proportion 75% 87.60% 86.50% 86.80%

7. GLM 75% 84.80% 84.60% 86.45%

Figure 2.14 compares the scatter plots of Y4|Y5 vs Y6|Y5 from the data (Figure
2.14(a)) and from the D-vine model (2.14(b)) when N = 2000. In the data, a
higher concentration of samples is observed in the bottom left-hand part of the
unit square which results in non-symmetrical behaviour with respect to the anti-
diagonal. This behaviour is not observed in the fitted D-Vine model.

Figure 2.14: Scatter plots of Y4|Y5 vs Y6|Y5 of the data and the model.
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(a) Y4|Y5 vs Y6|Y5 in the data.
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(b) Y4|Y5 vs Y6|Y5 in the model.

To determine whether the conditional copula C46|5 can be modelled as a con-
stant copula, the data is divided by discretizing the realization of Y5 into 10
groups of equal length. For each group, we compute the rank correlation and
the normal copula parameter along with their respective 95% confidence bounds
between the pair Y4|Y5 and Y6|Y5. Figure 2.15 presents the rank correlations (Fig-
ure 2.15(a)) and the normal copula parameters (Figure 2.15(b)) of these groups.
A weak non-constant relationship with respect to the variable Y5 is observed in
both cases. This finding is confirmed by performing the vector independence
test as in (Kurz [2013]), which yields a p-value in the order of 10−4.

Moreover, the conditional distribution of X6 is not well recovered by the
copula-vine model when N = 2000. Decreasing behaviour of RMSE with re-
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Figure 2.15: Rank correlations and copula parameters between Y4|Y5 and Y6|Y5 for the ten
different groups of Y5.
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(b) The copula parameters and the estimated
function of ρ46|5(y5).

spect to N is also observed. The copula-vines’ performance in predicting X1 is
similar to that of the GLM.

Now, consider a second model in which a non-constant conditional bivariate
normal copula is used to model the continuous part of the data and everything
else is kept the same. Figure 2.15 indicates that, for N = 2000, the parameter
ρ46|5 of the conditional copula C46|5 might be modelled as a function of the con-
ditioning variable Y5 = y5. The second model assumes ρ46|5 to be of the func-
tional form:

ρ46|5(y5) = tanh(Ay5 + b). (2.30)

The values of A and b in (2.30) are estimated by maximum likelihood, which
results in A = −0.5194 and b = 0.1349. The hyperbolic tangent is chosen as the
“link function” to ensure that ρ46|5(y5) ∈ (−1,1) is always satisfied during the
estimation of A and b. The obtained function ρ46|5(y5) is plotted as the blue
line in Figure 2.15(b) and is captured by the confidence bounds of the copula
parameters. The parameters of the second model can be found in Table B.8 in
Appendix B. It is shown there that the confidence bounds of neither A or b
contain zero.

Table 2.9 summarizes the comparison between the first and second models
for N = 2000.

The LRT, Vuong test, and Clarke’s distribution-free test conclude that the
second model is better than the first. The p-value of the LRT statistic is smal-
ler than 10−16. The test-statistic Z of the Vuong test is −2.8656, lower than
the 95% confidence bound of (−1.96,1.96). The test-statistic B of the Clarke’s
distribution-free test is 952, just below the 95% confidence bound of (956,1044).

The continuous part of the data is also recovered by the second model, as
indicated by the p-value of the PIT test. Moreover, this model also predicts the
conditional distribution of variable X6 better than the first. However, no signi-
ficant improvement in the values of RMSE or R2 is observed.
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Table 2.9: Comparison of the first and second copula-vine model for N = 2000.

Model First model Second model
1. Log-likelihood −3502.69 −3123.27
2. Discrete fit 0.8743 0.8743
3. Continuous fit 0.0312 0.2672
Continuous 4. Cond. dist. 0.0090 0.0813
prediction 5a. RMSE 0.2328 0.2326

5b. R2 0.3292 0.3305
Discrete 6a. Threshold 0.46 0.45
prediction 6b. Proportion 86.80% 86.25%

2.4 Chapter Summary

In this chapter we have studied the use of copulas and vines in the depend-
ence modelling of mixed discrete and continuous variables. The presence of
one or more discrete variables in the model makes the copulas satisfying Sklar’s
equation (1.2) non-unique. From the dependence modelling point of view, this
provides more freedom in the choice of copula family that can be used. On the
other hand, the copula parameter estimation becomes more expensive because
it needs to be performed via maximum likelihood.

Our focus in this chapter has been the normal copula, because this is the
one we intend to use in the application part of this thesis. In two-dimensional
cases, it has been shown that the bivariate normal copula can always recover the
dependence of a bivariate Bernoulli distribution. In higher-dimensional cases,
however, it is not easy to give conditions which assert the existence or non-
existence of a multivariate normal copula to represent the given multivariate
Bernoulli distribution.

A second modelling approach has also been considered, involving the graph-
ical structure known as the vine. We adapted the copula-vine approach popular
in fully continuous cases to the mixed discrete and continuous setting. When
all the discrete variables are Bernoulli, it was shown that the discrete part of the
model can always be recovered with a set of non-constant (conditional) bivariate
normal copulas as guaranteed by Theorem 2.1.8. If at least one of the discrete
variable is not Bernoulli, however, the copula-vine approach with non-constant
(conditional) bivariate normal copulas no longer always recovers the discrete
part of the model.

To construct a copula-vine model, a copula family and a vine structure need
to be chosen. The non-uniqueness of copulas when the variables are discrete
provides more freedom in the choice of copula family to use. However, we notice
the importance of choosing the right copula family in the continuous part of the
model. The choice of an “incorrect” vine structure might produce a model that
is either too complex to represent the data or not complex enough.

After both the copula family and vine structure have been chosen, Algorithm
2.1 is proposed to fit the model parameters. This is a sequential procedure. In
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principle, a better model can be constructed by fully optimizing the model’s
likelihood. However, from an example considered in this thesis, it appears that
the improvement is not significant enough to justify the much heavier computa-
tional cost of the fully-optimized model. This observation agrees with the study
performed by Haff [2013] in a fully continuous setting. Consequently, in this
thesis the parameters of the copula-vine models are estimated sequentially.

From the perspective of predicting the outcome of a Bernoulli variable, the
performances of copula-vine models and GLMs are found to be similar. Both
types also produce similar results when used to predict the mean of the outcome
of a continuous dependent variable. This indicates the marginal benefit obtained
from constructing a model using the copula-vine rather than the GLM approach.

However, the conditional distribution of the continuous dependent variable
can also be obtained with the copula-vine approach. Moreover, this models joint
distribution as well, allowing users to study the dependence structure between
the variables. This is particularly useful in policy analysis, for example, when
the model’s aim is to learn the effect of one variable on the other. This cannot be
achieved with the GLM.

In the next chapter we begin construction of the railway disruption-length
model. We start with data analysis to determine the necessary influencing factors
to be involved in the dependence model. Next, two joint distribution models are
constructed, using two different strategies. These are then compared to determ-
ine which is better for our data.



CHAPTER 3

Construction of the Railway
Disruption-Length Model1

This chapter is concerned with the construction of the railway disruptions length
model.

Before construction can begin, factors influencing the length of disruptions
need to be investigated. This chapter therefore starts with data analysis to de-
termine those factors. We use data originating mainly from the SAP database
described in subsection 1.1.3. Only high-priority incidents (priority 1 or 2) re-
corded in that database are considered, since they require urgent action to solve
the problems. The data is also preprocessed to remove samples that are not re-
gistered correctly2. This results in 1920 TC and 2484 switch incidents in the
period between 1 January 2011 and 30 June 2013.

The factors influencing the disruption-length models for TC and switch dis-
ruptions are generally the same. Moreover, the same model construction tech-
niques are used for both types. Consequently, the presentation in this chapter
focuses mainly on the TC disruptions. In section 3.4, we briefly present the data
analysis and model construction for the switch disruptions. The same steps can
be followed for models of other disruptions.

After the influencing factors are determined, the disruption-length model is
constructed using two strategies: (i) with the multivariate normal copula and (ii)
with the copula-vine approach as discussed in section 2.3. The two models are
then compared to determine which is more attractive from the point of view of
railway traffic management.

1The data analysis part of this chapter is based on Zilko et al. [2016] and the model construction
part is based on Zilko and Kurowicka [2016]

2For instance, a non-TC incident that is recorded as a TC incident.

71



72 Chapter 3

3.1 Data Analysis

We consider the disruption length to be the sum of the lengths of the latency and
repair times. The factors influencing these two subperiods are different and so
will be considered separately.

3.1.1 Factors Influencing Latency Time

In general, the factors influencing the length of latency time can be divided into
three different groups: time, location and weather. Later, one additional variable
not part of any of these groups − the presence of an overlapping disruption − is
also included in the model.

3.1.1.1 Time

Three variables are initially considered to represent time: (i) whether or not
the disruption occurs during the repair teams contractual working hours (week-
days between 7 am and 4 pm); (ii) whether or not the disruption occurs during
rush hours (weekdays between 7 and 10 am and between 4 and 7 pm); and (iii)
whether or not the disruption occurs at the weekend. However, information
about weekends is already contained in the first two variables. For instance,
when an incident occurs at the weekend, it is outside the repair workers’ con-
tractual working hours and not during rush hour. Moreover, the characteristics
of weekends are similar to those of non-working hours and non-rush hours. For
this reason, we only take into account the first two variables.

The first factor is important because different operations are performed de-
pending whether or not the incident occurs during the contractual working hours.
During those hours, the repair team departs for the disruption site from its work-
ing base. Outside those hours, they are not at their base even though they are
available on call. In this case, they leave for the disruption site from wherever
they happen to be. It turns out that the latency time outside contractual work-
ing hours is longer than during them − for a TC disruption, on average about 4.5
minutes longer. Figure 3.1 shows the empirical distribution of latency time for
the TC disruptions during and outside contractual working hours. Performing
the two-sample KS test and the two-sample CvM test on these two distributions
yields p-values in the order of 10−5 or lower for both tests. This indicates that
the observed difference between the two latency-time distributions cannot be
explained by the sample noise with a significance level of 0.05.

To reach a disruption site, the repair team travels by car. During rush hours,
it is more likely to encounter traffic congestion which might prolong the latency
time. The influence of rush hours on the latency time is smaller than that of
contractual hours, with latency time during rush hours is slightly longer than at
other times. For TC disruptions, the p-value of the two-sample KS test and CvM
test in this case are 0.0402 and 0.0332, respectively. On average, the latency time
is around 0.5 minutes longer during rush hours.
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Figure 3.1: Empirical distribution of latency time for TC disruptions during and outside con-
tractual working hours.

3.1.1.2 Location

The location of an incident needs to be described using some representative
properties which affect the length of the latency time. Figure 3.2 shows the loc-
ations of the 5% of disruptions in our sample with the longest observed latency
times, i.e. in excess of 90 minutes.

Figure 3.2: Map of TC disruptions with latency time longer than 90 minutes.
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On the map, we observe that around 60% of the longest latency times oc-
curred in the Randstad region in the west of the Netherlands. Being the busiest
part of the country, there are more working stations, or maintenance bases, situ-
ated here than elsewhere in the Netherlands. However, road and rail traffic dens-
ities are also higher. Road traffic density has been covered by the variable “rush
hour” above. Another characteristic to consider is level crossings; in the Rand-
stad, there are far fewer of these than in other parts of the country.

Based on the above observation, four variables representing the properties of
location are investigated:

1. distance to the nearest mechanics’ working station;

2. train traffic density;

3. distance to the nearest level crossing; and

4. contract type.

The first variable is intuitive because the more distant the disruption is, the
longer it takes for repair team to reach it. The second one represents how busy
the location is. For instance, a location with denser traffic indicates proximity to
bigger cities with better infrastructure (e.g. roads or easy access). The third vari-
able represents the site’s accessibility. To access the disruption site, the repair
team needs to park its cars (usually at the nearest level crossing) and walk to the
site. In an interview with a repair worker from a contractor company, the fourth
variable was also found to be an important factor influencing latency time. Why
it is seen as a property of location is explained shortly.

Distance to the nearest working station
In the dataset, the disruption site is indicated as being located between two

operational points along the tracks with known GPS coordinates (latitude and
longitude). The disruption site’s coordinates are estimated by taking the average
of the coordinates of these two operational points. The towns or cities where
maintenance bases are located are also known. Their exact locations are ap-
proximated by the using the position of the main railway station in the town or
city in question, its GPS coordinates also being known. Therefore, the distance
between a disruption site and the nearest maintenance base is approximated by
calculating the straight-line distances between the sites estimated coordinates
(Latd ,Longd) and those of the base (Latc,Longc), as follows:

d = 6371 · arccos(sinLatd sinLatc + cosLatd cosLatc cos(Longd −Longc)) (3.1)

where the constant 6371 corresponds to the Earth’s radius in kilometres (Stein-
haus [1999]).

To determine which working station is the closest, it is not enough to simply
take the one with the shortest approximated distance to the site. In the Neth-
erlands, repair work is outsourced to four major contractor companies, each re-
sponsible for its own region. This is important because a disruption in the region
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assigned to contractor A is always handled by its personnel, even if one of con-
tractor B’s working stations is physically closer. Furthermore, each contractor
splits its operational region into several subregions, each with its own repair
team(s) and working station(s) responsible for incidents there. Figure 3.3 shows
the 23 subregions in the Dutch railway network, along with the locations of their
working stations.

Figure 3.3: The 23 subregions in the Netherlands and the location of the working stations.

We therefore define the nearest working station as the one in the subre-
gion in which the incident occurs with the shortest approximated distance to
it. To measure the effect of this distance on the latency time, the rank correlation
between the two variables is computed. It is found to be 0.1380 with 95% confid-
ence bound of (0.0925,0.1829). Zero is not in the confidence bound, indicating
small positive dependence between the two variables.

Train traffic density
The train traffic density of a location is defined as the average number of

trains passing it per day. Information about the number of passing trains at each
operational point is known and the density can be derived from this information.

The rank correlation between the two variables is found to be −0.0352 with
95% confidence bound of (−0.0810,0.0107). This indicates a very small depend-
ence between the two variables. As zero is included in the confidence bound, the
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data indicates that the variables can be modelled independently of one another.
The influence of traffic density on other variables is found to be insignific-

ant as well. For instance, the 95% confidence bound of the rank correlation
between train traffic density and latency time during the repair workers’ con-
tractual working hours is (−0.0465,0.0456), while outside this time period it is
(−0.0436,0.0485). Zero is included in both confidence bounds, which means that
the hypothesis of conditional independence between train traffic density and
latency time given the repair workers’ contractual working hours is not rejected.
Similar conclusions are drawn when other variables are considered.

For this reason, this variable is not included in the model.

Distance to the nearest level crossing
The rank correlation between the latency time and the distance to the nearest

level crossing for TC disruptions is calculated to be 0.0842 with 95% confidence
bound of (0.0383,0.1297). Zero is not in the confidence bound, so a small posit-
ive dependence between the two variables is detected.

Contract type

Figure 3.4: Distribution of OPC and PGO contracts in the Netherlands.

As described in Subsection 1.1.3, there are two types of contract between
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ProRail and its contractors: OPC and PGO. For the TC disruptions, the latency
time of an incident with an OPC contract is, on average, 3.3 minutes longer than
with a PGO contract. Performing the KS and CvM tests on the latency times of
disruptions with OPC and PGO contracts yields p-values in the order of 10−5 or
less for both tests.

Figure 3.4 shows why contract type is considered as a property of location.
It is clear that certain regions in the Netherlands are dominated by the OPC
contract, others by the PGO contract. Interestingly, the old OPC contract still
predominates in the majority of the Randstad, which may explain why more dis-
ruptions with long latency times are seen in this region in Figure 3.2. Moreover,
this variable also explains the long latency times observed in the province of
Limburg in the south-east of the Netherlands.

3.1.1.3 Weather and Overlapping Disruptions

As described in Subsection 1.1.1, TC is sensitive to high temperatures. When
the temperature is high enough, the TC might experience adjustment problems
which cause malfunctions. For this reason, a threshold for “high” temperature
needs to be defined. As we are interested in the influence of this variable on
the length of latency time, several different thresholds are considered. For each,
the latency times are divided into two groups, one for “not warm” temperatures
(below the threshold, indicated as 0) and one for “warm” (indicated as 1). The
difference between the distributions of the two groups is measured using the
two-sample KS and CvM tests, as before. The threshold which produces the
lowest p-values in the tests is chosen. Table 3.1 shows the result.

Table 3.1: P -values of the KS and CvM Tests for latency time at different high-temperature
thresholds.

Threshold KS CvM Threshold KS CvM
20oC 0.4184 0.2163 26oC 0.3138 0.1759
21oC 0.3569 0.1098 27oC 0.2183 0.1148
22oC 0.4984 0.2248 28oC 0.4954 0.3862
23oC 0.2208 0.1464 29oC 0.6569 0.5109
24oC 0.1567 0.1001 30oC 0.9164 0.8186
25oC 0.0938 0.0727

Table 3.1 shows that the threshold choice of 25o is the optimum for our data,
being where the strongest effect on the latency time is observed. This is indic-
ated by the lowest p-values of both the KS and CvM tests, by comparison to the
other thresholds. Higher thresholds have lower numbers of observable warm
samples3, and hence less reliable data analysis, while lower thresholds are mean-
ingless from the point of view of the definition of the variable.

However, the binary variable “warm” with the chosen threshold of 25oC does
not appear to have any direct influence on the latency time because the p-values

3With the threshold of 25oC, there are only 112 occurrences in the data where the temperature is
“warm”
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of both tests are above 0.05. This indicates that the observed difference between
the two latency-time distributions can be explained by sample noise.

However, the variable “warm” does affect another variable, the presence of
an overlapping incident. Two incidents in the data are considered overlapping if
their disruption times coincide in whole or in part, they are similar in type and
they are handled by the same contractor. When “warm” is zero, the probability
of an overlapping incident occurring is 4.15%, while when “warm” is one, that
probability increases to 16.07%. This is understandable because high temperat-
ures may trigger some TCs to fail more or less simultaneously. With a limited
number of repair teams, some of these incidents can only be dealt with once
others have been taken care of.
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Figure 3.5: Empirical distribution of latency time with respect to the presence of an overlapping
incident.

Whether or not there is an overlapping incident does affect latency time. On
average, the latency time of a TC disruption is about 14.5 minutes longer when
an overlapping incident exists. In this case, the KS and CvM tests yield p-values
of 0.0025 and 0.0056, respectively. Figure 3.5 presents the latency-time distri-
butions when an overlapping disruption does and does not exist.

3.1.2 Factors Influencing Repair Time
3.1.2.1 Contract Type

The contract type also affects the repair time, as indicated by the plot of the dis-
tribution of repair-time lengths presented in Figure 3.6. For TC disruption, on
average the repair time is 20.5 minutes longer when the contract type is OPC.
Performing the two-sample KS and CvM tests on the two repair-time distribu-
tions based on contract types yields p-values in the order of ≤ 10−5 or less, re-
spectively.
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Figure 3.6: Empirical distributions of TC disruption repair times with respect to contract type.

3.1.3 Causes
Naturally the type of failure and the external causes of problems discussed in
subsection 1.1.1.1 influence the lengths of repair times. Different failures require
different corrective actions and thus different repair times.

Based on the characteristics of the required action, the causes of TC disrup-
tions are grouped as follows.

1. Group 1: impedance bond failure.

2. Group 2: relay cabinet failure, cable problem, trackside electrical junction
box problem and arrestor problem.

3. Group 3: external reasons.

4. Group 4: splinter/grinding chips and insulator problem.

5. Group 5: coins.

6. Other.

The first five groups are ordered based on the length of repair time. Groups 1
and 2 require the repair team to replace components. Impedance-bond failures
are grouped separately because teams do not usually carry the tools needed to
perform the required replacement work. In the cases in Group 2, they do usu-
ally have the necessary tools with them. Consequently, the repair time for an
impedance-bond failure tends to be longer than with the causes in Group 2. The
causes in Group 3 generally require adjustment of the components concerned.
Groups 4 and 5 both contain problems with the joint insulator; they are divided
because they need slightly different corrective action. Problems in Group 4 re-
quire the repair team to clean the joint insulator and sometimes to renew its
nylon plates and linings. Due to the small size of the insulator, this does not
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take as long as the replacement work in Group 2. The coin problem in Group 5
requires only removal of the coin from the affected joint insulator.

There are also a few TC problems caused by problems not in the first five
groups. They occur very infrequently, with a total of only 20 such incidents
found in the data. Two examples are a case of water flooding the track and relay
cabinet (the repair team had pump out the water and clear the equipment) and
a loss of detection due to sand contamination.
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Figure 3.7: Empirical distributions of repair time in the six groups.

The characteristic of the repair-time length of the groups is also reflected in
the data. Figure 3.7 shows the empirical distributions of repair time in the six
groups. Clearly, the group “Other” is positioned between Group 2 and Group
3 in term of the repair-time length. Moreover, the difference in repair times
between different groups is evident.

As mentioned in subsection 1.1.3, the cause of approximately 30% of TC in-
cidents is unknown due to unclear or oversummary descriptions. To tackle this
situation, one option would be to discard these “unknowns” from the dataset.
This, however, would result in the loss of information they carry for the other
variables. Another option would be to redistribute them randomly, but propor-
tionally, into the six groups. However, this approach neglects the repair-time
length information that we want to associate with the groups.

We therefore propose a redistribution approach which takes into account
the dependence between repair time, cause and contract type. This approach
is also known as the “Bayesian classifier” and is a popular classification tech-
nique which has been implemented in many studies, e.g. Marchant and Onyango
[2002], Bender et al. [2004] and Wang et al. [2007]. It is used to calculate the
probability that each unknown sample Xj to belong to group i, given its ob-
served repair time R = rj and contract type T = tj . Using Bayes’ theorem, this
probability is proportional to that of repair time R = rj and contract type T = tj
given that it belongs to group i (called the likelihood) multiplied by the probab-
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Figure 3.8: Empirical distribution of repair times in Group 2 before and after redistribution.

ility of group i (called the prior). Dividing the product of likelihood and prior
by the probability of the observed repair time R = rj and contract type T = tj
gives the desired probability. The sample is then assigned to the group with
the highest probability. Because repair time is continuous, the “probability” of
R = rj is approximated by discretizing the repair time to a range of 5% of rj , i.e.
P(0.975rj ≤ R ≤ 1.025rj ). This results in the following formula:

P(Group = i|0.975rj ≤ R ≤ 1.025rj ,T = tj )

=
P(0.975rj ≤ R ≤ 1.025rj ,T = tj |Group = i)P(Group = i)

P(0.975rj ≤ R ≤ 1.025rj ,T = tj )
. (3.2)

Note that there is always a group i in which P(0.975rj ≤ R ≤ 1.025rj ,T = tj |Group =
i) > 0 for each Xj . With this technique, an unknown sample with a short repair
time is more likely to be redistributed into a group with shorter repair times,
and vice versa.

Table 3.2: Number of samples, proportion, mean and standard deviation of repair times in each
cause group before and after redistribution. The information after redistribution is presented
in brackets.

Cause Group # Samples Proportion (%) Mean Std. Dev
Group 1 28 (28) 2.14 (1.46) 235.21 (235.21) 218.47 (218.47)
Group 2 602 (944) 46.06 (49.17) 96.67 (89.65) 109.11 (104.12)
Others 20 (20) 1.53 (1.04) 73.90 (73.90) 78.50 (78.50)

Group 3 198 (269) 15.15 (14.01) 55.08 (45.55) 74.43 (68.32)
Group 4 182 (215) 13.93 (11.20) 38.15 (36.83) 38.13 (35.73)
Group 5 277 (444) 21.19 (23.12) 12.64 (10.74) 13.94 (12.37)

All 1307 (1920) 100 (100) 67.03 (61.27) 97.01 (91.76)

Table 3.2 presents some information about the repair times of each group
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before and after the redistribution of unknowns. Groups with high proportions
(Group 2 and Group 5) receive the most assigned unknowns, while those with
very low proportions (Group 1 and Other) receive none. Moreover, most un-
known samples with a long (short) repair time are redistributed into a group
with a long (short) repair time. For instance, of the top 10% of unknown samples
in terms of the longest repair time, only one is not redistributed into Group 24.

Figure 3.8 shows the distribution of repair times in Group 2, which receives
the most redistributed unknowns, before (dashed) and after (solid) redistribu-
tion. The redistribution appears to slightly shift the distribution of repair times
to the left.

3.2 Model Construction
In this section, we discuss the construction of the railway disruption-length
model.

We introduce the following notations, which we will use throughout this sec-
tion to represent the variables: CT represents “contract type”, WD represents
“distance to the nearest working station”, LC represents “distance to the nearest
level crossing”, WT represents “working (contractual) hours”, WM represents
“warm”, RH represents “rush hour”, OV represents “presence of an overlap-
ping incident”, CS represents “cause”, LAT represents “latency time”, and REP
represents “repair time”.

Five of the variables are binary with the following margins: P(CT = 0) =
0.4542, P(WT = 0) = 0.6781, P(RH = 0) = 0.7505, P(WM = 0) = 0.9417, and
P(OV = 0) = 0.9515. The variable CS has six states with the following margin:

P(CS = j) =



0.0146, for j = 1;
0.4917, for j = 2;
0.0104, for j = 3;
0.1401, for j = 4;
0.1120, for j = 5;
0.2312, for j = 6;

corresponding to the third column in Table 3.2.
For the four continuous variables, there is an option to represent them by

known parametric distributions. One advantage of fitting a parametric distribu-
tion to a continuous variable is the ability to conditionalize the variable on more
extreme observations than we observe in the data.

We consider four parametric distributions for fitting: exponential, log-normal,
Gamma and Weibull. The use of these four distributions is not new in the rail-
way operation research. The exponential distribution is used to estimate the
disruption length in Schranil and Weidmann [2013]. The lognormal distribu-
tion is under consideration because, by definition, the four continuous variables
are non-negative. In a slightly different setting, Yuan [2006] considers the log-
normal, Gamma and Weibull distributions to model several different kinds of

4The sample is redistributed into Group 3.
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Figure 3.9: Fitting parametric distributions to the continuous variables.

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

 

 

Empirical
Gamma Fit

(a) Latency time.

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

 

 

Empirical

Weibull Fit

(b) Distance to working station.

0 0.5 1 1.5 2

x 10
4

0

0.2

0.4

0.6

0.8

1

 

 

Empirical

Lognormal Fit

(c) Distance to level crossing.

0 200 400 600 800
0

0.2

0.4

0.6

0.8

1

 

 

Empirical

Weibull Fit

(d) Repair time.

train delay. More recently, Corman et al. [2011] and Jensen et al. [2015] use the
Weibull distribution to model arrival, departure and dwell delay based on the
work of Yuan [2006].

For each continuous variable and each parametric distribution, the distri-
bution’s parameter(s) is (are) calculated using maximum likelihood. This res-
ults in the latency time fitting best with gamma distribution, distance to the
nearest level crossing with the log-normal distribution and both distance to the
nearest maintenance base and repair time with the Weibull distribution. Figure
3.9 shows the empirical distributions (solid blue lines) and the best-fitted para-
metric distributions (red dashed lines) of the four continuous variables. The
goodness of fit is measured by means of the KS test. This rejects the hypothesis
that any of the variables can be represented with the proposed parametric dis-
tributions with p-values in the order of 10−5 or lower.

For this reason, in the model we have decided to use the empirical distribu-
tions of the continuous variables.

3.2.1 The Multivariate Normal Copula Model
The first model we consider is the multivariate normal (MVN) copula model.
To save space, we denote Xd = (X1, . . . ,X6) = (CS,CT ,WM,WT ,RH,OV )), which
represents the discrete variables, and Xc = (X7, . . . ,X10) = (WD,LC,LAT ,REP )
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which represents the continuous variables. The parameter R of the copula is
estimated by maximum likelihood. The likelihood is computed as:

`(R) =
N∑
i=1

cRXc (F7(x7i), . . . ,F10(x10i))PRXd |Xc (xdi|xci) (3.3)

where N = 1920 corresponds to the number of samples, xci denotes the i-th
realization of Xc, xdi is the i-th realization of Xd, RXc is the part of the correlation
matrix Rwhich corresponds to the continuous part of the model and RXd |Xc is the
correlation matrix of the normal copula CRXd |Xc corresponding to the conditional
distribution of the discrete variables given the continuous variables in the model.

Figure 3.10: The Track Circuit BN.

The probability mass function in (3.3) is obtained by calculating the finite
difference of the multivariate normal copula of discrete variables conditional on
the continuous variables, as follows:

PRXd |Xc
(xdi|xci) =

min(x1i−1,1)∑
s1=0

x2i∑
s2=0

. . .
x6i∑
s6=0

(−1)
∑
j sjCRXd |Xc

(P(X1 ≤ x1i − s1), . . . ,P(X6 ≤ x6i − s6))

(3.4)

The parameters of the normal copula that maximize (3.3), computed with
the built-in MATLAB command, are presented in Table C.1 in Appendix C. The
computation was time-consuming, with parameter estimation taking approxim-
ately 24 hours with an Intel(R) Core i5-3470 3.2 GHz processor and 8 GB RAM.
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Figure 3.11: Locations of observed TC disruptions caused by coins.

This MVN copula model is a saturated model where the correlations between
all pairs are considered. However, it can be seen that some of the estimates are
small, suggesting independencies; for instance, between variables CT and WM
it is 0.0211. In principle, confidence intervals can be computed via simulation,
but this is not feasible due to the very long computation time.

To obtain a more parsimonious MVN copula model, we impose some condi-
tional independencies that are represented as a BN. Figure 3.10 presents the BN
structure of the TC disruption-length model, which we obtained from discus-
sions with a ProRail expert.

The BN in Figure 3.10 implies, for instance, conditional independence between
CS and LAT given CT , LC, and WT . While CS does not directly affect LAT , a
certain cause is more likely in certain areas at certain time and this influences
the latency time. Therefore, once information about location (represented by
CT and LC) and time (represented by WT ) is available, information about CS
becomes irrelevant to LAT .

The BN structure also illustrates the interdependencies between the influ-
encing variables. For instance, CS influences CT , LC and WT . Figure 3.11
presents the locations of disruptions caused by coins (CS = 6) in the data. It
shows that most of these are observed outside the Randstad, where the contract
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type is mostly PGO (CT = 1). Moreover, the closer a level crossing (lower LC),
the greater the chance that the disruption is caused by coins due to easier ac-
cessibility. This tallies with a characteristic of the railways in the Randstad: the
presence of fewer level crossings. Moreover, these disruptions are also observed
more often in the evening or at the weekend, outside the repair personnel’s con-
tractual working hours (WH = 0).

Another way to determine the BN structure is by learning it from data. A
number of algorithms have been developed for this purpose, when the variables
are all discrete. One is the “hill-climbing greedy search” in the space of all pos-
sible BN structures, a score-based algorithm which assigns a score to each pos-
sible BN structure based on the data. The algorithm chooses the structure which
maximizes the score. The score of a structure G is defined as the probability
of the structure given the data D, i.e. P(G|D) (Margaritis [2003]). Because our
model consists of six discrete and four continuous variables, we need to discret-
ize the continuous variables to be able to use this algorithm. Due to the limited
number of samples, the continuous variables are discretized into four discrete
states with equal proportions5. Performing the hill-climbing search results in
the BN structure presented in Figure 3.12. The structure is obtained using the
package bnlearn in R, developed by Scutari [2010].

Figure 3.12: The track circuit BN obtained from data.

Even with a few missing arcs, and others with changed direction, a resemb-
lance can be observed between the structures in Figures 3.10 and 3.12. Margar-

5This is done by computing the variable’s 25%, 50%, and 75% quantiles.
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itis [2003] studies the performance of the algorithm where it is not always able
to fully recover the directionality of the arcs. Moreover, the BN in Figure 3.12 is
obtained by discretizing the continuous variables. The missing arcs and reversed
direction may be artefacts of this discretization.

To measure which structure better represents the data, the log-likelihoods of
the two MVN copulas corresponding to the two structures are computed. Using
the AIC to compare the log-likelihoods, the AIC score of the first BN structure
is 12817.44, while that of the second is 13036.45. This indicates that the first
structure models the data better, so in this thesis we proceed with the first BN.
The Vuong and Clarkes tests confirm this as well. The test statistics Z and B are
5.5722 and 1198, which are outside the 95% confidence bounds of (1.96,1.96)
and (917,1003), respectively.

The parameters of the MVN copula with conditional independence implied
by the structure in 3.10 are presented in Table C.2 in Appendix C. Table 3.3
compares the fit of the saturated MVN copula model and the MVN copula with
conditional independence model to the data presented in section 2.3.

Table 3.3: Comparison of the multivariate normal copula models.

Model Saturated MVN copula MVN copula with CI
1. Log-likelihood −6368.1948 −6375.7219
2. Discrete fit 4.0699e − 06 2.2119e − 06
3. Continuous fit 0.8192 0.6682

The log-likelihood of the saturated MVN copula model is larger than the
MVN copula with conditional independence model. This is because the satur-
ated model involves more parameters. Notice that the two models are nested.
Performing the likelihood ratio test (LRT) yields a p-value of 0.2385, which in-
dicates that the MVN copula with conditional independence model is a better
one for our data. For this reason, it is chosen.

Moreover, neither model recovers the discrete part of the data, as indicated
by the low p-values from the KL test. However, the PIT test indicates that the
continuous part of the data is represented well by both models.

3.2.2 The Copula-Vine Model

Next we consider the copula-vine model. To construct such a model, a regu-
lar vine structure is needed. With ten variables, there are 487,049,291,366,400
possible regular vines. As in Chapter 2, we choose to keep the purely discrete
and purely continuous parts of the model as sub-vines of the full vine. The dis-
crete and continuous variables are ordered as: CS,CT ,WM,WT ,RH,OV and
WD,LC,LAT ,REP , respectively. To merge the two sub-vines, we choose to con-
struct a D-vine structure as presented in Figure 3.13. The choice is motivated by
the observed correlations between pairs of variables in the data and the graphical
simplicity of a D-vine model.
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Figure 3.13: The Copula-Vine TC Disruption Length Model.

Each edge in the vine structure is modelled with a bivariate normal copula.
Non-constant conditional copulas are considered in the pairs with conditioning
sets containing only discrete variables. Otherwise, constant conditional copulas
are fitted. The model’s parameters are estimated sequentially using Algorithm
2.1 presented in Chapter 2.

Table C.3 in Appendix C presents the estimated parameters. We observe
that many of these can be set to zero. On the other hand, the parameters of
some pairs conditioned on different values of conditioning variables can dif-
fer quite significantly as well. For instance, the parameters of the four normal
copulas fitted to the pair (CT ,RH |WM,WT ) are ρCT ,RH |WM=0,WT=0 = −0.2112,
ρCT ,RH |WM=0,WT=1 = 0, ρCT ,RH |WM=1,WT=0 = 0.4360 and ρCT ,RH |WM=1,WT=1 = 0.

Note that, because CS has six states, the copula-vine model is not guaranteed
to recover the discrete part of the data. However, the p-value of the KL test is
0.0548, which is still above the significance level of 5%. This indicates that the
discrete variables are still represented reasonably well by the copula-vine model.
The p-value of the KL test is 0.2863 when we only consider the five Bernoulli
variables.

Performing the PIT Test yields the smallest p-value of 0.8045, indicating a
good fit of the normal copula in the continuous part of the data.
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In this section, two TC disruption length models have been constructed. To
determine which we will use in practice, in the following section the two are
compared and validated.

3.3 Model Comparison and Validation
To compare the two models, we use the same statistics as in the experiments in
subsection 2.3.2.

The disruption-length model is going to be used to predict the length of the
latency and repair times. In this section, therefore, we only test the models’
performance in predicting these continuous variables, evaluating it at two stages
mimicking the model use (to be discussed in the next chapter). At the first stage,
the conditional distribution of the latency time is computed by conditioning the
model on the factors influencing latency time, i.e. CT ,WM,WT ,RH,OV ,WD,
and LC. At the second stage, the conditional distribution of the repair time is
computed by further conditioning the model on CS and LAT .

Table 3.4: Comparing the MVN Copula and the copula-vine disruption length models.

Model MVN copula Copula-vine
1. Log-likelihood −6375.7219 −5689.0867
2. Discrete fit 2.2119e − 06 0.0548
3. Continuous fit 0.6682 0.8045
Latency 4. Cond. dist. 0.7754 0.2745
time 5a. RMSE 29.1745 29.2014
prediction 5b. R2 0.0516 0.0498
Repair 6. Cond. dist. 0.3676 0.1978
time 7a. RMSE 87.2795 87.4103
prediction 7b. R2 0.0953 0.0926

Table 3.4 summarizes the result. It is shown that the copula-vine model fits
the data better, as shown by the larger log-likelihood. This observation is con-
firmed by the Vuong and Clarke’s tests as well. The test statistics Z and B of the
two tests are 12.6276 and 848, respectively, well outside their respective con-
fidence bounds of (1.96,1.96) and (917,1003). Moreover, the copula-vine model
represents the discrete part of the data well, while the MVN copula model does
not. However, the PIT test indicates that the continuous part of the model is
recovered in both cases.

In terms of predicting the latency and repair times, the performances of both
models are similar. They recover the conditional distributions of the latency
and repair times with RMSE and R2 values that are very much alike. Note,
however, that the coefficient of determination R2 values are not very high. This
illustrates the complex nature of railway disruption length in the Netherlands
and the limited availability of data. Additional influencing factors could be con-
sidered when new, better data is collected.
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While Table 3.4 presents the results of model validation with the training
set, we are also interested in observing the performance with a set of test data.
This is provided by the corpus of TC problems on the Dutch railway network
between 1 May 2014 and 31 October 2014. A total of 339 urgent incidents were
recorded within this six-month period. Just as in the training set, the causes of
approximately 30% of the TC problems in the test set are unknown. For the
validation, the unknown samples are discarded from the test set and so the test
is performed only on the 247 samples with known causes. Table 3.5 summarizes
the result.

Table 3.5: Comparing the MVN copula and the copula-vine disruption-length models with the
test set.

Model MVN copula Copula-vine
1. Log-likelihood −973.9301 −821.5576
2. Discrete fit 0.0025 0.2817
3. Continuous fit 0.6252 0.7678
Latency 4. Cond. dist. 0.2470 0.1875
time 5a. RMSE 19.8914 19.9238
prediction 5b. R2 0.0522 0.0491
Repair 6. Cond. dist. 0.2014 0.1978
time 7a. RMSE 100.1521 101.1752
prediction 7b. R2 0.1613 0.1441

As in the training set, the copula-vine model yields the higher log-likelihood
for the test set. The Vuong and Clarke’s tests also indicate that this model rep-
resents the test data better, as shown by their test statistics Z and B of 8.3665
and 75, respectively, which are well outside the respective confidence bounds of
(1.96,1.96) and (108,139). From the KL test, we conclude that the MVN cop-
ula model does not represent the discrete part of the data while the copula-vine
model does. However, both recover the continuous part of the data well.

The performance of the models in predicting latency and repair times is also
similar where the conditional distributions are recovered by both of them. How-
ever, the coefficient of determination values of the two models are not very high.

Another popular method which can be implemented to predict the latency
or repair time is the generalized linear model (GLM). This, however, assumes
that the conditional distributions of the latency and repair times come from dis-
tributions in the exponential family. We constructed the GLM with the gamma
link6 to compare its performance with the MVN copula and copula-vine mod-
els’. As in Chapter 2, we used the built-in function fitglm in MATLAB to obtain
the GLM. We considered up to two-way interactions, while parameters found to
be insignificant were removed from the model. Table 3.6 summarizes the result
for both the training and test set.

6The gamma link was chosen because the gamma distribution best resembles the latency and
repair times, even though the KS test rejects the null hypothesis that it does so.
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Table 3.6: Prediction performance of the GLM.

Dataset Training Test
Latency 4. Cond. dist. 10−100 10−15

time 5a. RMSE 29.3053 20.0036
prediction 5b. R2 0.0426 0.0414
Repair 6. Cond. dist. 10−34 10−7

time 7a. RMSE 86.8358 101.9422
prediction 7b. R2 0.1045 0.1311

Table 3.6 shows that, in terms of RMSE, the GLM produces results similar
to the MVN copula and copula-vine models. Unlike them, however, it does not
recover the conditional distributions of the latency and repair times.

In this section we have compared the MVN copula and copula-vine models
in terms of model fit and their performance in predicting the latency and re-
pair times for the TC disruptions. The copula-vine model represents the joint
data better, as indicated by the higher log-likelihood and recovery of both the
discrete and continuous parts of the model. In terms of predicting disruption
length, however, the performances of the two models are similar. A comparison
with the popular GLM has also been performed, from which we observe that the
RMSE and R2 of all models are similar. However, the GLM does not recover the
conditional distribution of the latency and repair times, while the MVN copula
and copula-vine models do.

In the next section we briefly present the disruption-length model construc-
tion for switch failures.

3.4 The Switch Disruption-Length Model

3.4.1 Influencing Factors
The factors influencing the latency and repair times of a switch disruption are,
in general, the same as those in the TC disruption-length model. There are two
exceptions, however: the variables temperature and cause. A TC is sensitive to
warm temperatures, but a switch is sensitive to cold temperatures. The pres-
ence of ice or snow can block the switching process (see subsection 1.1.1.2). The
variable “cause” needs to be defined using the possible switch problems listed in
subsection 1.1.1.2. In this subsection, we present the data analysis of these two
variables.

3.4.1.1 Cold Temperature

As in TC disruption, a threshold needs to be defined to distinguish when the
temperature is said to be “cold” enough. As before, we consider several different
thresholds. The latency times are divided into two groups, one corresponding



92 Chapter 3

to “not cold” (above the threshold, indicated as 0) and one to “cold” (indicated
as 1) for each threshold. The difference between the groups is measured by the
two-sample KS and CvM tests, with the result presented in Table 3.7.

Table 3.7: P -values of the KS and CvM tests for latency time given different low-temperature
thresholds.

Threshold KS CvM Threshold KS CvM
−6oC 8.5989e − 04 9.3402e − 03 0oC 1.3028e− 11 ≤ 10−5

−5oC 1.0469e − 05 ≤ 10−5 1oC 7.0447e − 10 ≤ 10−5

−4oC 1.3438e − 06 ≤ 10−5 2oC 1.4642e − 09 ≤ 10−5

−3oC 1.3265e − 07 ≤ 10−5 3oC 5.2788e − 10 ≤ 10−5

−2oC 8.7756e − 11 ≤ 10−5 4oC 3.3253e − 09 ≤ 10−5

−1oC 5.8676e − 10 ≤ 10−5 5oC 2.8887e − 10 ≤ 10−5

The lowest p-value is observed when the threshold is 0oC, so this is the one
chosen for the switch disruption-length model. Table 3.7 shows that cold tem-
peratures directly influence latency times.
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Figure 3.14: The empirical distribution of latency time with respect to the cold temperature.

Note that the binary variable “cold” directly affects the latency time. With
the threshold of 0oC, on average the latency time is longer by 23.1253 minutes
when the temperature is cold. This is reasonable, because road traffic is generally
slower when temperatures are very low. Figure 3.14 presents the two latency-
time distributions corresponding to the two states of cold temperature

3.4.1.2 Causes of Switch Failures

Based on the types of switch failure described in subsubsection 1.1.1.2, the causes
of switch disruptions are grouped as follows:

1. Group 1: failures in the controlling process (NIC-5 and NIC-TB-C).
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2. Group 2: point machine problems (NIC-2 and NIC-4).

3. Group 3: failures in the steering process (NIC-1 and NIC-TB-S).

4. Group 4: blockages (NIC-3A and NIC-3B).

5. Other.

The first four groups are ordered based on the length of repair time. Switch
failures in Group 1 are usually hard to detect and require the repair team to
replace broken instruments. When the point machine breaks down (Group 2),
it or some of its components need to be replaced. Failures in Group 3 usually
require the replacement of small components, e.g. relays, fuses or wiring, which
can be done quickly. Several problems in this group can also be solved by re-
adjusting the troubled component to the right setting. The problems in Group
4 are solved by removing the blockage from the affected switch. After this has
been done, however, the repair team must also test the switch to ensure that its
performance has not been compromised.

Table 3.8: Number of samples, proportion, mean and standard deviation of repair times in each
cause group before and after redistribution. The information after redistribution is presented
in brackets.

Cause group # samples Proportion (%) Mean Std. dev
Group 1 340 (375) 17.07 (15.10) 83.17 (89.01) 82.00 (87.82)
Group 2 363 (377) 18.22 (15.18) 57.30 (59.20) 61.73 (66.68)

Other 78 (78) 3.92 (3.14) 51.82 (51.82) 85.79 (85.79)
Group 3 486 (613) 24.40 (24.68) 50.53 (45.83) 57.57 (57.33)
Group 4 725 (1041) 24.70 (41.91) 48.59 (45.11) 53.99 (47.83)

All 1992 (2484) 100 (100) 56.68 (54.26) 64.37 (63.80)

The failures in the first four groups are related to the “not in control” (NIC)
situation, which is that most commonly observed for switch problems in our
data. That also contains 78 non-NIC switch incidents, though, two examples
being fractures of the frogs and the displacement of the switch’s substructure.

The cause of approximately 20% of switch incidents are not known due to un-
clear descriptions. As in the TC case, we redistribute these “unknowns” to one
of the five groups using the “Bayesian classifier” technique. Table 3.8 presents
some information of the repair times of each group before and after redistri-
bution. In general, the “unknown” incidents tend to have shorter repair times.
Consequently, most are redistributed into Group 4.

Figure 3.15 shows the empirical distributions of repair times for the five
groups. The differences between the groups is less evident than with TC disrup-
tions, especially for those with shorter repair times. This indicates the complex-
ity of switch disruptions and the need to identify more predictive influencing
factors in respect of repair time in order to to construct a more robust model.
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Figure 3.15: Empirical distributions of the repair times of the five groups.

Figure 3.16: The Switch BN.

3.4.2 The Model

For the TC disruptions, we have learned that the copula-vine model fits the joint
distribution of the ten variables better than the MVN copula model. Nonethe-
less, both recover the conditional distributions of the latency and repair times
with similar performance. The main purpose of the disruption-length model is
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to produce a disruption-length prediction given the information known about
the other variables. From this point of view, the MVN copula and the copula-
vine models are equally attractive. In this thesis, we choose to construct the final
switch disruption-length model with the MVN copula so that we can implement
it in UNINET, since this software’s fast computational time makes its use more
practical.

To construct a parsimonious MVN copula model, some conditional inde-
pendencies represented as a BN are included. Figure 3.16 presents the chosen
BN structure of the switch disruption-length model.

In general, the BN structure is similar to the TC BN structure in Figure 3.10.
But there are a few differences. For instance, the variable “cold”, denoted as
CD, influences the latency time (LAT ) and cause (CS). From the data analysis
in subsection 3.4.1.1, it is clear that LAT is directly affected by CD because road
traffic is generally slower when the temperature is cold. CD also affects CS be-
cause sub-zero temperatures increase the chance of ice or snow formation, which
might block the switch.

As in the TC MVN copula model, the model’s parameters are computed using
the maximum-likelihood approach. Table C.4 in Appendix C presents the result.

The test data for the switch disruption-length model comes from the SAP
database and covers the period between 1 October 2014 and 31 March 2015.
Within those six months, 626 urgent switch incidents were recorded. The causes
of 415 of these are known. Our test data consists of these 415 incidents.

Table 3.9: Performance of the MVN copula model for the training and test sets of switch dis-
ruptions.

Dataset Training Test
1. Log-likelihood −9819.5153 −1654.8125
2. Discrete fit 3.8013e − 06 0.0011
3. Continuous fit 0.4768 0.3215
Latency 4. Cond. dist. 0.1242 0.1726
time 5a. RMSE 52.6300 54.0060
prediction 5b. R2 0.0401 0.0501
Repair 6. Cond. dist. 0.2735 0.2121
time 7a. RMSE 62.0746 83.8952
prediction 7b. R2 0.0534 0.0632

Table 3.9 presents the performance of the model for the training and test sets.
We can see that the MVN copula model recovers the continuous part of the data,
but a misfit occurs in the discrete part. However, the model does recover the
conditional distribution of the latency and repair times for both the training and
the test set. However, the coefficient of determination is lower for the switch
model than for the TC model. This indicates that better information regarding
switch incidents is needed in order to construct a more robust disruption-length
prediction model.
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3.5 Chapter Summary
After analysing the SAP database, eight influencing factors are included in the
railway disruption-length model, along with the latency and repair times. Six of
these variables are discrete, with five of them Bernoulli, while four are continu-
ous. The railway disruption-length model is the joint distribution between these
ten variables. We consider two strategies to construct the joint distribution: (i)
using the MVN copula; and (ii) using the copula-vine approach.

The copula-vine model fits the data better, as indicated by the higher log-
likelihood. Moreover, it recovers the discrete part of the data while the MVN
copula model does not. In terms of prediction, however, the performances of
both models appear to be similar where the conditional distributions of the
latency and repair times are recovered. From this point of view, the two mod-
els are equally attractive. With that in mind, we choose to use the MVN copula
option as the disruption-length model since it can be implemented in UNINET,
which has very fast computational time. This makes the model more practical
from the application point of view.

Unfortunately, the coefficient of determination R2 is low in all models. This
indicates the complexity of railway disruption situations in the Netherlands
where a lot of parties are involved. An additional cause is the lack of available
data. This conveys a strong message to ProRail about the necessity and urgency
of collecting better information. With that can the models be improved. Recom-
mendations about what improved information and data to collect are given in
Chapter 5.

In the next chapter, we demonstrate the use of the disruption-length model
in practice in collaboration with the Department of Transport and Planning at
Delft University of Technology. The disruption-length model is applied together
with the train short-turning model and the passenger-flow model to a disruption
to train traffic in the vicinity of Houten, the Netherlands. The results of this
collaboration are presented.
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The Model in Practice1

The outputs of the disruption-length model constructed in Chapter 3 are the
conditional distributions of the latency and repair times, from which the disrupt-
ion-length predictions are made. The conditional distributions are obtained by
conditioning the model on the observed values of the influencing factors. We
start this chapter by showing how the conditionalization can be performed and
how it can be used in the disruption-response process in the Netherlands.

The prediction of disruption length is used to optimize train traffic during
the disruption. However, due to the complex nature of railway disruption in the
Netherlands, it is difficult to create an optimization algorithm with stochastic
inputs. This means that one value of disruption-length prediction needs to be
chosen from the conditional distributions.

In practice, either the mean or median of the conditional distributions is gen-
erally chosen as the prediction because these, respectively, minimize the RMSE
and the absolute error of prediction. In our case, however, the chosen prediction
affects the train traffic and the passengers − the end customers of ProRail. A pre-
diction that is optimistic (too short) might have a different impact on customers
than one which is pessimistic (too long). In applying the model, then, it is im-
portant to study the impact of different choices of prediction on train traffic and
passengers.

This chapter is concerned with this issue. The disruption-length model is
used in a collaboration with the train short-turning model and the passenger-
flow model developed by two PhD candidates in the Department of Transport
and Planning at Delft University of Technology. In the collaboration, an ac-
tual disruption to train traffic in the vicinity of Houten, the Netherlands is con-
sidered.

1This chapter is based on Ghaemi et al. [2016b].
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4.1 Predicting Railway Disruption Lengths with the Models
In this section, we show how the MVN copula model can be used in real-time
practice in the disruption-response procedure in the Netherlands.

Consider a TC incident. We have the unconditional model which covers all
historical TC disruptions in the database. The unconditional TC BN model is
shown in Figure 4.1. This is the same BN as presented in Figure 3.10, but now
showing the marginal distributions of the variables, along with their correspond-
ing means and standard deviations at the bottom of the nodes. Note that an el-
eventh node, disruption length, has been added to the BN. This is a functional
node that is defined as the sum of latency and repair times.

Figure 4.1: The unconditional TC BN.

At this point we can already see a decision-making problem that arises in
providing the prediction: which value of the disruption-length distribution should
we use? One option is to take its mean which, in this case, is 104 minutes. This is
essentially what is done in current practice when defining the disruption-length
prediction “P1”. Because the distribution is left-skewed, the mean is greater than
its 50% quantile (the median). In fact, the mean of 104 minutes corresponds to
the 67% quantile of the distribution. Another option is to choose the median, 72
minutes in this case, as the prediction.

When a disruption actually starts, we know, amongst other things, where and
when it is happening. The unconditional BN in Figure 4.1 can be conditionalized
on this information to obtain a “P1” prediction for the incident. Once the repair
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team arrives at the disruption site and the cause is known, the model can be
further conditionalized to obtain the “P2” prediction.

To illustrate how to conditionalize the model, let us consider a real TC in-
cident in the Netherlands. This occurred in the vicinity of Houten, a town to
the south-east of Utrecht, on Thursday, 10 July 2014, starting at 14:22. Its basic
characteristics were as follows.

1. Contract type: OPC.

2. Working station (maintenance base) distance: 7.1620 kilometres.

3. Level crossing distance: 872.372 metres.

4. Working (contractual) time: yes.

5. Warm: yes.

6. Rush hour: no.

7. Presence of an overlapping disruption: no.

8. Cause: a setting problem caused by heat.

The real observed latency and repair time were 70 and 73 minutes, respectively.

Figure 4.2: The TC BN conditioned on the latency time’s influencing factors.
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The actual length of the disruption, therefore, was 70 + 73 = 143 minutes.
This corresponds to the 78.75% quantile of the disruption-length distribution in
the BN in Figure 4.1. In this case, choosing either the mean or the median of the
distribution as the prediction underestimates the actual disruption length.

When the disruption starts at 14:22, only information about the factors influ-
encing the latency time is known. The BN is updated by conditioning the model
on this information. This results in the conditioned BN presented in Figure 4.2.
It can be seen that the model adjusts itself to the situation in hand. The disrup-
tion length is predicted to be longer than in the unconditional case, which has a
mean of 118 minutes and a median of 81 minutes. However, the latency time is
predicted to be shorter than average. The mean of latency time decreases from
43.2 to 39.5 minutes, while the median falls from 40 to 38 minutes. Because the
contract type is OPC with the nearest level crossing relatively far away (a com-
mon characteristic of the Randstad region), the probability that the disruption
is caused by coins decreases from 23% to 16%. As a result, the predicted mean
repair time increases from 61.3 to 78.3 minutes (and the median increases from
26 to 39 minutes). The predictions obtained with this conditional BN are called
the “P1” predictions.

Figure 4.3: The TC BN conditioned on all influencing factors.

The repair team arrives at the site at 15:32, 70 minutes after the disruption
starts. After investigating the incident, the problem with setting (Cause Group
4) is found. The model is further conditioned on the new information and the BN
is updated, as presented in Figure 4.3. The model again adjusts itself to the situ-
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ation. The disruption-length prediction is updated to 119 minutes (mean) and
95 minutes (median). The mean repair time is also updated, to 48.8 minutes,
and the median to 25 minutes. The predictions made with this BN are called the
“P2” predictions.

In practice, conditionalization on the variable “cause” can only be performed
after the repair team has diagnosed the problem and found its cause. The time
needed to do this is called the “diagnosis time”. However, the actual diagnosis
time is not available in the dataset; it is included under the “repair time”. This
needs to be taken into account in practice.

In the disruption response process, the repair team is given 15 minutes to
diagnose the problem after it arrives at the site (see subsection 1.1.2). For this
reason, in this chapter we assume that diagnosis always takes 15 minutes and
that the cause of the problem is always known after this time. In other words,
the conditional BN as in Figure 4.3 is obtained 15 minutes after the repair team’s
actual arrival time. Consequently, the disruption-length prediction P 2 at this
stage is taken to be:

P 2 = lat + max(15, ˆrep)

where lat corresponds to the actual latency time and ˆrep represents the chosen
repair time length prediction from the conditional distribution of repair time.

To investigate the effect of the uncertainty in disruption length on train traffic
and passengers, the disruption-length model is combined with the short-turning
model and the passenger-flow model. These are developed by two PhD candi-
dates in the Department of Transport and Planning of Delft University of Tech-
nology. The two models are discussed briefly in the next section.

4.2 The Short-Turning and Passenger-Flow Models

4.2.1 The Short-Turning Model
In railway traffic management, a train is “short-turned” when it does not oper-
ate along the full length of its assigned route, but instead reverses at a terminus
(usually a station) short of its intended destination. Ghaemi et al. [2016a] de-
velop the short-turning model to reduce train-delay propagation in the event of
a disruption that completely blocks a section of railway. The short-turned trains
in the model replace the planned services in the opposite direction, which can no
longer be operated by the trains originally assigned to them due to the disrup-
tion. The model considers the possibilities for short-turning trains at a couple of
stations before the disrupted section, and for cancelling some services.

Figure 4.4 presents the time-distance diagram illustrating the possible short-
turning patterns at stations a and a′ due to a complete blockage between stations
a and b. Each service is denoted as vil,n, where i indicates the order of service
on the operational line l and n refers to the unique train number. In Figure 4.4,
the red arcs represent the short-turning possibilities of the train vil,n. This train
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Figure 4.4: Several possible short-turning patterns at stations a′ and a. Source: Ghaemi et al.
[2016a].

can run to station a as service vi+1
l,n then short-turn there and continue as either

service vj−1
l,m (with a delay), vj−1

l,o , or vj−1
l,r . Alternatively, it can short-turn at station

a′ and continue as service vjl,m, vjl,o, or vjl,r . In this case, however, service vi+1
l,n

between a′ and a and its short-turning patterns at station a need to be cancelled.
The objective function OF of the short-turning model is as follows:

OF =
∑
vil,n∈Γ

(wc
vil,n
· cvil,n +wd

d

vil,n
· dd
vil,n

+wd
a

vil,n
· da
vil,n

). (4.1)

In (4.1), Γ is the set of all scheduled services, wc
vil,n

, wd
vil,n

, and wa
vil,n

denote the

penalties for the cancellation, departure delay, and arrival delay of train vil,n,

respectively, cvil,n
is an indicator whether train vil,n is cancelled (value 1) or not

(value 0), dd
vil,n

corresponds to the departure delay of service vil,n (in seconds), and

da
vil,n

corresponds to the arrival delay of service vil,n (in seconds). Ghaemi et al.

[2016a] choose a cancellation penalty of wc
vil,n

= 1000 (in seconds) which corres-

ponds to the frequency of the train service between Houten and Geldermalsen
(16 minutes or 960 seconds)2. With every cancelled train, a passenger needs to
wait for the next service and thus incurs a delay of 16 minutes. The departure
and arrival delay penalty of wd

vil,n
= wa

vil,n
= 1 has been chosen because the delay

time is what the passenger experiences. In this thesis, the same penalties are
used.

2This is the area in the Netherlands which we consider in our experiment. In other locations, the
cancellation penalty might be different.
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The objective function OF represents the total (weighted) train delay. The
first term in (4.1) corresponds to the delay caused by cancelling a train, while
the second and third terms are the departure and arrival delay, respectively. The
short-turning model considers all possible short-turning patterns and chooses
the one which minimizesOF. This pattern corresponds to a “disruption timetable”
containing the departure and arrival time of each train service. Interested read-
ers are referred to Ghaemi et al. [2016a] for more details about this model.

4.2.2 The Passenger-Flow Model
The passenger traffic between two stations, designated as the origin-destination
(OD) pair, is determined using the passenger-flow model. For the passengers ar-
riving at an origin station at any given minute with plans to travel to a particular
destination station, the model considers a number of route alternatives they can
take based on the current timetable (Ghaemi et al. [2016b]). For each passen-
ger, each alternative i has its own “cost”. This is the generalized travel time, Ti ,
defined as follows:

Ti = βw · tw +
Ntr+1∑
a=1

βin · tain +
Ntr∑
b=1

βtr · tbtr + βntr ·Ntr + βre ·Nre. (4.2)

In equation (4.2), tw, tin, and ttr are the waiting time, in-vehicle time, and trans-
fer time (all in minutes) with weights βw, βin, and βtr , respectively, Ntr denotes
the number of transfers with transfer penalty βntr (in minutes), and Nre rep-
resents the number of reroutings3 with penalty βre (in minutes). In this thesis,
the weights are βw = 2, βin = 1, and βtr = 2, while the penalties are βntr = 5
(in minutes) and βre = 10 (in minutes). These values are based on the works of
Wardman [2004], Balcombe et al. [2004], and Ghaemi et al. [2016b]. This means
that the passengers are assumed to prefer travelling in a train to waiting or trans-
ferring. Moreover, they endure more discomfort on a route with a lot of transfers
and when there are many timetable changes.

The generalized travel time in equation (4.2) represents the total (weighted)
travel time of a passenger travelling between the two OD stations with route
alternative i. The first and third terms in (4.2) are the weighted waiting and
transfer times, respectively. The second term corresponds to the total weighted
time the passenger spends in the trains. The fourth and fifth terms represent the
“inconvenience”, measured in minutes, caused by the number of transfers and
reroutings, respectively.

In the model, not all passengers choose the alternative with the shortest gen-
eralized travel time. Following the work of Cats et al. [2016], the proportion of
passengers choosing alternative i, denoted as Pi , is determined using the logit
model as:

Pi =
exp(−Ti)∑
i exp(−Ti)

. (4.3)

3The number of times passengers need to change their plans due to a timetable change.
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This means that the alternative with the shortest generalized travel time receives
the highest proportion of passengers.

The model follows passengers until they arrive at their destination. While
travelling, they might need to adjust their route due to one or more changes in
the timetable. Every time this happens, the model recomputes the generalized
travel time based on the new timetable and the passenger flow is adjusted ac-
cordingly.

For more details about the passenger-flow model, interested readers are re-
ferred to Ghaemi et al. [2016b].

4.2.3 Interaction Between the Three Models

Figure 4.5: Time diagram of a railway disruption.

The three models interact in a dynamic fashion, i.e. interaction occurs every
time new information becomes available. This can come in the form of a value
of an observed influencing factor in the disruption-length model, or we may
learn that the previous disruption-length prediction was too short. The crosses
in the time diagram in Figure 4.5 illustrate the points at which interaction occurs
during the disruption period.

When information about the influencing factors becomes available, the disrup-
tion-length model is conditionalized as illustrated in Section 4.1. In Figure 4.5,
this occurs at the first and fourth crosses in the diagram.

When the prediction is too short, the disruption is still unresolved even after
its predicted end time. This situation occurs when the prediction is too “optim-
istic”, i.e. the chosen quantile of the conditional distribution of disruption length
is too low for the case. If this happens, the prediction is updated by computing
a new distribution of disruption length conditional on the information that the
disruption is longer than the previous prediction. This is done by sampling the
original conditional distribution on the quantiles higher than the prediction. In
this thesis, these “revised” predictions are denoted alphabetically in chronolo-
gical order. For instance, a “P1” prediction is updated to “P1a”, “P1b”, “P1c”,
and so on.

Figure 4.6 illustrates the interaction. Every time new information becomes
available, a new disruption-length prediction is made. With each new pre-
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Figure 4.6: Flow of interactions between the three models every time new information is avail-
able.

diction, the short-turning model recalculates the disrupted timetable and the
passenger-flow model adjusts passenger movements accordingly.

4.3 The Experiment
This section describes an experiment set up to observe a disruption on the rail-
way in the vicinity of Houten, the Netherlands. The disruption-length model,
the short-turning model and the passenger flow model are combined to manage
train traffic and passenger flows during this disruption. After first describing
how the experiment is conducted, we then present the results of a number of
case studies considered as part of it.

4.3.1 Experimental Setup
In the experiment, a complete blockage occurs on the stretch of railway between
Utrecht and Houten. Figure 4.7 presents a map of the disruption site. The block-
age is caused by a TC disruption.

Different scenarios for disruption-length predictions are considered, corres-
ponding to different quantiles of the conditional distribution. In each case when
a prediction is updated, the new version has the value of the new conditional
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Figure 4.7: The disruption site. Map source: http://www.openstreetmap.org/.

distribution corresponding to the same quantile as the previous prediction. For
instance, when a prediction corresponding to the quantile 50 (median) is up-
dated, the new prediction is also taken to be the median of the updated condi-
tional distribution. In principle, this does not need to be the case, but this choice
is made to narrow down the number of possible combinations of predictions.

Note that a “P1” prediction is valid only until new information regarding
the cause of the incident becomes available, at which point an updated “P2”
prediction can be made. This means that the “P1” predictions and the resulting
disruption timetables are used only until 15 minutes, at most, after the end of
the true latency time, as discussed in section 4.1.

UtHtnGdm

Tl

S_h 16000
16000 & 6000

6000
16000 & 6000

1600

6000

Figure 4.8: Railway lines affected by the disruption. Source: Ghaemi et al. [2016a].

The “P2” predictions are updated until the actual disruption ends. When this
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happens, we do not compute a new timetable and the railway section remains
blocked until the predicted time of the end of the disruption. This choice is
made to penalize a prediction that is too “pessimistic”, i.e. one corresponding to
a quantile of the conditional distribution of disruption length that is “too high”.

For each predicted disruption length, the short-turning model computes the
disruption timetable. This timetable also considers the recovery time needed
after the predicted end of the disruption. During this period, the blocked sec-
tion has been reopened for train operation but services have yet to return to
normal. It takes a certain amount of time for traffic to recover fully, with all
trains following the original timetable. Two railway lines are considered by the
model: line 16000 between Utrecht (Ut) and ’s-Hertogenbosch (S h) and line
6000 between Ut and Tiel (Tl)4. Both pass Houten (Htn) and Geldermalsen
(Gdm) stations, before splitting just beyond Gdm, as illustrated in Figure 4.8.
For each case study presented in the following subsection, the short-turning
model needs about twenty minutes of computation time to produce the disrup-
tion timetables.

Figure 4.9: The loop considered by the passenger-flow model in the experiment. Ilustration is
adapted from the NS main train service map. Source: ProRail.

With the disruption timetables, the passenger-flow model computes the pas-
senger traffic. To reduce computational cost and simplify the problem, the model
considers only those passengers with OD pairs included in the loop shown in
Figure 4.9. Data about the number of daily passengers between all of these OD
pairs is obtained from the Netherlands Railways (Nederlandse Spoorwegen, NS).

4Both lines are operated using Sprinter (local) trains.
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Figure 4.10: The distribution of passengers throughout the day. Source: NS.

The number of passengers varies throughout the day, following the distri-
bution presented in Figure 4.10 − also obtained from NS. As we can see in the
graph, no passengers travel between 01:00 and 04:00 and there are two peaks
during the day: the morning and late afternoon rush hours. The passenger flows
at all stations are assumed to follow this distribution.

Passengers travelling between Utrecht Centraal and Houten stations have
two alternatives: to detour via Arnhem and Nijmegen or to take the public bus
between the two stations. The travel time by bus between Utrecht Centraal and
Houten is about 35 minutes, while a regular train service would have taken only
9 minutes. On the other hand, the detour via Arnhem and Nijmegen might not
be very attractive due to the tremendous additional distance one needs to cover.
For a passenger travelling to Houten from Utrecht, this detour takes almost 2
hours.

For each OD pair at every minute, the passenger-flow model computes the
proportion of passengers taking each route alternative. It is possible for the
timetable to be changed before some or all of the passengers arrive at their des-
tination. In this case, the model recomputes the alternative routes and the pro-
portions of passengers on these routes based on their current locations. The
computational time needed by the passenger-flow model is very long: for the
scenarios considered in the case studies presented in the next subsection, it takes
about four hours to compute.

To compare the impact on passengers of different choices of prediction, in
all scenarios the passenger-flow model is run for a fixed six hours period. This
means that the same passengers are considered in every scenario. However, their
travel patterns are affected by the different predictions and timetables. The im-
pact on passengers in each scenario is measured using the following statistics:

1. The total number of passengers travelling up until the last P2 prediction.

2. The total generalized travel time corresponding to equation (4.2) of all pas-
sengers for all OD pairs considered in the experiment. This is the normal
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situation with no disruption and the hypothetical (ideal) situation where
the true disruption length is known from the beginning.

3. The total number of reroutings and transfers.

4.3.2 Case Studies
In this thesis, we present the result obtained from four case studies based on real
TC disruptions observed between Utrecht and Houten.

4.3.2.1 Case Study 1

The first case study has been illustrated in Section 4.1. The disruption was due
to heat causing the TC to be in the wrong setting. It occurred at 14:22 on a
Thursday afternoon. In total, it took 143 minutes to resolve and so finished at
16:45.

Table 4.1 presents the “P1” predictions made from the conditional BN in
Figure 4.2. The predictions are presented in terms of their length (in minutes)
and the time the disruption is predicted to end.

Table 4.1: P1 predictions for Case Study 1.

Qtl P1 P1a P1b
(%) Len Time Len Time Len Time
25 49 15:11 72 15:34 97 15:59
50 81 15:43 144 16:46
75 143 16:45
85 205 17:47
90 254 18:36

Mean 118 16:20

The repair team arrives at the site at 15:32. After 15 minutes of diagnosis
time, the cause of the TC failure is found and at 15:47 the “P1” predictions are
updated to “P2” predictions with the conditional BN in Figure 4.3. These “P2”
predictions are presented in Table 4.2.

Table 4.2: P2 predictions for Case Study 1.

Qtl P2 P2a P2b P2c P2d
(%) Len Time Len Time Len Time Len Time Len Time
25 85 15:47 102 16:04 118 16:20 135 16:37 150 16:52
50 95 15:57 134 16:36 179 17:21
75 133 16:35 240 18:22
85 160 17:02
90 194 17:36

Mean 119 16:21 188 17:30

The choice of the lower quantile as the prediction is undesirable because it
is likely to be too optimistic, resulting in numerous revised predictions. This
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would result in too many revised timetables and so added inconvenience for pas-
sengers, who might be forced to adjust their travel plans repeatedly. Moreover,
issuing a lot of revised predictions is impractical from the logistical point of
view. In practice, every time a new prediction is made, the OCCR must also
revise not only the pattern of train traffic but also rolling stock and crew assign-
ments. For this reason, the scenarios with lower quantile predictions are not
going to be considered at length here. In this experiment we consider only the
25% quantile and take it as representing such scenarios. Note that, in this case,
in all eight predictions are generated during the period of disruption.

The short-turning model produces disruption timetables based on the predic-
tions in Tables 4.1 and 4.2. Each timetable is used for as long as the underlying
prediction remain “valid”, i.e. it has not been changed. For instance, the disrup-
tion timetable generated from prediction P1a of the 50% quantile is followed for
only four minutes, between 15:43 and 15:47. At 15:47 the prediction is updated
to P2 and a new disruption timetable is generated.

Table 4.3 summarizes the outcome of the short-turning model for each quantile.
It contains the number of cancelled services (#C), the number of delayed services
(#D), the length of delay in minutes (del) and the number of short-turned ser-
vices (#ST ) of the last prediction for each quantile.

Table 4.3: Summary of the outcome of the short-turning model for Case Study 1.

Qtl (%) #C #D del #ST
25 40 0 0 10
50 48 0 0 12
75 64 0 0 16
85 44 0 0 11
90 52 0 0 13

Mean 52 0 0 13

Table 4.3 shows that the longer the line closure lasts, the more services are
affected. The outcomes for the 90% quantile and the mean scenario are the same.
This is because the final predictions of the two scenarios are similar, with a dif-
ference of only 6 minutes. Because a train runs in the corridor once in every 16
minutes, that small difference in the final prediction does not affect the outcome
of the short-turning model. However, the short-turning model needs to be run
twice in the 90% quantile scenario and three times in the mean scenario.

In this case study, the passenger-flow model is run for a fixed period of six
hours for all scenarios. Within this period, 22,163 passengers travel in the af-
fected area. The timetables generated by the short-turning model are used to
model those travelling between every OD pair. The impact of the disruption and
the different choices of disruption-length prediction on passenger travel times
are measured, with the result presented in Table 4.4. The final row of figures in
this table shows the benchmark case with the true disruption length. In this the-
oretical situation, the true end time of the disruption is already known when the
disruption starts at 14:225. Each scenario is compared with this case to measure

5This is the best possible situation but, of course, is not realistic in practice.
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Table 4.4: Impact on passengers of different predictions in Case Study 1.

Qtl Excess # Affected Inc. orig Inc. bench # Rerouting
# Transfer

(%) (minutes) Passengers (%) (%) 1 2
25 7 8948 17.7124 0.2640 595 4 3597
50 36 11469 20.5378 2.6705 466 1 4015
75 97 16560 24.3356 5.9054 247 0 4671
85 17 9791 17.5629 0.1366 5 0 3775
90 51 12854 20.1678 2.3554 0 0 4126

Mean 45 12299 20.3352 2.4980 282 0 4136
Real 0 8374 17.4026 0 0 0 3773

the increase in the impact of the prediction on passengers with respect to the
ideal situation.

The second column of Table 4.4 shows the difference (in minutes) between
the true end time of the disruption and the latest P2 prediction as to when the
blocked section of line can reopen for train operation. The third column presents
the total number of passengers travelling while the section is blocked. The fourth
and fifth columns show the increases (in %) in total generalized travel times
with respect to the normal situation without disruption and the benchmark, re-
spectively. The sixth and seventh columns show the total number of passengers
forced to reroute once or twice in each scenario. The total number of transfers
performed by all passengers is given in the last column.

The benchmark case represents the best possible situation the one in which
the lowest number of passengers are affected. Unsurprisingly, in this case the
increase in generalized travel time with respect to the normal (no-disruption)
situation is also the lowest. Moreover, no passengers have to reroute.

The number of transfers is lower in the 25%-quantile scenario than in the
ideal one. However, the increase in generalized travel time is higher in the
former than in the latter. This indicates that more passengers in the 25%-quantile
scenario than in the ideal case choose the alternative of the slower route with the
smallest number of transfers. This illustrates the complex nature of the passen-
ger flow in the model.

The greater the difference between the true end time of disruption and the
latest P2 prediction, the more passengers are affected. However, this does not al-
ways translate into a higher total generalized travel time. Note that the increase
in generalized travel time is higher in the 25%-quantile scenario than in the
85%-quantile scenario, even though the difference between the prediction and
the actual end time is only 7 minutes in the former and 17 minutes in the latter.
The eight predictions in the 25%-quantile scenario cause many passengers to
reroute due to the frequent updates to the disruption timetable. Consequently,
its total generalized travel time rises substantially. In the 85%-quantile scenario,
far fewer passengers need to reroute due to a pessimistic prediction.

Note that the P2 predicted end time of the disruption of the 75%-quantile
scenario (see Table 4.2) is 10 minutes short of the actual end time. Because of
this slightly overoptimistic prediction, the predicted end time is updated to P2a.
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This new prediction, however, is far too pessimistic and disrupts the late after-
noon rush hour (Figure 4.10). Consequently, this scenario is the worst in terms
of the number of passengers affected and the increase in generalized travel time.

4.3.2.2 Case Study 1A

In this case study, we are interested in how the disruption’s time of occurrence
affects the passengers for each choice of predictions. To observe this, we consider
an artificial disruption where the same disruption as in Case Study 1 is assumed
to occur in the evening of the same day at 19:24. The realizations of the latency
and repair time are taken from the values of the computed conditional distribu-
tions of the two times, which correspond to the same quantiles as the realizations
in Case Study 1. In this case, the latency and repair times are 89 and 73 minutes,
respectively. The total disruption length is, therefore, 162 minutes and it ends
at 22:06. Note that this artificial disruption occurs not during the repair team’s
contractual working hours so the latency time is longer than in Case Study 1.

The P1 predictions of this case study are presented in Table 4.5.

Table 4.5: P1 predictions for Case Study 1A.

Qtl P1 P1a P1b P1c
(%) Len Time Len Time Len Time Len Time
25 54 20:18 77 20:41 102 21:06 127 21:31
50 86 20:50 149 21:53
75 149 21:53
85 209 22:53
90 258 23:42

Mean 122 21:26

The P2 predictions are made at 21:08, 15 minutes after the repair team’s ac-
tual arrival time at 20:53. These predictions are presented in Table 4.6.

Table 4.6: P2 predictions for Case Study 1A.

Qtl P2 P2a P2b P2c P2d
(%) Len Time Len Time Len Time Len Time Len Time
25 104 21:08 121 21:25 137 21:41 154 21:58 169 22:13
50 114 21:18 153 21:57 198 22:42
75 152 21:56 259 23:43
85 179 22:23
90 213 22:57

Mean 138 21:42 207 22:51

As before, the predictions are used by the short-turning model to produce the
disruption timetables. Table 4.7 summarizes the outcome of the short-turning
model for each scenario. The short-turning model produces different outcomes
than in Case Study 1. This is due to the different timetable between the afternoon
and evening time.
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Table 4.7: Summary of the outcome of the short-turning model for Case Study 1A.

Qtl (%) #C #D del #ST
25 47 2 10 10
50 55 2 8 12
75 73 2 10 15
85 47 4 38 10
90 55 12 69 12

Mean 55 5 31 12

The disruption timetables are used by the passenger-flow model to compute
the flow of the passengers. In this case, 7,102 passengers travel in the region.
Because the disruption occurs in the evening, the number of passengers is lower
than in the previous case study.

Table 4.8: Impact on passengers of different predictions in Case Study 1A.

Qtl Excess # Affected Inc. orig Inc. bench # Rerouting
# Transfer

(%) (minutes) Passengers (%) (%) 1 2
25 7 4966 32.6834 7.4781 438 195 1353
50 36 5563 31.0920 6.1890 479 8 1430
75 97 6563 35.1252 9.4560 83 0 1512
85 17 5180 29.4636 4.8699 52 0 1379
90 51 5843 32.1586 7.0530 0 0 1461

Mean 45 5733 27.1643 3.0074 91 0 1306
Real 0 4812 23.4516 0 0 0 1291

Table 4.8 summarizes the impact of the disruption and the different choices
of disruption-length prediction on the passengers for each scenario. In compar-
ison to Case Study 1, the increase in the total generalized travel time with respect
to the normal situation is higher. This is because the disruption is longer in this
case study due to the longer latency time.

The benchmark case still represents the best situation where the least number
of passengers are affected. The total generalized travel time is the lowest in this
scenario where no passengers are rerouted.

The longer the latest P2 prediction, the more passengers that are affected
by the disruption. For this reason, the largest total generalized travel time is
observed in the 75%-quantile scenario. Note that, as in Case Study 1, the P2 pre-
diction of this scenario is 10 minutes short of the actual end time. Consequently,
the prediction is updated to P2a that is far too pessimistic.

In the 25% quantile scenario, 1487 reroutings are performed due to the nine
predictions that are produced. With 438 and 195 passengers having to reroute
once and twice, respectively, a considerable amount of passengers have to change
their plans more than twice. As a result, the total generalized travel time of this
scenario is the second highest due to the heavy penalty from the large number
of reroutings.
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4.3.2.3 Case Study 2

In this case study, we consider another real TC disruption at the same location
which occurred on Saturday, 18 October 2014. It started at 19:24 and had the
following information:

1. Contract type: OPC.

2. Working station (maintenance base) distance: 7.1620 kilometres.

3. Level crossing distance: 872.372 metres.

4. Working (contractual) time: no.

5. Warm: no.

6. Rush hour: no.

7. Presence of an overlapping disruption: no.

8. Cause: a cable problem.

The observed latency and repair time were 47 and 88 minutes, respectively. The
total disruption length was, therefore, 135 minutes and it ended at 21:39.

The P1 predictions for this case study are presented in Table 4.9.

Table 4.9: P1 predictions for Case Study 2.

Qtl P1 P1a
(%) Len Time Len Time
25 54 20:18 77 20:41
50 86 20:50
75 149 21:53
85 209 22:53
90 258 23:42

Mean 122 21:26

Fifteen minutes after the repair team’s actual arrival time at 20:11, the P2
predictions are made. Table 4.10 presents these predictions.

Table 4.10: P2 predictions for Case Study 2.

Qtl P2 P2a P2b P2c
(%) Len Time Len Time Len Time Len Time
25 67 20:31 94 20:58 120 21:24 151 21:55
50 104 21:08 173 22:17
75 173 22:17
85 237 23:21
90 280 00:04

Mean 142 21:46
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Table 4.11: Summary of the outcome of the short-turning model for Case Study 2.

Qtl (%) #C #D del #ST
25 43 2 6 9
50 47 2 18 10
75 47 2 18 10
85 65 7 102 13
90 77 8 79 16

Mean 43 0 0 9

Table 4.12: Impact on passengers of different predictions in Case Study 2.

Qtl Excess # Affected Inc. orig Inc. bench # Rerouting
# Transfer

(%) (minutes) Passengers (%) (%) 1 2
25 16 4562 14.4391 0.6413 426 32 1219
50 38 5052 17.1197 2.9987 252 32 1506
75 38 5052 16.1172 2.1171 0 0 1437
85 102 6246 19.3051 4.9206 0 0 1558
90 145 6792 21.4386 6.7969 0 0 1693

Mean 7 4351 14.8926 1.0401 2 0 1385
Real 0 4182 13.7099 0 0 0 1309

Table 4.11 presents the outcome of the short-turning model for each quantile
for this case study. The impact on the passengers is summarized in Table 4.12.

The benchmark case represents the best possible situation. With the least
number of affected passengers with no need for rerouting, the total generalized
travel time is the lowest of all.

Note that the last predicted end time of disruption of the 50%-quantile and
75%-quantile scenarios are the same. Consequently, the same number of pas-
sengers are affected in both cases. There are, however, three predictions in the
50%-quantile scenario while only two in the 75%-quantile scenario. As a result,
in the former case many passengers have to reroute and more transfers need to
be performed. This causes the total generalized travel time of this scenario to be
higher.

The pessimistic 90%-quantile scenario disturbs the most number of passen-
gers. This is because of the predictions that are far too long. For this reason, this
scenario is the worst-performing one as indicated by the largest total generalized
travel time.

4.3.2.4 Case Study 2A

As in Case Study 1A, this case study assumes the incident in Case Study 2 to
occur at a different time during the day. This artificial incident occurred on the
same day at 14:22. Because the incident was in a weekend, the prediction lengths
did not change from Case Study 2; only the time that was adjusted.

Table 4.13 presents the P1 predictions for this case study.
Fifteen minutes after the arrival time of the repair team, the P2 predictions
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Table 4.13: P1 predictions for Case Study 2A.

Qtl P1 P1a
(%) Len Time Len Time
25 54 15:16 77 15:39
50 86 15:48
75 149 16:51
85 209 17:51
90 258 18:40

Mean 122 16:24

Table 4.14: P2 predictions for Case Study 2A.

Qtl P2 P2a P2b P2c
(%) Len Time Len Time Len Time Len Time
25 67 15:29 94 15:56 120 16:22 151 16:53
50 104 16:06 173 17:15
75 173 17:15
85 237 18:19
90 280 19:02

Mean 142 16:44

are made. These are shown in Table 4.14. In Table 4.15, an overview of the
outcomes of the short-turning model for the different scenarios is provided.

Table 4.15: Summary of the outcome of the short-turning model for Case Study 2A.

Qtl (%) #C #D del #ST
25 40 2 2 10
50 48 0 0 12
75 48 0 0 12
85 64 0 0 16
90 76 0 0 19

Mean 36 9 33 9

The impact of different choices of prediction on the passengers are measured
with the passenger-flow model. The result is presented in Table 4.16.

Note that due to the disruption occurring during the day, there are more
passengers affected by the disruption in comparison to Case Study 2.

As in the previous three case studies, the scenario with the true disruption
length is the best performing one in terms of the total generalized travel time.
In this ideal situation, the least number of passengers are affected and none of
them have to change their travel plans.

As in Case Study 2, the difference between the predicted end of disruption
and the actual one is 38 minutes in both the 50%-quantile and the 75%-quantile
scenarios. However, the total generalized travel time is higher in the former
case. This is due to the more frequent prediction updates which causes many
passengers to reroute and more transfers to be performed.
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Table 4.16: Impact on passengers of different predictions in Case Study 2A.

Qtl Excess # Affected Inc. orig Inc. bench # Rerouting
# Transfer

(%) (minutes) Passengers (%) (%) 1 2
25 16 9031 12.3160 1.2250 723 120 3249
50 38 10928 15.8734 4.4312 491 46 3725
75 38 10928 14.6030 3.2862 0 0 3703
85 102 16359 19.9581 8.1125 0 0 4549
90 145 19044 23.2581 11.0867 0 0 5069

Mean 7 8294 11.1051 0.1337 4 0 3128
Real 0 7736 10.9567 0 0 0 3128

The total generalized travel time is the worst in the very pessimistic 90%
quantile scenario. In this case, the great difference between the predicted end of
disruption and the truth means a lot of passengers are affected by the disruption.

In the next subsection we summarize what has been learned from these case
studies.

4.3.3 Discussion

To measure the impact of a disruption-length prediction on passengers, a cost
function needs to be defined. In this chapter, that function is the total gener-
alized travel time. The impact is measured as the weighted total travel time of
all passengers, including waiting time, in-vehicle time, transfer time, number of
transfers and number of reroutings.

With this cost function, we have observed the impact of uncertainty about
the length of a disruption on train traffic and passengers. In general, the dif-
ference between the predicted and the actual end time of a disruption tends to
be longer when the prediction is pessimistic. Consequently, more passengers
are affected and so total generalized travel time increases. On the other hand,
the difference between the predicted and actual end time tends to be smaller
when the prediction is optimistic. But while it means that fewer passengers are
affected, this choice also results in predictions needing to be updated more fre-
quently. Consequently, more passengers have to change their travel plans and
reroute an “inconvenience” which increases total generalized travel time due to
the penalty βre in equation (4.2).

In the experiment, when a prediction is updated, the new version chosen
has the value of the new conditional distribution corresponding to the same
quantile. Moreover, train operations are never resumed before the predicted
end of the disruption, even if it has actually ended already. The consequence of
this is that a prediction that falls slightly short of the actual end time has a high
cost. Because the disruption ends not long after the original predicted time, the
updated prediction exceeds it quite substantially. As a result, more passengers
are affected and total generalized travel time increases. This situation is illus-
trated in the 75%-quantile scenario in Case Study 1.
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The generalized travel time in equation (4.2) is a simplified one. For instance,
constraints of capacity and vehicle type have not been taken into the account.
The bus service between Utrecht and Houten provides significantly less capa-
city than the train service. Moreover, different vehicle types provide different
levels of comfort for passengers. An Intercity (express) train is generally more
comfortable than a Sprinter (local) train or a bus service. The weight βty corres-
ponding to the vehicle type can also be added to the second term of equation
(4.2) as

∑Ntr+1
a=1 βin ·βty · tain. The generalized travel time can be extended to model

the complex nature of a railway disruption better.
Choosing the total generalized travel time as the cost function means the

impact of the uncertainty in disruption length is measured only from the pas-
senger’s point of view. With this cost function, an optimistic prediction is not at-
tractive only because it causes inconvenience to passengers who have to reroute.
We have not captured all costs associated with an optimistic prediction as faced
by the OCCR. From the operational point of view, implementing numerous time-
table updates is impractical due to the associated logistical issues. For instance,
rolling stock and crew assignments need to be reorganized with every update. To
make the cost function more realistic, such issues would need to be considered.

4.4 Chapter Summary
In this chapter we have shown how the disruption-length model can be used to
predict the length of a railway disruption using the software UNINET. The com-
putation undertaken to produce predictions is very efficient, making the model
attractive for use in practice.

The output of the model is the conditional distribution of disruption length.
One value from the distribution needs to be chosen as the prediction. To invest-
igate the effect of different choices of prediction on train traffic and passengers,
the model is used together with the short-turning model and the passenger-flow
model in a railway disruption experiment. This is conducted in the form of four
case studies involving railway incidents in the vicinity of Houten in the central
Netherlands. Several different predictions corresponding to different quantiles
of the conditional distribution of disruption length are considered.

The cost associated with each prediction is measured in terms of the total
generalized travel time. We have observed how this cost is affected by different
choices of prediction. When the prediction is too optimistic, the cost tends to
be higher due to the larger number of reroutings. When the prediction is too
pessimistic, the cost tends to be higher because more passengers are affected.

To obtain more realistic conclusions for the Dutch railway network, a more
complicated cost function needs to be considered. More factors should be ad-
ded to the generalized travel time. The operational cost associated with each
prediction needs to be included as well.

In the next chapter we conclude this thesis with a summary of what has been
learned and a number of recommendations for future studies.



CHAPTER 5

Summary, Recommendations, and Final
Remarks

This chapter concludes the PhD research project and thesis. We start by summar-
izing what has been learned, both theoretically and in practice. We then make
a number of recommendations for ProRail operations and for future studies. To
end this chapter and thesis, in the section containing final remarks we reflect on
our experience during the research process.

5.1 Thesis Summary
The thesis covers two topics: joint distribution modelling with copulas and the
application thereof in railway traffic management. In this section we present
what we have learned about these two topics.

5.1.1 Copulas in Multivariate Mixed Discrete-Continuous Problems
One way to construct a joint distribution is by using the copula. When all the
variables are continuous, a copula separates the dependence from the marginal
distributions. However, this is no longer true when one or more variables are
discrete. Moreover, in this case copula parameter estimation in the presence
of data becomes computationally more expensive. This is because it needs to
be performed via maximum likelihood. Nonetheless, it is still shown that the
copula is a useful concept for dependence modelling in either case.

Another challenge with copula modelling appears when the number of di-
mensions is larger than two. In this case there are only few multivariate copula
models that are available with marginal or functional constraints which need to
be satisfied. The copula-vine concept tackles this challenge. With this approach,
a very complicated multivariate joint distribution can be constructed with a set
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of algebraically independent bivariate (conditional) copulas. Additionally, the
conditional copulas could be chosen to depend on the conditioning variables
(which we call the non-constant copula-vine model).

In this thesis we focus on the use of copula-vine to model the joint distri-
bution of mixed discrete and continuous variables. Given a vine structure and
bivariate copula families, Algorithm 2.1 is proposed to estimate the parameter
values of the copula-vine model from a set of data. The algorithm considers
non-constant copula when the conditioning set contains only discrete variables.
In principle, this can be generalized to all pairs, but certain non-constant rela-
tionship assumptions need to be made when the conditioning set also contains
continuous variable(s). Example 2.3.3 in Chapter 2 shows how this can be done.

When the true vine structure and copula families are known, it is shown
using an example that Algorithm 2.1 performs as it is supposed to. For the arti-
ficially constructed datasets with different numbers of samples, the true copula
parameters are approximated well. Moreover, the model recovers the discrete-
only and continuous-only parts of the data. Because checking the model fit to
the mixed part of the data is difficult, we measure the performance of the model
in predicting the outcome of a discrete or a continuous dependent variable. The
model performs well and recovers the conditional distribution of the dependent
variable.

Good recovery of the conditional distribution of a dependent continuous
variable is necessary for our application. A prediction value is chosen from this
conditional distribution, so it is important for the model to produce the right
distribution. A few misspecification scenarios have been considered. When the
wrong copula families or an incorrect vine structure are chosen, misfit in the
continuous part of the model is observed. In this case, the model does not re-
cover the conditional distribution of the continuous variable. On the other hand,
when a misfit is observed in the discrete part of the model (caused by, e.g., fitting
constant copulas on data generated from non-constant copulas), the conditional
distribution is still recovered.

A comparison with the popular generalized linear model (GLM) has been
performed. One constraint of the GLM is the assumption that the conditional
distribution of the dependent variable comes from the exponential family. In our
experiments, the performance of the GLMs and copula-vine models is generally
comparable in predicting the mean of the conditional distribution. However,
the GLMs do not recover the conditional distribution, whereas − under the right
setting − the copula-vine models do.

The joint distribution model for the railway disruption length is constructed
using the MVN copula and copula-vine approaches, which we summarize in the
next subsection.

5.1.2 The Railway Disruption-Length Models

In this thesis, disruption length is split into two time regimes: the latency and
the repair time. These are influenced by different factors, which we also need to
determine. Using the SAP database as our main source of data, eight influencing
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factors are found and included in the disruption-length models for incidents
caused by track circuit (TC) or switch (points) failures.

We construct two disruption-length models. The first is based on the mul-
tivariate normal (MVN) copula whose parameters are computed with maximum
likelihood. The second is constructed using the copula-vine approach, where
the parameters are estimated with Algorithm 2.1. The continuous part of the
data is recovered by both models. However, the MVN copula model does not
represent the discrete part of the data well, while the copula-vine model does.
Consequently, the likelihood of the copula-vine model is higher than the MVN
copula model, indicating a better fit to the data.

In terms of prediction, the performance of both models is similar. The condi-
tional distributions of the latency and repair times are recovered by both, and the
RMSE values are similar. In practice, we are interested in the prediction. There-
fore, both models are equally attractive. For this reason, we choose to work with
the MVN copula model in the application part of this thesis, since this can be
implemented in UNINET even though, for the time being, the parameters need
to be computed outside of the software. The very fast computational time of
UNINET makes application of this model more practical. All the BN figures and
predictions presented in Chapter 4 are generated using UNINET.

However, it is important to acknowledge the models’ low coefficient of de-
termination R2 values. This indicates the complexity of railway disruptions in
the Netherlands. It might be of interest to include more influencing factors in
order to construct more predictive models. Unfortunately, no such additional
data was available during the course of our research. Its inclusion is therefore
left for future studies, where the models can be expanded by incorporating new
information, if and when it becomes available.

The output of our models is the conditional distribution of disruption length.
In collaboration with the Department of Transport and Planning at Delft Uni-
versity of Technology, we investigate the effect of the uncertainty of the length
of disruption on train traffic and passengers. The disruption-length models are
combined with the short-turning model and the passenger-flow model to exam-
ine a disruption to railway traffic in the vicinity of Houten, the Netherlands. In
the Dutch railway network, this is an important area forming part of the A2
corridor which connects the cities of Amsterdam and Eindhoven.

A few case studies are considered to learn the effect of different choices of
prediction corresponding to different quantiles of the conditional distribution
of disruption length. The effect of each choice is measured with the total gen-
eralized travel time as the cost function. When the prediction is too optimistic,
many passengers have to be rerouted, increasing inconvenience for them and
thus the total generalized travel cost. On the other hand, when the prediction is
too pessimistic, more passengers are affected, which also results in a higher total
generalized travel cost. Similarly, when the prediction is just slightly shorter
than the actual disruption length, more passengers are also affected.

The findings show how uncertainty about the disruption length affects pas-
senger traffic, even in the simplistic setup of the experiment. This shows the im-
portance of properly modelling the conditional distribution of disruption length.
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5.2 Recommendations

In this section, we present a number recommendations for the future, to improve
ProRail’s performance during disruptions.

The application part of this thesis consists of two steps: model construction
and model use. The former can be improved primarily by recording data bet-
ter and by collecting more information. For the latter, we need to expand the
short-turning model and the passenger-flow model to cover the entire Dutch rail
network. We discuss each of these recommendations in greater detail below.

5.2.1 Better Data Collection

With this thesis, one goal we hope to have accomplished is to show the import-
ance of good data. Data reflects historical performance and contains a lot of
information, in much the same way a ProRail expert does. In dealing with rail-
way disruptions, however, at present ProRail relies mostly on experts and not so
much on data. In a way, this is understandable given the generally poor quality
of the data available, as we have experienced at first hand in this research.

However, ProRail’s performance would be improved if better data were to
be collected. Unlike an expert, data is available at all times. We do not have to
be concerned if, for instance, an expert is about to retire or a disruption occurs
when no experts are available. Moreover, the presence of data enables ProRail to
evaluate its processes objectively. We are not implying here that the role played
by experts can be substituted by data and models. Rather, we believe that they
are complementary. We envision data and models being used as support tools to
help the experts arrive at the best decisions during disruptions.

In fact, the role of experts can be very beneficial in applying the model. Their
expertise can be used to interpret its output, by considering factors not included
in the model. In the context of the disruption-length model, for instance, the
experience of the repair team attending the disruption site might influence the
length of the disruption. This variable is not included in the disruption-length
model. In practice, a certain quantile of the conditional distribution of disrup-
tion length can be chosen as the prediction based on the experts knowledge by
considering information about repair-team experience.

An expert can also use data to test an opinion in order to make (or justify) a
decision, through data analysis. For example, ProRail is currently in the gradual
process of converting all its contracts to PGO. This is because, as we have seen
in subsections 3.1.1.2 and 3.1.2.1, disruption lengths are shorter with this type
of contract. This means that we can hope that future disruption lengths will be
shorter, once all OPC contracts have been switched to PGO.

As another example of the importance of data analysis, a ProRail expert sug-
gested that we include train traffic density as a factor representing location in
our model. However, as we have shown in subsection 3.1.1.2, this does not in
fact influence the latency time in the data. Consequently, we decided to not in-
clude it in our model.
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In this thesis we have shown that the disruption-length models represent
the data well. However, while the models recover the conditional distribution
of disruption length, their R2 value is low. This shows the poor quality of the
data, because a model can only be as good as the data it uses. On the other
hand, it also indicates the potential benefit of expanding the model with more
influencing factors if such information ever becomes available. Knowledge about
what factors and variables need to be collected is already held within the ProRail
organization, in the expertise and experience of its experts. The following are a
number of such items, gleaned from our experience and from discussions with
TC and switch experts with whom we were in contact during our research.

1. Information about the actual departure points of the repair teams and the
routes they take, in order to better predict latency time.

2. More detailed information about the actual repair process, e.g. the length
of diagnosis time, whether or not the repair team has all the equipment it
needs, whether or not the disrupted site is clear for access when it arrives1,
etc.

3. Better data registration regarding the causes of failures.

4. Technical information about the equipment affected. In the case of switch
failures, for instance, information about the type of switch, the number
of point machines it contains, their type and whether or not the switch is
monitored2 could be considered.

With regard to the third point in the list above, as we have discussed in
Chapter 3 the data should be recorded in the SAP database. Unfortunately, the
quality of the actual records is poor, with the cause of most incidents registered
as either “unknown” or “other”. In this thesis, we tackled this problem by manu-
ally reading the information in the “Remark” column under the supervision of
ProRail experts. However, this section in the SAP database is not standardized.
Consequently, the amount of information available varies widely between indi-
vidual incident records.

This is a long-standing problem, which ProRail has recognized. In 2013-
2014, a project named “Proeftuin Gelre” (Testbed Gelderland) was established
with the aim of improving data collection. A pilot experiment was conducted in
the province of Gelderland in the eastern Netherlands. Unfortunately, the qual-
ity of the data collected did not improve significantly over what was previously
been collected in SAP. In a sample of this data provided to us, the numbers of
“unknowns” and “others” were still quite significant.

Indicating that the importance of better data registration has still not been
fully understood by all ProRail’s stakeholders, this is a challenge that needs to
be addressed by ProRail as the owner of the problem.

1For safety reason, the repair team must wait for clearance from the train traffic controllers before
it is allowed to enter the site to diagnose and repair the problem.

2Monitored switches are usually the more important ones in the network. Monitoring information
can help the repair team to diagnose the problem faster, thus shortening disruption length.
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5.2.2 Models Expansion

In the second half of Chapter 4, we show how the disruption-length models
could be implemented in practice. The models are tested in small case studies in
a certain region of the Netherlands, together with the short-turning model and
the passenger-flow model. We see how the uncertainty in the disruption length,
which is well-represented by the conditional distribution, affects train traffic and
passengers in terms of total generalized travel time.

However, this does not solve one key problem faced by the OCCR: which
value of the conditional distribution of disruption length to choose as the pre-
diction. From only four case studies, we cannot conclude which of these values
is the “best”. To do that, many more situations need to be considered. This can
be done by, for instance, generating many different realizations of disruption
length from the conditional distribution. For each of these, the short-turning
model and the passenger-flow model are run to compute the effect of different
choices of disruption-length predictions. The result of this simulation can then
be used to determine the optimal value of the conditional distribution as the
prediction.

Note that the effect of different predictions might also depend on the location
and the time of the incident. A more complicated cost function might need to be
considered as well.

In the experiment in Section 4.3, we consider a simple region where there are
few alternative routes for passengers. If a disruption occurs in the vicinity of,
say, Amsterdam, passengers have more alternatives to choose from. Apart from
the option of travelling by different trains without having to detour too far, it is
also possible to switch to other types of public transport. The city’s dense, high-
frequency urban network, with bus, tram and metro services, might make a very
attractive alternative to the train.

If a disruption occurs in the middle of the night, only a very small number
of passengers are travelling. In terms of the total generalized travel time, then,
there will be little to no penalty for making optimistic predictions. On the other
hand, the logistical problems associated with the assignment of rolling stock
and crew every time a new timetable is made remain. Moreover, thus far we
have only considered how disruption affects passenger movements. In reality,
at night many freight trains run on the Dutch railway network, transporting
valuable goods. It might therefore be interesting to define a cost function that
considers not only passengers, but also the operation of freight traffic during
disruptions.

This would require expansion of the short-turning and passenger-flow mod-
els to cover the entire Dutch railway network. Even once the models are ready,
substantial experimental computation time will still be required. With today’s
rapid advances in computing, however, it may not be too far-fetched to believe
that this will become possible in the not-too-distant future.

In the case studies, moreover, when a prediction was updated we took the
same quantile of the conditional distributions as in the previous prediction. This
was done to simplify the problems. In principle, though, it need not be the case.
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For instance, the choice of quantile in the “P2” prediction might depend on the
quantile that realizes the latency time in the “P1” prediction. The realization of
the latency time might indicate how fast or slow the repair team is working on
the incident, which could be useful information in producing a more accurate
“P2” prediction. Other possibilities could be considered as well.

5.3 A Final Remark
The research presented in this thesis has been funded through the ExploRail
research programme, a collaboration between the Netherlands Organisation for
Scientific Research (NWO), through Technology Foundation STW, and ProRail.
The project is called the “Smart Information and Decision Support for Railway
Operation Control Centres” (SmartOCCR).

The goal of the research project, as described in the original proposal, was to
improve information on disruption durations using the available data streams
in the OCCR, which is used to achieve more effective and efficient dispatching
through better decision support. We have to admit that this goal has not been
entirely achieved, due to the many obstacles we encountered during the course
of the research. In particular, the following.

1. It took more than a year and a half before we gained access to the data.
While everybody in ProRail was aware of the existence of such data, it was
scattered throughout the organization. This made it difficult to find those
people who held the access keys to the data.

2. Once the data was obtained, its quality was poor.

3. While we received full support from ProRail, there was a lack of inform-
ation and support from the other stakeholders in the Dutch railway in-
dustry.

4. The size and complexity of the Dutch railway network made it difficult for
two PhD students, given the available timeframe, to program the entire
network to simulate many different disruptions.

The Dutch railway industry involves a lot of stakeholders, with ProRail at
the centre. Each stakeholder has its own interests, according to its role in the in-
dustry. However, all must remember that they are not independent of each other.
They are connected by the common goal of providing reliable train services in
the Netherlands.

The extent to which unplanned failures of railway assets hinder train traffic
depends on the length of the disruptions. In this respect, we enter the domain of
the maintenance contractors, where knowledge of the affected assets is needed
in order to be able to predict disruption length. Unfortunately, as a side-effect
of outsourcing this maintenance work to several different contractors, ProRail
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appears to have lost some grasp of this knowledge. This posed a major obstacle
for our research.

We believe this is a problem which needs to be addressed and solved by Pro-
Rail. It is ProRail’s responsibility to make sure that all stakeholders have the
same perspective on their common goal.

The nature of a research project is to explore possible innovations. For this
reason, open-mindedness and curiosity are attitudes the stakeholders in the re-
search need to possess. Reluctance to embrace new ideas, while it feels comfort-
able, is not healthy especially in the long term. The very existence of the Explo-
Rail programme is a good indication that the ProRail organization is aware of
the importance of innovation. Unfortunately, we have also observed that, as yet,
not every member of the organization welcomes this attitude.

As Bill Clinton once said, “The price of doing the same old thing is far higher
than the price of change”. However, as people have always said, change takes
time.
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APPENDIX A

Proof of Propositions

In this appendix, the proofs of Proposition 2.1.5 and 2.1.9 are presented.

Proof of Proposition 2.1.5:
The zero three-way interaction means:

p(1,1,1)p(1,0,0)p(0,1,0)p(0,0,1) = p(0,0,0)p(1,1,0)p(1,0,1)p(0,1,1). (A.1)

Since the margins are equal to 0.5, we obtain:

p(0,1,0) + p(0,0,1) + p(0,1,1) + p(0,0,0) = p(1,0,1) + p(1,1,0) + p(1,0,0) + p(1,1,1)
(A.2)

p(1,0,0) + p(0,0,1) + p(1,0,1) + p(0,0,0) = p(0,1,1) + p(1,1,0) + p(0,1,0) + p(1,1,1)
(A.3)

p(1,0,0) + p(0,1,0) + p(1,1,0) + p(0,0,0) = p(0,1,1) + p(1,0,1) + p(0,0,1) + p(1,1,1)
(A.4)

Subtracting (A.3) from (A.2), (A.4) from (A.3), and (A.2) from (A.4) yield

p(0,1,0) + p(0,1,1) = p(1,0,1) + p(1,0,0) (A.5)

p(0,0,1) + p(1,0,1) = p(1,1,0) + p(0,1,0) (A.6)

p(1,1,0) + p(1,0,0) = p(0,0,1) + p(0,1,1) (A.7)

Substituting (A.5) to (A.2) yields

p(0,0,0) + p(0,0,1) = p(1,1,1) + p(1,1,0) (A.8)

It can be shown that Equation (A.1), (A.5), (A.6), and (A.7) are satisfied if and
only if p(x1,x2,x3) = p(1− x1,1− x2,1− x3) for all x1,x2,x3 ∈ {0,1}. We see imme-
diately that the symmetric distribution satisfies the above equations. To see that
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the symmetry is also necessary, let us assume that e.g. p(1,0,0) > p(0,1,1). Then,
from (A.5), p(0,1,0) > p(1,0,1) which leads to p(0,0,1) > p(1,1,0) from (A.6). Fur-
ther, this means p(0,0,1) > p(1,1,0) from (A.7) which leads to p(1,1,1) > p(0,0,0)
from (A.8). Combining this information together yields

p(1,1,1)p(1,0,0)p(0,1,0)p(0,0,1) > p(0,0,0)p(1,1,0)p(1,0,1)p(0,1,1)

which cannot be true because of (A.1). Therefore, the proof is complete. �

Proof of Proposition 2.1.9:
Without loss of generality, let X2 be the conditioning variable. Because P(Xi =
0) = 0.5 = P (Xi = 1) for all i ∈ {1,2,3},

P(X1 ≤ 0|X2 = 1) = 1−P(X1 ≤ 0|X2 = 0) (A.9)

and

P(X1 ≤ 0,X3 ≤ 0|X2 = 1) =
P(X1 ≤ 0,X3 ≤ 0)

0.5
−P(X1 ≤ 0,X3 ≤ 0|X2 = 0)

C13|2=1(P(X1 ≤ 0|X2 = 1),P(X3 ≤ 0|X2 = 1)) =
P(X1 ≤ 0,X3 ≤ 0)

0.5
−C13|2=0(P(X1 ≤ 0|X2 = 0),P(X3 ≤ 0|X2 = 0))

(A.10)

Using (A.9), the symmetricity of C13|2, and the Total Law of Probability, the left
hand side of (A.10) becomes:

C13|2=1(P(X1 ≤ 0|X2 = 1),P(X3 ≤ 0|X2 = 1)) =

=
P(X1 ≤ 0,X2 = 0,X3 ≤ 0) +P(X1 > 0,X2 = 0,X3 > 0)

0.5
−C13|2=1(P(X1 ≤ 0|X2 = 0),P(X3 ≤ 0|X2 = 0)) (A.11)

⇒ With the radial symmetry of a trivariate Normal copula, (A.11) becomes:

=
P(X1 ≤ 0,X2 = 0,X3 ≤ 0) +P(X1 ≤ 0,X2 = 1,X3 ≤ 0)

0.5
−C13|2=1(P(X1 ≤ 0|X2 = 0),P(X3 ≤ 0|X2 = 0))

=
P(X1 ≤ 0,X3 ≤ 0)

0.5
−C13|2=1(P(X1 ≤ 0|X2 = 0),P(X3 ≤ 0|X2 = 0))

Substituting this result back to (A.10) yieldsC13|2=0(P(Y1 ≤ 0|Y2 = 0),P(Y3 ≤
0|Y2 = 0)) = C13|2=1(P(Y1 ≤ 0|Y2 = 0),P(Y3 ≤ 0|Y2 = 0)).

⇐ Because C13|2=0 = C13|2=1, substituting (A.11) back to (A.10) yields

P(X1 ≤ 0,X2 = 0,X3 ≤ 0) +P(X1 > 0,X2 = 0,X3 > 0)
0.5

=
P(X1 ≤ 0,X3 ≤ 0)

0.5

which leads to

P(X1 > 0,X2 = 0,X3 > 0) = P(X1 ≤ 0,X2 = 1,X3 ≤ 0)
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Substituting this result into equation (A.5), (A.6), (A.7), and (A.8) yields

p(x1,x2,x3) = p(1− x1,1− x2,1− x3)

for all xi ∈ {0,1} for all i ∈ {1,2,3}. This means the trivariate Bernoulli dis-
tribution has a radial symmetry. Therefore, the trivariate Normal copula is
able to realize (X1,X2,X3). �
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APPENDIX B

Experiments Results in Chapter 2

This Appendix contains tables with the estimated parameters values of the dif-
ferent experiments performed in Subsection 2.3.2 and 2.3.3 of this thesis. If the
parameter is set to zero or constant, it is indicated in bold in a bracket
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1. Testing Algorithm 2.1 in Subsection 2.3.2

Table B.1: The estimated parameters values for different values of N .

Parameter True
Value

N = 100 N = 500 N = 1000 N = 2000
Estimate Estimate Estimate Estimate

(Conf. Bound) (Conf. Bound) (Conf. Bound) (Conf. Bound)

ρ12 0.3
0.5521 0.3744 0.3835 0.2998

(0.2658,0.8061) (0.2427,0.5044) (0.2915,0.4755) (0.1935,0.3325)

ρ23 0
−0.2063 (0) −0.1464 (0) −0.0977 (0) −0.0123 (0)

(−0.5076,0.1214) (−0.2870,0.0704) (−0.2015,0.0090) (−0.0819,0.0592)

ρ34 −0.2
−0.2465 (0) −0.1892 −0.2552 −0.2384

(−0.4992,0.0454) (−0.2978,−0.0850) (0.3339,−0.1802) (−0.2548,−0.1420)

ρ45 −0.4
−0.5120 −0.4298 −0.4182 −0.4229

(−0.6500,−0.3554) (−0.4966,−0.3525) (−0.4712,−0.3642) (−0.4608,−0.3891)

ρ56 0.5
0.4686 0.5263 0.4892 0.4861

(0.2973,0.6120) (0.4561,0.5878) (0.4386,0.5345) (0.4781,0.5401)

ρ13|2=0 −0.5
−0.2554 (0) −0.6078 −0.6381 −0.4888

(−0.9676,0.4681) (−0.8118,−0.4061) (−0.7933,−0.4492) (−0.5692,−0.4434)

ρ13|2=1 0.7
0.7593 0.7431 0.7941 0.7619

(0.4927,0.9261) (0.6256,0.8412) (0.6864,0.8346) (0.6631,0.7729)

ρ24|3=0 0.6
0.5880 0.5472 0.6019 0.5755

(0.3354,0.8095) (0.4345,0.6482) (0.5362,0.6724) (0.5156,0.6138)

ρ24|3=1 −0.3
−0.4261 −0.4063 −0.3416 −0.2828

(−0.7532,−0.0697) (−0.5601,−0.2464) (−0.4728,−0.2104) (−0.3809,−0.1996)

ρ35|4 −0.3
−0.2526 −0.3325 −0.3526 −0.2484

(−0.5038,−0.0309) (−0.4310,−0.2163) (−0.4295,−0.2773) (−0.3397,−0.2281)

ρ46|5 0.8
0.7422 0.7844 0.8024 0.8003

(0.6743,0.8200) (0.7465,0.8125) (0.7782,0.8225) (0.7787,0.8123)

ρ14|2=0,3=0 0.1
−0.0613 (0) 0.1187 (0) 0.2402 0.1762

(−0.8504,0.7949) (−0.1290,0.3442) (0.0716,0.3952) (0.0892,0.2760)

ρ14|2=0,3=1 0
−0.0820 (0) 0.2213 (0) 0.3221 (0) −0.1320 (0)

(−0.9732,0.7825) (−0.2898,0.6952) (−0.1069,0.7252) (−0.3667,0.1015)

ρ14|2=1,3=0 0.4
0.3597 (0) 0.4222 (0) 0.3897 0.4081

(−0.0506,0.7298) (0.2604,0.5791) (0.2831,0.4978) (0.2664,0.4256)

ρ14|2=1,3=1 0
−0.4221 (0) 0.0001 (0) −0.0928 (0) −0.0155 (0)

(−0.9568,0.2309) (−0.3151,0.3156) (−0.3397,0.1243) (−0.1703,0.1348)

ρ25|34 0.3
0.3614 0.3119 0.2670 0.2662

(0.1094,0.5848) (0.2035,0.4211) (0.1602,0.3175) (0.1639,0.3052)

ρ36|45 −0.7
−0.5811 −0.5959 −0.6040 −0.6938

(−0.7580,−0.6889) (−0.7604,−0.4958) (−0.7174,−0.5036) (−0.7891,−0.6534)

ρ15|234 0.2
−0.0645 (0) 0.1573 0.1459 0.1689

(−0.2913,0.2931) (0.0040,0.2577) (0.0051,0.2338) (0.1321,0.2252)

ρ26|345 0.4
0.4642 0.3799 0.4050 0.3619

(0.2849,0.5511) (0.3228,0.5355) (0.3481,0.4931) (0.3556,0.4585)

ρ16|2345 0.2
0.2675 (0) 0.1429 (0) 0.1282 (0) 0.1719

(−0.0680,0.3153) (−0.0407,0.2162) (−0.0310,0.2139) (0.0795,0.2425)
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Table B.2: The estimated parameters values of the fully-optimized Copula-Vine model for N =
2000

Parameter
True

Full. Optim. Parameter
True

Full. Optim.
Value Value

ρ12 0.3 0.3153 ρ46|5 0.8 0.7963
ρ23 0 0 ρ14|2=0,3=0 0.1 0.1964
ρ34 −0.2 −0.2986 ρ14|2=0,3=1 0 0
ρ45 −0.4 −0.4131 ρ14|2=1,3=0 0.4 0.4483
ρ56 0.5 0.4359 ρ14|2=1,3=1 0 0
ρ13|2=0 −0.5 −0.5090 ρ25|34 0.3 0.1820
ρ13|2=1 0.7 0.7991 ρ36|45 −0.7 −0.7503
ρ24|3=0 0.6 0.5053 ρ15|234 0.2 0.1827
ρ24|3=1 −0.3 −0.2726 ρ26|345 0.4 0.3817
ρ35|4 −0.3 −0.2987 ρ16|2345 0.2 0.1521
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2. Wrong Constant Copula Assumption in Example 2.3.1.

Table B.3: The estimated bivariate Normal copulas’ parameters values where all conditional
copulas are assumed to be constant with respect to the conditioning variable(s).

Parameter True
Value

N = 100 N = 500 N = 1000 N = 2000
Estimate Estimate Estimate Estimate

(Conf. Bound) (Conf. Bound) (Conf. Bound) (Conf. Bound)

ρ12 0.3
0.5521 0.3744 0.3835 0.2998

(0.2658,0.8061) (0.2427,0.5044) (0.2915,0.4755) (0.1935,0.3325)

ρ23 0
−0.2063 (0) −0.1464 (0) −0.0977 (0) −0.0123 (0)

(−0.5076,0.1214) (−0.2870,0.0704) (−0.2015,0.0090) (−0.0819,0.0592)

ρ34 −0.2
−0.2465 (0) −0.1892 −0.2552 −0.2384

(−0.4992,0.0454) (−0.2978,−0.0850) (0.3339,−0.1802) (−0.2548,−0.1420)

ρ45 −0.4
−0.5120 −0.4298 −0.4182 −0.4229

(−0.6500,−0.3554) (−0.4966,−0.3525) (−0.4712,−0.3642) (−0.4608,−0.3891)

ρ56 0.5
0.4686 0.5263 0.4892 0.4861

(0.2973,0.6120) (0.4561,0.5878) (0.4386,0.5345) (0.4781,0.5401)

ρ13|2=0 −0.5
0.3144 (0) 0.3143 0.2320 0.2986

ρ13|2=1 0.7
(−0.0840,0.6994) (0.1155,0.4591) (0.1608,0.3757) (0.2092,0.3873)

ρ24|3=0 0.6
0.1639 (0) 0.1799 0.2731 0.3212

ρ24|3=1 −0.3
(−0.0939,0.3972) (0.0830,0.2959) (0.1990,0.3418) (0.2656,0.3638)

ρ35|4 −0.3
−0.2526 −0.3325 −0.3526 −0.2484

(−0.5038,−0.0309) (−0.4310,−0.2163) (−0.4295,−0.2773) (−0.3397,−0.2281)

ρ46|5 0.8
0.7422 0.7844 0.8024 0.8003

(0.6743,0.8200) (0.7465,0.8125) (0.7782,0.8225) (0.7787,0.8123)

ρ14|2=0,3=0 0.1

ρ14|2=0,3=1 0
0.1688 (0) 0.0113 (0) 0.0126 (0) 0.0410 (0)

ρ14|2=1,3=0 0.4
(−0.2130,0.3147) (−0.1327,0.1297) (−0.0927,0.1022) (−0.0476,0.1202)

ρ14|2=1,3=1 0

ρ25|34 0.3
0.4197 0.3494 0.2823 0.2267

(0.1584,0.6146) (0.1823,0.3844) (0.1857,0.3356) (0.1420,0.2872)

ρ36|45 −0.7
−0.5811 −0.5959 −0.6040 −0.6256

(−0.7580,−0.6889) (−0.7604,−0.4958) (−0.7174,−0.5036) (−0.7199,−0.5785)

ρ15|234 0.2
−0.1089 (0) 0.1851 0.1675 0.1831

(−0.3337,0.1962) (0.0627,0.2838) (0.0543,0.2593) (0.0919,0.2351)

ρ26|345 0.4
0.5296 0.3992 0.4431 0.3895

(0.3487,0.6199) (0.3413,0.5437) (0.3774,0.5291) (0.3179,0.4875)

ρ16|2345 0.2
0.1547 (0) 0.1387 (0) 0.0981 (0) 0.1930

(−0.0456,0.3757) (−0.0421,0.2137) (−0.0550,0.1811) (0.0971,0.2699)
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3. Copula Misspecification in Example 2.3.2.

Table B.4: The estimated bivariate Normal copulas’ parameters values. The “True Value”
columns present the correlations which correspond to the true Clayton parameters θ.

Parameter True
Value

N = 100 N = 500 N = 1000 N = 2000
Estimate Estimate Estimate Estimate

(Conf. Bound) (Conf. Bound) (Conf. Bound) (Conf. Bound)

ρ12 0.7
0.8815 0.7791 0.7465 0.7057

(0.6381,0.9875) (0.6889,0.8518) (0.6845,0.8016) (0.6616,0.7506)

ρ23 0
−0.0925 (0) −0.0520 (0) −0.0327 (0) −0.0234 (0)

(−0.4075,0.2275) (−0.1925,0.0966) (−0.0913,0.1023) (−0.0953,0.0513)

ρ34 0.5
0.4656 (0) 0.5402 0.5247 0.5173

(0.2498,0.6833) (0.4481,0.6272) (0.4637,0.5928) (0.4701,0.5656)

ρ45 0.5
0.5563 0.4728 0.4881 0.4793

(0.3965,0.6780) (0.4037,0.5333) (0.4423,0.5346) (0.4448,0.5103)

ρ56 0.8
0.7797 0.7423 0.7605 0.7679

(0.6931,0.8453) (0.7003,0.8197) (0.7363,0.8054) (0.7501,0.8066)

ρ13|2=0 0
−0.0463 (0) −0.0581 (0) −0.1666 (0) −0.0403 (0)

(−0.7849,0.7472) (−0.4235,0.3212) (−0.4205,0.0500) (−0.2950,0.0632)

ρ13|2=1 0.8
0.6068 0.6831 0.7138 0.7230

(0.2167,0.9062) (0.5488,0.8066) (0.6170,0.8166) (0.6677,0.8012)

ρ24|3=0 0.2
0.1830 (0) 0.1584 0.1379 0.1479

(−0.1263,0.4910) (0.0328,0.2873) (0.0432,0.2355) (0.0834,0.2131)

ρ24|3=1 0.8
0.8258 0.8200 0.8052 0.8098

(0.5174,0.9790) (0.7288,0.9071) (0.7303,0.8703) (0.7603,0.8552)

ρ35|4 0.6
0.5353 0.6183 0.6072 0.6089

(0.3369,0.7263) (0.5362,0.7054) (0.5418,0.6664) (0.5937,0.6524)

ρ46|5 0.3
0.3181 0.3011 0.2861 0.2884

(0.1333,0.4854) (0.2177,0.3766) (0.2271,0.3428) (0.2489,0.3306)

ρ14|2=0,3=0 0.3
0.4237 (0) 0.2054 (0) 0.1655 0.1255

(−0.3182,0.9678) (−0.0345,0.4685) (0.0952,0.3803) (0.0403,0.3205)

ρ14|2=0,3=1 0.6
0.5068 (0) 0.8338 0.7574 0.7028

(−0.2102,0.9457) (0.5638,0.9875) (0.5814,0.9206) (0.5424,0.7442)

ρ14|2=1,3=0 0.7
0.5481 (0) 0.8002 0.7452 0.7528

(−0.0508,0.9587) (0.6210,0.8774) (0.6807,0.8095) (0.6920,0.7975)

ρ14|2=1,3=1 0.8
−0.7679 (0) 0.8239 0.8050 0.8421

(−0.0828,0.9787) (0.6252,0.9694) (0.6525,0.9291) (0.7586,0.9163)

ρ25|34 0.2
0.3181 (0) 0.2954 0.2850 0.2711

(−0.1693,0.3641) (0.0780,0.3454) (0.1147,0.3152) (0.1208,0.2380)

ρ36|45 0.2
0.0021 (0) 0.1550 (0) 0.1756 0.2178

(−0.2804,0.3103) (−0.1464,0.2785) (0.0035,0.2360) (0.0703,0.2066)

ρ15|234 0.5
0.3964 0.4927 0.4925 0.4560

(0.0230,0.5454) (0.2120,0.5694) (0.2413,0.5449) (0.3241,0.5090)

ρ26|345 0.1
0.1366 (0) 0.0778 (0) 0.0903 0.0935

(−0.2520,0.2046) (−0.0797,0.1707) (0.0130,0.2175) (0.0331,0.1331)

ρ16|2345 0.2
0.1565 (0) 0.1482 0.1180 0.1238

(−0.1785,0.2717) (0.0305,0.3316) (0.0712,0.2989) (0.0788,0.2118)
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Table B.5: The estimated parameters values of the second model where the continuous pairs
are modeled with the Clayton copula. For the pairs modeled by the bivariate Normal copulas,
the values in the “True Value” cells correspond to the correlations which correspond to the true
Clayton parameters θ.

Parameter
True Estimate

Parameter
True Estimate

Value (Conf. Bound) Value (Conf. Bound)

ρ12 0.7
0.7057

θ46|5 0.5109
0.4857

(0.6616,0.7506) (0.4195,0.5564)

ρ23 0
−0.0234 (0)

ρ14|2=0,3=0 0.3
0.1255

(−0.0953,0.0513) (0.0403,0.3205)

ρ34 0.5
0.5173

ρ14|2=0,3=1 0.6
0.7028 (0)

(0.4701,0.5656) (0.5424,0.7442)

θ45 1.0759
1.0067

ρ14|2=1,3=0 0.7
0.7528

(0.9188,1.0948) (0.6920,0.7975)

θ56 3.1819
3.0584

ρ14|2=1,3=1 0.8
0.8421

(2.9061,3.2203) (0.7586,0.9163)

ρ13|2=0 0
−0.0403 (0)

ρ25|3,4 0.2
0.2686

(−0.2950,0.0632) (0.1795,0.3121)

ρ13|2=1 0.8
0.7230

ρ36|4,5 0.2
0.2321

(0.6677,0.8012) (0.1731,0.2742)

ρ24|3=0 0.2
0.1479

ρ15|2,3,4 0.5
0.4579

(0.0834,0.2131) (0.3243,0.4511)

ρ24|3=1 0.8
0.8098

ρ26|3,4,5 0.1
0.1032

(0.7603,0.8552) (0.0816,0.1996)

ρ35|4 0.6
0.6093

ρ16|2345 0.2
0.1378

(0.5947,0.6543) (0.0808,0.2197)
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4. Vine Structure Misspecification in Example 2.3.3.

Table B.6: The parameters of the C-Vine structure.

Parameter Value Parameter Value Parameter Value
ρ12 0.5 ρ34|1=0,2=1 −0.2 ρ45|1=1,2=1,3=0 −0.4
ρ13 0.7 ρ34|1=1,2=0 −0.7 ρ45|1=0,2=0,3=1 −0.6
ρ14 0.4 ρ34|1=1,2=1 0.8 ρ45|1=0,2=1,3=1 −0.4
ρ15 −0.2 ρ35|1=0,2=0 0.3 ρ45|1=1,2=0,3=1 −0.7
ρ16 0.8 ρ35|1=0,2=1 −0.6 ρ45|1=1,2=1,3=1 −0.5
ρ23|1=0 0.4 ρ35|1=1,2=0 −0.5 ρ46|1=0,2=0,3=0 0.3
ρ23|1=1 0.7 ρ35|1=1,2=1 −0.6 ρ46|1=0,2=1,3=0 0.8
ρ24|1=0 0 ρ36|1=0,2=0 0.3 ρ46|1=1,2=0,3=0 0.5
ρ24|1=1 0.3 ρ36|1=0,2=1 0.6 ρ46|1=1,2=1,3=0 0.3
ρ25|1=0 0.3 ρ36|1=1,2=0 0.4 ρ46|1=0,2=0,3=1 0.7
ρ25|1=1 −0.8 ρ36|1=1,2=1 0.2 ρ46|1=0,2=1,3=1 0.4
ρ26|1=0 0.4 ρ45|1=0,2=0,3=0 −0.7 ρ46|1=1,2=0,3=1 0.3
ρ26|1=1 0.7 ρ45|1=0,2=1,3=0 −0.4 ρ46|1=1,2=1,3=1 0.6
ρ34|1=0,2=0 0.5 ρ45|1=1,2=0,3=0 −0.6 ρ56|1234 0.8
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Table B.7: The estimated parameters values of the D-Vine structure.

Parameter
N = 100 N = 500 N = 1000 N = 2000
Estimate Estimate Estimate Estimate

(Conf. Bound) (Conf. Bound) (Conf. Bound) (Conf. Bound)

ρ12
0.7331 0.8187 0.7329 0.7199

(0.5053,0.9195) (0.6125,0.8485) (0.6525,0.7652) (0.6692,0.7599)

ρ23
0.6755 0.6678 0.6746 0.6717

(0.4317,0.8674) (0.4985,0.7025) (0.6035,0.7395) (0.6255,0.7227)

ρ34
0.7176 0.8092 0.8080 0.8173

(0.5611,0.8529) (0.6452,0.8312) (0.7325,0.8552) (0.7930,0.8421)

ρ45
0.4267 0.5645 0.5496 0.5322

(0.2519,0.5790) (0.3895,0.6032) (0.4978,0.5729) (0.5014,0.5640)

ρ56
−0.4458 −0.5008 −0.4774 −0.4874

(−0.6024,−0.2661) (−0.5425,−0.3785) (−0.5309,−0.4125) (−0.5210,−0.4539)

ρ13|2=0
−0.0842 (0) −0.0479 (0) 0.0587 (0) 0.1152 (0)

(−0.6598,0.5785) (−0.5124,0.4125) (−0.1785,0.3103) (−0.0554,0.2950)

ρ13|2=1
0.6534 0.4472 0.3733 0.4179

(0.1985,0.9007) (0.2985,0.6252) (0.2875,0.5462) (0.3242,0.5248)

ρ24|3=0
0.4146 0.5149 0.5425 0.5001

(0.0335,0.6134) (0.2175,0.5978) (0.3785,0.6058) (0.4128,0.5823)

ρ24|3=1
0.9060 0.8194 0.7898 0.7878

(0.6510,0.9840) (0.7102,0.9421) (0.7348,0.8247) (0.7510,0.8240)

ρ35|4
−0.1238 (0) −0.0875 (0) −0.0425 (0) −0.0234 (0)

(−0.4227,0.1835) (−0.2121,0.0875) (−0.1345,0.0545) (−0.0958,0.0497)

ρ46|5
−0.0459 (0) −0.1522 −0.1329 −0.1248

(−0.2474,0.1484) (−0.2102,−0.0245) (−0.1952,−0.0452) (−0.1670,−0.0840)

ρ14|2=0,3=0
0.3951 (0) 0.3146 0.3709 0.3911

(−0.4536,0.9878) (0.0425,0.4725) (0.1020,0.4899) (0.2232,0.5614)

ρ14|2=0,3=1
0.6817 (0) 0.5980 0.5796 0.5297

(−0.0856,−0.9876) (0.5038,0.9751) (0.5201,0.8452) (0.5341,0.8176)

ρ14|2=1,3=0
0.6312 (0) 0.5834 0.6024 0.5841

(−0.1259,0.9658) (0.5148,0.9815) (0.5236,0.8245) (0.4759,0.7738)

ρ14|2=1,3=1
0.6297 (0) 0.6534 0.6129 0.6297

(−0.0786,0.9778) (0.4792,0.9133) (0.5215,0.7985) (0.5786,0.6778)

ρ25|34
−0.0211 (0) −0.2758 −0.2817 −0.2101

(−0.3550,0.3837) (−0.3485,−0.0124) (−0.3023,−0.0730) (−0.2833,−0.1421)

ρ36|45
−0.0968 (0) −0.0752 (0) −0.0235 (0) −0.0184 (0)

(−0.41010.1981) (−0.2164,0.0885) (−0.1102,0.0652) (−0.0951,0.0561)

ρ15|234
0.0134 (0) 0.0562 (0) 0.0452 (0) 0.0304 (0)

(−0.2556,0.3906) (−0.1212,0.3054) (−0.0625,0.1714) (−0.0324,0.1242)

ρ26|345
−0.0492 (0) −0.0578 (0) −0.0273 (0) −0.0600

(−0.3679,0.3741) (−0.2127,0.1009) (−0.1202,0.0425) (−0.0912,−0.0331)

ρ16|2345
−0.2540 (0) −0.5743 −0.5777 −0.5102

(−0.5424,0.0752) (−0.6356,−0.3215) (−0.6215,−0.4958) (−0.5764,−0.4751)
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Table B.8: The estimated parameters values of the second model where the continuous pairs
are modeled with non-constant conditional Normal copula.

Parameter
Estimate

Parameter
Estimate

(Conf. Bound) (Conf. Bound)

ρ12
0.7199

A
−0.5194

(0.6692,0.7599) (−0.6720,−0.3725)

ρ23
0.6717

b
0.1349

(0.6255,0.7227) (0.0462,0.2241)

ρ34
0.8173

ρ14|2=0,3=0
0.3911

(0.7930,0.8421) (0.2232,0.5614)

ρ45
0.5322

ρ14|2=0,3=1
0.5297

(0.5014,0.5640) (0.5341,0.8176)

ρ56
−0.4874

ρ14|2=1,3=0
0.5841

(−0.5210,−0.4539) (0.4759,0.7769)

ρ13|2=0
0.1152 (0)

ρ14|2=1,3=1
0.6297

(−0.0554,0.2950) (0.5786,0.6778)

ρ13|2=1
0.4179

ρ25|34
−0.2104

(0.3242,0.5248) (−0.2862,−0.1477)

ρ24|3=0
0.5001

ρ36|45
−0.1097

(0.4128,0.5823) (−0.1895,−0.0232)

ρ24|3=1
0.7878

ρ15|234
−0.0325 (0)

(0.7510,0.8140) (−0.1102,0.0325)

ρ35|4
−0.0240 (0)

ρ26|345
0.0495 (0)

(−0.0992,0.0466) (−0.0795,0.0021)

ρ16|2345
−0.5103

(−0.5779,−0.4778)



148 Appendix B



APPENDIX C

Parameters of the Disruption Length
Models

The tables containing the parameters of the different disruption length models
presented in Section 3.2 of this thesis are presented in this Appendix.

149
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Table C.1: The parameters of the saturated MVN Copula model.

Parameter Value Parameter Value Parameter Value
ρCT ,WD 0.1943 ρWD,CS −0.0203 ρWM,RH 0.1399
ρCT ,LC −0.2840 ρWD,REP −0.0364 ρWM,OV 0.3648
ρCT ,WT −0.1252 ρLC,WT 0.0529 ρWM,LAT 0.0908
ρCT ,WM 0.0211 ρLC,WM 0.0142 ρWM,CS 0.0586
ρCT ,RH −0.0761 ρLC,RH 0.0256 ρWM,REP 0.0016
ρCT ,OV 0.0426 ρLC,OV 0.0175 ρRH,OV 0.1666
ρCT ,LAT −0.1019 ρLC,LAT 0.0954 ρRH,LAT −0.0176
ρCT ,CS 0.1589 ρLC,CS −0.1480 ρRH,CS 0.0182
ρCT ,REP −0.1907 ρLC,REP 0.0749 ρRH,REP −0.0322
ρWD,LC −0.0078 ρWT ,WM 0.0504 ρOV ,LAT 0.1304
ρWD,WT −0.0882 ρWT ,RH 0.5806 ρOV ,CS −0.1487
ρWD,WM 0.0807 ρWT ,OV 0.1172 ρOV ,REP −0.0056
ρWD,RH −0.0664 ρWT ,LAT −0.1309 ρLAT ,CS −0.1633
ρWD,OV 0.1984 ρWT ,CS −0.0634 ρLAT ,REP 0.1146
ρWD,LAT 0.1128 ρWT ,REP −0.0231 ρCS,REP −0.5779
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Table C.2: The parameters of the MVN Copula with conditional independence model.

Parameter Value Parameter Value Parameter Value
ρCT ,WD 0.2083 ρWD,CS 0.0436 ρWM,RH 0
ρCT ,LC −0.2700 ρWD,REP −0.0426 ρWM,OV 0.3508
ρCT ,WT −0.1360 ρLC,WT 0.0674 ρWM,LAT 0.0527
ρCT ,WM 0 ρLC,WM 0 ρWM,CS 0
ρCT ,RH −0.0901 ρLC,RH 0.0443 ρWM,REP 0
ρCT ,OV 0.0536 ρLC,OV 0.0190 ρRH,OV 0.1542
ρCT ,LAT −0.0910 ρLC,LAT 0.0980 ρRH,LAT −0.0202
ρCT ,CS 0.2091 ρLC,CS −0.1710 ρRH,CS −0.0494
ρCT ,REP −0.2047 ρLC,REP 0.0892 ρRH,REP −0.0167
ρWD,LC −0.0562 ρWT ,WM 0 ρOV ,LAT 0.1501
ρWD,WT −0.0283 ρWT ,RH 0.5914 ρOV ,CS 0.0001
ρWD,WM 0 ρWT ,OV 0.1385 ρOV ,REP −0.0187
ρWD,RH −0.0188 ρWT ,LAT −0.1347 ρLAT ,CS −0.0208
ρWD,OV 0.2143 ρWT ,CS −0.0798 ρLAT ,REP 0.0306
ρWD,LAT 0.1270 ρWT ,REP −0.0318 ρCS,REP −0.5336
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Table C.3: The parameters of the Copula-Vine Model. The bolded brackets indicate if the
parameter value is taken to be zero or constant.

Parameter
Value

Parameter
Value

(Conf. Bound) (Conf. Bound)

ρCS,CT
0.1777 ρCS,OV |CT=0,WM=1,WT=0,RH=0

0.2102 (0)
(0.0987,0.2475) (−0.1417,0.3952)

ρCT ,WM
0.0118 (0) ρCS,OV |CT=1,WM=0,WT=0,RH=0

−0.1020 (0)
(−0.2937,0.3129) (−0.2120,0.0320)

ρWM,WT
0.0278 (0) ρCS,OV |CT=0,WM=0,WT=1,RH=1

−0.6127
(−0.2706,0.3424) (−0.9212,−0.2012)

ρWT ,RH
0.5820 ρCS,OV |CT=0,WM=1,WT=0,RH=1

0.3212 (0)
(0.4002,0.7199) (−0.3486,0.7527)

ρRH,OV
0.1481 ρCS,OV |CT=1,WM=0,WT=0,RH=1

−0.3952 (0)
(0.0235,0.3102) (−0.8452,0.4748)

ρOV ,WD
0.1986 ρWCS,OV |CT=0,WM=1,WT=1,RH=0

0.0477 (0)
(0.0435,0.3271) (−0.2339,0.1750)

ρWD,LC
−0.0063 (0) ρWM,WD |CS,OV |CT=1,WM=0,WT=1,RH=0

−0.5669
(−0.0598,0.0587) (−0.8325,−0.1201)

ρLC,LAT
0.0883 ρCS,OV |CT=1,WM=1,WT=0,RH=0

−0.2565 (0)
(0.0182,0.1557) (−0.4756,0.2134)

ρLAT ,REP
0.1100 ρCS,OV |CT=0,WM=1,WT=1,RH=1

0.0014 (0)
(0.0321,0.1698) (−0.8976,0.9034)

ρCS,WM |CT=0
−0.0325 (0) ρCS,OV |CT=1,WM=0,WT=1,RH=1

−0.1725 (0)
(−0.1752,0.0542) (−0.7671,0.5441)

ρCS,WM |CT=1
0.0675 (0) ρCS,OV |CT=1,WM=1,WT=1,RH=0

0.2994 (0)
(−0.0742,0.1323) (−0.4374,0.6749)

ρCT ,WT |WM=0
−0.1302 (-0.1102) ρCT ,WD |WM=0,WT=0,RH=0,OV=0

0.2451
(−0.1916,−0.0656) (0.1673,0.3271)

ρCT ,WT |WM=1
−0.1127 (-0.1102) ρCT ,WD |WM=0,WT=0,RH=0,OV=1

0.1454 (0)
(−0.3765,0.1726) (−0.2147,0.5772)

ρWM,RH |WT=0
0.3520 ρCT ,WD |WM=0,WT=0,RH=1,OV=0

0.2157
(0.2491,0.4988) (0.0491,0.4177)

ρWM,RH |WT=1
−0.1907 ρCT ,WD |WM=0,WT=1,RH=0,OV=0

0.0947 (0)
(−0.4875,−0.1005) (−0.0487,0.2451)

ρWT ,OV |RH=0
0.1785 (0) ρCT ,WD |WM=1,WT=0,RH=0,OV=0

0.1087 (0)
(−0.0345,0.3055) (−0.3595,0.4995)

ρWT ,OV |RH=1
−0.2012 (0) ρCT ,WD |WM=0,WT=0,RH=1,OV=1

0.0007 (0)
(−0.4254,0.0235) (−0.7212,0.3472)

ρRH,WD |OV=0
−0.0777 (-0.0737) ρCT ,WD |WM=0,WT=1,RH=0,OV=1

0.2595 (0)
(−0.1321,−0.0279) (−0.4938,0.7619)

ρRH,WD |OV=1
−0.1283 (-0.0737) ρCT ,WD |WM=1,WT=0,RH=0,OV=1

0.0170 (0)
(−0.1617,−0.0686) (−0.0711,0.1018)

ρOV ,LC|WD
0.0105 (0) ρCT ,WD |WM=0,WT=1,RH=1,OV=0

0.0671 (0)
(−0.0633,0.0875) (−0.0785,0.1995)

ρWD,LAT |LC
0.1139 ρCT ,WD |WM=1,WT=0,RH=1,OV=0

0.2662 (0)
(0.0645,0.1515) (−0.3879,0.8782)

ρLC,REP |LAT
0.0661 ρCT ,WD |WM=1,WT=1,RH=0,OV=0

−0.5008 (0)
(0.0214,0.1065) (−0.9178,0.4386)

ρCS,WT |CT=0,WM=0
0.0121 (0) ρCT ,WD |WM=0,WT=1,RH=1,OV=1

−0.5318 (0)
(−0.1978,0.2102) (−0.9507,0.3175)

ρCS,WT |CT=0,WM=1
0.4725 ρCT ,WD |WM=1,WT=0,RH=1,OV=1

0.7598 (0)
(0.2936,0.6256) (−0.7547,0.9015)

ρCS,WT |CT=1,WM=0
−0.1710 ρCT ,WD |WM=1,WT=1,RH=0,OV=1

0.8417 (0)
(−0.2935,−0.0325) (−0.9725,0.9811)

ρCS,WT |CT=1,WM==1
0.4636 ρCT ,WD |WM=1,WT=1,RH=1,OV=0

−0.9725 (0)
(0.3021,0.5951) (−0.9977,0.9214)

ρCT ,RH |WM=0,WT=0
−0.2112 ρCT ,WD |WM=1,WT=1,RH=1,OV=1

−0.0102 (0)
(−0.2561,−0.0372) (−0.0878,0.0801)

ρCT ,RH |WM=0,WT=1
0.0912 (0) ρWM,LC|WT ,RH,OV ,WD

−0.0217 (0)
(−0.0294,0.2307) (−0.0910,0.0771)

ρCT ,RH |WM=1,WT=0
0.4360 ρWT ,LAT |RH,OV ,WD,LC

−0.1021 (0)
(0.1241,0.6991) (−0.1727,0.0235)

ρCT ,RH |WM=1,WT=1
−0.2782 (0) ρRH,REP |OV ,WD,LC,LAT

0.0958 (0)
(−0.6424,0.2871) (−0.0325,0.1695)

ρWM,OV |WT=0,RH=0
0.0997 (0.4520) ρCS,WD |CT=0,WM=0,WT=0,RH=0,OV=0

0.0752 (0)
(−0.0212,0.4975) (−0.0421,0.1344)

ρWM,OV |WT=0,RH=1
0.7267 (0.4520) ρCS,WD |CT=0,WM=0,WT=0,RH=0,OV=1

0.1517
(0.4021,0.8757) (0.0214,0.2748)

ρWM,OV |WT=1,RH=0
0.7027 (0.4520) ρCS,WD |CT=0,WM=0,WT=0,RH=1,OV=0

−0.1943
(0.3917,0.8598) (−0.3074,−0.0875)

ρWM,OV |WT=1,RH=1
0.5794 (0.4520) ρCS,WD |CT=0,WM=0,WT=1,RH=0,OV=0

−0.0990 (0)
(0.2585,0.7952) (−0.1715,0.0828)

ρWT ,WD |RH=0,OV=0
−0.1146 (-0.0774) ρCS,WD |CT=0,WM=1,WT=0,RH=0,OV=0

0.1371 (0)
(−0.1906,−0.0489) (−0.1021,0.2419)

ρWT ,WD |RH=0,OV=1
−0.1225 (-0.0774) ρCS,WD |CT=1,WM=0,WT=0,RH=0,OV=0

−0.0785 (0)
(−0.4556,0.2359) (−0.2142,0.0829)

ρWT ,WD |RH=1,OV=0
−0.0074 (-0.0774) ρCS,WD |CT=0,WM=0,WT=0,RH=1,OV=1

0.8824
(−0.1304,0.1020) (0.2714,0.9900)

ρWT ,WD |RH=1,OV=1
0.2877 (-0.0774) ρCS,WD |CT=0,WM=0,WT=1,RH=0,OV=1

−0.4262 (0)
(−0.0921,0.6418) (−0.6712,0.1127)

ρRH,LC|OV ,WD
0.0213 (0) ρCS,WD |CT=0,WM=1,WT=0,RH=0,OV=1

0.0279 (0)
(−0.0687,0.0767) (−0.5258,0.6527)

ρOV ,LAT |WD,LC
0.1217 ρCS,WD |CT=1,WM=0,WT=0,RH=0,OV=1

−0.4846
(0.0593,0.2210) (−0.7857,−0.1429)
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ρWD,REP |LC,LAT
−0.0543 (0) ρCS,WD |CT=0,WM=0,WT=1,RH=1,OV=0

−0.1771
(−0.1203,0.0304) (−0.2678,−0.0892)

ρCS,RH |CT=0,WM=0,WT=0
0.0420 (0) ρCS,WD |CT=0,WM=1,WT=0,RH=1,OV=0

−0.3096
(−0.1021,0.1985) (−0.4175,−0.2009)

ρCS,RH |CT=0,WM=0,WT=1
0.1987 (0) ρCS,WD |CT=1,WM=0,WT=0,RH=1,OV=0

−0.1634
(−0.0325,0.3201) (−0.2589,−0.0796)

ρCS,RH |CT=0,WM=1,WT=0
−0.1325 (0) ρCS,WD |CT=0,WM=1,WT=1,RH=0,OV=0

−0.3523
(−0.2325,0.0212) (−0.4314,−0.2724)

ρCS,RH |CT=1,WM=0,WT=0
0.0325 (0) ρCS,WD |CT=1,WM=0,WT=1,RH=0,OV=0

−0.1086
(−0.0921,0.1131) (−0.2017,−0.0074)

ρCS,RH |CT=0,WM=1,WT=1
−0.1020 (0) ρCS,WD |CT=1,WM=1,WT=0,RH=0,OV=0

0.1103
(−0.2102,0.0725) (0.0327,0.1943)

ρCS,RH |CT=1,WM=0,WT=1
0.2320 (0) ρCS,WD |CT=0,WM=0,WT=1,RH=1,OV=1

−0.8162
(−0.0275,0.5219) (−0.9900,−0.2108)

ρCS,RH |CT=1,WM=1,WT=0
0.1932 (0) ρCS,WD |CT=0,WM=1,WT=0,RH=1,OV=1

0.3317 (0)
(0.0125,0.2932) (−0.7124,0.9215)

ρCS,RH |CT=1,WM=1,WT=1
−0.3212 (0) ρCS,WD |CT=1,WM=0,WT=0,RH=1,OV=1

−0.5215 (0)
(−0.5121,0.0952) (−0.9725,0.3731)

ρCT ,OV |WM=0,WT=0,RH=0
−0.3378 ρCS,WD |CT=0,WM=1,WT=1,RH=0,OV=1

−0.3124 (0)
(−0.5023,−0.1023) (−0.8214,0.4752)

ρCT ,OV |WM=0,WT=0,RH=1
−0.2152 (0) ρCS,WD |CT=1,WM=0,WT=1,RH=0,OV=1

0.7215 (0)
(−0.2045,0.1055) (−0.8214,0.9726)

ρCT ,OV |WM=0,WT=1,RH=0
0.2325 (0) ρCS,WD |CT=1,WM=1,WT=0,RH=0,OV=1

0.0782 (0)
(−0.0620,0.4546) (−0.1023,0.3129)

ρCT ,OV |WM=1,WT=0,RH=1
−0.5779 (0) ρCS,WD |CT=0,WM=1,WT=1,RH=1,OV=0

0.0952 (0)
(−0.7736,0.0217) (−0.2147,0.3258)

ρCT ,OV |WM=0,WT=1,RH=1
−0.5021 (0) ρCS,WD |CT=1,WM=1,WT=0,RH=1,OV=0

−0.4519
(−0.7036,0.0323) (−0.6044,−0.3095)

ρCT ,OV |WM=1,WT=0,RH=1
0.5021 (0) ρCS,WD |CT=1,WM=0,WT=1,RH=1,OV=0

−0.2519 (0)
(−0.2102,0.8925) (−0.5127,0.3178)

ρCT ,OV |WM=1,WT=1,RH=0
0.6252 (0) ρCS,WD |CT=1,WM=1,WT=1,RH=0,OV=0

−0.2496
(−0.2012,0.8921) (−0.3458,−0.1370)

ρCT ,OV |WM=1,WT=1,RH=1
−0.0321 (0) ρCS,WD |CT=0,WM=1,WT=1,RH=1,OV=1

0.2188 (0)
(−0.8125,0.7210) (−0.4215,0.7002)

ρWM,WD |WT=0,RH=0,OV=0
0.0752 (0) ρCS,WD |CT=1,WM=0,WT=1,RH=1,OV=1

−0.8835
(−0.0412,0.1425) (−0.9896,−0.6201)

ρWM,WD |WT=0,RH=0,OV=1
0.9433 ρCS,WD |CT=1,WM=1,WT=0,RH=1,OV=1

0.2142 (0)
(0.7210,0.9785) (−0.4215,0.7017)

ρWM,WD |WT=0,RH=1,OV=0
0.2121 (0) ρCS,WD |CT=1,WM=1,WT=1,RH=0,OV=1

−0.4725 (0)
(−0.0321,0.3995) (−0.9915,0.3277)

ρWM,WD |WT=1,RH=0,OV=0
−0.1209 (0) ρCS,WD |CT=1,WM=1,WT=1,RH=1,OV=0

0.7403
(−0.3205,0.1009) (0.4121,0.9278)

ρWM,WD |WT=0,RH=1,OV=1
0.3021 (0) ρCS,WD |CT=1,WM=1,WT=1,RH=1,OV=1

0.5044
(−0.5785,0.8925) (0.2014,0.8275)

ρWM,WD |WT=1,RH=0,OV=1
0.8215 (0) ρCT ,LC|WM,WT ,RH,OV ,WD

−0.2475
(−0.0625,0.9795) (−0.3004,−0.1778)

ρWM,WD |WT=1,RH=1,OV=0
0.2123 (0) ρWM,LAT |WT ,RH,OV ,WD,LC

0.0371 (0)
(−0.0952,0.4952) (−0.0462,0.1014)

ρWM,WD |WT=1,RH=1,OV=1
−0.0875 (0) ρWT ,REP |RH,OV ,WD,LC,LAT

−0.0758 (0)
(−0.6932,0.5213) (−0.1812,0.0273)

ρWT ,LC|RH,OV ,WD
0.0492 (0) ρCS,LC|CT ,WM,WT ,RH,OV ,WD

−0.1834
(−0.0402,0.1146) (−0.3148,−0.0492)

ρRH,LAT |OV ,WD,LC
−0.0329 (0) ρCT ,LAT |WM,WT ,RH,OV ,WD,LC

−0.1176
(−0.1374,0.0319) (−0.1942,−0.0302)

ρOV ,REP |WD,LC,LAT
0.0425 (0) ρWM,REP |WT ,RH,OV ,WD,LC,LAT

0.0824 (0)
(−0.0752,0.1276) (−0.0521,0.1421)

ρCS,OV |CT=0,WM=0,WT=0,RH=0
−0.1021 (0) ρCS,LAT |CT ,WM,WT ,RH,OV ,WD,LC

0.0421 (0)
(−0.2102,0.0195) (−0.0512,0.1384)

ρCS,OV |CT=0,WM=0,WT=0,RH=1
0.0852 (0) ρCT ,REP |WM,WT ,RH,OV ,WD,LC,LAT

−0.2352
(−0.0785,0.2101) (−0.3575,−0.1175)

ρCS,OV |CT=0,WM=0,WT=1,RH=0
0.2193 (0) ρCS,REP |CT ,WM,WT ,RH,OV ,WD,LC,LAT

−0.5090
(−0.2852,0.6012) (−0.6527,−0.3549)
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Table C.4: The parameters of the MVN Copula with conditional independence model for the
Switch disruption.

Parameter Value Parameter Value Parameter Value
ρCT ,WD 0.0466 ρWD,CS 0.0075 ρCD,RH −0.0009
ρCT ,LC −0.3689 ρWD,REP −0.0085 ρCD,OV 0.5548
ρCT ,WT −0.0157 ρLC,WT 0.0060 ρCD,LAT 0.1172
ρCT ,CD 0.0179 ρLC,CD −0.0069 ρCD,CS 0.1109
ρCT ,RH −0.0086 ρLC,RH 0.0033 ρCD,REP −0.0216
ρCT ,OV 0.0157 ρLC,OV −0.0060 ρRH,OV 0.0110
ρCT ,LAT −0.1220 ρLC,LAT 0.0759 ρRH,LAT −0.0551
ρCT ,CS 0.1546 ρLC,CS −0.0593 ρRH,CS −0.0080
ρCT ,REP −0.1737 ρLC,REP 0.0666 ρRH,REP 0.0027
ρWD,LC −0.0179 ρWT ,CD −0.0017 ρOV ,LAT 0.1225
ρWD,WT −0.0008 ρWT ,RH 0.5281 ρOV ,CS 0.0643
ρWD,CD 0.0009 ρWT ,OV 0.0053 ρOV ,REP −0.0134
ρWD,RH −0.0004 ρWT ,LAT −0.1409 ρLAT ,CS −0.0044
ρWD,OV 0.1135 ρWT ,CS −0.0146 ρLAT ,REP 0.0195
ρWD,LAT 0.1145 ρWT ,REP 0.0049 ρCS,REP −0.1867



Summary

Mixed Discrete - Continuous
Railway Disruption-Length Models with Copulas

Aurelius Armando Zilko

The uncertainty of disruption length has hindered the performance of the
Operational Control Centre Rail (OCCR) in Utrecht, whose task is to manage
train traffic when a disruption occurs on the Dutch railway network. One way
to model that uncertainty is by representing disruption length as a probability
distribution. In this way, a dependence model between the disruption length
and several observable influencing factors can be constructed. The dependence
model takes the form of a joint distribution between the variables. From the joint
distribution, the conditional distribution of disruption length can be computed
by conditioning the model on the observed values of the influencing factors.

This thesis focuses on the construction of the joint model. The concept of cop-
ula is intended to be used to model the dependence between the variables. There
are several multivariate copula families that can be used. In dimensions higher
than two, however, the construction of such a multivariate model is often diffi-
cult because of constraints that need to be satisfied. The copula-vine approach
comes in handy to avoid this problem. With this, the joint model is decom-
posed into (conditional) pairs that can be modelled with algebraically independ-
ent bivariate copulas. The copula-vine is also highly flexible, which enables the
construction of a very complicated joint model.

Some of the factors influencing the railway disruption-length model are dis-
crete variables. Consequently, the joint model is of mixed discrete and continu-
ous type. Copulas can still be used to model the dependence when some of the
variables are discrete. Moreover, it is known that the copula is not unique un-
der this setting. While this provides more “freedom” for practitioners to choose
which copula family to work with, it also comes with two main drawbacks: (i)
the copula no longer separates the dependence from the marginal distributions;
and (ii) in the presence of data, the copula parameters need to be estimated using

155



156

the computationally expensive maximum-likelihood approach.
In the first half of Chapter 2, it is shown that the bivariate normal copula can

always be used to model the dependence of a bivariate Bernoulli distribution.
However, this is no longer true when the dimension increases. In this case, the
copula-vine approach can be used. By considering conditional bivariate copulas
that depend on the conditioning variables (hence “non-constant”), it is shown
that any multivariate Bernoulli distribution can be modelled with a set of algeb-
raically independent bivariate normal copulas. However, this is no longer true
when one or more of the variables have more than two states or are continuous.

Given a vine structure and bivariate copula families, an algorithm is pro-
posed to estimate the parameter values of the copula-vine model from a set
of data. This is the focus of the second half of Chapter 2. Several artificially
constructed mixed binary and continuous datasets with different structures or
copula family misspecifications are considered. To recover the conditional dis-
tribution of a dependent continuous variable, we observe the importance in the
recovery of the continuous part of the model.

In this thesis, the railway disruption-length model is based on disruption
records in the SAP database. This is the main topic of Chapter 3. Eight influ-
encing factors are included in the disruption-length models for incidents caused
by track circuit (TC) or switch (points) failures. Two joint model construction
strategies are considered: (i) using the popular multivariate normal copula ap-
proach; and (ii) using the copula-vine approach, where non-constant conditional
copulas are considered in the discrete part of the model. It is shown that, while
the copula-vine approach models the joint distribution of the data better than
the multivariate normal copula approach, both models recover the conditional
distribution of disruption length. For this reason, we opt to use the multivariate
normal copula model as this can be implemented in the software UNINET, thus
making its application more practical.

The constructed model is used to obtain a prediction of disruption length.
One value from the conditional distribution of disruption length needs to be
chosen as the prediction. To investigate the effect of different choices of pre-
diction, we have collaborated with the Department of Transport and Planning
at Delft University of Technology, as presented in Chapter 4. The disruption-
length model is used together with the short-turning model and the passenger-
flow model in four case studies of disruption in the vicinity of Houten, the Neth-
erlands. Different predictions of disruption length are made and the impact on
passengers is measured in terms of total generalized travel time.

The quality of the information in the SAP database is poor. Better data needs
to be collected so that the disruption-length model can be extended to achieve
better performance. The combination with the short-turning model and the
passenger-flow model can also be expanded to obtain more general conclusions.
In Chapter 5, several recommendations are provided for better data collection
and ways to expand the combination in the future.



Samenvatting

Gemengde discreet-continue
spoorwegverstoringsduurmodellen met copula’s

Aurelius Armando Zilko

De onzekerheid van de verstoringsduur is een belemmering voor de prestaties
van het Operationeel Controle Centrum Rail (OCCR) in Utrecht, dat als taak
heeft om het treinverkeer te regelen wanneer er een verstoring optreedt in het
Nederlandse spoorwegnetwerk. Een van de manieren om die onzekerheid te
modelleren is een representatie van de verstoringsduur als kansverdeling. Op
deze manier kan er een afhankelijkheidsmodel worden geconstrueerd voor de
relatie tussen de verstoringsduur en diverse waarneembare beı̈nvloedingsfact-
oren. Het afhankelijkheidsmodel heeft de vorm van een simultane verdeling
van de variabelen. Uit de simultane verdeling kan de voorwaardelijke verdeling
van de verstoringsduur worden berekend door de geobserveerde waarden van
de beı̈nvloedingsfactoren als voorwaarden aan het model toe te voegen.

Dit proefschrift behandelt de constructie van het simultane model. Het concept
van de copula wordt gebruikt om de onderlinge afhankelijkheid van de variabelen
te modelleren. Er kunnen verscheidene multivariate copulafamilies worden gebruikt.
Bij meer dan twee dimensies is de constructie van een dergelijk multivariaat
model echter vaak moeilijk, omdat er aan een aantal restricties dient te worden
voldaan. Dit probleem kan worden vermeden met de copula-vinemethode. Hier-
bij wordt het simultane model ontbonden in (voorwaardelijke) paren die kunnen
worden gemodelleerd met algebrasch onafhankelijke bivariate copulas. Deze
methode is zeer flexibel, zodat er een zeer gecompliceerd simultaan model kan
worden geconstrueerd.

Sommige factoren die het spoorwegverstoringsduurmodel benvloeden, zijn
discrete variabelen. Daarom is het simultane model van het type gemengd discreet-
continu. Ook wanneer sommige variabelen discreet zijn, kunnen copulas worden
gebruikt om de afhankelijkheid te modelleren. Bovendien is bekend dat de cop-
ula in een dergelijk geval niet uniek is. Dit geeft meer vrijheid in de keuze voor
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een copulafamilie om mee te werken, maar er zijn ook twee belangrijke nadelen
aan verbonden: (i) de copula scheidt de afhankelijkheid niet meer van de mar-
ginale verdelingen; (ii) wanneer er data worden gebruikt, moeten de copulapara-
meters worden geschat met de maximum-likelihoodmethode, die veel rekentijd
vergt.

In de eerste helft van hoofdstuk 2 wordt aangetoond dat de bivariate nor-
male copula altijd kan worden gebruikt om de afhankelijkheid van een bivari-
ate Bernoulli-verdeling te modelleren. Bij meer dimensies geldt dit echter niet
meer. In dit geval kan de copula-vinemethode worden gebruikt. Door voor-
waardelijke bivariate copulas te beschouwen die afhangen van de bepalende
variabelen (en die dus niet-constant zijn) laten we zien dat elke multivariate
Bernoulli-verdeling kan worden gemodelleerd door een verzameling algebrasch
onafhankelijke bivariate normale copulas. Dit geldt echter niet meer wanneer
een of meer van de variabelen meer dan twee toestanden hebben of continu zijn.

Bij een gegeven vinestructuur en bivariate copulafamilies stellen we een al-
goritme voor om de parameterwaarden van het copula-vinemodel te schatten
op basis van een dataset. Hierover gaat de tweede helft van hoofdstuk 2. We
beschouwen diverse kunstmatig geconstrueerde binaire en continue datasets met
verschillende structuren of misspecificaties van copulafamilies. We merken op
dat we, om de voorwaardelijke verdeling van een afhankelijke continue variabele
te kunnen geven, eerst het continue deel van het model moeten vaststellen.

In dit proefschrift is het spoorwegverstoringsduurmodel gebaseerd op ver-
storingsrecords in de SAP-database. Dit is het hoofdonderwerp van hoofdstuk
3. Acht beı̈nvloedingsfactoren worden opgenomen in de verstoringsduurmod-
ellen voor incidenten die zijn veroorzaakt door storingen in spoorstroomlopen
of wissels. Er worden twee strategien beschouwd voor de constructie van sim-
ultane modellen: (i) de populaire methode met een multivariate normale copula
en (ii) de copula-vinemethode, waarbij niet-constante voorwaardelijke copulas
worden beschouwd in het discrete deel van het model. We laten zien dat de
copula-vinemethode de simultane verdeling van de data beter modelleert dan
de methode met een multivariate normale copula, maar dat met beide model-
len de voorwaardelijke verdeling van de verstoringsduur kan worden verkre-
gen. Daarom kiezen we ervoor het model van de multivariate normale copula te
gebruiken, aangezien dit kan worden gemplementeerd in de UNINET-software,
wat de toepassing praktischer maakt.

Het geconstrueerde model wordt gebruikt om de verstoringsduur te voor-
spellen. Als voorspelling moet er n waarde van de voorwaardelijke verdeling
van de verstoringsduur worden gekozen. Om het effect van de diverse keuzen
voor de voorspelling te onderzoeken, hebben we samengewerkt met de afdel-
ing Transport en Planning van de Technische Universiteit Delft, zoals gepres-
enteerd in hoofdstuk 4. Het verstoringsduurmodel wordt gebruikt samen met
het short-turning (inkortings-)model en het passagiersstroommodel in vier case-
studies van verstoring in de buurt van Houten. We doen verschillende voor-
spellingen voor de verstoringsduur en meten de invloed op passagiers in termen
van totale gegeneraliseerde reistijd.

De kwaliteit van de gegevens in de SAP-database is slecht. Er moeten betere
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data worden verzameld, zodat het verstoringsduurmodel kan worden uitgebreid
en betere resultaten kan geven. De combinatie met het short-turningmodel en
het passagiersstroommodel kan ook worden uitgebreid om tot meer algemene
conclusies te komen. In hoofdstuk 5 doen we diverse aanbevelingen om het
verzamelen van data te verbeteren en stellen we manieren voor om de combin-
atie van de modellen in de toekomst uit te breiden.
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Ringkasan

Model Lama Gangguan Kereta Api
Campuran Diskret dan Kontinu dengan Kopula

Aurelius Armando Zilko

Ketidak-pastian lama gangguan merupakan masalah besar yang dihadapi
Pusat Kontrol Operasional Kereta Api (OCCR) di Utrecht, yang bertugas mengatur
lalu-lintas kereta api di saat terjadinya gangguan di jaringan kereta api Belanda.
Satu cara untuk menangani ketidak-pastian ini adalah dengan memodelkan lama
gangguan sebagai distribusi peluang. Dengan cara ini, sebuah model ketergan-
tungan antara lama gangguan dan beberapa faktor pemengaruh dapat diba-
ngun. Model ketergantungan ini berupa distribusi gabungan dari peubah-peubah
yang terlibat. Dari distribusi gabungan ini, distribusi bersyarat dari lama gang-
guan dapat dihitung dengan menggunakan nilai dari faktor-faktor pemengaruh
yang teramati.

Fokus dari disertasi ini adalah pembangunan model gabungan tersebut. Kon-
sep kopula akan digunakan untuk memodelkan ketergantungan antara peubah-
peubah yang terlibat. Ada beberapa keluarga kopula multivariat yang terse-
dia. Namun di dimensi lebih dari dua, ada banyak batasan yang menyulitkan
pembangunan sebuah model kopula multivariat. Strategi Kopula-Vine dapat di-
gunakan untuk menghindari kesulitan-kesulitan ini. Melalui pendekatan ini,
model gabungan didekomposisi menjadi pasangan-pasangan (bersyarat) yang
dapat dimodelkan dengan kopula-kopula bivariat yang bebas secara aljabar.
Keluwesan Kopula-Vine memungkinkan pembangunan suatu model gabungan
yang sangat rumit.

Beberapa faktor pemengaruh lama gangguan kereta api ternyata berupa peu-
bah diskret. Sebagai akibatnya, model gabungan yang harus dibangun berupa
model campuran antara peubah diskret dan kontinu. Kopula masih bisa digun-
akan untuk memodelkan ketergantungan antara peubah-peubah diskret. Le-
bih jauh lagi, telah diketahui secara luas bahwa kopula yang bisa digunakan
tidaklah unik di dalam situasi ini. Walaupun di satu sisi ini memberikan “ke-
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bebasan” lebih bagi para praktisioner dalam pemilihan keluarga kopula, di sisi
lain dua masalah muncul: (1) kopula tidak lagi memisahkan ketergantungan
dari efek distribusi marjinal dan (2) dalam lingkup data, nilai parameter dari
kopula harus diestimasi dengan menggunakan metode maximum likelihood yang
memakan waktu lama.

Di paruh pertama Bab 2, ditunjukkan bahwa kopula Normal bivariat dapat
selalu digunakan untuk memodelkan ketergantungan sebuah distribusi Bernoulli
bivariat. Namun, ini tidak lagi benar di dimensi yang lebih tinggi. Dalam kasus
ini, pendekatan Kopula-Vine dapat digunakan. Dengan menggunakan kopula
bivariat bersyarat yang juga bergantung pada nilai peubah persyarat (dengan
kata lain, “tidak tetap”), ditunjukkan bahwa distribusi Bernoulli multivariat
apa pun dapat dimodelkan dengan kopula-kopula Normal bivariat yang bebas
secara aljabar. Namun, ini tidak lagi benar ketika satu atau lebih peubahnya
memiliki lebih dari dua kemungkinan nilai atau kontinu.

Dengan sebuah struktur vine dan keluarga kopula bivariat yang telah dipi-
lih, sebuah algoritma untuk mengestimasi nilai-nilai parameter sebuah model
Kopula-Vine dari satu himpunan data diusulkan. Ini adalah tema utama paruh
kedua Bab 2. Untuk mengetes performa dari algoritma ini, beberapa himpunan
data dengan peubah campuran biner dan kontinu dibangun dengan struktur
atau keluarga kopula yang tidak terpilih dengan benar. Ternyata agar distribusi
bersyarat dari sebuah peubah kontinu termodelkan dengan baik, bagian kontinu
dari model harus termodelkan dengan baik pula.

Di dalam disertasi ini, model lama gangguan kereta api dibangun berdasarkan
data gangguan yang terekam di dalam bank data SAP. Konstruksi model ini
adalah topik utama Bab 3. Delapan faktor pemengaruh lama gangguan kereta
api terlibat dalam model gangguan yang diakibatkan oleh rusaknya sirkuit de-
teksi kereta (TC) atau wesel. Model gabungan dibangun dengan menggunakan
dua strategi: (1) melalui pendekatan kopula Normal multivariat yang umum
dipakai; dan (2) melalui pendekatan Kopula-Vine dengan penggunaan kopula
bersyarat tidak tetap di bagian diskret dari model. Model distribusi gabungan
yang dibangun dengan Kopula-Vine mewakili data dengan lebih baik daripada
model yang dibangun dengan kopula Normal multivariat. Namun, kedua model
sama-sama mampu menghasilkan distribusi bersyarat dari lama gangguan dengan
baik. Oleh karena itu, model kopula Normal multivariat dipilih di disertasi ini.
Model ini dapat diimplementasikan di perangkat lunak UNINET yang memung-
kinkan penerapan model yang jauh lebih praktis.

Model yang telah dibangun digunakan untuk membuat sebuah prediksi lama
gangguan. Satu nilai dari distribusi bersyarat lama gangguan perlu dipilih seba-
gai prediksi. Untuk mempelajari efek dari prediksi-prediksi yang dapat dibuat,
kolaborasi dengan Jurusan Transportasi dan Perencanaan Universitas Teknik
Delft dilakukan. Kolaborasi ini dipresentasikan di Bab 4. Model lama gang-
guan digunakan bersamaan dengan model putar-balik kereta dan model arus
penumpang di beberapa studi kasus gangguan kereta api di daerah Houten, Be-
landa tengah. Beberapa prediksi lama gangguan dipilih dan dampaknya pada
penumpang diukur dari segi total waktu tempuh tertimbang (generalized travel
time).
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Informasi yang terekam di dalam bank data SAP berkualitas rendah. Data
yang lebih baik perlu dikumpulkan sehingga dengannya model lama gangguan
dapat diekspansi untuk menghasilkan performa yang lebih baik. Kolaborasi
dengan model putar-balik kereta dan model arus penumpang juga dapat dikem-
bangkan untuk mendapatkan kesimpulan yang lebih umum. Di Bab 5, disajikan
beberapa rekomendasi untuk pengumpulan data yang lebih baik dan bagaimana
pengembangan kolaborasi dapat dilakukan di masa mendatang.
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