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Abstract 56 

Proteins are involved in the majority of structures and biochemical reactions of living cells. 57 

New single-molecule protein sequencing and identification technologies alongside innovations 58 

in mass spectrometry and antibody-based methods will eventually enable broad sequence 59 

coverage in single-cell profiling. The ultimate precision and sensitivity of proteomes promised 60 

by these technologies will create new directions in research and biomedical applications, from 61 

global proteomics of single cells and bodily fluids to sensing and classifying low-abundance 62 

protein biomarkers for disease screening and precision diagnostics. 63 

64 
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Introduction 65 

The emergence of Next Generation Sequencing (NGS) and single-molecule DNA sequencing 66 

technologies have revolutionized genomics. Proteomics awaits a similar transformative wave 67 

of protein-sequencing techniques that will allow for the examination of proteins at the single-68 

cell and ultimately single-molecule levels, even with low-abundant proteins. Such techniques 69 

would allow routine global proteome profiling, like today’s single-cell RNA sequencing studies, 70 

creating opportunities for single-cell proteomics and potentially permitting real-time testing for 71 

on-site medical diagnostics and disease screening. Importantly, whole proteome sequencing 72 

and profiling of the vast repertoire of cell types is expected to fundamentally enhance our 73 

understanding of all living systems. 74 

75 

While DNA sequencing technologies are routinely used for whole genome and transcriptome 76 

profiling with extensive read depths and high sequence coverages, conventional bottom-up 77 

mass-spectrometry (MS)-based proteomics assays (Box 1) fall short of providing the same 78 

breadth of view for proteins. The analysis of complex protein mixtures is particularly 79 

challenging since the >20,000 genes in the human genome1 are translated into a diversity of 80 

proteoforms that may include millions of variants as a result of post-translational modifications 81 

(PTMs), alternative splicing and germline variants2. In cancer, for example, the proteoform 82 

landscape can be aberrant with many new protein variants resulting from non-canonical 83 

splicing, mutations, fusions and PTMs. Characterizing such proteoforms is likely to benefit 84 

from the improvements in current protein sequencing techniques and the emergence of new 85 

methods. 86 

87 

MS remains a staple of protein identification and continues to develop towards single cell 88 

methods (Box 2). Alongside, a diverse range of protein sequencing and identification 89 

techniques have emerged that aim to increase the sensitivity of proteomics to the single-90 

molecule level. Many of these techniques rely on fluorescence and nanopores for single-91 

molecule sensing as an alternative means to sequence or identify proteins (Figure 1).  The 92 

landscape of emerging proteomics is already vast, with different approaches at various stages 93 

of development, some of which have already secured industry investment3,4, an important step 94 

towards broad dissemination to the research community. Other technologies have shown 95 

great promise and gained popularity among the single-molecule biophysics communities and 96 

some are available as proofs of concept at just one or a few laboratories. 97 

98 
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Here, we describe the prominent emerging protein sequencing and fingerprinting techniques 99 

in the context of mature methods, such as MS-based proteomics, discuss challenges for their 100 

real-world applications, and assess their transformative potential. 101 

A Renaissance of Classical Techniques 102 

Edman degradation, MS and Enzyme-Linked Immunosorbent Assay (ELISA) have been 103 

broadly used for protein/peptide sequencing and identification for several decades, therefore 104 

it is no surprise that further enhancements of these classical technologies are being sought. 105 

The biophysics community has been developing methods to increase the throughput5 and 106 

sensitivity6 of single-molecule ELISA, Edman degradation, single-particle MS, neutral-particle 107 

nanomechanical MS, and single-particle electrospray. Even classical tools, which are 108 

commonly used in materials sciences like electric tunneling and direct current measurements 109 

can be repurposed for protein sequencing. 110 

Massively parallel Edman degradation 111 

Edman degradation7 was the first method to determine the amino acid sequence of a purified 112 

peptide. The method relied on chemically modifying the N-terminal amino acid, cleaving it from 113 

the peptide, and finally determining the sequence of the cleaved labeled amino acid using 114 

high-performance liquid chromatography. Until recently, attempts to conduct sequencing of 115 

this sort in a massively parallel fashion were not possible as the method relied on highly 116 

purified peptides. However, recent multiplex strategies that employ peptide arrays and either 117 

sequence chemically labeled peptides (“fluorosequencing”), or successively detect the N-118 

terminal amino acid are making breakthroughs (Box 3).  119 

 120 

Fluorosequencing combines Edman chemistry, single-molecule microscopy, and stable 121 

synthetic fluorophore chemistry (Figure 2a). Millions of individual fluorescently labeled 122 

peptides can be visualized in parallel, while changing fluorescence intensities are monitored 123 

as N-terminal amino acids are sequentially removed. The resulting fluorescence signatures 124 

serve to uniquely identify individual peptides8. This method allows for millions of distinct 125 

peptide molecules to be sequenced in parallel, identified, and digitally quantified on a 126 

zeptomole-scale9. However, the technology is not without challenges, as the reagents used 127 

for Edman degradation chemistry lead to increased rates of fluorescent dye destruction, which 128 

in turn limits the read length. These reagents include slightly basic structures such as pyridine, 129 

strong acids such as trifluoroacetic acid, and the electrophile phenyl isothiocyanate. 130 

Furthermore, the reliance on chemical labelling leads to partial sequencing of the peptide, with 131 
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the unidentified remainder inferred by comparison to a reference proteome. In addition, the 132 

inefficient labeling can lead to errors that must be modeled into the reference proteome 133 

comparison, spurring the development of new protocols to increase yields10.  Exciting new 134 

proposals could add the dimension of protonation-based sequencing. The pKa of the N-135 

terminal amino acid could be used for identification by observing and interpreting the 136 

protonation-deprotonation signal of the peptide at fixed pH through the Edman Degredation 137 

process11. Much like fluorosequencing, the signal observed would be for the whole peptide 138 

and the decay pattern would be interpreted to derive a pKa of each N-Terminal aminoacid. 139 

 140 

Several natural proteins and RNA molecules recognize specific amino acids either as free 141 

amino acids or as a part of a polypeptide chain12. These proteins and nucleic acids provide 142 

different solutions for N-terminal amino acid recognition. Each N-terminal amino acid binder 143 

(NAAB) probe selectively identifies a specific N-terminal amino acid or an N-terminal amino 144 

acid derivative. With each cycle, another amino acid is revealed in the sequence of the peptide. 145 

However, further directed evolution and engineering of the NAAB probe is required to meet 146 

the stringent affinity, selectivity and stability needed for error-free sequencing applications. In 147 

addition, such probes would need to discriminate among all amino acids, including the same 148 

amino acid in alternative positions in the peptide sequence. Probes that bind a class of N-149 

terminal amino acids (e.g., short aliphatic residues) could also be useful, but would introduce 150 

ambiguities in the sequencing process. Different probes could also be designed to recognize 151 

short N-terminal k-mers, which would increase the number of probes needed, but reduce the 152 

ambiguity in the resulting sequencing information. To circumvent this limitation, it may be 153 

possible to sequence the N-terminal amino acid by selective recognition using a plurality of 154 

probes in each cycle of Edman degradation13,14 (Figure 2b).  155 

   156 

Single-molecule mass spectrometry 157 

MS is a century-old method that measures the mass-to-charge (m/z) ratio of ions, for example, 158 

charged peptides/proteins and their assemblies. Single-ion detection has been possible since 159 

the 1990’s, for example, in Fourier-transform ion cyclotron resonance instruments15. Charge 160 

detection MS (CDMS) is a single-ion method where charge assignment of each individual ion 161 

is determined directly, enabling the conversion of mass-to-charge ratio into the neutral mass 162 

domain. The approach has focused on the analysis of large biomolecular complexes, 163 

especially viruses in the 1–100 MDa range16. While CDMS had been limited to specialized 164 

instrumentation, the past year has seen breakthroughs built on early work for producing mass 165 

spectra of single ions in Orbitrap mass analyzers17–19. Today, these mass-analyzers can be 166 
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widely used to directly derive the charge states of single proteins and even their fragment 167 

ions20. Orbitraps are particularly useful since the readout of individual ions can be multiplexed 168 

by 100-1000 fold in the Orbitrap-based CDMS20. Individual ion MS has already shown 169 

resolution of mixtures with ~1000 proteoforms that provided no data when standard MS was 170 

used20,21. This has greatly expanded the top-down approach to confirm DNA-inferred 171 

sequences of whole proteins, with localization of their post-translational modifications20–22. 172 

Without extensive alteration, Orbitraps can therefore measure tens of thousands of proteins 173 

in a matter of minutes. With these rapidly evolving technologies, the charting of the full human 174 

proteoform atlas has already begun23, making strides towards a comprehensive Human 175 

Proteoform Project. However, a critical requirement for MS of proteins and peptides is 176 

ionization, and not all ions are efficiently transmitted through the mass spectrometer. This 177 

might restrict some of the proteoform mapping efforts providing a niche for the other 178 

technologies in Figure 1.  179 

 180 

For higher molecular weight species, the ionization of proteins and complexes yields a mixture 181 

of macro ions with variable charge states, resulting in a net reduction of sensitivity, as the 182 

signal distributes over multiple peaks in the mass-to-charge dimension. Moreover, charge 183 

state distributions may overlap above a certain mass or in the case of mixtures, challenging 184 

the species identification. Since their inception24, nano-mechanical mass sensors have made 185 

tremendous progress towards protein characterization25. Such devices, which take the shape 186 

of cantilevers or beams with lateral dimensions in the hundreds of nanometers, can detect 187 

individual particles accreting onto their active surface through the changes in their vibration 188 

frequency. Importantly, as the particle’s inertial mass is determined directly from the frequency 189 

change, these devices are insensitive to charge states26. This realization prompted the 190 

development of new MS instrument designs devoid of ion guides, which no longer depend on 191 

electromagnetic fields to collect and transmit the analytes (Figure 2c). Such nano-mechanical 192 

resonator-based MS system has recently shown the ability to characterize large protein 193 

assemblies such as individual viral capsids above 100 MDa27. Outside of proteomics, 1 Da 194 

resolution has been demonstrated with carbon nanotubes28. Moreover, recent reports 195 

suggested the possibility to determine other physical parameters like the stiffness or shape of 196 

the analyte by monitoring multiple vibrational modes29,30. These previously inaccessible 197 

metrics may open new avenues to discriminate peptides, proteins and their complexes. 198 

Nonetheless, one of the challenges of the nano-resonator-MS lies in devising efficient ways 199 

to bring individual proteins onto the resonator’s active surface for mass sensing.  200 

 201 
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Ionization is commonly achieved by electrospray ionization of a solution containing the 202 

compound(s) of interest. The use of ever-smaller electrospray ion source apertures has led to 203 

significant improvements in the sensitivity of mass spectrometry31,32. Mass spectrometers with 204 

a nanopore ion source have been developed for the purpose of sequencing single proteins33 205 

(Figure 2d). A nanopore electrospray can potentially deliver individual amino acid ions directly 206 

into a high-vacuum gas phase, where the ions can be efficiently detected by their mass-to-207 

charge ratios. This opens a path to sequencing peptides one amino acid at a time. The concept 208 

makes use of the nanopore to guide the protein into a linear configuration so that its monomers 209 

can be delivered into the mass spectrometer sequentially34. Individual amino acids must be 210 

cleaved from the protein molecule as they transit the nanopore, and this could potentially be 211 

accomplished using photodissociation35 or chemical digestion methods. The 100 MHz 212 

bandwidth of the channeltron single ion detectors used in this setup is also sufficient to resolve 213 

the arrival order of the ions. The high mass resolution makes this technique promising for 214 

identifying post-translational modifications (PTMs), which change the masses of particular 215 

amino acid residues by predictable amounts. One challenge on the path for this technology 216 

will be achieving high throughput, which might require a strategy for parallelizing the mass 217 

analysis. 218 

Tunneling conductance measurements 219 

The appearance of the scanning tunneling microscope in the 1980s opened a new way to 220 

analyze molecules. Small organic molecules can be transiently trapped between two metal 221 

electrodes with sub-nanometer separation, with the tunneling currents between the electrodes 222 

reporting on the molecular signature of the analyte. Recently, several technical advances have 223 

been made towards single-molecule amino acid and protein analysis. Extracting insightful 224 

information from electron tunneling is complicated by the noise due to water and contaminants 225 

reaching the electrode surfaces. To overcome these problems, recognition tunneling has been 226 

developed. The electrodes are covalently modified with adaptor molecules that form transient, 227 

but well-defined links to the target molecule36. The rapidly fluctuating tunnel-current signals 228 

are processed using machine learning algorithms, which makes it possible to distinguish 229 

individual amino acids and small peptides37. Moreover, smaller electrode gaps have been 230 

made to obtain distinct signals from different amino acids and PTMs38. Further development 231 

of the technology will depend on a reliable source of tunnel junctions with a defined gap to 232 

replace the cumbersome scanning tunneling microscopy, but it is clear that both the sequence 233 

and PTMs of small peptides can be determined37. Currently, tunneling conductance is a proof-234 

of-concept technology for fully sequencing short peptides that could one day be used for the 235 

analysis of protein digests and expanded to PTM analysis (Figure 1).     236 
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 237 

Recently, it has been discovered that electrical charges can be transmitted through a protein 238 

if electrodes are bridged by a protein via chemical bonding or ligand binding39. The protein 239 

conformation change upon nucleotide addition could be followed in real time from the direct 240 

currents passing through a DNA polymerase40. Although the observation was preliminary, the 241 

electronic signatures were distinctive when the polymerase was associated with different DNA 242 

sequences, enabling a new approach to label-free single-molecule DNA sequencing.  A similar 243 

approach could potentially be used for protein sequencing with enzymes, such as 244 

proteasomes or glycopetidases that process substrates sequentially. 245 

DNA Nanotechnologies for Protein Sequencing 246 

DNA nanotechnologies, which utilize the ability to custom-design a large number of sequences 247 

with prescribed pairing interaction and dynamic properties, have facilitated developments in 248 

fields ranging from synthetic biology to diagnostics and drug delivery41. For example, the 249 

programmable, transient binding between short DNA strands is central to the super-resolution 250 

technique, DNA-based Point Accumulation for Imaging in Nanoscale Topography (DNA-251 

PAINT42–44) (Box 4). Here we describe the application of DNA-PAINT and DNA-based local 252 

and global pairwise distance measurement methods for single-molecule protein detection and 253 

identification. 254 

Fingerprinting via DNA PAINT  255 

DNA-PAINT uses the repetitive binding between designed docking and imager DNA strands 256 

to allow for imaging with molecular-level resolution (Box 4). This method provides a promising 257 

way to fingerprint proteins on the level of single molecules. A simple way for characterizing 258 

proteins could be through amino acid counting using quantitative DNA-PAINT (qPAINT44). In 259 

this technique, the total blinking rate of a region of interest is measured, which linearly reflects 260 

the number of molecular targets in the region. It has been proposed that high-efficiency DNA 261 

labeling of specific amino acids (Figure 3a) followed by qPAINT could lead to single-molecule 262 

protein fingerprinting of intact proteins (Figure 3b)45. More than 75% of the human proteome 263 

can be identified (≤5 degeneracy) if the error in counting is less than 5% from detecting three 264 

kinds of specific amino acids. 265 

 266 

The recent development of DNA-PAINT has allowed discrete molecular imaging (DMI) of 267 

individual molecular targets with <5 nm spatial resolution43. Therefore, protein identification by 268 
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the fingerprinting of amino acids along an extended protein backbone is a possibility. DMI was 269 

achieved by combining a systematic analysis and optimization of DNA-PAINT super-resolution 270 

workflow and a high-accuracy (<1 nm) drift correction method. To effectively unfold and extend 271 

the protein backbone, N- and C-terminal specific modifications should be used to attach 272 

surface and microbead anchors. The protein can then be subjected to mechanical or 273 

electromagnetic extension force (Figure 3c). Proposals to combine protein extension methods 274 

with high-resolution  DMI45 indicate that with lysine labelling alone and 5-nm effective imaging 275 

resolution, more than 50% of the human proteome  could be uniquely identified, even with up 276 

to 20% amino acid imaging error. Labeling lysine and cysteine would allow the proteome 277 

coverage to increase to more than 75%. 278 

 279 

Protein fingerprinting using DNA-PAINT single-molecule imaging combines the ultrahigh 280 

imaging resolution and quantitative capacity of the technique, and the inherent throughput of 281 

wide imaging-based methods. qPAINT can produce signals linearly (within <5% deviation), 282 

based on the amino acid composition of a particular protein. The proposed methods will be 283 

particularly useful for global proteomic analysis of complex protein mixtures, PTM patterns 284 

and combinatorial analysis at the single molecule level.  285 

DNA proximity recording 286 

An alternative method for DNA-based protein identification attaches DNA probes to specific 287 

amino-acids on a protein and uses enzymatic DNA-amplification between nearby probes to 288 

generate DNA ‘records’ that vary in length according to pairwise distances within a protein. An 289 

example is auto-cycling proximity recording46 (APR) (Figure 3d). The distribution of lengths of 290 

these molecular records is then analysed to decode the pairwise distance between the two 291 

DNA tags. It is possible to use unique molecular identifier barcoding and repetitive enzymatic 292 

recording, such that each lysine and cysteine residue can be studied and a pairwise distance 293 

map can be constructed among them, allowing for single-molecule protein identification47,48. 294 

DNA proximity recording takes advantage of high-throughput next generation DNA 295 

sequencing methods for efficient protein fingerprinting analysis, and will be useful for both the 296 

analysis of purified proteins and complex protein mixtures. 297 

Protein fingerprinting using FRET 298 

A different approach that allows for global pairwise distance measurement is combining DNA 299 

technology with single-molecule Förster resonance energy transfer (FRET)49. The current 300 

state of the art of single-molecule FRET analysis allows us to deal with only one or two FRET 301 



9 

pairs50. The new high-resolution FRET using transient binding between DNA tags allows for 302 

probing one FRET pair at a time when many of them are collectively present on a single 303 

protein49. Similar to the above-mentioned approaches, specific amino acids (e.g. lysines, 304 

cysteines, etc) required for fingerprinting have to be labelled with a set of different DNA 305 

docking strands. Furthermore, a fixed position on the protein (either the N or the C terminus) 306 

is labelled with the acceptor fluorophore. Only a single FRET pair forms at a time by using 307 

DNA strands that are complementary to only a single docking strand. The measurements are 308 

then repeated to probe the remaining docking strands and thus the amino acids. The output 309 

of this approach will be a FRET histogram containing information on the position (referred to 310 

as FRET fingerprints) of each detected amino acid relative to one of the reference points. This 311 

information is compared to a database consisting of predicted ‘FRET fingerprints’ and allows 312 

for the identification of the protein species (Figure 3e). The proposed high-resolution FRET 313 

approach (named high resolution FRET using DNA eXchange, or FRET X) benefits from the 314 

immobilization of the protein molecules, allowing users to probe each protein multiple times to 315 

obtain fingerprints with a high resolution. FRET X will be a particularly promising tool for 316 

targeted proteomics or proteoform analysis as it is able to distinguish small structural changes. 317 

Biological and Solid-State Nanopores 318 

Nanopore-based DNA and direct RNA sequencing technologies have become key players in 319 

the sequencing field, offering unprecedented read-lengths and portability. Since its first 320 

demonstration as a single-biomolecule sensor51, nanopore sensing has progressively matured 321 

reaching the goal of single-molecule, long-read DNA sequencing52. Many of the nanopore 322 

sequencing applications to date have materialized using an ultra-small device53, which 323 

features vast arrays of biological nanopores, each coupled to its own current amplifier, 324 

allowing readout of hundreds of DNA strands simultaneously. Nanopore sequencing involves 325 

drawing biomolecules through the nanopore in a single file manner, hence partially blocking 326 

the ionic current flowing through the pore, leading to time-dependent and sequence-specific 327 

electrical signals. In the past two decades  a variety of synthetic nanopore biosensors have 328 

significantly progressed and are currently used in diverse applications beyond sequencing, 329 

including applications in detecting epigenetic variations and enabling ultra-sensitive mRNA 330 

expression54, to name a few.   331 

 332 

Just like gel electrophoresis, nanopores may serve as a generic tool to analyze biomolecules. 333 

Therefore, as nanopore-based DNA sequencing continues to advance, this technique is 334 

poised to extend to proteins, metabolites and to other analytes. But despite the remarkable 335 

advances in DNA and RNA sequencing, nanopore-based protein sensing is still in its infancy, 336 
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facing challenges unique to proteins and proteomics. In particular, proteins span a large range 337 

of sizes and have a stable three-dimensional folded structure. In contrast to nucleic acids, 338 

peptides’ backbones are not naturally charged, complicating the possibility of single-file 339 

electrokinetic threading into nanopores. In addition, proteins are composed of 20 amino acids 340 

instead of 4 nucleobases, further complicating the task of relating the ionic current signals to 341 

the amino acid sequence. 342 

 343 

While a significant progress in nanopore-based protein sensing have been made, to date the 344 

development of full protein sequencers, or single-protein identification based on nanopores 345 

remains to be a topic of intense focus. Here, we focus on three of the principal directions in 346 

this field (Figure 4): (i) Single-file threading and direct sensing of the sequence of the 347 

polypeptide’s amino acids, analogous to the nanopore DNA sequencing principle. In this 348 

approach, either the translocation of full-length proteins or shorter polypeptide digests of the 349 

proteins may be targeted. (ii) Protein identification methods based on sensing unique 350 

fingerprints in linearized proteins, without de novo amino acid sequencing. (iii) Protein 351 

identification of folded proteins, based on specific patterns in their nanopore current 352 

blockades. In the following sections, we provide short overviews of the current state of these 353 

approaches and refer to additional methods. 354 

Reading the amino acid sequence of linearized peptides  355 

In this proposed approach, a single protein or peptide is linearized and threaded through a 356 

nanopore and the resulting ion current interpreted to an amino-acid sequence (Figure 4a). 357 

Theoretical work using all-atom MD simulations on alpha-hemolysin pores has demonstrated 358 

a global correlation between the volume of an amino acid and the current blockade in homo-359 

polymers55. Computationally efficient predictions using course-grained models have also 360 

performed well compared to all-atom MD simulations for both solid-state and biological 361 

pores56.  362 

Discrimination among peptides differing by one amino acid substitution (alanine to glutamate) 363 

have been demonstrated using an engineered Fragaceatoxin C (FraC) nanopores57. 364 

Moreover, Piguet et al. resolved single amino acid differences within short poly-arginine 365 

peptides with superb resolution, using the aerolysin protein pore in its wild-type 366 

conformation58. Combining MD simulations and single channel experiments, Cao et al. have 367 

rationally determined specific point mutations in aerolysin to fine-tune the charge and diameter 368 

of the pore, which enhanced its sensitivity and selectivity as showcased experimentally using 369 

DNA and peptides59. Notably, protein pore sensors were used for analysis of bodily fluids 370 

https://www.nature.com/articles/s41467-018-03418-2.pdf
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(blood, sweat, etc.), indicating significant potential for applications in diagnostics60. As an 371 

alternative to nanopore sequencing of intact polypeptide chains, smaller digested fragments 372 

can also be analyzed and minute differences in the amino acid composition can be detected61. 373 

Even post-translational modifications can be detected including individual phosphorylations 374 

and glycosylations using the protein pore FraC62.  375 

An essential step in the development of nanopore based DNA sequencing, came with the 376 

application of an enzymatic stepping motor (e.g. a helicase) that produces a nucleotide-by-377 

nucleotide progression of the DNA through the nanopore. A similar system is pursued for 378 

single-molecule protein sequencing: Molecular motors of the Type II secretion system63 379 

(SecY) and the AAA family64 (ClpX) are known to unfold and pull protein substrates through 380 

pores in an ATP-dependent way. Nivala et al.65,66 employed ClpXP (or ClpX alone) to unfold 381 

and translocate a multi-domain fusion protein through the hemolysin pore using the energy 382 

derived from ATP hydrolysis. In this approach the motor is at the exit of the nanopore, and 383 

therefore the step size of translocation is caused by the stable structural motifs that resist 384 

translocation – rather than being controlled by the enzyme. This approach is currently being 385 

expanded by several groups, who conjugated ClpXP covalently to alpha-hemolysin at the 386 

entrance of the nanopore to form a combined sensor as well as a substrate delivery machine. 387 

The Maglia lab genetically introduced a nanopore directly into an archaeal proteasome and 388 

found that the assisted transport across the nanopore is not influenced by the unfolding of the 389 

protein. These nanoscale constructs would also allow a cut-and-drop approach, in which 390 

single proteins are recognized by the pattern of peptide fragments as they are sequentially 391 

cleaved by the peptidase above the nanopore67. Knyazev et al. introduced a protein-secreting 392 

ATPase as an additional natural choice for a potential peptide translocating motor68,69. Other 393 

proteins have the potential to control the protein translocation through nanopores, beyond 394 

secretases and unfoldases, including chaperones (Hsp70), via processes resembling protein 395 

translocation into the mitochondrial matrix70. Recently, Rodriguez-Larrea’s group has 396 

discussed how protein refolding at the entry or exit compartment can oppose or promote 397 

protein translocation, respectively71,72 and the use of deep learning networks to analyze the 398 

raw ionic current signals for accurate classification of single-point mutations in a translocating 399 

protein. In addition, Cardozo et al. built a library of ~20 proteins that are orthogonally barcoded 400 

with an intrinsic peptide sequence, and successfully read them by nanopore sensors73.  401 

Fingerprinting linearized proteins 402 

An accurate quantification of different protein species in the proteome with single-molecule 403 

resolution would already be a highly significant achievement. This can be realized by single-404 
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molecule fingerprinting, i.e. by the identification of individual protein molecules based on prior 405 

knowledge of their amino-acid sequence, or based on the specific signal patterns, recognized 406 

by machine learning8,74,75 (Figure 4b). To that end several nanopore approaches have been 407 

pursued: Restrepo-Pérez et al.76 established a fingerprinting approach using six chemical 408 

tags, which were placed on a dipolar peptide77. Additionally, Wang et al. reported the ability to 409 

distinguish individual lysine and cysteine residues in short polypeptides, coupled specifically 410 

to fluorescent tags using a solid-state nanopore with low fluorescence background78. In all 411 

these approaches, separating the proteins by mass, prior to single molecule sensing may 412 

highly facilitate the identification of proteins in complex samples containing many different 413 

proteins79. 414 

Nanopore protein fingerprinting can make extensive use of advanced deep-learning artificial 415 

intelligence (AI) strategies to identify patterns in noisy signals. Ohayon et. al. has recently 416 

shown computationally that >95% of all the proteins in the human proteome can be identified 417 

with high confidence, based on the labelling of three amino acids (lysine, cysteine and 418 

methionine) and linear threading through a solid state nanopore75. These simulations predict 419 

that even partial labelling of the proteins will be sufficient to achieve a high degree of accurate 420 

whole proteome identification, due to the ability of AI functions to correctly recognize partial 421 

protein patterns. This identification method involves the incorporation of subwavelength light 422 

localization in the proximity of the nanopore using plasmonic nanostructures80. The work in 423 

this field benefits from recent advances in nanofabrication and nanopatterning technologies, 424 

allowing for the formation of complex metallic nanostructures to induce light localization and 425 

plasmonics81. 426 

Characterization and identification of folded proteins 427 

To date, nanopores have been successfully employed to detect specific sets of folded proteins 428 

and protein oligomers82 (Figure 4c) such as large globular proteins, various cytokines and 429 

even low molecular weight proteins, such as Ubiquitin. Holding the proteins in their folded 430 

state inside the nanopore for sufficiently long times is a key requirement. Early studies have 431 

shown that globular proteins of about 5 nm in size can only be detected for a few tens of 432 

microseconds or less83, which is too short for characterization. Several approaches to 433 

overcome this challenge have been devised. A lipid bilayer coating of a solid-state nanopore 434 

can be used to tether the proteins for extended periods of time84. Lipid tethered proteins84, and 435 

more recently also freely diffusing proteins (using a higher bandwidth sensing system)85 have 436 

been characterized based on their size, shape, charge, dipole, and rotational diffusion 437 

coefficient86. Various strategies are being pursued to ‘trap’ proteins in a nanopore. One 438 
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strategy is to use plasmonics to hold a protein in a nanopore for seconds or even minutes87,88. 439 

More recently single proteins have been demonstrated to be held at the nanopore’s most 440 

sensitive region for minutes to hours using the nanopore electro-osmotic trap (NEOtrap) that 441 

exploits strong electro-osmotic water flows created in-situ by a charged, permeable objects, 442 

such as a DNA origami structures89. Another approach for slowing down the translocation of 443 

proteins involves the use of smaller nanopores compared to earlier studies, in order to 444 

increase the hydrodynamic drag, thus resulting in longer translocation dwell-times that are 445 

easier to measure90,91. In addition, high bandwidth measurements can resolve differential 446 

conformational flexibility within folded proteins90–93, and even changes in conformational 447 

flexibility94. Biological nanopores with a diameter of 5.5 or 10 nm95 can also be used to 448 

measure folded proteins, including protein conformations96 and post-translational 449 

modifications97 such as ubiquitination. Lastly, Aramesh et al.98 used a combination of atomic 450 

force microscopy and nanopore technology, to make the first steps at nanopore sensing 451 

directly inside cells. Altogether, protein detection, identification, and even sequencing using 452 

single nanopore approaches has become a highly active, thriving research field, with great 453 

potential to revolutionize proteomics, medical diagnostics, and also fundamental biosciences. 454 

 455 

Chemistry for Next-Generation Proteomics 456 

Technologies 457 

Single-molecule protein fingerprinting has underlined the need for innovative approaches for 458 

attaching various functional groups onto peptides, such as fluorescent moieties. A high degree 459 

of chemical specificity is required to avoid down-stream misidentification of amino acids, which 460 

could lead to sequencing errors. Chemists are making headway on a suite of selective and 461 

high-yield methods for labeling specific amino acid side chains, amino acid termini, and post-462 

translational modifications with minimal cross reactivity (Box 5). 463 

 464 

Labelling stability and efficiency is paramount to the success of sequencing technologies, but 465 

is also a challenge the chemists face. First, modification of most or all individual residues of 466 

one amino acid type is desired for an explicit identification of a peptide sequence, which 467 

requires selective and highly efficient reactions. Second, error-free sequence prediction 468 

requires multiple chemical labels, but the stability of the chemical labels has been an issue in 469 

some sequencing techniques. These issues have been best characterized for 470 

fluorosequencing (Box 5a).  471 
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 472 

For many of the sequencing techniques, amino acids must be labeled with a chemical tag to 473 

allow for the differentiation between the amino acids. While it is theoretically possible to get a 474 

broad coverage of the proteome with a minimal set of amino acid labeling, specific 475 

identification of peptides or broader sequence coverage requires a larger suite of labels. 476 

Overall, there are twelve distinct side chain types in peptides ranging from highly reactive 477 

amino acids like lysine and cysteine, to functional groups that are more challenging to modify, 478 

such as amides (Gln/Asn) and alkanes (Ala, Gly, Ile, Leu, Pro, and Val). There are a large 479 

number of methods to label amino acids, however some chemistries do not provide sufficiently 480 

stable bonds for some single-molecule sequencing approaches. To date, only eight (Lys, Cys, 481 

Glu/Asp, Tyr, Trp, His, and Arg) have thus far been shown to be stable, selective, and reactive 482 

enough for the single-molecule fluorosequencing approach9,99. Research is ongoing to test a 483 

wide variety of other labeling conditions to cover all of the proteinogenic amino acids (Box 484 

5b).  485 

 486 

Chemical modification of protein termini is highly desired for several sequencing techniques 487 

like fluorosequencing, nanopores and DNA-PAINT approaches where end labeling or ligation 488 

is required (Figure 1). The terminus provides an attachment point for surface immobilization 489 

and can offer a simple way to remove excess chemical reagents during procedures that 490 

require multiple labeling steps. Two terminus-specific methods have found great promise for 491 

single-molecule sequencing, C-terminal labeling using decarboxylative alkylation (Box 5c) 492 

and modification of the N-terminus with 2-pyridinecarboxaldehyde (Box 5d). 493 

The long-term goal of characterizing proteoforms requires methods to detect and differentiate 494 

PTMs. They can be recognized by mass spectrometry through the mass shifts they cause on 495 

a protein, peptide and their fragments100,101 and databases of the expected mass shifts like 496 

Unimod are used to support the identification102. However, these databases show that there 497 

can be significant overlaps between PTMs of the same or similar mass suggesting that 498 

orthogonal methods are needed.  Single-molecule protein sequencing methods rely on either 499 

site-specific labeling or elimination and replacement chemistries (Box 5e).  500 

Discussion: a spectrum of opportunities 501 

An emerging landscape of single-molecule protein sequencing and fingerprinting technologies 502 

is being developed (Figure 1) with the promise to resolve the full proteome of single cells with 503 

single-protein resolution, opening up unprecedented opportunities in fundamental science and 504 

medical diagnostics. Cellular tissues’ composition could then be resolved with single-cell 505 

resolution, opening up new research avenues from embryonic development to cancer 506 
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research. Diagnostics could benefit from the ultimate single-molecule resolution by resolving 507 

very low amounts of protein in bodily samples. The detection of rare proteins with copy 508 

numbers as low as one or a few may uncover new molecular regulatory networks within cells.  509 

Some of the emerging technologies described here are still at their early proof-of-concept 510 

stages of development, whereas others like sequencing by Edman degradation and nanopore 511 

sequencing technologies have already attracted industry funding.  Additional single-molecule 512 

approaches are also promoted by commercial entities, and are out of scope for this review. 513 

 514 

A real-world application of a technology that is not MS- or antibody-based for whole proteome 515 

characterization is yet to be achieved. In the meantime, MS will continue to improve in its 516 

capacity, to support single-ion detection22 and single-cell proteomics103.  Similarly, antibody-517 

based strategies such as immunoassays that rely on specific antigen-antibody interactions 518 

have served as the standard methods for protein identification and quantification for the last 519 

few decades. Single Molecule Array technologies (Simoa104) commercialized by Quanterix  is 520 

one of the most sensitive single protein sensing  antibody-based methods used for the 521 

analysis of small analytical samples and  clinical studies down to attomolar concentration 522 

level105. The SARS-Cov-2 pandemic has accelerated the development of a high-throughput 523 

serological tests of clinical samples utilizing Simoa106  based on ultrasmall blood samples. 524 

These and other antibody based protein sensing method are likely to take greater share in the 525 

biomedical sensing industry, in parallel to the emergence of other single molecule techniques 526 

that will further permit comprehensive proteoform inference or differentiation.   527 

 528 

The emerging landscape of alternative protein sequencing and fingerprinting technologies in 529 

Figure 1 could one day help to sequence human proteoforms in a more complete way. High-530 

throughput Edman degradation could pair with bottom-up MS strategies to improve current 531 

sequence coverage limitations (Box 1). These bottom-up methods could benefit from 532 

nanopore sequencing and DNA fluorescence-based methods that aim for long read 533 

sequencing and structural fingerprinting of whole proteins. The integration of both existing and 534 

emerging technologies promises to iteratively reveal an atlas of full length proteoforms, which 535 

could itself assist these up-and-coming technologies to infer what cannot be directly measured 536 

in terms of protein primary sequence and structure.  537 

 538 

The far-reaching vision in single-molecule proteomics is in their applications for the analysis 539 

of protein-protein interactions. A map covering a wide range of proteoforms and their PPIs is 540 

an unmet milestone needed to finely understand protein networks in normal tissues and in 541 

disease. Bottom-up MS-based approaches, such as cross-linking107,108 or affinity-purification 542 
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are implemented to identify physical109 and proximal interactomes110. However, these 543 

techniques present either biochemical or sample processing yield limitations, which brings 544 

problems, including intra-protein cross-link over-representation, PPIs loss upon solubilization 545 

and limitations inherent to MS analysis, hindering single-cell interactome analysis. As of today, 546 

single-molecule analysis of PPIs has not reached main-stream proteomics, and single-cell 547 

interactomics even more so. Achieving this goal would be of outstanding interest for  548 

accurately defining e.g. protein organization within highly dynamic membraneless 549 

organelles111, such as resolving protein condensates, spatial and temporal organization at a 550 

single organelle or single cell scale, which will provide an unprecedented resolution of PPIs 551 

organization. 552 

Challenges for next-generation protein sequencing  553 

Two grand challenges await technological innovations that need to be solved to enable the 554 

high-throughput sequencing of complex protein mixtures. Firstly, there is no method to amplify 555 

the copy number of proteins, as is the case for nucleic acids. These new techniques focus on 556 

characterizing individual proteins. The aim is to sequence proteomes starting from a low 557 

number of cells or extremely minute samples often containing just a few or single copies of 558 

specific proteins. This presents a second problem: A eukaryotic cell contains billions of 559 

proteins. While the presented methods may enable single molecule protein identification, in 560 

order to profile all proteins in the cell they must reach an extremely high sensing throughput 561 

to permit whole cell analysis within a reasonable time-scale. These two seemingly 562 

contractionary requirements (single-protein molecule sensitivity and an extremely high 563 

throughput) present one of the main challenges to the field and striking an optimal balance 564 

among them will be key for all the technologies discussed. Of the orthogonal methods 565 

presented, nanopores, fluorosequencing, protein linear barcoding using DNA-PAINT to name 566 

a few, stand a chance to eventually measure billions of proteins within a few hours.  567 

 568 

To gain utility in both, research and clinical settings, emerging technologies will be evaluated 569 

in terms of their sensitivity, specificity, proteome coverage (number of proteins in the sample 570 

covered), sequence coverage (average fraction of a protein sequence covered), peptide read 571 

length (number of amino-acids covered by  a single read), accuracy (error in calling an amino-572 

acid) and cost. In this regard, additional research and validation will be required to 573 

demonstrate the benefits of these orthogonal technologies. The formation of a dedicated 574 

global academic/scientific community in single protein sequencing may catalyze further 575 

development and implementation of these technologies for more widespread use. 576 

Multidisciplinary conferences that bring together experts in chemistry, physics, biochemistry, 577 
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industry, computation, and other relevant areas of expertise (e.g. pathologists, clinicians) with 578 

a clear vision of the most relevant problems and unmet needs, will need to be embraced. 579 
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Boxes: 936 

 937 

Box 1: mass spectrometry-based global proteomics  938 

The last decade saw the maturation of mass spectrometry use in global proteomics. The 939 

typical proteomics workflow is “bottom-up” in nature and involves digesting a protein sample 940 

using a protease and characterizing the resulting peptides by mass spectrometry (MS)112. Two 941 

types of measurements are typically made in succession: (1) MS1 spectra survey the masses 942 

of a set of peptides present in the mass-spectrometer at a given moment and (2) MS2 spectra 943 

probe the structures of peptide ion species identified in the MS1 survey by isolating, 944 

fragmenting and measuring the fragment masses of one or a few of them. Peptides identified 945 

from the MS2 spectra are then mapped back to the proteins they come from to infer their overall 946 

protein abundances.  947 

 948 

Current mass spectrometers have drawbacks in terms of their dynamic range, the read-length 949 

(peptide-length) of “sequenced” peptides, and biases in detectability arising from the ionization 950 

mechanism, transmission and the mass analyzer used. Consequently, although “top-down” 951 

proteomics methods capable of analyzing intact proteins exist113, most state-of-the-art 952 

proteomics approaches characterize the proteome with high numbers of proteins but on 953 

average the proteins are characterized with low unambiguous sequence coverage and low 954 

sequencing depth.  Different sample-preparation strategies, instruments and elution profiles 955 

can improve the numbers and average sequence coverage of proteins identified in an 956 

experiment. Summarizing the best single-sample run from 47 experiments (a summary of over 957 

1000 distinct samples) in ProteomicsDB49 (Figure Box1) reveals that even with complex 958 

sample preparation, the average sequence coverage for a single sample reaches just 33%.  959 

Box 2: MS-based single-cell proteomics   960 

The dream of extending mass spectrometry (MS)-based proteomics to the single-cell level 961 

eluded researchers for decades. Even as the sensitivity of MS instrumentation improved to 962 

provide single-cell-compatible detection limits, samples comprising at least thousands of cells 963 

were in practice required to obtain an in-depth proteome profile. Two recent advances have 964 

made single-cell proteomics a reality. Miniaturized sample processing workflows such as 965 

nanoPOTS114 (Nanodroplet Processing in One pot for Trace Samples) have dramatically 966 

increased the efficiency of single cell sample preparation. NanoPOTS utilizes a robotic 967 

nanopipettor to interface with a microfabricated nanowell plate. The reduced surface contact 968 

and increased protein concentrations within the nanoliter droplets dramatically enhance 969 
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digestion kinetics and increase sample recovery for single cells and other trace samples. 970 

Concurrently, multiplexed strategies (i.e., Single Cell ProtEomics by Mass Spectrometry; 971 

SCoPE-MS)115 have been developed in which proteins from single cells are labeled with 972 

unique isobaric tags, and several cells are analyzed together in the presence of a larger carrier 973 

sample. Single cells and carrier provide a combined MS signal for each protein, and unique 974 

reporter ions released upon fragmentation enable protein quantification for each cell. While 975 

nanoPOTS and SCoPE-MS originally enabled quantification of hundreds of proteins115,116, the 976 

combination of the two techniques, as well as advances in miniaturized liquid chromatography 977 

and gas-phase separations, now enable >1000 proteins to be quantified from single 978 

mammalian cells117.  979 

Box 3 High-throughput Edman-Sequencing.  980 

In high-throughput Edman fluorosequencing, proteins are digested to shorter peptides and 981 

immobilized on a glass surface using the C-terminus8. Multiple rounds of Edman degradation 982 

coupled to fluorescence microscopy are used for sequencing. Specific amino acids are 983 

covalently labeled with spectrally distinguishable fluorophores, and the peptide fingerprint 984 

comes from measuring the decrease in fluorescence of peptides following Edman 985 

degradation9. Much like in mass spectrometry, the partial sequence is mapped back to a 986 

reference proteome within a probabilistic framework. In another method, NAAB probes 987 

specifically recognize each N-terminal amino acid of an unlabeled peptide for more complete 988 

amino acid identification12.   989 

Box 4: DNA-PAINT  990 

DNA-PAINT relies on the transient binding of dye-labeled DNA strands (imagers) to their 991 

complementary target sequence (docking site) attached to a molecule of interest. The 992 

transient binding of imager strands is detected as ‘blinking’ in an intensity versus time trace. 993 

DNA-PAINT has a few unique advantages. First, the blinking kinetics (on- and off-rates) can 994 

be tuned over a wide range, by altering the length and sequence of the imager strands, or 995 

buffer conditions, making the method compatible with different sample conditions. Second, 996 

the repetitive binding with different imager strands makes the target “non-bleachable”, 997 

collecting a large number of high-quality and high-precision blinking events, allowing for high-998 

sensitivity imaging on single-molecule targets, and with discrete molecular resolution (<5 nm). 999 

Finally, combined with orthogonal sequence labels, DNA-PAINT can be multiplexed by 1000 

imaging with up to dozens of molecular species (exchange-PAINT). 1001 
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Box 5: Chemistry concepts in protein sequencing 1002 

(a) labelling efficiency and stability. The challenges in labeling efficiency and stability are 1003 

well characterized in fluorosequencing, which uses harsh conditions (including neat 1004 

trifluoroacetic acid) which can lead to the reversal of maleimide-labeled cysteine residues. To 1005 

circumvent this reversal, fluorosequencing instead utilizes the iodoacetamide chemistry which 1006 

generates a more stable bond. Another point of complexity is that full conversion is dictated 1007 

by solvent accessibility of targeted amino acid side chains and has an influence on the labeling 1008 

efficiency. However, modeling suggests labeling efficiencies and stabilities significantly less 1009 

than 100% can be compensated for computationally, at least to some degree, during the 1010 

reference database matching process8.  1011 

 1012 

(b) Labelling side chains. The most widely accessible labels are those that target lysine and 1013 

cysteine residues using NHS esters, maleimide, and iodoacetamide reactive groups, 1014 

respectively, (Figure 5a and b). Additionally, the phenol ring of tyrosine can be labeled using 1015 

benzyl diazo groups118 (Figure 5c), however, the attachment of fluorescent molecules 1016 

generally requires a two-step labeling procedure due to the cross-reactivity with fluorescent 1017 

molecules. Another robust bioconjugation method to selectively target tyrosine side chains is 1018 

an ene-like reaction with cyclic diazodicaboxamides in aqueous buffer119. Carboxylic acids 1019 

have also been labeled on peptides, but due to the similar reactivities between Asp, Glu, and 1020 

the C-terminus, this has primarily been used on synthetic peptides. The method makes use of 1021 

a standard technique (EDC-coupling) for binding amines covalently to carboxylic acids, 1022 

forming an amide bond (Figure 5d). A recently reported promising bioconjugation approach 1023 

has shown that light-activated 2,5-disubstituted tetrazoles are able to convert glutamic and 1024 

aspartic acid residues in high yields120. Finally, tryptophan can be labeled at the C-2 position 1025 

using sulfenyl chlorides (Figure 5e). However, this comes with limitations that the reaction is 1026 

extremely water sensitive and the reactive group must be made in situ99. There are also 1027 

promising new methods that allow for chemical modifications of other amino acids. Methionine, 1028 

for example, can either be elegantly labeled with hypervalent iodine reagents121 or by the use 1029 

of urea-derived oxaziridines122,123. Recently, a histidine-selective conjugation methodology 1030 

was reported where thiophosphorodichloridates selectively form a covalent bond with 1031 

histidines in proteins124.  1032 

 1033 

(c) C-terminal labeling. Labeling of the C-terminus brings a challenge in that it must be 1034 

separated from aspartic and glutamic acid, which carry the same functionality. A photoredox 1035 

reaction on the C-terminus of peptides and proteins by de-carboxylation of the C-terminal 1036 

carboxylic acid followed by an alkylation step by a Michael acceptor has been recently 1037 
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reported125,. Due to their higher oxidation potential, the carboxylates of internal amino acid 1038 

chains are less prone to this modification, making the method highly site-selective. This 1039 

technique has been applied to a variety of peptide substrates as well as the C-terminus-1040 

specific alkylation of human insulin A (Figure 5f).  1041 

 1042 

(d) N-terminal labeling. Several methods exist for modifying the N-terminus126. Classic 1043 

approaches like reductive amination with aldehydes or acylation with NHS-esters, which rely 1044 

on pH control to increase the selectivity, are not sufficiently specific. Other strategies involve 1045 

the side chain of the N-terminal amino acid. Native chemical ligation127 or condensation 1046 

reactions with aldehydes128, could be used to label N-terminal cysteine, serine, threonine or 1047 

tryptophan residues. Furthermore, oxidizing N-terminal serine or threonine residues to their 1048 

corresponding aldehydes allows oxime conjugation with hydrazides or hydroxylamines129. A 1049 

more general methodology has emerged where the N-terminal amine condenses with the 2-1050 

pyridinecarboxaldehyde (2PCA), forming an imine structure, which further reacts in a 1051 

cyclisation with the nearby amide nitrogen of the second amino acid to form the stable 1052 

imidazolidinone product130. This reaction has recently been shown to be useful for single-1053 

molecule peptide sequencing as a method for the immobilization of peptides onto a solid-1054 

phase resin, multiple chemical derivatization steps without purification, and subsequent 1055 

traceless release prior to fluorosequencing10.  1056 

(e) PTMs. As an example of elimination replacement chemistries, phospho-serine and 1057 

phospho-threonine residues can be labeled by β-elimination followed by Michael addition 1058 

(BEMA). In mass-spectrometry-based phospho-proteomics, it is used to introduce an 1059 

additional trypsin cleavage site at the phosphorylated amino acid131, whereas at the single 1060 

molecule level it can be utilized to site-specifically attach a fluorescent label. Such approach 1061 

has been established for Edman degradation described above9.  1062 

Protein glycosylation can be complex, featuring many different types of monomeric units 1063 

bound in possibly branching polymer structures. Their full structural characterization often 1064 

requires derivatization and is done on glycans that are released from the protein. Therefore, 1065 

schemes for understanding site-specific and simple glycosylation events should be the current 1066 

focus. N-glycan anchoring asparagine residue can be converted to aspartate by glycan 1067 

removal with PNGase F enzyme practically for all protein sequencing approaches, reducing 1068 

the complexity to the detection of this mutation. Another possibility to introduce ite-selective 1069 

labels is  the incorporation of azide-tagged glycans by adding modified carbohydrates to the 1070 

cell medium132. In other detection schemes the location could be also inferred using glycan-1071 

specific reporter molecules such as lectins, engineered proteins or aptamers133. 1072 
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 1073 

 1074 

Figure Legends: 1075 

Figure Box1: Sequence coverage in global proteomics studies. MS-based global 1076 

proteomics studies identify and quantify the proteins with variable sequence coverage. The 1077 

single best run from 47 publications present in proteomicsDB shows how sample-specific 1078 

protein sequence coverage improves with sample preparation methods. Sequence coverage 1079 

generally decreases with sample complexity and increases with time (cost) dedicated to 1080 

studying the sample.  1081 

 1082 

Figure 1: The emerging landscape of single-molecule protein sequencing and 1083 

fingerprinting technologies. The new proteomics landscape can be understood in terms of 1084 

the type of analyte that is being studied, the method of protein identification, and the target 1085 

niches in proteomics.  Various techniques, particularly those involving complex readout 1086 

signals, are suitable to characterize short peptide sequences, while others are primed to 1087 

characterize full-length proteins or larger complexes. Technologies may specialize in short 1088 

peptides (Peptides in the figure), whole proteins (Proteins) or macomolecular complexes 1089 

(Complexes). The method of protein identification may fingerprint certain classes of amino 1090 

acids (aa-fingerprinting), reveal each amino acid down to its physiochemical class or better 1091 

(aa-sequencing). Much like mass spectrometry, technologies might characterize proteins by 1092 

their masses and/or the masses of their fragments (Mass spectrum). Other methods aim to 1093 

characterize properties of folded proteins (Structural fingerprint). The target niches could 1094 

include the study of specific PTMs or deciphering whole proteoforms (PTM/proteoform 1095 

inference), analyzing purified proteins or complex mixtures of proteins (Complex mixtures). 1096 

Other applications can include protein interaction inference (PPI-studies) or glimpsing insights 1097 

into protein structure (Structure). 1098 

 1099 

Figure 2: The renaissance of classic techniques. High-throughput fluorosequencing by 1100 

Edman degradation featuring (a) amino acid-specific chemical modification of peptides with 1101 

fluorophores and (b) N-terminal amino acid recognition using a plurality of probes. (c) Neutral 1102 

particle mass spectrometry is a promising technique to characterize proteoforms. Currently, 1103 

the technology can be used to characterize large megadalton-scale complexes using Si-based 1104 

nanosensors. Graphene-nanosensors and further developments may push the technology 1105 

towards smaller and smaller proteins and potentially lead to increased sequence coverage in 1106 

global proteomics. Electrospray Ionization (ESI) (d) Nanopore electrospray is a marriage of 1107 
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nanopores, classical electrospray, and single-particle detection techniques to sequence single 1108 

proteins by measuring the amino acids one at a time.  1109 

 1110 

Figure 3: DNA facilitated protein sequencing. (a) Schematic of specific amino acid labelling 1111 

on a denatured protein with DNA strands. Each DNA strands contains both a barcode for the 1112 

specific amino acid, and (optionally) a unique molecular identifier (UMI). (b-e) Illustration of 1113 

various readout strategies of DNA-labelled samples, for protein identification. (b) Protein 1114 

kinetic fingerprinting using quantitative DNA-PAINT. (c) Protein linear barcoding using 1115 

molecular-resolution DNA-PAINT. (d) DNA Proximity Recording. (e) Protein structural 1116 

fingerprinting using DNA-FRET-PAINT. 1117 

 1118 

Figure 4: Three strategies of Nanopore-based protein sequencing and sensing. In all 1119 

cases, an electrical force is used to translocate either a linearized or a folded protein through 1120 

a nanoscale aperture (red arrow).  (a) Reading unlabeled proteins or peptides using a 1121 

biological nanopore. (b) Identification of whole proteins and peptides by fingerprinting with 1122 

deep learning algorithms. Residue-specific fluorescent labels (e.g. at K, C, M) can be used to 1123 

fingerprint proteins and peptides alongside electrical current sensing. (c) Identification of 1124 

folded proteins using lipid tethering. Other tethers might include DNA carriers, DNA origami 1125 

anchors, or plasmonic trapping. 1126 

 1127 

Figure 5: Chemistry for protein sequencing. (a) Lysine labeling with NHS esters (b) 1128 

Cysteine labeling with iodoacetamide reactive groups (c) Strategies for labeling the phenol 1129 

ring of tyrosine (d) Aspartate/Glutamate labeling (e) Tryptophan Labeling with sulfenyl 1130 

chlorides. (f) C-terminal derivatization through Monoalkylation of A chain (41%).  1131 

 1132 

  1133 
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Figure  Box 1: Sequence coverage in global proteomics studies with MS 1134 

  1135 
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Figure 1: The emerging landscape of single-molecule protein sequencing and 1136 

fingerprinting technologies.  1137 

  1138 
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Figure 2: The renaissance of classical techniques 1139 
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Figure 3: DNA-facilitated protein sequencing 1141 
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Figure 4: Nanopore-based protein sequencing  1143 
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Figure 5: Chemistry for protein sequencing 1144 

 1145 


