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Abstract: Biobased production has been promoted as an alternative to fossil-based production to mitigate 
climate change. However, emerging concerns over the sustainability of biobased products have shown 
that tensions can emerge between different objectives and concerns, like emission reduction targets and 
food security, and that these are dependent on local contexts. Here we present the Open Sustainability-
in-Design (OSiD) framework, the aim of which is to integrate a context-sensitive sustainability analysis 
in the conceptual design of biobased processes. The framework is illustrated, taking as an example 
the production of sustainable aviation fuel in southeast Brazil. The OSiD framework is a novel concept 
that brings the perspectives of stakeholders and considerations of the regional context to an ex ante 
sustainability analysis of biobased production. This work also illustrates a way to integrate methods from 
different scientific disciplines supporting the analysis of sustainability and the identification of tensions 
between different sustainability aspects. Making these tensions explicit early in the development of 
biobased production can make them more responsive to emerging sustainability concerns. Considering 
the global pressure to reduce carbon emissions, situating sustainability analyses in their socio-technical 
contexts as presented here can help to explain and improve the impacts of biobased production in 
the transition away from fossil resources. © 2021 The Authors. Biofuels, Bioproducts and Biorefining 
published by Society of Industrial Chemistry and John Wiley & Sons Ltd.
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Introduction

B
iobased production has been promoted as an 
alternative to fossil-based production to mitigate 
climate change.1 However, concerns about the 

impacts of biobased production on sustainability have put its 
desirability into question.2,3 Concerns over the sustainability 
of biobased products include food security impacts related 
to the use of food crops, land use changes in feedstock 
producing regions, and negative impacts on the livelihood of 
local communities.4–6 These examples indicate that tensions 
can emerge between sustainability objectives and concerns, 
and that these depend on the sociotechnical context around 
biobased production.

Conceptual process design, as part of research and 
development (R&D), is used to explore and evaluate 
potential applications of emerging technologies and their 
configuration, to decide where to dedicate further research.7,8 
For example, it is common that conceptual processes 
are designed to assess, select and / or optimize biomass 
conversion alternatives to obtain a target biobased product. 
In this way, conceptual design exercises can have an impact 
on the direction of a biobased innovation as it goes from 
conceptual to more detailed designs and implementation. In 
its scope, conceptual process design has been mostly focused 
on economic feasibility, and more recently on sustainability 
too - although the focus has been mostly limited to climate 
change and efficiency metrics.9 Opening conceptual design or 
broadening its scope to considerations of the sociotechnical 
context and the perspectives of stakeholders around 
biobased production can therefore serve to identify and 
respond to sustainability concerns and tensions early in their 
development.

In this work we present the Open Sustainability-in-Design 
(OSiD) framework, which aims to integrate a context-
sensitive sustainability analysis in the conceptual design of 
biobased processes. This work derives from reflection over a 
previous project on the production of biobased sustainable 
aviation fuel (bio-SAF) in southeast Brazil, which we use to 
illustrate the framework. While we refer to relevant tasks and 
results obtained within this project, the focus here is on the 
overall framework as a novel perspective for the early stage 
design of biobased processes. These results are described in 
more detail in separate publications focused on the techno-
economic, environmental and societal studies that were part 
of the project.10–18

In particular, the OSiD framework allows (1) an integration 
of the perspectives of stakeholders and considerations of 
the regional context to an ex ante sustainability analysis 
of biobased production alternatives, (2) combination of 

methods from different scientific disciplines to support the 
analysis of sustainability in a conceptual process design 
project, (3) identification of sustainability tensions with 
regard to the project background (related to, e.g., objectives 
and technologies in consideration) and the local context that 
can include, for instance, certain sustainability objectives or 
stakeholder priorities. Making these tensions explicit early in 
the development of biofuels can contribute to making biofuel 
innovations more responsive to emerging sustainability 
concerns. This achievement would be significant for 
biofuels, specifically, considering the ongoing sustainability 
controversies about them. Overall, considering the global 
pressure to reduce carbon emissions, situating sustainability 
analyses in their socio-technical contexts can help understand 
and improve the impacts of biofuels in support of a 
sustainable transition away from fossil fuel resources.

Open sustainability and open 
design of biobased processes

Sustainability is a concept open to interpretative flexibility 
where different people may consider something sustainable 
or not depending on their own perspectives and values.19 
When stakeholders from different backgrounds and with 
different perspectives need to work together, as in the case of 
biobased production, it is likely that they will have a different 
vision on how a sustainable biobased production should be 
in practice. Not having an explicit understanding on what 
is desirable leaves space for ambiguity and can contribute 
to the emergence of differences between stakeholders. The 
case described by Asveld and Stemerding illustrates this: A 
cleaning product company aimed to develop a sustainable 
biobased product with lower environmental impacts than 
alternatives in the market, as measured by a Life Cycle 
Assessment (LCA).2 However, they received unexpected 
criticism from a societal group that put the sustainability 
of the product into question based on socio-economic and 
environmental risk beyond what is measured in a typical 
LCA, and this ultimately led to the abandonment of the 
innovation.2 In this case, there was ambiguity around what 
the different actors considered a sustainable product. This 
example points to a need for a sustainability understanding 
that is open to the perspectives and values of stakeholders 
related to biobased production.

Although efforts have been made to develop methodologies 
for the design of sustainable biobased processes, they 
are often challenged by disciplinary boundaries that 
yield a narrow scope of analysis, making them closed 
to considerations of contextual settings and stakeholder 
perspectives.9 The case just mentioned above illustrates this 
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challenge. This means that, during the design of biobased 
processes, there has been a limited consideration of societal 
concerns, tensions, and diverging visions of sustainability that 
emerge with this production approach.

Opening R&D to the perspectives and participation of 
stakeholders has been approached in academic research and 
science policy through responsible research and innovation 
(RRI) and open science. These approaches seek to align 
scientific and technological developments with societal 
values for a more sustainable society.20 For this, some 
authors have suggested existing tools and methods from 
academic fields in the humanities and social sciences.21–23 
For example, stakeholder mapping and diverse engagement 
strategies can be used to open a dialogue and bring about an 
inclusive understanding and development of a technology.24 
Value-sensitive design (VSD), which is an approach to the 
integration of stakeholder values (e.g., care for nature and 
privacy) in the design of a product, has been suggested to 
address moral ambiguities and respond to societal concerns 
related to technological innovations.25 The use of scenarios 
and other futuring methods has also been suggested as an 
anticipatory glance at the impacts and benefits of a technology, 
and to also understand the complex configuration that their 
development may involve (regarding actors’ expectations, 
regulations, etc.).26,27 Even more, van de Poel et al. propose 
a conceptual model to integrate RRI in industrial practice, 
suggesting methods like those above for operational corporate 
activities.22 However, despite the broad discussion about 
opening research and innovation to stakeholder participation, 
in industrial practice its application has been limited,28 with 
some authors observing that academic RRI developments are 
not in line with common industrial practice.29

There is an opportunity during conceptual process design to 
bring forth openness and responsible innovation practices at 
the early stages of a biobased innovation. That is, as conceptual 
design is used to explore the potential of a technological 
innovation and assess its feasibility before large investments 
are put into place,8 this exploration can be extended to 
consider stakeholder perspectives or engage them in the 
process, and address emerging concerns and tensions when 
taking decisions about the direction of the innovation. In this 
way, the development of the technology can be responsive to 
societal and sustainability concerns as they emerge.

Open Sustainability-in-Design 
framework

The following framework aims to integrate a context-sensitive 
sustainability analysis into the design of biobased processes. 
The typical structure of the design process (i.e., problem 

definition, synthesis of alternatives, and evaluation) is taken 
as a basis for the framework. However, instead of focusing 
on ranking or selecting a best alternative, as is typically done 
in process design, with this framework the potential process 
alternatives are contrasted, and tensions and opportunities 
for future work are identified to support an open deliberation 
and decision making. For this, the definition of sustainability 
is open to stakeholders’ concerns and values with regard to 
sustainable production, while knowledge of the local context 
is used to situate the evaluation of design alternatives and 
support future decision making. As the main focus here is on 
sustainability, more focus will be given to the steps pertaining 
to the definition and analysis of sustainability.

Defining the project

Biobased processes require the coordinated action of diverse 
stakeholders to support the development of a production 
chain from biomass production to final product because there 
is no single actor that possesses all the capacity, in terms of 
knowledge and resources, to advance a specific biorefinery.30 
Thus, in coordination with the stakeholders involved in 
the project, the objectives and constraints to the project are 
defined. This definition provides enough information to 
delimit the space for designing, making explicit the design 
aim, i.e., the production of a target biobased product(s), the 
processing of a specific feedstock(s) or the exploration of 
potential applications for a specific technology. The target 
production scale is defined at this stage too, as a target or as a 
variable. The location of biomass production and conversion 
should be defined as it is the basis for understanding the 
context of the project, setting production possibilities for the 
project as well as the desirable aspects the bioprocess should 
comply with, and which will define how its performance will 
be evaluated.

Besides the project partners, other stakeholders who can 
be affected by the development of the project are identified 
at this point. Stakeholders can include biomass producers, 
biobased product users (industrial intermediaries as 
well as final users), government bodies involved in the 
development of infrastructure, research institutes related to 
the development of technologies, processes and products, as 
well as public actors and civil society around the production 
chain.31 Clearly, during the early stages of development, 
few aspects of a biorefinery are defined and this may limit 
the capacity for involving and even identifying specific 
stakeholders. In this case, a generic biobased production 
chain can be used as a proxy to start the identification of local 
stakeholders, who, in turn, can help with the identification 
of other relevant stakeholders, as shown elsewhere in the 
literature.16
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Case study

The aim of the project was to identify promising production 
chains for bio-SAF from locally available biomass resources. 
The project was set in the southeastern region of Brazil, 
the biggest agricultural region in the country,32 with large 
airports servicing major urban and industrial areas (i.e., 
Guarulhos and Galeao airports in Sao Paulo and Rio de 
Janeiro respectively). The scale of this project was not defined 
at the beginning of the project but it became a variable to 
define, taking into account: (1) the demand in the regional 
airports, and (2) the potential for bio-SAF production and 
use. The latter is related to existing or expected blending 
mandates and limits to their use in commercial aviation.33 
Identified stakeholders in the project were actors directly 
involved in the production chain, such as producers of crops 
suitable for bio-SAF production (e.g., sugarcane, soybean), 
farmer associations in the region, technology developers 
and companies active in, e.g., biomass conversion and crop 
development, airport operators, fuel distributors, and airlines 
operating in Brazil. Other stakeholders included certification 
laboratories, financing institutions, governmental bodies 
related to agriculture, energy and technology, as well 
as producers of other fuels, notably bioethanol for road 
transportation.

Exploring the design space

This stage is about exploring the space for designing, 
identifying the production potential from available resources 
in the target region, and sustainability aspects relevant to the 
development of the project and how to evaluate them.

Production

Promising feedstock and products are identified from a high-
level analysis of the production potential in the region. Where 
biomass feedstocks are defined, the analysis is focused on the 
selection of a main product or product portfolio; when the 
project has a target product the focus of analysis becomes the 
biomass type and the identification of potential by-products. 
When having a biomass focus, a list of feedstocks available in 
the region is necessary, which can include sugar and oil crops, 
as well as residues available from agricultural and industrial 
processing in the same region. When the product definition 
is the focus, the list is focused on product types that can feed 
into the industrial environment in the region, or that can be 
connected to a supply network in demand. For this analysis, 
access to statistical data about industrial and agricultural 
production in the region is therefore advantageous.

Once available resources or target products are defined, 
reported or expected conversion yields can be used to derive 

the production and economic potential (i.e., amount of main 
product per year based on feedstock availabilities, and the 
difference between sale revenues from all products and cost 
from main raw materials respectively) of possible biomass 
and product combinations. These calculations are based 
on conversion yields for the main product and relevant 
by-products from available processing technologies. Given 
the high-level analysis and uncertainty of this exploration, 
only biomass-product combinations with significantly lower 
economic potential or with production potential far from the 
target production scale (if defined) are discarded after taking 
into consideration uncertainties in the calculations.

Case study

Identified feedstocks in the region included eucalyptus, 
macauba, soybean, and sugarcane, amongst others, and the 
lignocellulosic residues derived from their processing. The 
processing of these feedstocks for obtaining bio-SAF was 
explored under different conversion routes. This analysis 
was based on reported conversion yields as described 
by Alves et al.10; with the detailed specification of the 
conversion process and the supply chain out of scope at this 
point. Potential by-products under consideration included 
secondary fuel products derived from the process (such as 
naphtha and diesel) as well as higher value biochemicals. 
Based on economic potential results10 the range of feedstocks 
was narrowed to eucalypt, macauba, and sugarcane, with 
succinic acid as a higher value product.

Open sustainability

Sustainability is defined through the identification of issues 
relevant to the project and indicators to measure these 
issues. The identification of sustainability issues is based on 
stakeholder engagements. Interviews, surveys, and other 
elicitation methods can be used for this purpose.16 Indicators 
for evaluating these issues are selected considering the 
availability of data and measurement feasibility within the 
project, reliability and associated uncertainty, and relevance 
(i.e., limited to the aspects that are relevant to the design 
alternatives). Existing lists of sustainability issues and 
indicators from state-of-the-art sustainability literature can 
be used as starting point to define sustainability as relevant 
in this case study, examples include the UN Sustainable 
Development Goals and the related Indicator Framework,34 
as well as the multiple sustainability certification schemes 
and indicators sets that have been developed for biobased 
production (e.g., Bonsucro,35 the Roundtable on Sustainable 
Biomaterials,36 and indicator sets by Efroymson et al.37–39). 
However, the development of the project should remain 
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open to the identification of aspects that do not appear in 
these lists, or to specify them according to the local context 
of the project. This openness with regards to the analysis of 
sustainability is necessary considering that different issues 
might be of more relevance in some regions or for some 
projects than for others. Also, some sustainability issues 
might be interpreted or perceived differently by stakeholders 
who may have different interests and priorities based on 
the values of the group they represent, as illustrated by the 
case of the national interpretation of the Roundtable on 
Sustainable Palm Oil.40 Therefore, specifying sustainability 
with considerations of the local context is necessary for 
selecting and interpreting indicators. Furtheremore, local 
variables, such as soil condition and climate, should be taken 
into account when measuring environmental impacts.38 
If possible, in the project context, it is also recommended 
to validate the identification of sustainability issues and 
the selection of indicators through the participation of 
stakeholders.15,41

Case study

Based on interviews with stakeholders related to the 
potential production of bio-SAF, a survey with experts 
on biofuel production, and a sustainability literature 
review, sustainability issues relevant to the case study and 

indicators and methods for their evaluation were defined 
(see Table 1).15,16 Considering data availability and capacity 
for evaluation, it was decided to evaluate four sustainability 
issues through quantitative indicators (i.e., climate change, 
efficiency, profitability, social development), and four 
qualitatively (i.e., commercial acceptability, energy security, 
investment security, and soil sustainability). Sustainability 
issues mostly related to the implementation of production 
and beyond the scope of design choices were left out 
of the selection of indicators and methods (including 
cultural diversity, equity, and social cohesion, and labor 
rights, amongst others). Below we present an overview 
of the four qualitative indicators only; the methods for 
evaluating profitability, climate change, efficiency and social 
development impacts are described in detail in the references 
indicated in (Table 1).

Commercial acceptability was explored in terms of the 
approval status or certification by ASTM International, in 
alignment with the Brazilian National Agency of Petroleum, 
Natural Gas and Biofuels.52 Certification is intended to assure 
stakeholders in the aviation industry that the fuel has the same 
safety and performance, and can use the same infrastructure, 
as conventional kerosene.53 Energy security was explored in 
terms of contribution to energy reliability and self-sufficiency 
considering the concerns of government and biofuel 
stakeholders about these aspects, and who referred to recent 

Table 1. Sustainability framework for the ex-ante analysis of bio-SAF production in southeast Brazil.

Sustainability aspects Description Indicator(s) Main references

Qualitative Commercial 
acceptability

Analyzed in relation to ensuring safety and a good 
performance of aviation biofuel

ASTM approval 16,33,42

Energy 
security

Related to energy supply reliability and self-sufficiency Potential for power 
generation and NREU

13,14,16

Investment 
security

Related to the readiness level of new crops and 
technologies, and previous experience with potential crops

FRL and crop 
development status

16,43,44

Soil 
sustainability

Regarding the protection and recovery of the soil in relation 
to biomass production.

Residue harvest 11,45–51

Quantitative Climate 
change

Analyzed as the GHG emissions derived from the biomass 
production and distribution stages, and the aviation biofuel 
production process

GHG emissions 12–14

Efficiency Primarily evaluated in terms of non-renewable energy use 
and other mass and energy efficiency indicators related to 
the process

NREU 13,14

Profitability Analyzed in terms of the minimum selling price of aviation 
biofuel required to payback production expenses, including 
capital and operational expenses

MSP 13,14

Social 
development

Analyzed in relation to impacts on national employment, 
gross domestic product and trade balance

Direct and indirect jobs, 
GDP contributions and 
trade balance

17

ASTM: American Society for Testing and Materials; FRL: Fuel readiness level; GDP: Gross domestic product; GHG: Greenhouse gases; 
MSP: Minimum selling price; NREU: Non-renewable energy use.
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energy supply problems in Brazil.16 To analyze energy security, 
energy use derived from the estimations in the literature13,14 
was used as a relative indication of the performance of 
conversion technologies on this aspect (i.e., a negative score for 
the alternative with highest non-renewable energy use (NREU) 
and a positive score for the alternative with lowest NREU). 
The potential of the different alternatives for power generation, 
which is expected to contribute to energy reliability16, was 
taken as indicator of energy security for each feedstock. 
Investment security was explored through the readiness 
level assigned to conversion technologies and feedstocks. 
This aspect was considered according to the responses of 
stakeholders from the government, technology companies, 
and research institutes, and referencing farmers, who perceived 
risk in unproven technologies (including feedstocks), 
especially those for which they had no relatable experience.16 
For technology alternatives the Fuel Readiness Level scale 
was used as a reference,43 while for feedstocks the Feedstock 
Readiness Level scale from the Commercial Aviation 
Alternative Fuels Initiative was used as a benchmark.54 Soil 
sustainability was considered based on stakeholders’ concerns 
regarding the protection and recovery of natural resources, 
especially with regard to deforestation and land degradation.16 
Most interviewed stakeholders showed concern about this 
aspect, including respondents from the government, aviation 
and technology companies, and research institutes.16 Soil 
sustainability was studied through a review of the literature.

Design of process alternatives

Taking the process and product combinations defined in 
the previous steps, process alternatives are synthetized 
considering suitable conversion technologies, upstream and 
downstream processing, and mass and energy integration 
as in typical process design methods. If they are in the 
scope of the project, supply chain elements, such as biomass 
transportation and storage, and fuel distribution, are to be 
taken into account at this point. As the scope of this step is 
common to the engineering domain, the reader is referred 
to process design and other engineering literature.8,55–57 
Nevertheless, the activities within this step should be targeted 
to gathering data for the evaluation of sustainability as 
defined above. That is, the outputs of this step, mass and 
energy flows including emissions, should be specified to 
support the evaluation of the sustainability performance of 
the process alternatives based on the selected indicators.

Case study

Preliminary techno-economic analyses served as a basis to 
define specific production process alternatives for the case 

study, exploring the use of various conversion technologies 
(i.e., direct fermentation (DF) and alcohol to jet (ATJ) for 
sugar streams, hydrotreated esters and fatty acids (HEFA) 
for oil streams, and fast pyrolysis (FP), hydrothermal 
liquefaction (HTL) and gasification Fischer–Tropsch (GFT) 
for lignocellulosic streams) and pretreatment methods.13,14 
The production scale was defined as 210 kton/year of bio-
SAF, aiming to cover 10% of the jet fuel demand of the main 
airports in Sao Paulo and Rio de Janeiro, assuming 50% 
blending with conventional jet fuel. Process utilities were 
considered inside the battery limits increasing mass and 
energy integration potential.

From this analysis, production chain alternatives were 
defined as (1) sugarcane processed with ETJ and FP for the 
sugarcane juice and solid residues fractions respectively; 
(2) eucalyptus residues processed with FP; (3) eucalyptus 
residues processed with HTL; (4) macauba processed 
with HEFA and FP for the oil and solid residue fractions 
respectively; and (5) macauba processed with HEFA and HTL 
in the same way. Derived from the combination of feedstocks 
and conversion technologies, by-products included succinic 
acid, and energy products like diesel and naphtha, and 
excess power to be sold to the grid.10,13,14 The production of 
hydrogen – a raw material for the upgrading of intermediate 
streams to jet fuel quality – was initially considered outside 
of the battery limits. Looking at its impact in the early studies 
of the project, hydrogen production and its integration with 
some of the evaluated processes was also studied.

Sustainability evaluation and identification 
of tensions and opportunities

The evaluation of the process alternatives with regards to 
sustainability is based on the indicators defined in the Open 
Sustainability step. A life-cycle approach to the sustainability 
analysis is suggested, especially for the measurement of 
environmental impacts for which well-defined methods 
and tools exist. However, attention must be given to making 
explicit the underlying uncertainties and assumptions that are 
part of the analysis (e.g., data sources, allocation methods) 
given the impact they can have on the evaluation results.58 
For this, the present framework can be aligned with ex ante 
life cycle assessments (e.g., anticipatory LCA, consequential 
LCA) promoting a discussion with stakeholders about 
these aspects during the selection of data, the evaluation of 
alternatives, and interpretation of results.59

Evaluation results are contrasted with regards to the 
different sustainability issues identified in earlier steps of 
the framework. It is expected that tensions will emerge 
with regard to different sustainability aspects. As part of 
the analysis, sustainability tensions are therefore identified 
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and contextualized to identify improvement opportunities, 
and strategies for further research. If possible, the concepts 
and the evaluation results are brought for discussion with 
stakeholders for feedback, potentially providing new insights 
for their contextualization or the identification of new 
opportunities, and to deliberate on the sustainability tensions 
and possibilities for future action with, for example, social 
learning and responsible innovation tools.

Case study

Figure 1 shows the results related to climate change, energy 
efficiency and profitability, and Fig. 2 shows the results related 
to the qualitative exploration of energy security. These results 
indicate a tension emerging with regards to the production 
of hydrogen and utilities and the valorization of side streams, 
and serves to illustrate this step of the framework.

All of the options that were studied led to lower emissions 
and less energy use than conventional kerosene but at 
higher cost (i.e., GHG emissions from fossil kerosene 
are at 87.5 gCO2/MJ60 while the kerosene price is in the 
range of 311–722 $/ton looking at the past 3 years.)61 The 
alternatives with a higher economic profitability are those 
based on the processing of lignocellulosic residues. When 
looking at technology alternatives to process these residues, 
the most favorable one in economic terms (i.e., HTL) 
is the least favorable with respect to climate change and 
energy efficiency. This is largely related to the energy and 
hydrogen requirements estimated for this alternative.13,14 
An opportunity for resolving this tension is to explore 
alternative approaches for the generation of hydrogen. Steam 
methane reforming, considered in the present study, is the 
most common and economic option but it is one of the 
main contributors of natural gas and emissions in the case of 
HTL.13 Interesting alternatives that can be further explored 
are, for example, the thermochemical conversion of a fraction 
of the biomass for producing H2, or even the electrolysis of 
water using renewable energy.62

However, this path leads to a tension between different 
product alternatives, each favoring the interests of different 
stakeholders. Hydrogen from biomass can be favored over 
higher value products or bio-SAF by dedicating a fraction of 
biomass or lignocellulosic residues for gasification, and thus 
improving the non-renewable energy efficiency and climate 
change impacts of the production chain. This would assist 
the airlines using this fuel to meet their decarbonization 
targets and the biorefinery operators’ performance in line 
with the recently passed National Biofuel Policy (RenovaBio) 
in Brazil through which GHG emission savings can yield 
a profit for biofuel producers63,64 (although the added 
profit from RenovaBio vis-à-vis added capital investment is 

another point for study). Bioenergy can also be produced 
through co-generation from a fraction of the biomass 
feedstock (or residues in the case of ATJ) and in this way 

a

b

c

Figure 1. Performance of potential production chains with 
regard to GHG emissions (a) as indicator of climate change; 
NREU (b) as indicator of efficiency; MSP (c) as indicator 
of profitability. ETJ: Ethanol to jet; Eu: Eucalyptus; FP: 
Fast pyrolysis; GFT: Gasification Fischer–Tropsch; HEFA: 
Hydro-processed esters and fatty acids; HTL: Hydrothermal 
liquefaction; Ma: Macauba; SC: Sugarcane.
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can contribute to distributed power generation in the region 
for the sake of energy security, which is in the interest of the 
regional government. Higher value products like succinic 
acid can also be produced from a dedicated part of the 
feedstock stream, resulting in a much higher profitability 
potential for the biorefinery operator and investors.10 All of 
these options (excluding the processing of residues in ATJ) 
come at the cost of bio-SAF production capacity per amount 
of processed feedstock, requiring more feedstock to meet the 
emission reduction targets of the aviation sector.

Overall, these interests represent sustainability aspects 
favored by different stakeholders in bio-SAF production 
in the region.2 A sustainability analysis on its own cannot 
indicate which alternative is the best or the worst. Instead, a 
sustainability analysis that explicitly identifies sustainability 
tensions, as presented in this work, can contribute to a 
negotiation process with all stakeholders to define acceptable 
conditions (e.g., a minimum contribution to the regional 
power supply per production plant), or even a common 
objective for developing a production chain.

Discussion and conclusions

The OSiD framework presented here aims to integrate 
considerations of the local context and stakeholders for 
an ex ante sustainability analysis in the design of biobased 
processes. The framework was illustrated though extracts 
from a case study related to the production of bio-SAF. For 
this, engagements with stakeholders allowed the sustainability 
analysis to be contextualized, identifying relevant 
sustainability aspects for the case study and specifying them 
with regard to the local context. While it was not possible to 
evaluate all identified sustainability aspects, the recognition 
of these issues allowed the identification of emerging tensions 
and opportunities for future work, which are partly presented 
in this work. However, from the case study presented here it 
was not possible to engage stakeholders to discuss or evaluate 
the alternatives presented. Having such an open approach 
and including stakeholders as suggested in the framework 
presented here could reduce the ambiguity associated 
with the diverging values of the stakeholders,2 and could 
strengthen the stakeholder network for the development of 
more sustainable and responsible biobased production.65,66

It has to be recognized, however, that there is a 
methodological tension with the presented framework. The 
capacity for action is in tension with the available knowledge 
when analyzing the sustainability impacts of emerging 
biobased technologies. In the early stages of development 
there is more space for changing an innovation (e.g., a 
technology or a crop) in support of sustainability when 
learning about its performance. This is more difficult at later 
stages of development as, by then, investments are already in 
place as, e.g., pilot or demonstration facilities. However, ex 
ante analyses as presented here imply inherent uncertainties 
related to limited data and knowledge about the performance 
and consequences of production. For example, in the case 
study presented here there are uncertainties related to, e.g., 
production yields and GHG emissions at commercial scale, 
indirect land use changes, and long-term consequences 
for the sustainability of soils. This quandary is an instance 

Figure 2. Qualitative comparison of the performance 
of bio-SAF production alternatives on energy security 
presented per production chain. Production chains (five 
in total) are evaluated considering the combination of a 
feedstock and one or two technologies (3 × 2 or 3 × 3 cells 
respectively). ETJ: Ethanol to Jet; Eu: Eucalyptus; FP: Fast 
pyrolysis; HEFA: Hydro-processed esters and fatty acids; 
HTL: Hydrothermal liquefaction; Ma: Macauba; N/A: Not 
available; SC: Sugarcane.
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of the famous Collingridge dilemma, which states that at 
early development stages of a technology there is limited 
knowledge about its impacts, but later when it is implemented 
there is limited capacity to change it.67

Possibilities for increasing the predictive capacity of ex 
ante analyses like the one presented here are, for example, 
incorporating risk analyses to support decision making, 
as is done in the case of safety risks of nanomaterials.68,69 
In the case of bio-SAF, there are already a few studies 
looking at the uncertainties associated with aviation biofuel 
production, mostly focused on economic and technological 
uncertainties.10,70 These types of analyses could be further 
extended to other relevant aspects of a specific biofuel 
production chain. Another research avenue is to develop the 
capacity to monitor consequences and change the course 
of a technology, or production chain as in this case, if it is 
no longer desirable.2,71 If possible, combining strategies for 
increasing knowledge and capacity for action is a way to deal 
with the limitations of ex ante sustainability analyses.

Overall, a novel ex ante analysis of the sustainability of 
aviation biofuel that includes a discussion of sustainability 
tensions and opportunities for its production in southeast 
Brazil was presented. This approach may be also applicable 
to other regions and other production chains in support of a 
more sustainable transition away from fossil resources.
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