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ABSTRACT
Crowding in public transport can be of major influence on passen-
gers’ travel experience and therefore affect route and mode choice.
In this study, crowding valuation for urban tram and bus travelling is
determined fully based on revealed preference data. Urban tram and
bus crowding valuation is estimated in a European context based on
a Dutch case study network. Based on the estimated discrete choice
model, we conclude that crowding plays a significant role in passen-
gers’ route choice in public transport. The average crowding multi-
plier of in-vehicle time equals 1.16 when all seats are occupied. For
frequent travellers, this value is equal to 1.31. Our study results sug-
gest that infrequent travellers donot incorporate expected crowding
in their route choice. The insights gained from our study can support
the decision-making process of policy-makers, by quantifying the
benefits of measures aiming to reduce crowding levels for example
in a cost–benefit analysis framework.
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1. Introduction

Crowding in public transport can be of major influence on passengers’ travel experience
and therefore affect route and mode choice. Because of the expected increasing concen-
tration of activities within urban agglomerations inmany countries worldwide, crowding is
expected to become an even more dominant factor in urban public transportation in the
future. Therefore, it is important to understand and quantify how crowding in urban public
transport is perceived by passengers. This can contribute to the quantification of societal
benefits of measures aiming to alleviate passenger congestion, and thus potentially sup-
port policy-makers in the decision-making process regarding the implementation of such
measures (see e.g. Prud’homme et al. 2012; Haywood and Koning 2015; Cats, West, and
Eliasson 2016).

Congestion and crowding are not always incorporated in public transport modelling,
contrary to highwaymodelling. In highwaymodelling, link travel times are a direct function
of (amongst other) the link congestion level. In public transport modelling, congestion and
crowding levels influence passengers’ perceived in-vehicle times. Public transport crowd-
ing only affects the nominal travel times if dwell times would increase or in more extreme
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cases of denied boarding, what can result in costs for passengers and operators. Thus, in
public transport there is a behavioural relation instead of a traffic flow relation between
crowding and (perceived) travel times.

Themajority of studies which do incorporate public transport crowding use stated pref-
erence (SP) experiments for crowding valuation. For example, MVA Consultancy (2008),
Whelan and Crockett (2009), Batarce, Munoz, and Ortuzar (2016) and Tirachini et al. (2017)
use SP surveyswhere crowding is representedbypictures of crowding levels in public trans-
port carriages, and crowding valuation is expressed using the average number of standing
passengers per square metre. Lu, Fowkes, and Wardman (2008) express crowding as the
probability on occurrence (e.g. 2 out of 5 times) in a SP experiment, whereas Li, Gao, and Tu
(2017) describe and show different crowding levels using colours. Douglas and Karpouzis
(2005) use pictures of crowding in their SP experiment, and estimate crowding in-vehicle
time multipliers for different levels of crowding (e.g. seated no crowding, seated crowd-
ing, standing, crush standing) for different durations (e.g. during 10 or 20 minutes). In
some studies where crowding valuation is estimated based on SP experiments, results are
validated against revealed preference (RP) data, for example by using surveys, passenger
observations or cameras. For example, Kroes et al. (2014) validate SP based crowding esti-
mates for Ile-de-France based on observed behaviour of passengers on platforms skipping
a very crowded service and waiting for a next less crowded service. Batarce et al. (2015)
estimate a mixed SP/RP model for the case of Santiago, Chile, combining a SP survey with
pictured crowding levels and revealed passenger route choice based on smart card data.
These mainly SP based results are applied in public transport models aiming to improve
passenger assignment andpredictions, see for exampleHamdouch et al. (2011), Schmöcker
et al. (2011), Nuzzolo, Crisalli, and Rosati (2012), Pel, Bel, and Pieters (2014), Cats, West, and
Eliasson (2016) and Van Oort et al. (2016). Extensive literature reviews regarding crowding
valuation studies canbe found inWardmanandWhelan (2011) and in Li andHensher (2011).

We conclude thatmost crowding valuation studies are basedon SP experiments. Studies
which use RP data generally only use a relatively small RP dataset to validate SP estimates. It
is, however, known that there can be a discrepancy between stated choices of respondents
in SP experiments, compared to revealed choice behaviour in reality. This is a systematic
discrepancy in which SP experiments tend to overestimate values compared to observed
valuation in reality. This discrepancy can occur if respondents have difficulties imagining
the stated, hypothetical choice situation, or if respondents lack sufficient experience with
similar circumstances in reality to fully understand the trade-offs between the attributes in
the choice set. The shortage of RP data usage in studies concerned with passenger per-
ception of on-board crowding arguably stems from the sparsity and difficulty to obtain
passenger-related data in many public transport systems. However, the increasing avail-
ability of automatic fare collection (AFC), automatic vehicle location (AVL) and automatic
passenger count (APC) systems inpublic transport enables the estimationof crowding valu-
ation fully basedon large-scale RPdata. In particular, the availability of individual smart card
transactions allows gaining insights into revealed trade-offs between travel time, trans-
fers, waiting time and crowding in public transport route choice. Only a limited number
of studies exploited smart card data for this purpose, namely the works by Hörcher, Gra-
ham, andAnderson (2017) andTirachini et al. (2016). Hörcher, Graham, andAnderson (2017)
estimated discrete choice models incorporating crowding valuation in metro systems by
fusion of AFC and AVL data. In their study, 32 origin-destination (OD) pairs of the MTR
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metro network of Hong Kong are used to estimate the valuation of the standing proba-
bility and crowding density (expressed as the number of standing passengers per square
metre). Since the AFC system inHong Kong is a closed, station-based systemwhere passen-
gers have to tap-in and tap-out at the metro station, the exact route and trip choice had to
be inferred using a passenger-to-train assignmentmethod. Tirachini et al. (2016) estimated
the passenger valuation of crowding for metro travelling on the Singapore network, fully
based on observed behaviour of passengers willing to travel in the opposite direction first
to secure a seat in the trip in their preferred direction.

The contribution of our study is that we estimate crowding valuation associated with
urban tram and bus journeys, in a European context, entirely based on revealed route
choice behaviour obtained from AFC and AVL data of the urban public transport network
of The Hague, the Netherlands. We show additional evidence for the existing discrepancy
between using RP and SP data for crowding valuation. Since passengers are required to
tap-in and tap-out on-board each tram or bus vehicle, no inference of the exact route or
the exact vehicle choice is required. By fusing AFC and AVL data, we directly determine the
exact route and vehicle each passenger used, and deduce the stop-to-stop vehicle occu-
pancy for each individual vehicle trip. Thismeanswe can eliminate one inference stepof the
methodology applied by Hörcher, Graham, and Anderson (2017), thereby reducing poten-
tial uncertainty. We apply our methodology to a high-density public transport case study
network, inwhich there is a largenumberofODpairs betweenwhichdifferent route choices
can be observed.

This paper is structured as follows. Section 2 describes the methodology, includ-
ing data processing (Section 2.1), transfer inference (Section 2.2), selection of OD pairs
(Section 2.3), determination of attributes and attribute levels (Section 2.4) and choice
model formulation (Section 2.5). Section 3 provides the estimation results and discusses
their implications. In section 4, conclusions and recommendations for further research are
formulated.

2. Methodology

2.1. Raw data semantics and processing

When travelling by light rail, tram or bus in the Netherlands, passengers are required to
tap-in and tap-out at devices located within each vehicle. This means that there is a closed,
entry-exit, distance-based fare system applied in The Hague. This is different from most
urban public transport systems in the world, in which especially for buses often an open,
entry-only system with flat fare structure is applied. This can, for example, be seen in Lon-
don (Gordon et al. 2013) or in Santiago, Chile (Munizaga and Palma 2012). The fare system
as applied in the Netherlands means that for each journey leg made by each individual
travelling by the abovementionedmodes the boarding time and boarding location, as well
as the alighting time and location, are directly available from the raw data set. Besides, for
each smart card transaction the line number, vehicle number, trip number and smart card
number are known. This means that each journey leg with its corresponding transaction
information is registered as a separate row in the AFC dataset. In the Netherlands, the AFC
data is closeddataownedby thepublic transport operator. TheAVLdata, on theotherhand,
is open data and publicly available. The AVL dataset contains the scheduled and realised
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Figure 1. Overview of urban tram and bus lines of case study network The Hague, the Netherlands.

arrival time and departure time of each vehicle trip at each stop. In case spatiotemporal
passenger information would not be directly available from the AFC system, boarding time
and location, alighting time and location, and transfer times can be inferred. For example,
Tu et al. (2018) propose a methodology to infer the boarding location for bus travels by
fusion of smart card data and GPS trajectories, whereas Zhang et al. (2016) developed an
approach toextract passengers’ spatiotemporal informationby inferenceof boarding times
and transfer times.

We use the urban public transport network of The Hague, the Netherlands, to estimate
public transport crowding valuation. This network consists of 12 tram lines and 8 bus lines,
operated by the urban public transport operator HTM (Figure 1). Two of these 12 tram
lines function as light rail service at the urban agglomeration network level, connecting The
Hague with the satellite city of Zoetermeer. The other 10 tram lines and all bus lines func-
tion as urban lines within The Hague and neighbouring towns. During an average working
day, more than 300.000 AFC transactions are made in the urban public transport network
in The Hague.

AFC and AVL data of 28 days from 2–29 November 2015 was made available by the
incumbent operator for this study. This amounts to a dataset that consists of approximately
7.4 million AFC transactions and about 3.1 million AVL registrations. In the data processing
phase, we apply the following steps:

• Selection of morning peak data (07:00–09:00);
• Removal of morning peaks with disruptions;
• Removal of incomplete AFC transactions ;
• Inference and increase of occupancy data.
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Since the aim of our study is to explore howpassengers incorporate crowding in their route
choice, it is essential that we select a time period in which crowding occurs. Compared to
crowding levels reached in metro systems in cities like London, Santiago, Beijing or Tokyo,
the level of crowding in The Hague can be considered quite moderate. Outside peak peri-
ods, in general no crowding occurs. In peak periods, crowding however does occur on
several lines. Sincepublic transport demand in themorningpeak in theNetherlands ismore
concentrated within a relatively small period, compared to a more uniformly distributed
demand in the evening peak, we only focus on AFC transactions during the morning peak.
This means that only journeys of which the tap-in record time is between 07:00 and 09:00
on working days (Monday–Friday) are considered.

In our study, we focus on explaining route choice based on expected attribute values for
travel time, waiting time and crowding. Therefore, it is important that only regular, undis-
rupted periods are incorporated in the dataset. Since disruptions can force passengers to
adjust their route choice, this might cause bias in the analysis. Based on the operator log
file, containing all registered disruptions with corresponding time, duration and location,
we removed the AFC data frommorning peaks of days where a disruption occurred. Given
the possibility of second-order effects, in which a disruption on a certain public transport
linemight increase occupancies on other parallel lines, crowding levels on directly and indi-
rectly affected lines can then deviate from expected crowding levels passengers have for
undisrupted days (Malandri, Fonzone, and Cats 2018). Therefore, we adopted this conser-
vative approach of excluding working day data if any disruption occurred anywhere on the
considered case study network. From the 20 working days remaining in the dataset, data
from 6 working days have been removed.

For the AFC data of the remaining 14-morning peaks, we removed incomplete trans-
actions. Transactions can be incomplete due to a system error or due to a human cause
(human error by forgetting to tap-out, or deliberately not tapping out), in both cases
leading to a missing tap-out time and/or location. Although there exist many destination
inference algorithms in scientific literature (e.g. the well-known trip chaining algorithm as
applied by Trépanier, Tranchant, and Chapleau 2007; Zhao, Rahbee, and Wilson 2007 and
Wang, Attanucci, andWilson 2011), we removed all incomplete transactions, since the per-
centage of incomplete AFC transactions in The Hague is with 1.9% rather low due to the
entry-exit AFC fare system. From studies validating destination inference algorithms (e.g.
Munizaga et al. 2014; Yap et al. 2017), we know that between 65% and 85% of the des-
tinations for urban tram or bus journeys are correctly inferred. By removing incomplete
transactions, we avoid introducing inaccuracies resulting from possibly incorrect destina-
tion inference. Besides, given the entry-exit AFC system, the percentage of incomplete AFC
transactions in The Hague is with 1.9% rather low and not expected to systematically influ-
ence results. Since in the Dutch public transport system a deposit is written off from each
smart cardwhen tapping in as incentive for passengers to tap-out due to its distance-based
fare system, which is transferred back to the card when tapping out again, we expect no
correlation between (higher) crowding levels and (lower willingness of) passenger tap-out
behaviour.

Vehicle occupancies are derived by fusion of AFC and AVL data. Since both the AFC and
AVL data contain the trip number, both data sources can be coupled. This results in the
occupancy of each vehicle trip between each pair of stops. These smart card data-based
occupancies are corrected for the percentage of travellers not using a smart card, and the
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percentage of incomplete AFC transactions. In the Netherlands, most passengers travel
using their smart card. Only passengerswhobuy a ticket in the vehicle at the driver or vend-
ing machine, and passengers who (un)deliberately do not tap in during their trips are not
captured. Since our study focuses on experienced crowding levels, these passenger groups
are however relevant. Based on passenger counts performed by the urban operator, for
each public transport line a correction factor is determined which can be used to increase
the smart card based occupancies. This factor varies between 5% and 14% for different
lines. This correction factor is applied uniformly on a line-level, which implicitly assumes
that the destination choice behaviour of non-smart card users is indistinguishable from the
one characterising smart card users. Since our dataset contains transactions of morning
peak periods in November, the share of very infrequent passengers (e.g. tourists) for whom
the abovementioned assumption might not apply is arguably very low.

2.2. Transfer inference

For the individual AFC transactions for each trip, it is determined whether an alighting is a
transfer or a final destination. To this end, we applied the transfer inference algorithm as
described by Yap et al. (2017). This algorithm is an extension on the algorithm described by
Gordon et al. (2013), and uses AFC, AVL and inferred occupancy data. Below, this algorithm
is shortly discussed. For a more detailed explanation, the reader is referred to Yap et al.
(2017). The algorithmconsists of temporal, spatial and line-based criteriawhether to classify
an alighting activity as a transfer:

• Temporal criterion: an alighting activity is considered a transfer if the passenger boarded
the first feasible vehicle of the next tap-in line passing by the next boarding location.
A feasible vehicle is defined as the first vehicle passing by the next boarding location
– given the alighting time of the previous journey leg and required walking time – of
which the occupancy does not exceed the norm capacity;

• Spatial criterion: an alighting is considered a transfer if the distance between the alight-
ing location and the next boarding location does not exceed a maximum transfer
walking distance of 400 Euclidean metre. An exception to this threshold is made in case
passengers use an intermediate public transport service offered by another operator, for
which no AFC data is available;

• Line-based criterion: an alighting is not considered a transfer if the next boarding is on
the same line as the previous journey stage, since this suggests that an activity was per-
formed in between. An exception is made in case of boarding the first passing vehicle of
the same line directly following the alighted vehicle, since this can indicate (for example)
a transfer from a short-service to the long-service vehicle of the same line or a transfer
to the same line in case of loops. Given the relatively high frequencies of urban public
transport lines, it is highly unlikely that such alighting and boarding of the next vehicle
will be an activity.

In total, the dataset contains 628,839 journeys resulting from 14 working days. Figure 2
(left) shows the resulting distribution of the number of transfers, whereas Figure 2 (right)
shows the distribution of journeys over each half-hour period of the morning peak (using
the journey tap-in time for aggregation). As can be seen, almost all journeys consist of 0 or 1
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Figure 2. Journey distribution by number of transfers (left) and distribution per half-hour of the morn-
ing peak (right).

transfer. The busiest part of themorning peak on a networkwide level is between 08:00 and
08:30, containing 31% of all morning peak journeys.

The boarding stop, alighting stop, and the travelled route and line of each passenger
journey leg are directly observed from the AFC data, because of the entry-exit smart card
regime with on-board devices for tap-in and tap-out. Applying our study to The Hague
case study network has therefore the advantage that no inference is required in deter-
mining passenger route choice, so that our study fully relies on directly observed route
choice. Vehicle occupancies are also the direct result of fusing empirical AFC and AVL trans-
actions, without relying on any further inference. The transfer inference algorithm, which
is the only inference algorithm applied to the dataset, only relates to the interpretation
whether an alighting is considered a transfer or final destination, but is not consequential
in determining route choice or occupancies.

2.3. Selection of origin-destination pairs

In total, the database consists of 49,231 different chosen routes. This value can be consid-
ered as the sum-product of the number of chosenODpairs and the number of chosen route
alternatives for eachODpair. Different routes are considered tobelong to one and the same
OD pair, if the boarding stops are located in each other’s vicinity, as well as the alighting
stops. The following criteria are used to select OD pairs to be included in the estimation of
the discrete choice model with crowding effects:

• Minimum choice set size of 2 for each OD pair;
• Minimum number of 100 observed choices for each OD pair;
• Minimum observed choice probability of 0.1 for each route alternative in the choice set;
• Minimum expected seat occupancy of 50% onminimal one link of one route alternative;
• Attribute variation over all OD pairs

In our study, we only consider the observed route choice set. This preventsmaking assump-
tions regarding the incorporation of non-observed, possibly feasible route alternatives in
the choice set and allows us to infer attribute levels for all alternatives entirely based on
observedAFC andAVL data. The first criterion thusmeans that there should be an observed
choice between at least two route alternatives for a given OD pair. A route is defined as
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a unique sequence of boarding locations, alighting locations and intermediate (combina-
tion of) lines. In case of routes with the same origin stop and the same destination stop, the
routes should physically differ from each other, to be considered as separate route alterna-
tive in the choice set. In case of a bundle of different lines sharing the same infrastructure
(e.g. for journeys within the city centre), passengers might take the first arriving vehicle
suitable for their destination. Given our aim to explain route choice,we consider route alter-
natives as different from each other, only if these do not share the exact same geographical
path (i.e. 100% overlap).

A minimum number of 100 observed choices for each OD pair is deemed necessary to
incorporate sufficient choices of individual passengers to infer generic coefficients from.
By setting a minimum value for the observed choice probability of 10% per chosen route
alternative, we ignore route alternatives which are chosen only in a very limited num-
ber of cases. Such route alternatives might be chosen in case of (non-registered) delays,
disruptions or a-typical passenger behaviour (e.g. passengers travelling for fun). Another
requirement is that there should be at least a certain amount of crowding expected on
(at least) one of the route alternatives of an OD pair. Since we want to estimate crowding
valuation, we did not want to put a crowding constraint a priori. However, if no crowding
occurs on all route alternatives at all, it is not possible to examine the influence of crowd-
ing on route choice. Therefore, we opted for a light requirement here. If the expected seat
occupancy exceeds 50% during some period of the morning peak on some part of one of
the observed route alternatives, this requirement is fulfilled. A seat occupancy threshold of
50% is used, since passengers start having to sit next to each other from a seat occupancy
of 50% or higher. It is expected that negative crowding experiences might arise from this
valueonwards. The robustnessof estimation results towards the latter assumptionhasbeen
investigated in a sensitivity analysis. Reducing this threshold value by 20% (to 40%) showed
not to influence the number of OD pairs and observations in the dataset. An increase of
this threshold by 20% (to 60%) resulted in only one OD pair not satisfying this criterion
anymore, thereby reducing the number of observations in the dataset by 2%. Since the
total number of observations in the dataset is hardly influenced by this parameter value,
this sensitivity test attests to the robustness of the estimation results to different values of
this threshold. At last, we checked over all remaining OD pairs together whether they con-
tain all attributes of the discrete choice model to be estimated. This means that at least
some OD pairs should consist of a transfer, tram or bus, in order to be able to estimate the
valuation of a transfer or to estimate the in-vehicle time perception in a tram compared
to a bus.

Applying the abovementioned criteria results in 58 remaining OD pairs, with a total of
17,994 journeys (= 17,994 observed choices). The route set of 16% of these OD pairs con-
sists of at least one route that involves a transfer. These 17,994 journeys are made by 7083
different smart card numbers. Under the assumption that each passenger uses one, unique
smart card, this means that there are on average ≈2.5 observations per passenger in the
total dataset.

2.4. Attributes and attribute levels of route choice alternatives

In this section, we discuss the different attributes and attribute levels for the estimated
models.
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2.4.1. In-vehicle time
Theexpected in-vehicle time tivt is determined for each journey legof each route alternative
separately. Based on the AVL data, we calculate the expected in-vehicle time by taking the
average realised in-vehicle timeover all observations using this route alternative for this OD
pair. This means we use the expected in-vehicle time rather than the scheduled in-vehicle
time as value for tivt . Since the scheduled travel times are fixed during the whole morning
peak, tivt is calculated for the whole morning peak as well. For each journey leg, index m
indicates whether the journey leg is made by tram or bus.

2.4.2. Waiting time
The expected waiting time twait expresses the initial waiting time before boarding the first
journey leg. Since the AFC system in urban public transport in the Netherlands only has
tap-in/tap-out devices on-board the vehicle, it is not possible to empirically derive the pas-
senger arrival time at the initial boarding stop from the smart card data. In order to quantify
the initial waiting time, we assume a random passenger arrival pattern. Given the high fre-
quency of the urban public transport services in the considered case study network, this
assumption is considered to be reasonable. Therefore, we set twait as equal to half of the
scheduled headway of the boarding line in the corresponding time period.

2.4.3. Transfer time
Theexpected transfer time ttransexpresses the timebetween thealighting time fromthe first
journey leg and the boarding time of the next journey leg of a certain route alternative. This
means that ttrans equals the sum of the transfer walking time and transfer waiting time, and
equals zero for a route alternative without transfers. The expected value ttrans for a certain
route alternative is calculated by taking the average realised transfer time over all observed
morning peak journeys using this route alternative.

2.4.4. Number of transfers
ntrans is an integer variable which reflects the number of transfers of a certain route alter-
native, and equals 0 in case of a route alternative without a transfer. This variable is used
to determine the perceived transfer penalty, which expresses the additional penalty asso-
ciated with the inconvenience of performing a transfer beyond the additional (perceived)
travel time it induces.

2.4.5. Path size
We calculate the path size factor to determine and correct for overlap between route alter-
natives of a certain OD pair. The natural logarithm of the path size factor, denoted by r, is
used and incorporated into a standard MNL model. We quantify this commonality factor
using the distance-based amount of overlap between route alternatives, as shown in for-
mula (1). We consider route alternative i from all route alternatives j of the observed choice
set for a certain OD pair. Each route i consists of a sequence of links ai ∈ Ai with length la.
The number of route alternatives of the choice set using link a is indicated by |j|a. In case of
two route alternatives without any overlap, ri equals ln(1), whereas ri equals ln(0.5) is case
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of two fully overlapping route alternatives.

ri = ln

⎛
⎝∑

ai∈Ai

((
la∑

ai∈Ai la

)
∗
(

1
|j|a

))⎞⎠ (1)

2.4.6. Crowding: seat occupancy and standing density
To quantify the valuation of public transport crowding, we use two different attributes: the
seat occupancy q and standingdensity d. Given the non-uniformly distributeddemandpat-
ternover themorningpeak (Figure 2 right), it is not sufficient to calculate the average values
for q and d over the wholemorning peak. The attribute values for both attributes are there-
fore calculated per line, per link (stop-to-stop line segment), per 30 minutes time period.
Since crowding levels vary across trips, using a too large time period can result in the use of
average crowding levels which do notmatchwith the expected and experienced crowding
levels as they evolve during the morning peak. Notwithstanding, passengers will usually
not have knowledge of the expected crowding levels for each individual trip departure. By
dividing the morning peak into four periods of 30 minutes, we aim to balance between
excluding non-uniformly distributed demand on the one hand, and applying a time period
for which passengers can have realistic crowding expectations on the other hand.

The seat occupancy q is calculated using formula (2), and expresses the ratio between
the expected passenger load l and the vehicle seat capacity κ . If the expected load exceeds
the seat capacity, q remains equal to 1. The expected passenger load is calculated based on
the average realised occupancy for each link ai ∈ Ai (stop-to-stop line segment) for each
30-minutes time period t ∈ T . κ is determined using data provided by the operator, based
on the vehicle type used for each line. To calculate qit for each journey leg for alternative i
in the time period t, the weighted average value is calculated based on the expected seat
occupancy and expected travel time tivtai per link ai ∈ Ai of the journey leg.

qit = min

(∑
ai∈Ai

lat
κat

· tivta∑
ai∈Ai t

ivt
a

, 1

)
(2)

The standing density d is calculated using formula (3), and reflects the expected number of
standing passengers per m2. In line with Wardman and Whelan (2011), we use the stand-
ing density per m2 instead of the occupancy rate if l > κ , in order to account for different
vehicle layouts. If the expected passenger load l does not exceed κ , this value equals zero.
This expresses the assumption that passengers will stand only when all seats are occupied.
When l > κ , is calculated by dividing the number of standing passengers by the total sur-
face available in each vehicle type for standing θ , thus assuming an equal distribution of
standing passengers over the available standing surface. The expected value of ditfor alter-
native i in the time period t is calculated for each link ai ∈ Ai (stop-to-stop line segment)
for each 30 minutes time period t ∈ T over all observed choices for route alternative i for a
certain OD pair. The expected value per journey leg is computed by using the (by expected
travel time tivtai ) weighted average over all links.

dit = max

(∑
ai∈Ai

lat−κat
θat

· tivta∑
ai∈Ai t

ivt
a

, 0

)
(3)
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Table 1. Seat capacity and standing surface per vehicle type (HTM data).

Vehicle type Mode Lines Seat capacity Standing surface (m2)

GTL-8 Tram 1,6,9,11,12,15,16,17 73 25.1
Citadis Light rail 3,4,19 86 32.0
Avenio Tram 2 70 33.8
MAN Bus 18,21,22,23,24,25,26,28 31 8.9

Table 2. Min/max seat occupancy and standing density
in dataset.

Seat occupancy Standing density

Time period Min Max Min Max

07:00–07:30 0.10 1.0 0 0.81
07:30–08:00 0.08 1.0 0 2.48
08:00–08:30 0.13 1.0 0 2.04
08:30–09:00 0.11 1.0 0 2.31

Table 1 depicts the seat capacity κ and surface available for standing passengers θ per vehi-
cle type for our case study network. Table 2 shows the minimum and maximum values
observed for qt and dt per half-hour time period when calculated over the total dataset.

2.5. Model formulation

In this study, we estimate four discrete choice models in total. Model 1 reflects a model
without crowding, whereas model 2 is an extension of model 1 in which the two crowding
attributes are incorporated. Model 1 and 2 estimate coefficients averaged over all passen-
ger segments. Since our study focuses on incorporating expected crowding levels in the
route choice, it can be hypothesised that a segmentation between frequent and infrequent
travellers is relevant. Passengers travelling frequently over a certainODhave abetter expec-
tation of crowding levels on the route choice alternatives based on their prior experiences,
whereas infrequent passengers are expected to have limited or no prior crowding expecta-
tions on the specific route. Since the smart card number is known for all AFC transactions,
it is possible to explicitly distinguish between frequent and infrequent travellers for each
OD pair. We apply a binary classification, in which passengers who travel on average at
least once per week on a certain route (in our case study: a minimum of 4 observations
for a certain OD pair) are considered frequent travellers. Model 3 is a segment model with-
out crowding, whereas model 4 is a segment model which incorporates crowding. We use
a traditional utility maximisation framework, in which it is assumed that each respondent
chooses the route alternativewith the largest utility (smallest disutility). The expectedutility
of a certain route choice alternative U(V ,ϑ , ε) consists of the structural utility component
V , which is a vector of observable attributes with their corresponding weights, and a ran-
dom utility component ε. The logarithm of the path size factor r in incorporated into all
four models to account for overlapping between route alternatives. This allows us to esti-
mate standard MNL models as basis. Since there are multiple route choice observations
in our dataset made by the same smart card number (= the same individual), we extend
the standard MNL model to a mixed logit model with panel effects to correct for possible
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correlations between choices made by the same respondent. Therefore, U also consists of
an individual specific utility component ϑ .

We use Biogeme as software package for performing the maximum likelihood estima-
tions (Bierlaire 2003). In order to reduce the number of draws, we perform Halton draws
fromanormal distribution to incorporate thepanel structureof themodel. In order todeter-
mine the number of required Halton draws, we started with an initial number of 5 Halton
draws and then doubled the number of draws and checked whether the model outcome
can be considered stable. All four model showed to be very stable directly after doubling
the number of Halton draws to 10.

2.5.1. Model 1: no crowding, no segmentation
Formula (4) shows the calculation of V , the structural deterministic part of the utility
function, for model 1. The attributes corresponding to the first journey leg are denoted
by index 1; attributes corresponding to the second journey leg are denoted by index 2.
We experienced with all combinations between estimating only generic coefficients for
twait , tivt , ttrans, ntrans and estimating all mode-specific coefficients. A model with mode-
specific in-vehicle time coefficients, and generic waiting+ transfer time and transfer
penalty coefficients showed to give most reasonable results and the highest value for
McFadden’s adjusted R2. Hence, as can be seen in Equation (4), generic coefficients are
estimated for the initial waiting time and transfer time simultaneously, and for the transfer
penalty. Mode-specific coefficients are estimated for in-vehicle time. A ‘tram bonus’ indi-
cating a lower perceived in-vehicle time for tram/rail travelling compared to bus travelled
has been previously reported in the literature (Bunschoten, Molin, and Van Nes 2013). The
selected model specification allows us to quantify this ‘tram bonus’ based on RP data as
well. The estimated coefficients for all attributes are denoted by β .

V = βwait · twait + β ivt
m · tivtm,1 + βwait · ttrans + βtrans · ntrans + β ivt

m · tivtm,2 + βr · r (4)

2.5.2. Model 2: crowding, no segmentation
Model 2, being an extension of model 1, estimates the same mode-specific in-vehicle time
coefficients and generic waiting+ transfer time and transfer penalty coefficients. Formula
(5) shows the structural part of the utility functionwhen the seat occupancyqt and standing
density dt for each 30 minutes time period t with their corresponding coefficients βq and
βd are incorporated. As can be seen, the total in-vehicle time coefficient is now equal to the
original in-vehicle time coefficient β ivt , multiplied by a crowding multiplier which is equal
to (1 + (βq · qt) + (βd · dt))

V = βwait · twait + (β ivt
m · tivtm,1 · (1 + (βq · qt1) + (βd · dt1))) + βwait · ttrans + βtrans · ntrans

+ (β ivt
m · tivtm,2 ∗ (1 + (βq · qt2) + (βd · dt2))) + βr · r (5)

2.5.3. Model 3: segmentation, no crowding
Model 3 can be considered an extension ofmodel 1, to which initially an interaction-term is
added for each estimated generic coefficient. The interaction-term is the product of an esti-
mated interaction-coefficient and a dummy-coded indicator-variable indicating whether
an observed choice made by a certain respondent is classified as a frequent or infrequent
traveller. The indicator-variable equals 1 in case of a frequent traveller, and equals 0 in
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case of an infrequent traveller. This means that each total estimated coefficient is equal
to the estimated generic coefficient which applies to both segments, plus the estimated
interaction-coefficient multiplied by the indicator-variable which only applies to the fre-
quent traveller segment. Initially, interaction-coefficients are estimated for all coefficients.
Presented results in the next section show the estimation results for the final estimated
model in which only significant interaction-coefficients are incorporated in the model
specification. The interaction-coefficient β int is denoted by superscript int.

2.5.4. Model 4: segmentation, crowding
Model 4 canbe considered anextensionofmodel 2,where also interaction-terms are added
to the estimated crowdingmodel.We adopt a similar approach here as described formodel
3. In the final model, only significant interaction-coefficients are incorporated in the model
specification.

3. Results and discussion

This section first shows the estimation results of the four models in section 3.1. In section
3.2, implications of these results are discussed.

3.1. Results

Table 3 shows the values of the estimated coefficients with corresponding t-values for
all four models, the number of estimated coefficients, the final log-likelihood and McFad-
den’s adjusted Rho-square. From Table 3 we can conclude that all estimated coefficients
are significant. We can also see that the direction of all estimations of time- and trans-
fer related coefficients are negative, which is plausible. When extending model 1 with
crowding (model 2), the adjusted Rho-square increases by 2.4%. Although the explana-
tory power of model 2 is only slightly higher than model 1, the LRS-test indicates that
the improvement in goodness-of-fit is significant. The LRS-value of 40.6 is larger than the
critical χ2 value of 5.99 (with 8–6 = 2 degrees of freedom for α = 0.05). Extending seg-
mentmodel 3 with crowding (model 4) results in 3.5% increase in the adjusted Rho-square.
Also in this case the improvement in explanatory power is significant, since the LRS-value
of 84.0 is larger than the critical χ2 value of 3.84 (with 8-7 = 1 degree of freedom for
α = 0.05).

In order to expose the trade-offs, utility function coefficients are expressed in relation
to travel time on-board a bus. Table 4 shows the estimation results for in-vehicle time,
waiting+ transfer time, transfer penalty and crowding, scaled in which the in-vehicle time
coefficient for bus tivtbus is set equal to 1. The trade-offs presented in Table 4 based on the
estimation results for model 2 and model 4 (with crowding) exhibit plausible relations. A
clear ‘tram bonus’ can be observed, since 1-minute in-vehicle time by bus is perceived as
0.6-minute in-vehicle time by tram. Earlier research based on SP experiments indicated val-
ues ranging between 0.67 and 0.80 (Bunschoten, Molin, and Van Nes 2013), which means
that our research suggests an evenmore substantial ‘trambonus’. Oneminutewaiting time
is perceived 1.5 to 1.6 timesmore negatively, compared to oneminute in-vehicle time. This
is in line with values found in other studies (e.g. Balcombe et al. 2004), and also shows evi-
dence that this multiplier has a lower value than assumed in earlier studies based on SP
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Table 3. Estimation results.

Model 1 (no
crowding,

no segments)

Model 2
(crowding, no
segments)

Model 3
(segments, no
crowding)

Model 4
(segments,
crowding)

β ivt
tram (in-vehicle time tram) –0.158** (–20.6) –0.151** (–13.7) –0.156** (–16.9) –0.154** (–16.8)

β ivt
bus (in-vehicle time bus) –0.262** (–15.4) –0.250** (–18.0) –0.261** (–22.3) –0.255** (–21.5)

βwait (waiting+ transfer time) –0.398** (–24.9) –0.395** (–24.7) –0.397** (–24.9) –0.387** (–24.4)
β trans (transfer penalty) –0.994** (–9.06) –1.20** (–10.3) –1.42** (–9.49) –1.33** (–11.6)
β trans,int (transfer penalty interaction) – – 0.681** (3.95) –
β r (log-path size factor) 2.65** (3.01) 2.37* (2.65) – –
β r,int (log-path size factor interaction) – – 4.02** (3.89) 3.44** (3.54)

βq (seat occupancy) – 0.158** (4.97) – –
βq,int (seat occupancy interaction) – – – 0.305** (7.94)
βd (standing density) – 0.0611*(2.15) – –
βd,int (standing density interaction) – – – 0.149** (3.98)

Number of observations 17,994 17,994 17,994 17,994
Number of individuals 7083 7083 7083 7083
Number of Halton draws 10 10 10 10
Number of estimated coefficients 6 8 7 8

Final log-likelihood –11,404 –11,384 –11,398 –11,356
Adjusted Rho-square 0.085 0.087 0.086 0.089

Note: t-values in parentheses.
*p < .05.
**p < .01.

Table 4. Scaled estimation results.

Model 1 (no crowding,
no segments)

Model 2 (crowding,
no segments)

Model 3 (segments,
no crowding)

Model 4 (segments,
crowding)

Frequent Infrequent Frequent Infrequent

In-vehicle time tram 0.6 0.6 0.6 0.6 0.6 0.6
In-vehicle time bus 1.0 1.0 1.0 1.0 1.0 1.0
Waiting+ transfer time 1.5 1.6 1.5 1.5 1.5 1.5
Transfer penalty 3.8 4.8 2.8 5.4 5.2 5.2
Seat occupancy – 1.16 – – 1.31 1.00
Standing density – 1.06 – – 1.15 1.00

Table 5. Crowding multiplier as function of seat occupancy and standing density.

Seat occupancy q
(% seats occupied)

Standing density d
(standing pass/m2)

Crowding
multiplier model 2

Crowding
multiplier model 4

Frequent Infrequent

0 0 1.00 1.00 1.00
1 0 1.16 1.31 1.00
1 1 1.22 1.45 1.00
1 2 1.28 1.60 1.00
1 3 1.34 1.75 1.00

experiments. Also the transfer penalty of 5 minutes for each (urban) transfer is plausible. In
general, we see that RP estimates for the transfer penalty are somewhat lower than values
reported in SP studies (e.g. Schakenbos et al. 2016).

Next, we analyse the crowding effects on route choice. Table 5 and Figure 3 show the
estimated crowding multiplier as function of the seat occupancy and standing density. As



TRANSPORTMETRICA A: TRANSPORT SCIENCE 37

Figure 3. Crowding multiplier as function of the standing density for different traveller segments.

can be seen, in the generic model (model 2) the crowding multiplier equals 1.16 when
all seats are occupied. In case the occupancy level increases further, the crowding multi-
plier increases with 0.06 for each increase in the integer number of standing passengers
per m2, additional to the crowding multiplier of 1.16 at seat capacity. For instance, in
case of on average 3 passengers per m2, the crowding multiplier thus equals 1.16+ (3 *
0.06) = 1.34. When segmentation is applied, a clear distinction can be observed between
frequent and infrequent travellers. For frequent travellers, the crowding multiplier equals
1.31when all seats are occupied. Themultiplier further increaseswith 0.15 for each increase
in passengers per square metre, additional to this value of 1.31. In case of 3 standing
passengers per square metre on average, this results in a crowding multiplier of 1.75.
This shows that frequent travellers incorporate crowding significantly more in their route
choice than the average passenger, as estimated in model 2 without segmentation. On
the other hand, the insignificant generic seat occupancy and standing density coefficients
clearly indicate that infrequent travellers do not incorporate anticipated crowding levels
in their route choice. This is plausible, given their lack of prior knowledge and expe-
rience regarding expected crowding levels. From Table 4 it can be seen that the sum
of coefficients estimated for the seat occupancy and standing density (generic coeffi-
cient plus interaction-term) remain equal to 1, the nominal in-vehicle time, for infrequent
travellers.

We also tested the estimation of a non-linear crowding function both related to the
seat occupancy and the standing density. No plausible and significant results could, how-
ever, be found, thereby indicating a linear relationship between crowding and perceived
in-vehicle time. Testing theestimationof amodelwithmode-specific crowding coefficients,
next to the already incorporated mode-specific in-vehicle time coefficient, also resulted in
implausible results.

Figure 4 shows the estimated crowding multiplier as function of the load factor, which
equals the passenger load divided by the seat capacity. As can be seen, there are different
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Figure 4. Crowding multiplier as function of the load factor per vehicle type.

crowding functions for the different vehicle types operated on the considered case study
network. This shows the relevance of using the standing density instead of the load fac-
tor, when estimating crowding if passenger loads exceed seat capacity. It can be seen that
the crowding multiplier increases steeper for vehicle types which have a relatively high
numberof seats, compared to the total capacity (e.g. vehicle type ‘GTL’ and ‘bus’ in Figure 4).
For vehicle types with relatively few seats compared to the total capacity, the crowding
function increases at a slower pace (e.g. the light rail vehicle types ‘Citadis’ and ‘Avenio’ in
Figure 4). Besides, clear differences in crowding multiplier can be seen between frequent
and infrequent travellers, where the crowding multiplier for infrequent travellers remains
equal to the one for all vehicle types.

3.2. Discussion

The estimated coefficients exhibit plausible relationswhich are in linewith directions found
in earlier studies. When comparing model 3 (no crowding, segmentation) to model 1 (no
crowding, no segmentation), a significant interaction coefficient is found for the transfer
penalty and path size factor. These results suggest that frequent travellers have a less neg-
ative perceived transfer penalty compared to infrequent travellers. Thismight be explained
by the higher level of knowledge about the network, transfer location and likelihood of reli-
ability of the connecting service, compared to infrequent travellers. However, it can be seen
that when crowding is incorporated in the segmentedmodel (Model 4), the suggested dif-
ference in perceived transfer penalty between frequent and infrequent passengers in the
segment model without crowding (Model 3) disappears. Besides, frequent travellers have
a preference for non-overlapping route alternatives, whereas for infrequent travellers this
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does not significantly add explanatory power to their route choice. A possible explanation
here is again the higher knowledge level of frequent travellers of other, non-overlapping
route alternatives available in the network.

Regarding crowding we see that estimated crowding multipliers are lower than values
found in SP experiments. For example,MVAConsultancy reports crowdingmultipliers up to
1.6–1.9 when seat capacity has been reached, compared to the highest value of 1.3 found
in our study for frequent travellers. This gives evidence for the tendency of SP experiments
to overestimate values of coefficients, compared to RP based studies. In the context of
choice experiments in a survey, respondents are arguably more inclined to attach greater
importance to crowding in their stated route choice, compared to their decision-making in
real-world settings. When we compare the results of this study with the RP results found
for the Hong Kong MTR metro by Hörcher, Graham, and Anderson (2017), we note that for
the Hong Kong case the estimated crowdingmultiplier equals 1.98 at a density of 6 passen-
gers per square metre. This is the sum of a standing multiplier of 1.265 and an increase of
the crowdingmultiplier by 0.119 for each additional standing passenger per square metre.
If we would linearly interpolate these results, the crowding multiplier for 3 standing pas-
sengers per m2 is estimated to be 1.49. In the RP-based study by Tirachini et al. (2016) the
estimated crowding multiplier is 1.55 in case of a standing density of 3 passengers per m2.
Our results suggest that the crowding multiplier equals 1.34 and 1.75 for average and fre-
quent travellers, respectively, for a standing density of 3 passengers perm2. Our estimation
for the average crowding coefficient thus yields somewhat lower values than those found
for the Hong Kong and Singapore metro case studies. However, for frequent travellers the
estimated crowding multiplier of 1.75 is slightly higher than the average values found for
Hong Kong and Singapore.

From Table 4, it can be observed that 1 minute waiting time is perceived as 1.5 min-
utes in-vehicle time in a non-crowded vehicle byboth frequent andnon-frequent travellers.
For frequent travellers, 1 minute travelling in a PT service with an average of 1.33 standing
passengers per square metre is also perceived as equivalent to 1.5 minutes travelling in a
non-crowded vehicle. This shows the trade-offs passengers perceive betweenwaiting time
and crowding, and can contribute to ridership forecasts for different types ofmeasures. For
example, increasing the frequency of a non-crowded service from 6 to 8 services per hour
will reduce the perceived travel time by passengers by 1.88 minutes under the assumption
of a random arrival pattern at stops. Alternatively, reducing the crowding level for a 10-
minute trip from an average of 2.0 to 1.0 standing passengers per square metre, reduces
the perceived in-vehicle time by 1.5 minutes for frequent travellers. Since infrequent trav-
ellers do not have knowledge about the expected crowding levels, measures purely aimed
at reducing crowding without increasing the service frequency (e.g. use of longer vehicles)
are not expected to increase the ridership of infrequent travellers, contrary to measures
which target service headway.

We note that we only estimated coefficients for expected crowding levels, which can
be different from a posteriori experienced crowding levels. Our study results also show
the potential of crowding information provision to infrequent or less frequent travellers.
Given the estimated values for frequent travellers, we might expect that infrequent trav-
ellers will incorporate crowding in a similar way in their route choice as frequent travellers
if information is provided to them. This can affect route choice and occupancy levels on
routes.
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4. Conclusions

Crowding in public transport can be of major influence on passengers’ travel experi-
ence and therefore affect route and mode choice. Due to the increasing concentration of
activities within urban agglomerations inmany countries worldwide, crowding is expected
to become an even more dominant factor in urban public transportation in the future.
Besides, it is important to incorporate valuation of crowding in a correct way within a
cost–benefit analysis. Therefore, it is important to understand how crowding in urban pub-
lic transport is perceivedbypassengers. In this study, the availability of individual smart card
transactions was used to gain insights into revealed trade-offs between travel time, trans-
fers, waiting time and crowding in public transport route choice entirely based on revealed
preference data.

Model estimations confirm that crowding plays a significant role in passengers’ route
choice in public transport. The average crowding multiplier of in-vehicle time equals 1.16
when all seats are occupied. For frequent passengers, this value further increases to 1.31
when all seats are occupied. In case of standing passengers, the average crowding mul-
tiplier further increases with 0.06 for each increase in the integer number of standing
passengers per m2. For frequent travellers, this increase per square metre is estimated to
be equal to 0.15. Our results show that infrequent travellers do not incorporate expected
crowding in their route choice, probably due to the lack of prior experience. Our results
suggest that crowding valuation studies using stated preference experiments can have a
tendency to overestimate crowding values.

Our study is the first in which crowding valuation is determined fully based on revealed
preference data particularly for urban tramandbus services, in a European context, thereby
adding to the knowledge gained from crowding valuation studies for metro networks. The
insights gained from our study can support the decision-making process by quantifying
the benefits of measures aiming to reduce crowding levels. For further research, it is rec-
ommended to consider how passengers are distributed throughout the vehicle. In case of
unequal distributions, the experienced crowding can deviate from expected crowding lev-
els based on equal passenger distributions. At last, an important limitation for this study is
that no information is available regarding the realised passenger arrival time at the stop.
Our study assumes that passenger route choice is fully based on expected crowding levels.
Due to the lack of this information, we cannot determinewhether a passenger boarded the
first vehicle passing the stop, or deliberately skipped a crowding vehicle for a less crowded
alternative. Information about this would enable us to investigate to which extent the real-
time crowding level of the arriving vehicles affects route choice, compared to expected
crowding levels based on prior experiences.
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