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The hydrological cycle is a fundamental component 
of the climate system, transferring energy and mass 
between the atmosphere, ocean, cryosphere and land res-
ervoirs. Despite holding less than 0.001% of all of Earth’s 
water1, the atmosphere acts as a key facilitator of these 
transfers. As such, atmospheric water vapour residence 
time (WVRT) is a fundamental, if not yet fully resolved, 
diagnostic of hydrological variability needed to estimate 
moisture sources and sinks2, and understand changes in 
dynamic and thermodynamic processes3, for example.

Several metrics have emerged to quantify the various 
facets of WVRT. These include the time in the atmos-
phere between evaporation and precipitation (lifetime), 
the age of water vapour at a specific time (AGE) and 
its ‘life expectancy’ (forward transit time, FTT) (Box 1). 
Given that WVRT cannot be calculated directly, indi-
rect methods must be used. Such methods span simple 
arithmetic calculations (turnover time, TUT), to those 
that require sophisticated moisture tracking models of 
various sorts (analytical, offline Eulerian or Lagrangian, 
or numerical tracers embedded within regional or global 
climate models4,5).

As a result of these definition- based and method- based 
contrasts4–7, estimates of the global mean WVRT vary, 

typically ranging from 4–5 to 8–10 days3,8–10. In addition, 
it is now also recognized that there is substantial spatial 
variability in WVRT, owing to a combination of surface 
evaporation, advection, turbulent mixing, precipitation 
and small- scale physical processes11. For instance, a narrow 
distribution of relatively short WVRTs is anticipated in 
regions of intense convection (especially during summer), 
whereas broader distributions with longer WVRTs are 
expected in the polar regions (especially during winter), 
where evaporation and precipitation are markedly lower.

Temporal variability is also evident, not least in the 
long- term changes in WVRT owing to anthropogenic 
warming. Observations12,13 and models13,14, for example, 
suggest that warming- related increases in atmospheric 
moisture relative to precipitation15 will slow the atmos-
pheric hydrological cycle, increasing the residence time16. 
Such changes, in combination with the definition- based 
and method- based uncertainties, will have important 
implications for understanding many aspects of the 
hydrological cycle. For instance, any shifts in moisture 
holding capacity will influence precipitation extremes17 
and, in turn, the characteristics of floods and drought18,19. 
Moreover, knowledge of WVRT is critical for under-
standing moisture recycling, downstream impacts 
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of evaporation20,21, the intensity of the Intertropical 
Convergence Zone (ITCZ)22, water vapour input to the 
stratosphere23 or moisture sources for storm tracks24, 
motivating in- depth assessments of WVRT.

In this Review, we synthesize current knowledge 
concerning WVRT and highlight it as an essential 
indicator of how the atmospheric hydrological cycle 
responds to dynamic and thermodynamic processes 
related to climate change. We begin by outlining how 
WVRT represents interactions between evaporation and 
precipitation, and is, thus, an indicator of hydrological 
cycle change. We then outline estimates of WVRT in 
observations and models, summarizing the uncertainty 
in its quantification at both global and regional scales. 
We subsequently analyse observed and expected changes 
in WVRT as a result of anthropogenic warming and end 
with future research priorities and pathways.

A metric of the atmospheric water cycle
The balance between evaporation and precipitation 
processes at local to global scales produces a range of 
WVRT durations. Different metrics can be related to one 
another using the concept of the lifetime distribution, as 
will now be discussed.

Defining lifetime distribution. To the first order, the 
global atmosphere can be considered as an approxi-
mately steady- state reservoir for water vapour. New 
water vapour continuously enters the atmosphere 
through evaporative fluxes from the ocean and land 
surface, and is removed by precipitation within weather 
systems. In the long term, this steady- state system is in 
mass balance, and the fluxes into and out of the reservoir 
reflect the timescale of how long water vapour stays in 
the atmosphere. The ratio between the global bulk res-
ervoir and corresponding fluxes then yields the average 
TUT (Box 1) of about 8–10 days3,25,26.

However, considering the global atmosphere as a 
homogeneous, well- mixed system is an idealization, with 
respect to both space and time7. More targeted metrics 
are, thus, needed to quantify the multifaceted properties 
of WVRT, each with different applications to the hydro-
logical cycle9 (Box 1). AGE, for instance, is a distinct 
property of the water in the atmosphere itself. By con-
trast, the lifetime (or backward transit time, BTT) offers 
perspectives on outflow, while the FTT (or life expec-
tancy) offers perspectives on inflow. Unless the system is 
continuously and completely mixed, AGE will generally 
differ from both FTT and BTT, even at steady state27. 
For example, in a pipe flow (‘first in, first out’) system, 
BTT will be twice the AGE, whereas in heterogeneous 
systems characterized by preferential flow, the outflow 
will be younger than the average AGE27.

The heterogeneity of the global water cycle does 
not alter the mean age of precipitation (the lifetime or 
BTT), which remains unchanged as a result of mass 
balance. However, it does increase the mean AGE rel-
ative to the mean age of precipitation. The constant 
precipitation lifetime implies that a larger contribution 
of short- lived vapour that precipitates is compensated 
by a corresponding contribution of water vapour that 
does not precipitate as readily, and, thus, is longer lived. 
Therefore, the global and regional WVRT could be more 
accurately represented by a probability density function, 
the so- called lifetime distribution7,9,28 (LTD; Fig. 1a).

In this framework, quantities such as the TUT and 
lifetime (or BTT) measure different aspects of the LTD. 
Global patterns of WVRT reveal lifetimes (or BTTs)  
of 4–5 days, markedly different from the global TUT of 
8–10 days8. This discrepancy can be explained by not-
ing that these BTTs are estimated by Lagrangian meth-
ods that cannot reliably capture the long and thin tail 
of the LTD7. Therefore, the BTTs reflect the median of 
the heavily skewed LTD, rather than its mean, which is 
estimated by the TUT (Fig. 1). The median of the LTD 
was proposed to serve as a more robust metric for the 
lifetime of the majority of the precipitation, since it is 
influenced less by the long tail than the mean of the 
distribution7 (Fig. 1b). Whether the median or the mean 
of the LTD, the LTD itself or other quantities might be 
most informative has not been examined and would 
depend on the purpose.

Lifetime distribution variability. The LTD of different 
water cycle components depends on the interaction of 
different processes, of which atmospheric properties 
(saturation, boundary layer height (BLH) and transport), 
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Box 1 | Defining water vapour residence time

the quantification of water vapour residence time has traditionally relied on different 
metrics that can result in contrasting estimates. the most common metrics used are:

turnover time (tUt):  bulk mean age of the outflow from a reservoir. For the atmosphere, 
tut equals the global average mean age of precipitation. it can be calculated as tut = W/P, 
where W is precipitable water (or water vapour) and P is precipitation.

Depletion time constant:  the local calculation of W/P. values might vary substantially 
from tut, but the global precipitation weighted average is equal to tut.

aGE:  the average age of water in the atmosphere since evaporation, which can differ 
from precipitation age. there are indications that heterogeneity causes the global 
average storage weighted aGe to be slightly higher than tut.

Backward transit time (Btt) or lifetime:  the time that a precipitated water particle 
spends in the atmosphere.

Lifetime distribution (LtD):  the probability density function of all lifetimes of Btt in a 
specific region or globally. the global precipitation weighted average of LtD is equal  
to tut.

Forward transit time (Ftt): the time that an evaporated water particle will spend in the 
atmosphere. in principle, Btt of a water particle at the sink location is the same as Ftt 
of that water particle at the source location. Hence, Ftt is, on average, identical to Btt 
or lifetime, but with different regional patterns. Ftt is heavily influenced by the type of 
land use (Fig. 2).

www.nature.com/natrevearthenviron

R e v i e w s



0123456789();: 

evaporation processes (ocean or land surface, location, 
land use and vegetation) and precipitation processes 
(circulation, weather systems and topography) are key 
determinants. In particular, surface–atmosphere cou-
pling and the corresponding modulation of evaporative 
fluxes (governed by the boundary layer)29 gives rise to 
LTDs with markedly different shapes (Fig. 2). While 
much is unknown about the shape of the LTD for differ-
ent climates and surface properties, it has been demon-
strated for precipitation extremes in the Mediterranean11 
that they vary considerably from event to event between 
those dominated by local and immediate moisture origin 
(Fig. 2a,d), long- range transport dominated with a thicker 
tail (Fig. 2b,c) or intermediate shapes (Fig. 2e,f).

Indeed, the boundary layer directly affects WVRT 
by modulating moisture exchange between the surface 
and the free atmosphere to balance the surface energy 
budget. Surface fluxes are constrained by the boundary 
layer and the way it responds to the large- scale atmos-
pheric circulation. For example, evaporation increases 
under the presence of a drier boundary layer associated 
with convective development. The BLH is sensitive to 
the surface coupling and its growth is defined by the 
sensible heat flux. Hence, the BLH varies seasonally 
in response to the surface fluxes and also depends on 
the surface characteristics. In semi- arid regions, it has 
been demonstrated30 that the link between the bound-
ary layer and soil moisture features a positive feedback 
between deep convection and soil moisture at the storm 
scale (Fig. 2b). For tropical forests, observations over 
the Amazon reveal that BLH deepening, enhanced by 
increasing sensible heat flux, can aid the evolution of 
shallow cumulus into deep convective clouds31 (Fig. 2c). 
These examples illustrate how a systematic analysis of 

the interrelation between BLH and free- troposphere 
moisture can be used to evaluate the surface–atmosphere 
coupling that modulates WVRT on regional scales.

Application of WVRT. Whilst being a fundamental char-
acteristic of the regional and global turnover of water 
vapour in the atmosphere, WVRT also has a number of 
concrete applications. First, consider that the age of pre-
cipitation is inherently linked to water vapour’s origins 
and its atmospheric transport. The concept of WVRT, 
thus, links the processes of evaporation, transport, mix-
ing and precipitation at different spatial and temporal 
scales. This notion is especially important for rain- fed 
agriculture32–34, where different water sources (and res-
idence times) influence the occurrence of wet and dry 
years35. For example, it is conceivable that the onset of 
the rainy season could be characterized by relatively old 
atmospheric water parcels that have travelled long dis-
tances, but that, during the rainy season itself, most rain-
fall could be relatively young. In such a scenario, WVRT 
could become particularly important for water resources 
because the start of a drought in a given location could 
be linked to a lack of old water vapour from upwind, 
whereas the intensification of a drought could be linked 
to a lack of young water36.

Another example of how WVRT pinpoints the role 
of a different process for the atmospheric water cycle 
is related to evapotranspiration. On average, moisture 
transpired by plants remains in the air for about one day 
longer than moisture evaporated from soils or canopy 
interception36. The reason for this is that, during the 
dry season37, when water vapour can travel further and, 
thus, remains in the atmosphere longer6, transpiration is 
the only evaporative flux. Regardless of origin, all evap-
orative processes (which, in hydrology, are generally 
regarded as losses from the land surface) supply pre-
cipitation elsewhere and, thus, constitute an important 
ecosystem service38.

Furthermore, WVRT allows the impact of differ-
ent weather systems on the atmospheric water cycle 
to be characterized. LTDs diagnosed for extreme pre-
cipitation events in the Mediterranean differ substan-
tially from case to case, with medians ranging between 
7.2 and 2.8 days, and modal peaks ranging between 3 h 
and 5 days11. Generally, however, their LTD resembles 
the global lifetime distribution (Fig. 1a), albeit with a 
longer tail and with seasonal variability9. A water vapour 
tagging method in a regional model yielded a lifetime 
of only 1–2 days for more than half of the precipitation 
during a cold- air outbreak in the Norwegian basin39. 
Thus, the WVRT is not only an atmospheric property 
but also highlights dominant turnover processes for 
water vapour in weather systems.

Regional estimates of WVRT
Global WVRT is, to the first approximation, domi-
nated by the effects of large- scale atmospheric motion 
and oceanic evaporation on atmospheric moisture.  
As a result, global WVRT patterns resemble the spatial 
distribution of atmospheric moisture, evaporation and 
precipitation (Fig. 3). However, these processes do not fully 
explain the spatial variability of WVRT. Regional and  
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Fig. 1 | Schematic depiction of the global lifetime distribution. a ∣ Probability  
density functions of lifetime distribution (LTD), or backward transit times depending on 
terminology, for the globe and a regional example with higher contribution from short- 
lived vapour. Triangle and star symbols denote the median and mean LTD, respectively, 
with the latter also representing turnover time. b ∣ As in panel a, but the corresponding 
cumulative distribution function of the LTD, providing the probability of non- exceedance. 
While the median LTD is defined as the mid- point of the distribution, the mean LTD is 
found at variable locations on the upper tail (here, 80–90% of the distribution). LTDs are 
heavily skewed, vary regionally and can be characterized by their mean or median. 
Adapted from reF.7, CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).
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local- scale processes that modulate surface fluxes 
and precipitation (such as land- surface processes or 
weather systems)6,8 exert an influence in shaping WVRT. 
Hence, the spatial variability of WVRT is explained by 
a combination of global, large- scale, regional and local-  
scale processes, all of which might result in shorter or 
longer WVRTs (and, thus, discrepancies with globally  
aggregated estimates).

Understanding regional differences. In general, esti-
mates of mean and median BTT indicate substantial 
variations from the global mean in regions affected by 
large- scale vertical movement or large rainfall contrasts 
(Fig. 3a,b). For instance, longer BTTs are typically iden-
tified for areas influenced by the ITCZ or the South 
Pacific Convergence Zone, that is, the Pacific coast 
of Colombia and Central America and the Maritime 
Continent. Longer BTTs are also observed in the Sahel, 

where the ratio of surface evaporation to potential evapo-
transpiration is very small40, as well as the Indian mon-
soon region. In contrast, shorter residence times occur 
at the descending branches of Hadley cells (subtropical 
highs), sharing a similar pattern with areas of enriched 
deuterium (Fig.  3d) and low tropical precipitation  
(Fig. 3e); polar highs typically exhibit higher WVRT 
in comparison, owing to the effect of the poleward 
decrease in atmospheric moisture content and in rates of  
precipitation and evaporation.

Evaporation from the ocean surface is the largest flux 
of moisture to the atmosphere. In regions with higher 
evaporation rates, WVRT tends to be shorter, owing 
to the higher moisture flux through the atmosphere. 
Hence, in oceanic regions with higher net radiation 
fluxes, WVRT is reduced as a result of enhanced evapo-
ration. Continental regions that experience heavy rain-
fall, such as those affected by the ITCZ or monsoonal 
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Fig. 2 | Lifetime distribution of different surface conditions and water cycle components. Schematic lifetime distribution 
(LTD) and boundary layer height (BLH) for ocean (panel a), drylands (panel b), humid forests (panel c), croplands (panel d), 
clouds (panel e) and rain (panel f). LTDs are roughly based on the findings of reFs6,37. BLH values are monthly 2019 averages 
from ERA5 (reF.108) taken over: 25°–50° N, 15°–60° W for the North Atlantic; 10° S–10° N, 100°–180° W for the Tropical 
Pacific; 10°–30° N, 10° W–30° E for the Sahara (drylands); 0°–20° S, 45°–70° W for the Amazon (humid forests); and 
20°–35° N, 110°–120° E for Eastern China (croplands). LTD varies according to the surface conditions, responding to 
changes in surface fluxes or boundary layer characteristics.
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circulation, tend to have longer WVRTs than oceanic 
regions. Convective development has a major role in 
determining the length of the WVRT in these terrestrial 
regions, and the large- scale patterns and synoptic- scale 
events do not fully explain the spatial and temporal var-
iability that is observed. Tropical convection originates 

in the subcloud layer, where ascending and descending 
movements of air modulate WVRT through variations 
in saturation. Downdraughts during storms transport 
colder and drier air from the upper levels to the sur-
face, so that an overall cooling effect after rainfall events 
might cause a local decrease in residence time as a direct 
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Fig. 3 | Global patterns of water vapour residence time estimates and precipitation characteristics. a ∣ Annual mean 
lifetime or backward transit time. b ∣ Annual median lifetime or backward transit time. c ∣ Total column water climatology 
(1980–2019) from ERA5 (reF.108). d ∣ Annual mean δ2H in surface precipitation, as simulated by the isotope- enabled 
ECHAM5- WISO109. e ∣ Annual rainfall total climatology (2001–2019) from 3IMERGM110. f ∣ Annual evaporation climatology 
(1980–2019) from ERA5 (reF.108). The global distribution of mean and median lifetime differs owing to different processes 
and time scales considered. Panel a adapted from reF.9, CC BY 3.0 (https://creativecommons.org/licenses/by/3.0/).  
Panel b adapted from reF.7, CC BY 3.0 (https://creativecommons.org/licenses/by/3.0/).
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result of the Clausius–Clapeyron relationship. In addi-
tion, in convective regimes, re- evaporation of rainfall 
can contribute substantially (20–50%) to atmospheric 
moisture41. Observational evidence shows that latitu-
dinal variations in evaporative fluxes that feed atmos-
pheric moisture are amplified in areas prone to the 
development of heavy rainfall42–44. In such conditions, 
the release of latent heat dominates the cooling of air 
through evaporation, and, thus, WVRT is affected by 
condensation and evaporation simultaneously within 
the same air parcel.

Over land, the components of land evaporation 
(interception, soil evaporation and transpiration45) 
become more relevant. The magnitudes of these dif-
ferent fluxes are largely controlled by vegetation46 
and dominated by transpiration, which is about 60%  
of total land- surface evaporation47,48. The contribution of 
land evaporation to atmospheric moisture depends on 
local processes that are subject to large spatial variabil-
ity, mainly owing to spatially heterogeneous vegetation 
coverage and land use. WVRT is strongly influenced 
by the type of land evaporation; FTTs appeared to be 
most skewed (towards shorter transit times) for inter-
ception and least skewed for transpiration6. Dry- season 
transpiration tends to remain in the atmosphere longer 
and travel farther37. Moreover, land evaporation is con-
nected strongly to moisture recycling, where it contrib-
utes substantially to atmospheric moisture49. Because 
precipitation recycling influences the transfer of atmos-
pheric moisture and modulates evaporation components 
through humidity and temperature changes, it is highly 
relevant in arid regions, where recycling accounts for a 
large portion of the available precipitation34,37,50–52.

As well these broad- scale geographical differences 
in WVRT, specific differences are also observed at the 
country level. For instance, over China, BTT has been 
estimated at 6.3 and 8.3 days for precipitation and evap-
oration, respectively53. Moreover, annual median and 
mean BTTs are estimated at 4–9 days8 and 9–12 days 
for a similar domain9. Similar disparities in WVRT esti-
mates are also found in other regions. Over the USA, 
for example, WVRT has been variably estimated at  
3–9 days3, 8–11 days9 or 4–12 days8.

The apparent differences in the regional estimates 
following different estimations are most noticeable over 
the tropical areas (Fig. 3a,b). The median lifetime defi-
nition is able to capture the short- term moisture var-
iations associated with synoptic- scale processes. This 
representation provides a more accurate estimate, as it 
contains the information of fast- lived changes within 
the hydrological cycle at the regional scale. It is con-
sistent with the seasonality, rapid variations and spatial 
patterns of the atmospheric water content (Fig. 3c). At 
regional scales, the uncertainties in the estimation of 
evapotranspiration add a source of bias to the estimates 
of WVRT. While satellite retrievals and the advances in 
surface precipitation networks enable the generation of 
better global precipitation products, monitoring of evap-
otranspiration remains a challenge. Bias in the closure of 
energy and mass budgets might deviate WVRT estimates 
because of the complex transition between the local and 
the regional scales in terms of surface fluxes.

Water isotopes as indicators of regional WVRT. The 
regional differences in WVRT highlight the need to 
obtain independent observational metrics that can 
constrain different model- based estimates. Naturally 
occurring stable isotopes of oxygen and hydrogen that 
are incorporated into water molecules can provide such 
observational constraints54. The higher molecular mass 
of isotopically heavier water vapour molecules causes 
them to condense more readily. Therefore, as water is 
processed in atmospheric weather systems and pro-
gressively rained out, a smaller and smaller fraction of  
the initial concentration of heavy isotopes remains in the  
water vapour. This so- called isotopic fractionation can 
be observed with measurements taken on rainwater 
samples or on the water vapour itself, and with remote 
sensing instrumentation, including satellites55. It can, 
thus, be expected that water vapour that has travelled 
longer and further from its evaporation source, and 
undergone more uplift and cooling, to be isotopically 
different from the initial evaporation source. An increas-
ing number of numerical models are capable of calculat-
ing stable isotope fractionation, creating the potential to 
constrain model- derived metrics of the WVRT by stable 
water isotope measurements56, and also to constrain the 
models themselves.

The patterns of WVRT expressed as BTT reveal 
remarkable commonalities with the simulated stable 
isotope 2H in surface precipitation (Fig. 3d). The relation 
between WVRT and isotopic composition might be most 
obvious with latitude, where long WVRT corresponds to 
the strongest loss in heavy isotopes, owing to continued 
condensation and fractionation with poleward moisture 
transport. Subtropical regions dominated by evaporation 
exhibit patterns that strongly resemble the areas with 
short WVRTs. Mid- latitude and high- latitude evapo-
ration and land processes complicate these first- order 
relations, as mixing, progressive rainout of oceanic mois-
ture and recycling with increasing continentality create 
a more complex signal. Regionally, patterns can even be 
opposite, for example, over equatorial Africa, where rel-
atively high WVRT coincides with relatively enriched 
vapour isotopes.

The multifaceted relation between WVRT and sta-
ble water isotopes can be conceptualized using a sche-
matic cross section of the atmosphere from equator to 
pole (Fig. 4a). Correlations of water vapour’s stable iso-
tope composition with the WVRT (expressed as AGE) 
are particularly obvious in the downwelling branch 
of the Hadley cell and in the middle troposphere of 
polar regions. In these regions, the transport pathways 
(and, thus, AGE) are longest, and cold temperatures 
lead to strong loss of heavy isotopes by condensation 
in regions where the time since evaporation is long-
est (Fig. 3a). For example, water vapour in the Bolivian 
Andes has been observed to be strongly depleted in 2H  
(reFs57,58), contrasting with regions of tropical deep 
convection59. Such general patterns can also be observed 
from satellite sensors41. In extratropical regions, sub-
arctic water vapour has been detected descending in a 
Mediterranean anticyclone that had experienced a loss 
of 2H, creating a strong contrast to the water evaporating 
from the Mediterranean sea below60. Greenland vapour 
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measurements are also generally highly depleted, owing 
to strong orographic rise, cold temperatures and the high 
elevations of measurement locations61. On the other 
hand, shallow, precipitating weather systems, such as 
cold- air outbreaks in polar regions21,39,62, show a signa-
ture close to the isotopic composition of vapour above 
the ocean63. Weather systems with shallow precipitation 
processes thus exhibit isotope signals that represent a 
more immediate origin and lower AGE of water vapour.

The correspondence between isotope composi-
tion in vapour and the WVRT can be synthesized in 
a two- dimensional diagram of AGE versus isotopic 
depletion (Fig. 4b). While the stable water isotopic com-
position of rainfall changes during the life cycle of the 
precipitation- producing systems and processes, the iso-
topic fingerprint provides information of the prevailing 
or dominant signal. Hence, a link between AGE and the 
isotopic composition of the precipitation- producing 
system at its peak can be established and stable water 
isotopes can be translated into a proportional of AGE. 
Atmospheric mixing of water vapour and precipitation 
pose substantial challenges to obtaining such observa-
tional constraints on the WVRT. For example, tracing 
aged water vapour during mixing processes is hampered 
by the abundance of moist air near the surface that  
will, by far, outweigh the isotopic signal contained in 
the aged water vapour. In addition, rainfall continuously 
exchanges mass with the surrounding vapour phase as it 
falls through the atmospheric column below the cloud 
base in a complex mixing process that also entails iso-
topic fractionation64. Both of these aspects suggest that 
water vapour lifetime might, to some extent, remain a 
conceptual quantity with large uncertainties in both tails 
of its distribution.

Using the combination of stable isotopes of both 
hydrogen and oxygen in water vapour, it is possible to 
calculate an evaporation source tracer that could be used 
to trace water vapour and quantify mixing processes65. 

This ‘deuterium excess’ could provide proxy information 
about the WVRT and also information about moisture 
recycling and transpiration ratios66–68. Moreover, the use 
of water isotopes is not limited to atmospheric processes, 
as they have also been widely used to track surface and 
subsurface hydrological processes69–71.

WVRT and anthropogenic climate change
As well as the previously described regional variability 
in WVRT, influenced by local- to- global scale processes, 
WVRT is also anticipated to change with anthropogenic 
warming. The dependence of TUT (Box 1) on tem-
perature provides a means by which the sensitivity of 
WVRT to future warming can be assessed. In particular, 
if φW

 and φP
 represent the fractional rate of change of 

vertically integrated precipitable water (W) and precipi-
tation rate (P ), respectively, with units of K−1, the equiv-
alent rate of change in residence time can be derived as:
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Alternatively, the intensity of the atmospheric 
hydrological cycle can be estimated through the 
fraction of mass exchange per unit time, defined as 
M P W= /  (reFs13,14,72). As the inverse of TUT, M is a mea-
sure of the rate at which water vapour moves through 
the atmospheric reservoir, with the rate of change with 
temperature derived as:
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Using these relationships, the impact of anthropo-
genic warming on W  and P , and, in turn, TUT, collec-
tively suggest a consistent increase in WVRT13,72–78 (Fig. 5; 

TaBle 1), as will now be discussed.

Changes in precipitable water. Assuming that relative 
humidity remains constant79, the sensitivity of W  to 
temperature is driven by the dependence of saturation 
vapour pressure on temperature80. Thus, changes in 
W  are approximately scaled by the Clausius–Clapeyron 
rate of 7% K−1. Indeed, both general circulation model 
(GCM)- based13,16,72–78,81,82 and satellite- based12,13,83,84 esti-
mates converge on column- integrated water vapour 
increasing at this rate (Fig. 5; TaBle 1). Such findings 
are particularly applicable over oceanic regions, where 
the assumption of constant relative humidity is most 
valid, but they would also likely apply at the global 
scale82. Fingerprinting methods further indicate that 
the observed increase in total and upper- tropospheric 
atmospheric moisture content can be attributed to 
human- induced greenhouse gas increases81,85, although 
the Atlantic Multi- decadal Oscillation and El Niño–
Southern Oscillation also have a distinct influence on 
twentieth century variability78.

Yet, while global trends in water vapour are robustly 
positive, substantial geographical variability exists for 

both observed and projected precipitable water changes. 
For instance, positive W trends have been observed over 
the North Pacific, North Atlantic and along the ITCZ, 
while very weak and even negative trends are apparent 
in the subtropics and over other oceanic regions12,13,84. 
More generally, observational data since 1988 suggest 
rates of change of 4–7% K−1, 10–14% K−1 and well below 
7% K−1 for oceans poleward of 30°, tropical oceans and 
land areas, respectively86. In addition, expectations of 
homogeneous changes with altitude might also not be 
realistic. The majority of the observed increase in water 
mass, for example, occurs below 500 hPa, even when 
the percentage change per K is greater above that level77. 
Moreover, in contrast to column- integrated W, surface 
W is projected to decrease in the future over continental 
areas, owing to surface relative humidity changes82.

Changes in precipitation. Estimates from GCMs typi-
cally converge on global mean precipitation increases 
of 1–4% K−1 (reFs13,72–75,77,78,82,87,88) (Fig. 5; TaBle 1). These 
predicted changes do not scale with Clausius–Clapeyron 
(and are, thereby, lower than those for W), owing to 
global average precipitation being constrained by energy 
balance and not moisture availability77,87. Uncertainties 
in such model projections are generally represented 
by the spread of the model, but these are likely to be 
underestimates because any future precipitation 
responses probably encompass a much larger range87. 
However, while GCMs indicate consensus in precipita-
tion changes, global trends from observations lack sta-
tistical significance, with most reported values ranging 
from 2 to 3.5% K−1 (Fig. 5; TaBle 1), owing, in part, to the 
absence of complete, reliable and consistent data prod-
ucts. Precipitation is also expected to respond differently 
to the various drivers of anthropogenic warming, result-
ing in fast and slow responses, which further complicate 
observational analyses89.

As with W, the regional response of precipitation 
to warming also shows strong spatial heterogeneity. 
GCMs project increasing precipitation near the equa-
tor and in the mid- latitudes, while a reduction is pro-
jected in subtropical subsidence regions90. This pattern 
is also reflected in the geographical distribution of 
precipitation- minus- evaporation, where, over the oceans, 
wet regions become wetter and dry regions drier72.  
In contrast, over the continents, a more heterogeneous pat-
tern is projected, with precipitation- minus- evaporation  
changes coupled to spatial patterns in surface warming 
and relative humidity91–93. Such model- derived esti-
mates are also generally supported by observations, 
including increased precipitation over the ITCZ and 
storm- track regions, and decreased precipitation over 
the subtropics13.

With the increase in available atmospheric mois-
ture, as previously discussed, extreme precipitation is 
also anticipated to increase87. The rate of such projected 
changes exceeds that of mean precipitation, generally 
within the range of 5–10% K−1 in both observations94 
and GCMs75. Changes in short- duration extreme rainfall 
exceed those expected from moisture increases alone, 
and are likely related to feedbacks in convective clouds 
occurring at small scales95.

Precipitable
water

Precipitation

R
at

e 
of

 c
ha

ng
e 

(%
 K

–1
)

Turnover
time

8

7

6

5

4

3

2

1

Observations Hybrid or reanalysisModel simulations

a 

b 
c de

f

h
j

k
g**, i

e

al
h

b g, i
m, d

f n
f

a d*b

h*, g*, i*

e*

Fig. 5 | Sensitivity of water vapour residence time and its components to global 
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to units % K−1. *Derived from changes in global precipitable water and precipitation. 
**Results from AR4 models. ■Derived from % per decade, with a warming reference of 
0.17 K per decade. ■ ■Derived from recycling rate. a = reF.13; b = reF.12; c = reF.83; d = reF.74; 
e = reF.78; f = reF.75; g = reF.77; h = reF.73; i = reF.72; j = reF.82; k = reF.84; l = reF.107; m = reF.88; 
n = reF.87. Note, results from reF.111 are not included, owing to problems with the 
underlying precipitation data. Most estimates, whether observational, modelled or 
hybrid, converge on rates of change close to 7% K−1 for global precipitable water,  
2.5% K−1 for global precipitations and about 4.5% K−1 for turnover time.

www.nature.com/natrevearthenviron

R e v i e w s



0123456789();: 

Changes in WVRT. Having quantified the sensitivity of 
W and P to temperature increases, changes in TUT can 
be inferred.

All evidence points towards a lengthening of TUT 
with anthropogenic warming. GCMs, for exam-
ple, typically reveal an increase in TUT of 3–6% K−1 
(reFs13,72–75,77,78) (Fig. 5; TaBle 1). In absolute terms, these 
reflect a 1.7- day increase over 1986–2005 (8.2 ± 0.5 days) 
to 2081–2100 (9.9 ± 0.7) based on RCP8.5 projections16. 
Water vapour tracers embedded within GCMs also 
indicate increases in WVRT as sea surface temperatures 
and greenhouse gases increase with mean values of  
0.13 days per 50 years over 1949–1998 and 0.3 days per 
50 years over 1974–1998 (reF.14). These general findings 
are further confirmed by observational analyses of M 
(the fractional mass exchange per unit time; Eq. (4)), 
which indicate a decrease in M of −0.73% per decade on 
average from 1988 to 2009, implying a corresponding 
global increase in TUT12,13.

As expected, changes in TUT are heterogeneous in 
space. For example, observations and models suggest 
an increase in M (or decrease in TUT) over the ITCZ 
and storm tracks, but a decrease in M (or increase in 
TUT) over the subtropics12,13. These geographical varia-
tions reflect those observed for precipitation. The global 
increase in TUT implies that the global signal is dom-
inated by regions where residence time is increasing. 
Thus, global trends in TUT are dominated by trends in 
water vapour, while regional trends are dominated by 
trends in precipitation12,13.

There is, therefore, an overwhelming consensus that, 
as the climate warms, WVRT increases: water vapour 
remains in the atmosphere for longer and a smaller frac-
tion of this vapour is exchanged with the surface per unit 
of time (Fig. 5; TaBle 1). A longer WVRT implies that 
water vapour travels further between the evaporation 

source and precipitation sink, and, thus, that the length 
scale of moisture transport increases96, with estimates 
converging on a TUT change close to 4% K−1. Perhaps 
counter- intuitively, this lengthening occurs simulta-
neously with an increase in mean precipitation and 
evapotranspiration14,97, an overall increased intensity 
of extreme precipitation87 and increased intensity of 
droughts and floods72,91. Extreme precipitation events are 
often fed by the convergence of moisture from both local 
and remote sources11,98,99, implying that extreme precip-
itation will often be a mixture of ‘newer’ (local) water 
and ‘older’ (more remote) water, resulting in a bimodal 
age distribution. Clearly, a simple measure such as TUT 
cannot capture such distributions or their changes in a 
warming climate.

Summary and future perspectives
The time water spends in the atmosphere, or WVRT, 
is a fundamental diagnostic of the climate system. 
WVRT varies widely, ranging from less than 2 days 
over the subtropical oceans to more than 10 days at  
high latitudes, reflecting regional differences in 
precipitation- generating mechanisms. At the global 
scale, estimates of residence time range from 8–10 days3,9  
to a much shorter 4–5 days8. These apparently contradic-
tory estimates can be reconciled by recognizing that the 
atmosphere hosts a continuum of lifetimes represented 
by the LTD7. The TUT of 8–10 days thus becomes a  
single number that characterizes only the mean of the 
LTD, whereas the shorter 4–5- day estimate represents 
the median. As the climate warms, TUT will likely 
increase by 3–6% K−1, lengthening the atmospheric 
branch of the water cycle.

Simple metrics such as TUT provide limited insight 
into WVRT processes. However, quantification of the 
changes in LTD would, for example, provide insight 

Table 1 | Published rates of change for turnover time, precipitation and precipitable water

Source tUt (% K−1) Global P (% K−1) Global W (% K−1) ref.

GPCP, MSAP – 1.5–2 – 107

GPCP, SSM/I 3.85 ± 3.00a,b 1.94 ± 3.18a 5.70 ± 2.18a 12

SSM/I – – 7.8 84

MSU, AVHRR, SSM/I – – 6.03c 83

GPCP, SSM/I, CMIP5 3.70 ± 2.35a,b 1.82 ± 2.82a 5.29 ± 1.94a 13

GPCP, SSM/I, ERA- In, HadCRUT 3.20 ± 0.53d 3.40 ± 0.90 6.60 ± 0.40 75

20CRv2m HadISST, SSM/I, AR4 5.4 1 6.4 78

Ensemble of 19 AOGCMs – 3.4 – 87

HadGEM1+ – 2–3 – 88

PCMDI/AR4 5.3d 2.2 7.5 72

PDRMIP, CMIP5 5.73 ± 0.81e – – 16

KCM (ECHAM5+NEMO) ~5d ~2 ~7 73

CMIP3 – – 7.3 82

Multiple GCMs 3.7d 2.5 6.2 74

AR4 models 5.1d 2.3 7.4 77

Standard errors were provided by authors or obtained by uncertainty propagation. P, precipitation; TUT, turnover time;  
W, precipitable water. aDerived from per decade. bDerived from recycling rate. cAveraged from 6.8% K−1 (20°–60° N), 6.7% K−1 
(20° S–20° N) and 4.6% K−1 (20°–60° S). dDerived from W and P. eDerived from days K−1, value calculated for the future period  
with a reference TUT of 8.2 ± 0.5 days.
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in terms of increased skewness of the distribution that 
could reflect both more intense precipitation and more 
long- lived water vapour. Reconsidering previous WVRT 
analyses from the perspective of LTD’s might, therefore, 
be valuable and can motivate research into identifying 
the LTD from models and observations.

It is clear, however, that atmospheric scientists can 
learn valuable lessons from other disciplines. In hydro l-
ogy, for example, stable isotopes and geochemical tracers  
have brought about a shift from bulk quantification of 
the water balance to a more nuanced understanding 
of the physical processes and pathways of water100. The 
traditional understanding of the subsurface and sur-
face hydrologic system was effectively reconceptualized 
by these observations101,102. Hydrologists have moved 
beyond mean transit times (metrics such as TUT) and 
have been thinking in terms of transit time distributions 
(LTD) for decades103,104. Similarly, combining isotopic 
tracer observations and numerical models is likely to 
advance understanding of WVRT in the atmosphere.

Bringing together in situ isotopic measurements, 
remote sensing observations and isotope- enabled models 
can help us bridge spatial and temporal scales as seen, for 
example, with the potentially improved parameterization 
of vertical mass exchange in climate models56. However, 
the use of isotope tracers in the atmosphere is not straight-
forward, as moisture sources and sinks evolve with the 
location of frontal and/or convective weather systems, and  
the isotopic signal continuously evolves from mixing 
and phase changes. Nevertheless, stable water isotopes in 
the atmosphere are currently the only quantitative tool 
for observing some aspects of the LTD. The community 
would benefit from isotopic observations and modelling 
aimed at constraining the LTD of water vapour in the 
atmosphere. Targeted observational campaigns need to 

be adapted to study how the LTD varies from the ITCZs 
to subtropics, mid- latitudes and polar regions. Ideally, 
such campaigns should cover an entire local or regional 
water cycle, from evaporation to mixing, cloud processes 
and precipitation. Doing so requires a focus on specific 
regional weather systems and a combination of measure-
ment platforms, including research aircraft, ships, stations 
with flux towers, collection of precipitation and sampling 
of soil moisture and plants105,106.

An outstanding challenge remains with regard to how 
isotope- derived information can be used on WVRT to 
infer the spatial origins of moisture and precipitation, 
as well as to differentiate between moisture and pre-
cipitation that originate from ocean evaporation, soil 
evaporation and transpiration. As such, observational 
campaigns could ideally span transects between regions 
where water vapour primarily originates from oceanic 
versus terrestrial sources. These campaigns should 
encompass simultaneous observations of both atmos-
pheric and surface processes, because their interactions 
are poorly understood.

Advancing understanding of WVRT and its changes 
in response to warming will require both compre-
hensive measurement campaigns and tracer- enabled 
atmospheric models. Priorities for future work include 
more comprehensively documenting regional and 
local- scale processes, improved understanding of surface– 
atmosphere interactions and further development of 
the LTD as an organizing concept for WVRT. The com-
plexity of these problems and their connectivity across 
scales will require multidisciplinary approaches draw-
ing on broad expertise in both atmospheric science and 
land–ocean–atmosphere interactions.
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