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a b s t r a c t 

Neurophysiologic correlates of motor learning that can be monitored during neurorehabilitation interventions can 
facilitate the development of more effective learning methods. Previous studies have focused on the role of the 
beta band (14–30 Hz) because of its clear response during motor activity. However, it is difficult to discriminate 
between beta activity related to learning a movement and performing the movement. In this study, we analysed 
differences in the electroencephalography (EEG) power spectra of complex and simple explicit sequential motor 
tasks in healthy young subjects. The complex motor task (CMT) allowed EEG measurement related to motor 
learning. In contrast, the simple motor task (SMT) made it possible to control for EEG activity associated with 
performing the movement without significant motor learning. Source reconstruction of the EEG revealed task- 
related activity from 5 clusters covering both primary motor cortices (M1) and 3 clusters localised to different 
parts of the cingulate cortex (CC). We found no association between M1 beta power and learning, but the CMT 
produced stronger bilateral beta suppression compared to the SMT. However, there was a positive association 
between contralateral M1 theta (5–8 Hz) and alpha (8–12 Hz) power and motor learning, and theta and alpha 
power in the posterior mid-CC and posterior CC were positively associated with greater motor learning. These 
findings suggest that the theta and alpha bands are more related to motor learning than the beta band, which 
might merely relate to the level of perceived difficulty during learning. 
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. Introduction 

Motor learning —defined as acquiring new skills, improving exist-
ng skills, or regaining/reinforcing skills through practice —is critical
or developing motor function at all stages of life Magill and Ander-
on (2017) . However, the neurophysiology of motor learning is com-
lex and not fully understood. Differences in brain structure and func-
ion ( Tomassini et al., 2011 ) and genetic factors ( McHughen et al.,
010 ) contribute to the variability in motor learning capacity amongst
ealthy individuals. To better understand this variability, investiga-
ors have analysed neurophysiologic correlates of motor learning by
lectroencephalography (EEG)/magnetoencephalography (MEG). This
as allowed real-time monitoring of motor learning during rehabilita-
∗ Corresponding author. 
E-mail address: j.vandercruijsen@erasmusmc.nl (J. van der Cruijsen). 
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ion ( Amo et al., 2017 ; Mane et al., 2019 ), the development of brain-
omputer interfaces Saha and Baumert (2020) , and the improvement of
on-invasive brain stimulation techniques ( Thut et al., 2017 ). 

Complex sequential learning tasks involve working memory, atten-
ion, and cognitive control and are easy to combine with neuroimag-
ng. Previous imaging studies have revealed the involvement of vari-
us brain regions in complex motor learning, including the dorsolat-
ral prefrontal cortex ( Ghilardi et al., 2000 ), anterior cingulate cor-
ex (ACC) ( Ghilardi et al., 2000 ; Jueptner et al., 1997 ), basal ganglia
rittain and Brown (2014) , supplementary motor area, and primary mo-
or cortex (M1) ( Ashe et al., 2006 ). M1 beta-band activity (14–30 Hz)
s known to modulate with motor execution ( Pfurtscheller et al., 1996 )
nd has been related to motor learning in studies with healthy subjects
 Espenhahn et al., 2019 ; Meziane et al., 2015 ; Pollok et al., 2014 ) and
 2021 
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atients suffering from neurological disorders ( Espenhahn et al., 2020 ;
eissner et al., 2018 ). Studies with Parkinson’s disease patients indi-

ate reduced motor learning capacity results from affected basal ganglia-
halamo-cortical network, reflected by enhanced beta power compared
o healthy individuals ( Meissner et al., 2018 ; Weiss et al., 2015 ). In ad-
ition to the beta band, motor learning has also been suggested to be
elated to theta (5–8 Hz), alpha (8–12 Hz), and gamma (60–90 Hz) fre-
uency band modulation ( Boonstra et al., 2007 ; Meissner et al., 2018 ;
ugata et al., 2018 ; Zhuang et al., 1997 ). However, none of these studies
ontrolled for brain activity associated with performing the movement;
herefore, it is unclear whether the activity is specifically associated with
otor learning. 

To address this point, this study aimed to investigate EEG-based neu-
ophysiologic correlates of motor learning that solely reflect learning
he movement by controlling for performing the movement. To this
nd, we used a complex motor learning task ( Reis et al., 2009 ) that
nduces motor learning ( Coxon et al., 2014 ) and a simplified motor task
hat requires very similar movement but induces little or no learning.
uring both tasks, participants applied a pinch force to a force trans-
ucer to move a cursor according to a fixed complex or simple sequence
isplayed on a computer screen. We administered both motor learning
asks in a within-subjects design to identify neurophysiologic correlates
pecific to online motor learning and not to motor movement. We do
o by calculating the difference in learning between the complex mo-
or learning task and the simple motor learning task and comparing
hese with differences in EEG power in the theta, alpha, and beta fre-
uency bands. Although motor control also involves the gamma band
 Nowak et al., 2018 ), this is typically through phase-amplitude coupling
PAC) with slower oscillations ( Canolty et al., 2006 ; Chacko et al., 2018 ;
sipova et al., 2008 ), which is beyond the current analysis scope. 

. Methods 

.1. Participants 

Twenty healthy volunteers participated in this experiment (age: 18–
0 years, 13 females). Due to the explorative nature of the study, no a
riori sample size estimation was performed. All participants provided
ritten, informed consent before the experiment. Participants were self-

eported as right-handed and free of any neuromuscular disorders. The
tudy was approved by the medical ethics review board of the Erasmus
niversity Medical center (NL64529.078.18) and conducted in accor-
ance with the Declaration of Helsinki (2013). 

.2. Experimental design 

Participants performed 2 sequential visual isometric pinch tasks in
 counterbalanced order: a complex motor task (CMT) that has been
hown to induce learning over many repetitions and a simple motor task
SMT) which required little to no learning over repetitions. The CMT was
dapted from previous research demonstrating that participants showed
n approximately linear improvement within and over multiple sessions
ithout reaching a plateau ( Coxon et al., 2014 ; Reis et al., 2009 ). The
MT was based on the CMT, but the task was made easier so that par-
icipants would reach an early learning plateau. 

In both tasks ( Fig. 1 panel A and B), participants had to move a cur-
or from the “home ” position to a target on the screen by pinching a
orce transducer between the right thumb and index finger. Between
argets, the participant had to move the cursor back to the home posi-
ion by releasing the force on the transducer. In the CMT, a trial con-
isted of moving the cursor to 1 of 5 targets sequentially, whereas in
he SMT, the participant had to reach the same target 5 times. The re-
ationship between pinch force and cursor position varied according to
he maximum pinch force that was applied. In the CMT, the relationship
as logarithmic: for low displacement, a small force increase produced
 large displacement, and the displacement decreased with increasing
2 
inch force. Because of the nonlinear nature of the force–cursor position
elationship, motor learning was required to perform the task well (see
ig. 1 panel D). In contrast, in the SMT the relationship between force
nd cursor position was linear and there was only a single, wide target;
s such, it required little to no learning to perform the task well. We con-
rolled for performing the movement in the CMT by ensuring that the
verage force required to reach five targets in a single trial was similar
or both tasks. 

A metronome (80 beats/min) provided cues for the start of the trial
nd the pace at which participants had to reach the target(s). The
etronome was used to constrain the single-trial duration and to align

rials to facilitate the EEG analysis. A countdown of 3 high-pitched beeps
ndicated the start of the trial. A synchronisation trigger was sent to the
EG amplifier upon the third high-pitched beep to indicate the start of
ach trial, set as t = 0. After trial onset, as indicated by the metronome,
articipants had 750 ms to reach each target. A target was successfully
eached if the maximum cursor position within a 50 ms time window
round the metronome beep was within a 50-pixel window around the
arget’s centre (see Fig. 1 panel C). This dichotomous measure was used
s a single measure suitable to quantify performance in both the CMT
nd SMT. Numeric measures such as accuracy, precision, or error rate
ere not considered suitable, as they require a fixed reference point that

annot be defined for the SMT. Participants were instructed to reach cor-
ectly as many targets as possible in both tasks. 

The CMT and SMT started with three practice blocks to familiarise
he participant with the task, followed by 20 blocks of 10 trials. Con-
ecutive blocks were separated by 30 s breaks and consecutive trials by
 s. After each block, the percentage of successfully reached targets was
resented to the participant. Furthermore, the percentage successfully
eached targets per target for the latest block was provided. 

For both tasks, learning was defined as the slope of the best fitting
inear line through all the individual performance points per block. Pre-
ious studies employing the CMT describe subjects improve approxi-
ately linearly over time ( Coxon et al., 2014 ; Reis et al., 2009 ), mak-

ng the slope a suitable quantity to describe learning. As such, positive
lopes indicated learning, whereas negative slopes indicated a reduction
n performance over time. The difference in slopes between the CMT and
MT was the final measure used for motor learning in the subsequent
nalysis to correct for (unexpected) learning in the SMT. 

.3. EEG recordings 

EEG was performed throughout the experiment using 62 Ag–
gCl electrodes aligned according to the international 10–5 system
 Oostenveld and Praamstra, 2001 ) in an EEG gel head cap (TMSi, En-
chede, The Netherlands). Two additional electrodes were placed at the
ight temple and slightly above the nasion to record horizontal and ver-
ical eye movements, respectively. The ground electrode was positioned
t the right mastoid. A bipolar montage was used to record muscle ac-
ivity of the right first dorsal interosseous muscle. The impedance of all
lectrodes was maintained below 5 kOhm. All electrophysiologic data
ere collected at 2048 Hz, referenced to the common average, using
 biosignal amplifier (Refa 128; TMSi) that received a synchronisation
ignal at the start of each CMT or SMT trial. 

.4. EEG analysis 

.4.1. EEG preprocessing 

All data were processed using EEGLAB v14 ( Delorme and
akeig, 2004 ) in MATLAB (Mathworks, Natick, MA, USA). Each task’s

ata were downsampled to 1024 Hz and then bandpass-filtered between
 and 60 Hz (order: 3380) using EEGLAB’s built-in finite impulse re-
ponse filter. A notch filter was applied at 50 Hz (48–52 Hz, order: 1690)
o remove apparent line noise identified in the power spectra of the data.
he data of both tasks were concatenated to apply all the following steps
n both the CMT and SMT data. Most importantly, this ensured that



J. van der Cruijsen, M. Manoochehri, Z.D. Jonker et al. NeuroImage 240 (2021) 118373 

Fig. 1. Overview of the experimental tasks. Panel A shows the complex motor task, in which participants had to move the black cursor from the ‘home’ position, 
indicated with ‘H’, in sequence to targets 1 to 5. Panel B: the simple motor learning task, in which participants had to move the black cursor inside the red target five 
consecutive times. Panel C and D show the average cursor position over time (C) and average force over time (D), respectively, of a single subject during the complex 
(blue) and simple (red) motor learning task. Dashed lines indicate a beep of the metronome. The magenta dashed line indicates the metronome beep corresponding 
to the start of the trial, at which the EEG amplifier received a synchronisation trigger. Black dashed lines succeeding the synchronisation trigger indicate metronome 
beeps at which targets had to be reached. The grey shaded areas indicate the margins in time (x-axis) and position (y-axis) for which the cursor position successfully 
reached the target. 
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he source localisations were equal for both tasks to allow between-task
omparisons of the EEG. Bad channels were detected by visual inspec-
ion and rejected, and the remaining channels were re-referenced to the
ommon average. On average, 1.4 ± 1.54 (mean ± standard deviation)
lectrodes were rejected. 

.4.2. Source-level analysis 

For source-level analysis, the following steps were carried out on a
opy of the continuous preprocessed data. The data were downsampled
o 256 Hz to reduce the computation time of subsequent steps, and data
oints outside the window of − 2 to 5 s around the synchronisation trig-
er ( t = 0) were removed. To keep as much data as possible during arte-
act rejection, we first split the remaining data into 0.5 s epochs. Then, a
uilt-in automated rejection protocol was applied to remove bad epochs
ith data points above the epoch mean ± 6 times the standard deviation
f the full 0.5 s epoch. 

Adaptive mixture independent component analysis (ICA)
 Palmer et al., 2008 ) was performed on the clean 0.5 s data epochs
f individual subjects to reconstruct the source-level activity of the
ecorded data. Due to our experimental design, EEG signals comprise a
ixture of task-related sources of motor, visual, and auditory activity

ut also unrelated activity from artefacts such as eye movement and
uscle activity. ICA is a reliable tool for separating different sources of

ortical activity from each other and artifacts ( Delorme et al., 2012 ).
CA information (weight and sphering matrix) was copied back to
he continuous preprocessed dataset. From this dataset, epochs of − 2
o 5 s around the synchronisation trigger ( t = 0) were generated to
btain full-trial component activations. The full trials were cleaned
y applying an automated rejection algorithm to the component
ctivations to remove trials containing data points larger than the trial
ean ± 6 standard deviations. Then, we verified by visual inspection

hat no noisy trials were included in the following steps. On average,
89.8 ± 5.5 and 190.3 ± 6.2 trials were included in the analysis for the
3 
MT and SMT, respectively (mean ± sd). Horizontal electrooculogram
EOG) components were visually identified on the time course of the
ignal that was most highly correlated with cursor position during
he task. Vertical EOG components showed blinking only up to − 1.5 s
efore the start of the trial and at the end of each trial. Both horizontal
nd vertical EOG components were discarded from the analysis. 

Source localisation was performed on the independent components
y fitting equivalent dipoles (DIPFIT 2.3 plugin for EEGLAB) to the
leaned component activations, simulated on a 3-compartment bound-
ry element model derived from the MNI canonical template brain. The
odel consisted of compartments for scalp, skull, and brain with corre-

ponding conductivities of 0.33 S/m, 0.0041 S/m and 0.33 S/m, respec-
ively. A template brain with fixed conductivities results in approximate
ocations of the dipolar sources that generate the reconstructed source-
evel activity. Only components that could be fitted as a dipole in the
rain with a residual variance < 10% ( Delorme et al., 2012 ) and with
/ f power spectra were considered for further analysis. All remaining
omponents of all subjects were clustered by k-means clustering of the
ipole location Arthur and Vassilvitskii (2007) by minimising the dis-
ance between individual dipole locations and k means. The number of
enerated clusters was equal to the number of included components di-
ided by the number of subjects. We set a minimum of 10 participants
er cluster to be retained for further analysis. The coordinates of the
luster means were used to approximate the brain region represented
y the cluster based on the nearest grey matter point in Talairach coor-
inates ( Lancaster et al., 2000 , 1997 ). 

Time–frequency representations of full trials of independent compo-
ents included in the selected clusters were calculated based on Morlet
avelet convolutions at 100 logarithmically distributed frequency steps
etween 3 and 60 Hz and a linearly increasing number of cycles from 3
o 16. Time-frequency decompositions were calculated per subject per
or both the CMT and SMT trials. Single trials were normalised by divid-
ng by the mean full single-trial power spectrum before averaging over
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rials to reduce sensitivity to noise Grandchamp and Delorme (2011) .
ultiple components of the same subject within a cluster were first av-

raged before averaging over all subjects. 
Average power per motor task was calculated during trial execution

 t = [0, 3750] ms) within theta (5–8 Hz), alpha (8–12 Hz), and beta
14–30 Hz) frequency bands. We defined EEG power enhancement as
vent-related synchronization (ERS) and power suppression as event-
elated desynchronization (ERD). The EEG power ratio between CMT
nd SMT for every cluster was calculated and subtracted by 1 for the
ubsequent statistical analysis to correct for any unexpected learning in
he SMT. As such, a power ratio of 0 indicates that EEG power was equal
uring both tasks. Positive values indicate that EEG power for a specific
requency band/cluster combination was higher during CMT compared
o SMT. 

.5. Statistical analysis 

We analysed the learning rate differences in the behavioural data us-
ng a linear mixed-effect model with main effects for task and block and
n interaction term 𝑡𝑎𝑠𝑘 × 𝑏𝑙𝑜𝑐𝑘 . Furthermore, the linear mixed-effects
odel included nested random intercepts and random (linear) slopes per

ubject per condition to describe between-subject variability in starting
erformance and learning rate. Using this model, we investigated the
ifferences between the CMT and SMT in mean starting performance
main effect task ) and learning rate (main effect block and interaction
erm 𝑡𝑎𝑠𝑘 × 𝑏𝑙𝑜𝑐𝑘 ). 

To identify whether EEG correlates on motor learning, we fitted a
eneralised estimating equation (GEE) model. In the GEE model, EEG
and power was the dependant variable. The GEE approach was used
ince the regression parameters are sensitive to random-effect assump-
ions. Given our objective is to investigate the population average of
EG power with covariate groups, we assume a GEE with robust sand-
ich estimators ( Hubbard et al., 2010 ). We included main effects for the

ndependent variables cluster, frequency band, and learning in the model.
ue to the sample size, we limited interactions to only the two-way in-

eraction terms 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 × 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 and 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 × 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 . We computed
he GEE’s marginal effects to explore the relationship between learning
nd EEG band power per cluster. The marginal effects estimate both
n intercept and a slope to predict how EEG band power per cluster
elates to motor learning. Given the nature of our measure for learn-
ng (the difference in learning slopes between CMT and SMT) and EEG
ower (the ratio 𝐶𝑀 𝑇 ∕ 𝑆𝑀 𝑇 − 1 ), significant positive slopes indicate
hat EEG power from a particular frequency band/cluster is positively
ssociated with motor learning. Furthermore, significant intercepts in-
icate that the mean power in a frequency band – cluster combination
as different between the CMT and SMT. All statistical analysis were
erformed in R 4.0.3 (R Core Team, 2019) and the packages geepack

 Halekoh et al., 2006 ) and nlme ( Pinheiro et al., 2020 ). 

.6. Data and code availability statement 

The data that support the findings of this study are available from
he corresponding author, JC, upon reasonable request. 

. Results 

.1. Motor learning 

The main effects of the linear mixed effects model revealed that
ean starting performance in the SMT ( 𝛽0 = 78.5%, SE = 2.414,
 < 0.001) was significantly higher than during the CMT ( 𝛽0 = − 53.4%,
E = 3.41, p < 0.001). Furthermore, mean performance significantly
ncreased over blocks in the SMT (main effect for block : 𝛽1 = 0.406,
E = 0.128, p = 0.002), but more during the CMT (interaction term
𝑙𝑜𝑐𝑘 × 𝑡𝑎𝑠𝑘 : 𝛽1 = 0.529, SE = 0.181, p = 0.003). The random effects
 Fig. 2 ) showed that 16/20 subjects (80%) had a steeper slope during
4 
he CMT compared to the SMT, indicating a greater degree of learning
n the former task. 

.2. EEG 

.2.1. Source-level activity 

EEG channel activations were localised and clustered into 5 distinct
reas ( Table 1 and Fig. 3 ). The cluster centres were approximated to
he contralateral (c)M1 and ipsilateral (i)M1 and CC (anterior mid-CC
aMCC], posterior [p]MCC ( Vogt, 2016 ), and posterior CC [PCC]). 

Visual inspection of the mean time-frequency decompositions of the
ilateral M1 clusters shows during both tasks alpha and beta ERS during
ask preparation ( t = [-2, 0]) and beta and alpha ERD during task execu-
ion t = ([0, 3.75]). For the aMCC cluster, theta ERD was observed during
reparation, followed by theta ERS after trial onset. Theta ERS was time-
ocked to the auditory cue at 750 ms intervals after trial onset during
he execution phase. In the SMT, these theta bursts were absent. In the
MCC cluster, theta ERS bursts were time-locked with the metronome to
50 ms intervals after trial onset in the mean time-frequency decompo-
itions for both tasks. The PCC cluster exhibited an alpha ERD and theta
RS burst-like pattern time-locked to the metronome, and trial execution
as also accompanied by beta ERD in both motor learning tasks. Inter-

stingly, the alpha ERD bursts preceded the metronome beeps, whereas
heta ERS bursts succeeded the metronome, suggesting that the activity
as related to distinct parts of the motor task. 

.2.2. EEG–task performance 

Analysis of the GEE model showed no main effect of learning
 𝛽1 = − 0.008, SE = 0.009, p = 0.392), but significant interaction effects
etween learning and the theta ( 𝛽1 = 0.023, SE = 0.007, p < 0.001) and
lpha frequency band ( 𝛽1 = 0.025, SE = 0.007, p < 0.001). Additionally,
here was a significant interaction between the PCC cluster and learning
 𝛽1 = 0.036, SE = 0.017, p = 0.036). 

In addition to the main effects and interaction terms, we computed
he GEE’s model marginal effects to explore the relationship between
earning and frequency band per cluster (see Fig. 4 ). The marginal effects
ndicated that in the cM1, learning was positively associated with both
heta ( 𝛽1 = 0.047, CI = [0.010, 0.085]) and alpha power ( 𝛽1 = 0.049,
I = [0.002, 0.097]) but not with beta power ( 𝛽1 = 0.024, CI = [-0.020,
.068]). Power in iM1 was not associated with higher learning rates
or any of the analysed frequency bands. However, mean differences
n EEG power were found in cM1 for the beta ( 𝛽0 = -0.061, CI = [-
.102,-0.020]) band. In iM1, a mean difference was found for both the
lpha ( 𝛽0 = − 0.038, CI = [ − 0.068, − 0.008]) and beta ( 𝛽0 = − 0.056,
I = [ − 0.085, − 0.026]), indicating a difference between the motor

earning tasks not translating into higher learning rates. 
For the cingulate cortex clusters, aMCC power was not associated

ith better learning. However, theta ( 𝛽1 = 0.027, CI = [0.011, 0.043])
nd alpha ( 𝛽1 = 0.029, CI = [0.010, 0.048]) power in the pMCC
nd theta ( 𝛽1 = 0.051, CI = [0.021, 0.082]) and alpha ( 𝛽1 = 0.054,
I = [0.017, 0.090]) power in the PCC were both positively associated
ith motor learning. Full details of the analysis of the marginal effects

an be found in Supplementary Table 1. 

. Discussion 

Our study design was verified by participants learning more in the
MT than the SMT, although most participants also improved signifi-
antly in the SMT. In our evaluations of between-subject differences in
earning and differences in EEG power, a higher degree of motor learn-
ng was positively associated with higher theta and alpha power in cM1,
he pMCC and PCC. Bilateral M1 beta power was higher during the CMT
han the SMT, but not associated with higher motor learning. 
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Fig. 2. Left panel: performance (y-axis) per block (x-axis) of individual subjects. Performance in the CMT and SMT is shown in black and grey, respectively. The 
random intercept and slope for each condition indicate the starting performance and the degree of motor learning. Right panel: motor learning slopes (y-axis) sorted 
by task (x-axis). 

Table 1 

Source localisation results. 

Coordinates of mean dipole location 
cluster centres, mm 

Cluster 
Number of subjects 
(components) X Y Z 

Nearest Brodmann 
area 

cM1 14 (19) − 43 − 12 41 BA4 
iM1 15 (21) 40 − 9 39 BA6 
aMCC 15 (18) − 3 28 23 BA32 
pMCC 14 (17) 3 6 46 BA32 
PCC 17 (23) 8 − 32 39 BA31 

Abbreviations: aMCC, anterior mid-cingulate cortex; cM1, contralateral primary motor cortex; iM1, ipsilateral primary motor cortex; 
pMCC, posterior mid-cingulate cortex; PCC: posterior cingulate cortex. 
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.1. M1 

Controlling for EEG activity related to performing a movement, we
ound a positive relationship between motor learning and M1 theta and
lpha power, but not beta power. The positive association between mo-
or learning and cM1 theta power observed in our study has been previ-
usly reported ( Meissner et al., 2018 ). Moreover, increasing theta power
hrough neurofeedback was shown to improve learning in an explicit
otor sequence task ( Rozengurt et al., 2016 ). Both studies suggested

hat the relationship between motor learning and theta power was re-
ated to memory consolidation. However, in the present study, theta
ower relates to increased ongoing motor learning in a complex motor
earning task. The nature of the CMT we applied requires changes in
he motor plan, involving multiple brain regions from the motor net-
ork ( Doyon et al., 2009 ). Therefore, the relationship between motor
5 
earning and theta band activity fits with a previous report that relates
he theta band to motor plan updates and communication between mul-
iple brain regions ( Caplan et al., 2003 ; Pellegrino et al., 2018 ). More
pecifically, theta band’s role in communication between distant corti-
al regions has been shown by phase-amplitude coupling (PAC) with the
amma frequency band ( Canolty et al., 2006 ), with higher theta power
esulting in higher PAC. Additionally, M1-targeted gamma transcranial
lternating current stimulation phase-locked to the theta band resulted
n enhanced motor learning in an explicit motor learning task in healthy
ubjects ( Akkad et al., 2019 ). In PD patients, M1 tACS enhanced cortical
lasticity, reducing the effects of the impaired basal ganglia-thalamo-
ortical network ( Guerra et al., 2020 ). Given these reports, we believe
hat the positive association between learning and theta power in our
tudy could reflect increased cortical plasticity by higher coupling with
he gamma band and thus promoting motor learning. 
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Fig. 3. Cluster-wise visualisation of the time–frequency representation. For each cluster reported in Table 2, the upper row shows the scalp maps and positions 
of individual dipoles fitted in the standardised MNI152 brain. The lower row shows the time–frequency representations for CMT, SMT. The dashed magenta line 
indicates the start of the trial. Succeeding dashed black lines correspond to metronome beeps at which participants had to reach the targets in the task. 
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In addition to theta power, cM1 alpha power was positively associ-
ted with motor learning. Motor cortical alpha oscillations show similar
odulation as beta oscillations during voluntary movement, ie. ERD
uring movement anticipation and execution and ERS in the absence of
otor output ( Pfurtscheller et al., 1996 ). Previous research with simul-

aneous EEG/fMRI during a motor task localised alpha-band activity to
he post-central cortex, ie. related to processing sensory information. In
ine with previous research ( Pollok et al., 2014 ; Zhuang et al., 1997 ),
he positive relationship in the alpha band power and learning could
eflect lower demand for sensory processing with skill acquisition. 

In contrast with previous reports, we did not observe a relation-
hip between M1 beta power and learning; the time-frequency decom-
ositions during both motor tasks showed ERS during rest, ERD dur-
ng motor execution, and a burst of ERS after the movement ended. It
as been suggested that beta ERS represents a state of maintenance of
he current motor plan, while beta ERD may be an adaptive state that
nables learning Engel and Fries (2010) . Furthermore, beta activity is
lso suggested to be involved in working memory and information pro-
essing Spitzer and Haegens (2017) . Following Engel and Fries (2010) ,
6 
nhanced beta suppression would be expected to coincide with better
earning. This idea is supported by clinical studies with Parkinson’s dis-
ase (PD) patients, who exhibit less M1 beta suppression and have re-
uced motor learning capacity ( Meissner et al., 2018 ; Meziane et al.,
015 ). Similarly, stroke patients were found to have intact but lower
earning capacity compared to healthy controls, accompanied by gener-
lly higher beta power ( Espenhahn et al., 2020 ). However, both PD and
troke patients often suffer from motor impairment in general, irrespec-
ive of learning capacity. Therefore, comparing patients with healthy
ontrols cannot rule out that the identified beta power differences re-
ect limited motor control instead of limited motor learning. 

Within healthy subjects, stronger beta power suppression was also
ssociated with reduced reaction time ( Pollok et al., 2014 ) and faster
orce production ( Joundi et al., 2012 ). As cM1 beta power suppres-
ion results from motor output ( Pfurtscheller et al., 1996 ), the relation-
hip between beta suppression and reaction time ( Pollok et al., 2014 )
nd force production ( Joundi et al., 2012 ; Pogosyan et al., 2009 ) could
erely relate to changes in motor output. In the motor task we em-
loyed, learning requires optimising a motor plan but not increasing



J. van der Cruijsen, M. Manoochehri, Z.D. Jonker et al. NeuroImage 240 (2021) 118373 

Fig. 4. Cluster-wise visualisation of the marginal effects be- 
tween the degree of motor learning and the EEG band power 
ratio during task execution ( t = [0, 3.75] minus 1. Column 1 
shows scalp maps of corresponding clusters; columns 2–4 show 

theta, alpha, and beta band power ratios minus 1 (y axis) vs 
differences in learning slopes between CMT and SMT (x axis). 
Black lines show the marginal effects of the presented data; 
blue circles represent the individual data points, and the red 
lines the 95% confidence intervals of the estimated relation- 
ship. 
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1  
orce output or reaction time. By constraining the timing of both mo-
or learning tasks with the metronome and controlling for motor force
utput with the SMT, the current study finds no relationship between
otor learning and beta power. 

An additional explanation for the lack of a relation between cM1
eta power and learning may be the time point at which we consid-
red beta power since we considered beta power only during trial ex-
cution and not during the post-movement beta rebound. After volun-
ary movement, beta power typically shows a burst of ERS. This post-
ovement beta power has been associated with adjustments in motor
lans ( Schmidt et al., 2019 ; Tan et al., 2016 ) and ( Espenhahn et al.,
020 ) but was currently not analysed. 

There was less bilateral M1 beta ERD during execution of the SMT
ompared to the CMT, but individual differences in beta ERD did not
orrelate with differences in learning. Reduced iM1 beta ERD has pre-
iously been linked to lower perceived task difficulty in younger sub-
ects than elderly ( Rossiter et al., 2014 ) and motor performance in
ealthy subjects compared to elderly ( Espenhahn et al., 2019 ). During
nimanual motor tasks in right-handed subjects, the ipsilateral (right)
emisphere functions as a feedback processing system, whereas the
ontralateral (left) hemisphere acts as a feedforward predictive system
 Davare et al., 2007 ; Mutha et al., 2013 ). Thus, the amount of iM1 beta
RD may be related to perceived difficulty through increased reliance
n supportive mechanisms during the CMT compared to the SMT. In line
ith this possibility, a combination of interindividual differences in mo-

or learning capacity and perceived difficulty may explain why motor
earning was unrelated to iM1 beta power in our study. Nonetheless, we
 c  

7 
ould expect a reduction in ipsilateral beta ERD within subjects over a
onger learning period in the CMT, although this was not investigated. 

.2. CC regions 

Three additional clusters were localised to subregions of the CC,
hich is frequently associated with feedback processing ( Shenhav et al.,
013 ). The role of the MCC or dorsal ACC is typically analysed by mea-
uring scalp activity of the Fz or FCz electrode ( Cohen et al., 2011 ).
hrough ICA combined with dipole fitting, we unexpectedly detected
otor learning-related source-level activity in 2 additional, different
C subregions with different time-frequency patterns. These CC subre-
ions have been previously investigated, but primarily using neuroimag-
ng methods such as positron emission tomography (PET) and fMRI
 Ball et al., 1999 ; Jueptner et al., 1997 ; Picard and Strick, 1996 ) and
ess on an electrophysiologic level by EEG ( Herrojo Ruiz et al., 2017 )or
EG. 

The most apparent between-task differences in time-frequency de-
ompositions were found in the aMCC —namely, theta and alpha ERS
hroughout the execution phase during the CMT but absent during the
MT. During the CMT this ERD was observed in the high-frequency
eta range (21–30 Hz), whereas during the SMT, low-frequency beta
RD (14–20 Hz) was more apparent. The aMCC’s activity was approx-
mated to originate from the anterior cingulate motor area ( Picard and
trick, 1996 ), which is activated before M1 in motor control ( Ball et al.,
999 ); moreover, the activity is thought to be related to attentional pro-
esses ( Jueptner et al., 1997 ). No relationship was found between any
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f the frequency bands in this cluster and motor learning. Therefore, the
etween-task EEG differences in the aMCC are likely related solely to the
ifferent demands that the CMT and SMT place on attention, working
emory, and motor control to achieve good performance. 

The pMCC is often associated with performance monitoring and
eedback processing, which appeared in time-frequency decompositions
hrough theta ERS bursts ( Cohen et al., 2011 ) that time-locked to the
50 ms interval of the metronome that indicated when the cursor had
o reach the target location. As such, the observed association between
heta power and motor learning may reflect the importance of feed-
ack on performance and errors during the learning of a complex motor
ask. Furthermore, the alpha band —which is often associated with at-
entional demands and memory Klimesch (1997) — was positively asso-
iated with motor learning. As a mechanism underlying feedback pro-
essing, higher pMCC theta power has been linked to increased connec-
ivity to other brain regions such as M1 Cohen (2011) . As such, higher
heta power may drive motor learning through more efficient process-
ng of visual feedback on performance and interact with M1 to enable
djustment of motor control. The positive association between alpha
ower and learning was unexpected, as it did not support the theory
hat alpha power suppression is proportional to increases in attentional
emand, which would be expected in the CMT as compared to the SMT
 Klimesch, 1999 ). However, it has also been suggested that attention
nd memory are modulated by different sub-bands of the alpha band
limesch (1997) . Thus, it is possible that greater alpha power suppres-
ion during the SMT reflects an increased reliance on memory retrieval
o maintain high performance. In contrast, less suppression during learn-
ng in the CMT corresponds to motor plan adjustments. 

Finally, the third identified cluster in the CC was localised to the
CC, which is part of the default mode network and plays an impor-
ant role in cognition, attention and memory Leech and Sharp (2014) .
n the PCC, alpha ERD bursts preceded the metronome ticks theta ERS
ursts succeeded the metronome, suggesting distinct functions for the
heta and alpha band related to retrieving/encoding task-related mem-
ry ( Kim et al., 2020 ) or attentional processes ( Cona et al., 2020 ).
ona et al. (2020) suggest that increased theta ERS reflects internally
irected attention and alpha ERD external attention. Consequently, par-
icipants who learn better might require less external information during
he task, such as auditory cues or visual feedback. However, additional
nalyses are needed to understand how theta and alpha power are re-
ated to each other and learning. 

.3. Limitations 

Our results were acquired by analysing EEG data recorded during a
omplex and simple explicit motor learning task. Therefore, it is unclear
hether our results generalise to other motor learning task types such
s adaptation learning or implicit learning. Furthermore, EEG records
nly cortical activity, although motor learning also involves subcortical
tructures such as the basal ganglia ( Doyon et al., 2009 ). We acquired
ur results by applying ICA-based source reconstruction, through which
e identified task-related cortical activity localised to M1 and 3 clusters

n the CC. A limitation of ICA is that none of the constructed clusters in-
luded all participants in the study, which reduced the statistical power
f an already small sample size. Furthermore, the identified brain re-
ions were determined by dipole fitting of independent components in
 three-shell head model based on the MNI template brain model with
efault conductivity values for scalp, skull, CSF and brain. However,
ntersubject variability in anatomy and particularly skull conductivity
 McCann et al., 2019 ) influence dipole fitting accuracy ( Vorwerk et al.,
019 ). For the M1 clusters, the source reconstruction provided time-
requency decompositions typically observed during motor tasks, ver-
fying the dipole localisation. However, this was not possible for the
C clusters due to the limited availability of electrophysiologic time-

requency activations in these regions. Only error-related theta modula-
ion around the metronome ticks was available as a reference to verify
8 
he pMCC cluster’s location. Given these limitations, our study results
hould be taken as exploratory. Nonetheless, they provide a basis for
ore hypothesis-driven research to elucidate the EEG correlates of mo-

or learning. 

. Conclusion 

This study shows that – controlling for performing a movement –
ontralateral M1 theta and alpha but not beta power are positively as-
ociated with motor learning, as are theta and alpha power in the pMCC
nd PCC. In the beta band, M1 suppression was stronger during the CMT
han during the SMT, but this was not associated with a higher degree
f motor learning. Our findings support theta and alpha oscillations’
nvolvement in learning a complex, explicit motor task, possibly by en-
ancing communication between distant cortical regions, error monitor-
ng and attentional processes. Furthermore, they suggest that M1 beta
ower merely relates to interindividual differences in the capability of
erforming but not learning a motor task. We propose that further anal-
sis of theta cross-frequency interactions between M1, CC regions and
he basal ganglia may provide additional insight into the electrophysi-
logic basis of complex motor learning . 
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