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ABSTRACT

In the study of transient heat conduction in heterogeneous two-phase media, the local thermal non-
equilibrium condition calls for the use of a two-equation model to appropriately describe different tem-
peratures in the two phases. We propose for the two-equation model an FE2 multi-scale framework that
is capable of addressing nonlinear conduction problems. The FE2 framework consists of volume-averaged
macroscale equations, well-defined microscale problems, and the information exchange between the two
scales. Compared to a traditional FE2 method for the one-equation model, the proposed FE? framework
introduces an additional source term at the macroscale that is upscaled from the microscale interfacial
heat transfer. At variance with the tangent matrices (i.e., effective conductivity) of the heat flux, the tan-
gent matrices of the interfacial heat transfer depend on the microscopic length scale. The proposed FE2
framework is validated against single-scale direct numerical simulations, and some numerical examples

are employed to demonstrate its potential.

© 2021 The Author(s). Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

The need for a two-equation model to describe the transient
heat conduction process in a two-phase medium has long been
recognized, especially when the local equilibrium condition breaks
down [1-8]. Although computationally efficient, the conventional
volume averaging method [9-11] is often limited to linear prob-
lems due to the complexity in solving the closure problems for
effective transport properties and the interfacial heat transfer co-
efficient. Here we propose an FEZ multi-scale framework that al-
lows for nonlinear transport for the two-equation model of tran-
sient heat conduction in a two-phase medium.

Transient transport phenomena in heterogeneous materials
have been traditionally addressed with the one-equation model,
in which only one macroscale variable is defined on a homog-
enized volume originally consisting of multiple phases (for sim-
plicity, we restrict the study to a two-phase medium). The one-
equation model is suited to the local equilibrium assumption—
averaged temperatures of the two phases are close or even the
same—that usually holds when their transport properties are suffi-
ciently close and the microscopic length scale is adequately small
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for fast heat transfer. However, when these conditions do not hold
and there is net heat transfer from one phase to the other, the lo-
cal equilibrium will break down. One such case is when there is a
significant heat generation in any of the two phases (as discussed
in Section 5.1.1, Kuwahara et al. [3], and Kaviany [12]) or, analo-
gously, a kinetic reaction source in the biofilm phase in porous me-
dia in environmental engineering applications [5,6]. Another sce-
nario leading to equilibrium breakdown is when there is a great
disparity of conductivity between the two phases (as discussed
in Section 5.1.2 and Mahmoudi and Karimi [13]). A more general
description is required for the separate treatment of average val-
ues in the two phases and the explicit description of the interfa-
cial heat transfer [1,3,7,8,14,15]. This general strategy is termed the
two-equation model, according to the work by Quintard et al. [1,2].

The two-equation model is also required when the two phases
are characterized by different physics. By way of example, in
lithium-ion battery cells [16,17], electrodes consist of active materi-
als, electrolyte, and conductive materials. During the (dis)charging
process, lithium ions diffuse and migrate in the electrolyte, while
lithium diffuses in the active material. The quantities of concern in
the two phases, the concentration of lithium ions in the electrolyte
and concentration of lithium in the active material, differ in the
physical meaning and thus need to be considered as two differ-
ent field variables, and their values are generally not equal [16,17].
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They are connected through the consistence of mass flux between
the two phases ensured by chemical reactions occurring on the in-
terface, described for example by the Butler-Volmer equation [16].

Traditionally, the two-equation model is solved analytically. Ho-
mogenized diffusion equations are first derived at the macroscale
via the volume averaging method [11,18]. The so-called closure
problems are then defined on the averaging volume at the mi-
croscale and solved for the effective transport coefficients and in-
terfacial heat transfer coefficient needed in the homogenized equa-
tions [1,9,19]. Despite of computational efficiency, this method is
restricted to linear conduction problems and impaired by accuracy
concerns due to many simplification assumptions.

Alternatively, an accurate and straightforward method is to per-
form a single-scale numerical simulation (also called direct numer-
ical simulation in some fields; see Section 2.2). A single-scale sim-
ulation resolves the microscopic geometry and therefore is quite
accurate; the price for accuracy is the computational cost that
could be as high as rendering the simulation infeasible especially
when the problem domain spans spatial scales of several orders
of magnitude. To avoid the significant simulation cost attached to
a fully resolved domain and retain the same level of accuracy, a
multi-scale computational technique, called the FE2 method, has
been developed and successfully employed in applications ranging
from mechanical equilibrium problems [20-26] to transport prob-
lems [27-35].

A brief review on the FE2 method applied in transient dif-
fusion problems is given as follows. In the seminal works by
Ozdemir et al. [27,28], a transient heat conduction was consid-
ered at the macroscale while a steady-state diffusion was used
at the microscale, without any heat sources. The transient ef-
fect at the microscale and heat source terms were then consid-
ered by Larsson et al. [29], followed by the extension to non-
uniform heat sources by Ramos et al. [31]. The model developed
in Ramos et al. [31] was also applied to an engineering prob-
lem of filled elastomers [32]. To reduce the increased simulation
cost caused by considering the microscale transient effect, Agges-
tam et al. [36] and Waseem et al. [33-35] developed model order
reduction techniques within the FEZ framework.

These existing works however only apply to the one-equation
model as they consider one homogenized variable defined on the
representative volume element (RVE) and use the effective mate-
rial properties (stiffness, conductivity) of the whole RVE that may
consist of multiple phases. These frameworks cannot offer sepa-
rate information for each phase (refer to Section 3.5), as needed
in applications requiring a two-equation model. The aim of this
study is to propose an FEZ multi-scale framework for the two-
equation model. We first employ the volume averaging method
to derive the macroscale transient equations (Section 3.1), thus
clearly demonstrating the physical meanings of the macroscale
field variables and other quantities. All the key ingredients of
the FE2 approach including two-way information flow and mi-
croscale problem boundary conditions are then detailed in the re-
mainder of Section 3, followed by its numerical implementation
in Section 4. The two-scale framework is validated against single-
scale direct numerical simulations through simple academic exam-
ples (Section 5.1).

2. Preliminaries
2.1. Volume average operator
With reference to a quantity x, (a scalar or vector) in the

a phase of a two-phase RVE (Fig. 1b), we define the volume av-
erage operator with respect to the whole RVE as

1
(xXar) = vf xq dV (1)
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and the intrinsic volume average [9] over the « phase as
1

= v xq dV, (2)

Xo
where V denotes the total volume of the two-phase medium,
and V, is the volume of the « phase. The variable « represents
either B or o. If the volume fraction of the « phase is defined as

the following relation between the two volume averages holds:

(Xg) = €aXq- (3)
2.2. Single-scale description

The composite under consideration consists of two phases—the
matrix (f phase) and the inclusion (o phase)—as shown in Fig. 1a.
The two phases possess different transport properties. Physical
quantities associated with § phase and o phase are distinguished
by the subscripts f and o, respectively. Transient heat conduction
in the two-phase medium is governed by

62" v g =y in Vx (0. fey] and (4a)
By B="78 b % (0, teng

Oug
cg——+V - -hg =r
(o2 6t {02 o
where ¢, u, h, and r represent, respectively, volumetric heat capac-
ity, temperature, heat flux, and the given volumetric heat source.
The heat flux is described by Fourier’s law and expressed as

hB = —kp (”B)V“B’ (5a)

in Vo X (O’ tend], (4b)

hc = —ko(us)Vug, (5b)

where the thermal conductivity for each phase is generally tem-
perature dependent.

Across the interface between the two phases, we consider the
temperature continuity condition (i.e., ug = us). These two govern-
ing equations can be readily solved by a standard finite element
program. Specifically, each phase will be discretized to form con-
forming mesh at the interface and a common node will be used.
This solution strategy is referred to as the single-scale approach,
and it will be used as a reference for the proposed multi-scale ap-
proach.

3. Multi-scale framework

This section outlines the FE2 computational framework where
the governing equations at the two scales and the correspond-
ing information-passing procedures are described. The two-scale
framework relies on the underlying principle of scale separa-
tion [9,37], which states that, referring to Fig. 1a, the characteristic
length (I) of the inclusions (e.g., radius), the size of the RVE (Ive),
and the characteristic length of the macroscale domain (L) should
satisfy the constraint I < live < Le.

In the remainder of the paper, we use lower case letters to
represent microscale quantities while upper case letters refer to
macroscale quantities. For example, the microscale temperature is
denoted by u, while U represents the macroscale temperature.

3.1. Macroscale problem

The macroscale governing equations are derived by volume-
averaging the single-scale formulation presented in the previous
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! rve

Fig. 1. (a) A two-phase medium consisting of the blue matrix (B phase occupying V3) and gray inclusions (o phase occupying Vi) possessing different transport properties.
(b) Microscopic representative volume element (RVE). The RVE boundary T,, is divided into two parts, each associated with a phase, such that Tex = Tpex U Toex with Tpee NTow =
@. The interface between the two phases is represented by two coinciding boundaries Iy, and Ig belonging to the B and o phases, respectively. Lc, lve, and - characterize
the typical length scales of the macroscopic domain, the RVE, and the microscopic constitute phase.

section over an RVE. With reference to the RVE (Fig. 1b), applying
the volume average operator (1) to Eq. (4a) yields

(ug)
LY
The volume-averaged temperature (ug) is expressed in terms of the
intrinsic average ug which is defined as the macroscale tempera-
ture UB:

+(V-hg) =(rg) in Vg x (0, feng]. (®)

<u3> = eﬁﬂﬁ = eﬁUﬁ’ (7)
where eg is the volume fraction of the f phase. The volume-
averaged flux divergence is split into two surface inte-
grals (Fig. 1b):

1

1
V.h :—fv-h dv=o [ hyong dr
(V-hg) =5 e vy e
1
+vf%hﬁ.n&,dr, (8)

where Iy, and Ip; represent the RVE boundary contributed by
the B phase and the interface with the o phase, respectively, ng,,
is the outward-pointing unit vector normal to Ty, and ng; is the
unit vector normal to Iy, pointing from the P phase to the o
phase. The volume-averaged heat source in the right-hand side of
Eq. (6) is defined as the macroscale heat source

Rg = (), 9)
where the volumetric heat source 8 is a given quantity.
Substituting Eq. (7) to (9) into Eq. (6) yields

%%, 1 hyony d L[ hyongd
Cﬁ6ﬁ7+7frﬂ p "M, F=Rﬁ‘vfrﬁ p-Modr.  (10)

The volume-averaged outflow of heat through the RVE bound-
ary I, can be regarded as the divergence of the heat flux at a
macroscale point:

1

Vﬁ hB LT dF:V~HB, (11)
and the heat transfer from the § phase to the ¢ phase can be de-
fined as the heat sink, or negative heat source, at a macroscale
point:

1

V . hﬁ ‘l'lﬁc dFZ—Qﬁ. (12)

Macroscale equation (10) can thus be expressed as

Ay,
Cﬁeﬁa—tﬁ+v~HB :RB+Q6 in Qx (0, tepd], (13a)
where Q denotes the homogenized domain shared by both phases
at the macroscale as shown in Fig. 2a. Likewise, we can derive the
macroscale equation for the o phase as

Us

. (13b)

Co€q +V-Ho=Rs+Qs in Qx (0, tend],

where the macroscale temperature

Uy =2 = (14)
€o

represents the intrinsic average of the temperature of the o phase,

the macroscale heat source

Rs = (r) (15)

is the volume average of the given heat source rs, and the addi-
tional macroscale heat source

Qo=-— [ ho-mygdr (16)

FUB
is caused by the interfacial heat transfer.

The macroscale heat fluxes (Hg and Hy) and the macroscale
heat sources (Qp and Q) due to interfacial heat transfer in
the macroscale governing equation (13) are obtained through the
microscale computation. As schematically shown in Fig. 2, the
macroscale solution Uy and Us and their gradients at an integra-
tion point are downscaled to define the microscale problem; the
macroscale heat fluxes and sources as well as their tangents are
then computed from the microscale solution and upscaled. More-
over, in the microscale simulation the temperature continuity con-
dition (ug = us) and flux continuity, suggesting Qg + Qs = 0, are si-
multaneously enforced across the interface.

3.2. Downscaling

The boundary conditions enforced at the microscale level are
obtained by downscaling macroscale quantities at each integration
point of the macroscale mesh: temperature Up and Uy, and their
gradients VUg and VU, respectively. For conciseness, these quan-
tities are stored in a column vector as

T
X= [(VUB)T U (VUo)'  Us| - (17)
3.3. Microscale problem

The microscale problem is defined on an RVE (Fig. 2b) asso-
ciated with a macroscale integration point. At variance with the
single-scale description (4), the governing equations at the mi-
croscale neglect the time evolution terms and consider the steady-
state thermal equilibrium [27,29], in view of the relatively small
RVE size. The governing equations are thus expressed as

v hﬁ = bB in Vﬂ and (183)

V-h;=b; inVg, (18b)

where the constitutive relations for heat fluxes hﬁ and hy are the
same as in Eq. (5). The two source terms bg and by are different
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UB ) UG *

(a) homogenized domain

Hg, Qs, Hs, Qs
Sg, T, So, Tss
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It

VUB, Ug

S O ©
I Vg Iy

o0

Ty
(b) RVE

Fig. 2. Homogenized domain at the macroscale, RVE at the microscale, and information exchange between macro- and micro-scales. Macroscale temperatures Ug and Us, and
their gradients VU and VU, are downscaled as boundary conditions for the microscale RVE problem. The homogenized fluxes Hy and H (Eq. (33)), volumetric interfacial
heat transfer Qg (Eq. (12)) and Qs (Eq. (16)), and their dependencies Sg, S, Tg, and To (Eq. (34)) on the macroscale quantities X (Eq. (17)) are then transferred back to the
macroscale problem. Panel (b) shows also the boundaries used for the enforcement of periodic boundary conditions in the FE analysis of the RVE: left (I) and bottom (T})
edges are categorized into the master boundary Iy, = I U T}, while the right (I;) and top (I) edges (corresponding to I} and T}, respectively) are considered as parts of the

slave boundary Iy = I; U ;.

from the given source terms rg and ry in the single-scale equa-
tion (4). The prescribed heat sources (rﬁ and rg) are included in
the macroscale governing equation (13) in an average sense—Rg
in Eq. (9) and Ry in Eq. (15)—and will be indirectly reflected at
the microscale through the enforcement of consistent temperatures
across the two scales as expressed by Eq. (26). The two terms bg
and bs actually reflect unknown heat sources caused by enforcing
the constraint (26), acting as constraint forces and regardless of the
given heat sources rg and r.

Next, the microscale boundary conditions are derived from the
macroscale quantities X (Eq. (17)). By convention in the FE? anal-
ysis, the microscale temperature profiles ug(x) and ug(x), with x
as the position vector, can be decomposed into a spatially linear
field (first two terms) and a fluctuation filed (the last term):

ug = UB + VUB (X —Xpa) + ﬁﬁ, (198)

us = Uy + VU * (X — Xyp) + Uo, (19b)

where X;; and Xy, are reference points.

In the FE? analyses of mechanical problems [23,37], it is a com-
mon practice to assume that the macroscale deformation gradi-
ent at a point is equal to the volume average of the microscale
counterpart over the whole RVE defined on that point. This as-
sumption, connecting the macro- and micro-scales, is known as
the averaging theorem [38]. Likewise, in the FE2 analysis of heat
conduction [27], the macroscale temperature gradient is usually
assumed to be equal to the volume average of the microscale
temperature gradient. This assumption results from the sim-
plest and widely-used first-order homogenization; the macroscale
temperature gradient is used as a loading for the microscale
problem [29] through the boundary conditions imposed on
the RVE.

The transfer of temperature gradient for the one-equation
model [27] is as straightforward as the strain transfer. However,
it requires special consideration in the two-equation model since
there are two macroscale temperature gradients—VUg and VU.
Here we propose the following relations as an equivalent for the
assumption described above:

1
v . ugMex dr = VUS’ (20a)
[ doneedr = vu, (20b)

Tex

where nex is the outward-pointing normal vector to the RVE
boundary Ty and the surface integral is over the whole RVE bound-

ary Tex = Iy, U loe (Fig. 1b). The surface integral is equivalent to
the previously mentioned volume integral via the divergence the-
orem but is preferred especially when holes/voids exist in the
RVE [24,39,40]. Here, the o phase regions act as holes for the
B phase, and vice versa.

Substituting Eq. (19a) into Eq. (20a) results in

% - uﬁnex dr = VUﬁ + %LX ﬁﬁnex dr. (21)
In the derivation, nex should be evaluated at every point on the
whole RVE boundary including the portion for the o phase (Iye)
although wug is only defined in the B phase. This procedure is
necessary because the o phase is the complementary voids of
the B phase in the RVE. To the void phase o we can attach fic-
titious ug values and null conductivity, analogous to null stiff-
ness in mechanical problems [24,40]. Comparison of Eq. (21) with
Eq. (20a) yields

f figNes dT = 0, (22a)

FEX

Similarly, for the o phase we arrive at

f oMy dT = 0. (22b)
I‘e)(

Constraints (22) are enforced by means of periodic boundary
conditions [23,24,41] as “periodic boundary conditions have been
proven to be most versatile” [37], not only for periodic but also
for arbitrary microstructures [42]. For the two-phase composition
of the RVE boundary in Fig. 2b, the periodic boundary conditions
are stated as

g (Xyp) = tip(Xrt), (23a)

ﬁc(xlb) = ac(xrt), (23b)

where xj, represents an arbitrary point on the left and bottom
boundaries and its counterpart on the right and top boundaries is
denoted as X;t. Substituting Eq. (23) into Eq. (19) leads to

ug (Xib) — up (Xrt) = VU - (Xip — Xrt) = 0, (24a)

U()'(xlb) — ug(Xrt) — VU - (X]b - Xit) = 0. (24]3)

The temperature continuity condition at the two-phase inter-
face is also enforced and expressed as

], - [we],. =0 25
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Moreover, from the definition of the macroscale temperatures in
Eq. (7) and (14), we have two additional constraints:

ag - Uﬁ =0, (268)

us —U; =0. (26b)

These two extra constraints are necessary for the solution of the
microscale problem as they 1) allow us to objectively determine
unique microscale solutions for each phase (the reference points in
Eq. (19) are not determined), and 2) enforce the consistency of the
stored heat in each phase between the macro- and micro-scales.
The latter aspect is fundamental: enforcing the heat consistency
constraint indirectly applies the heat source to the microscale gov-
erning equation (18), which is only explicitly implemented in the
macroscale equation (13).

3.4. Upscaling

To close the information exchange loop, the homogenized
fluxes HB and Hy and their tangent matrices are calculated from
the microscale solution and upscaled to the macroscale compu-
tation (Fig. 2). The homogenized fluxes are pragmatically calcu-
lated as the volume averages of the corresponding microscale heat
fluxes [38]:

1

Hy = — | hgdv, 27a

b= ), (27a)
1

Ho= [ hodv. (27b)

G

For the sake of numerical implementation, the volume integrals
are often transformed into surface integrals. The right-hand side of
Eq. (27a) is reformulated as

1 1
Vj;ghsdvz vag [V - (xhy) - xV -hy]dv

1 1 1
= - xhg -ng dr+<V frﬂ,,XhB -ng, dI - v J;SXbB dV), (28)
where the divergence theorem and the microscale governing equa-
tion (18a) are used in the derivation. The last two terms in the
bracket of Eq. (28) approximate to each other and can be ne-
glected. The demonstration is as follows. Applying volume integral
to Eq. (18a) yields

1
Vﬁs (V'hB—bB)dVZO

1 1
= — hﬁ~nﬁexdr+7

1
hs -n dr-—f bedv. (29
4 TBex TBo b v \(} P 29)

The first term in the right-hand side of Eq. (29) actually van-
ishes. According to the periodic boundary condition (24a), we eval-
uate hg -ng, at the master boundary Ty, (left and bottom edges)
to be the opposite of that at the corresponding slave boundary
Iyt (right and top edges). This is called the anti-periodic normal
flux boundary condition [27] and its enforcement through Lagrange
multipliers is detailed in Section 4.2. Therefore, the last two terms
in Eq. (29) should cancel out each other. Multiplying them by a
position vector gives

1 1
Vfrﬁcxchﬁ.nﬁodr:vaﬁxcbﬁdv, (30)

where X denotes the geometry center of the RVE. The unknown
heat source bg due to the constraint (26a) is uniform in the RVE
domain because a single Lagrange multiplier is used to impose the
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constraint (26a). Therefore, the right-hand term in Eq. (30) is equal
to the last term in Eq. (28)

1 1
— xde:—fxb dv. 31
Vﬂ/ﬁcﬁ Vv p G1)

In view of Egs. (30) and (31), the subtraction in the bracket of
Eq. (28) is calculated as

1 1
— xhg - n dr——f XbydV
14 Tpo B po Vv Vﬁ B

1

=y - (X —Xc) hg -ngsdr. (32)
Due to the relatively small RVE size, the right-hand term in
Eq. (32) can be assumed to be null and thus ignored, which has
also been numerically validated in our simulations. The above
derivations also apply to the o phase, and hence the macroscale
heat fluxes in Eq. (27) can be expressed in terms of surface inte-
grals as

1

Hy = — xhg -ng_ drT, 33a
b= Jy, XM Moo (33a)
1
H; = — xh; - ng,, dr. (33b)
V rﬁex

The volumetric interfacial heat transfer Op and Qy are calcu-
lated according to Eqgs. (12) and (16). Moreover, the dependencies

OH A0

_9B _ IxB
=X e (343)

_ 0H, _ 99
=% T ax (340)

of these quantities with respect to the macroscale quanti-
ties X (Eq. (17)) are also passed back to the macroscale.

The upscaled tangent matrices in Eq. (34) express general de-
pendences on all the downscale macroscale quantities, as X in-
cludes both Up and U; as well as their gradients. This feature
is especially important to multi-physics problems where highly-
coupled constitutive relations are used at the microscale. The FE2
downscaling-upscaling procedure thus serves to numerically up-
scale the general nonlinear constitutive relation at the microscale
to the macroscale.

3.5. Comparison with one-equation model

The obvious similarity between the structures of the one-
and two-equation models calls for a simple comparison.
Adding Eqs. (13a) and (13b) together results in

cg—(t]+V-H:Rﬁ+Rg, (35)

where the volumetric heat capacity
¢ =cpeg + Co€s (36)

represents the volume-averaged heat capacity, the homogenized
temperature is the total thermal energy over the volume-averaged
heat capacity
caegUp + coes U
U= pEBp T Coco ‘. (37)
Cc

and the macroscale heat flux H is equal to

H=Hy +H,. (38)
Comparing the preceding equations with those in the one-equation
model in Ozdemir et al. [27], it can be seen that the volume-

averaged heat capacity ¢ and the macroscale heat flux H (sub-
stituting Eq. (27) into Eq. (38)) have the same meanings as
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defined in Ozdemir et al. [27]. The macroscale temperature in
Ozdemir et al. [27] is not defined with an explicit meaning, but
from this comparison we know it has exactly the same meaning
as U in Eq. (37), i.e, the total thermal energy over the volume-
averaged heat capacity, but not the volume-averaged tempera-
ture

U = eﬁUﬁ + e5Us. (39)

However, if the heat capacities of the two phases are the same
(cg = co), the macroscale temperature (Eq. (37)) of the one-
equation model reduces to the volume-averaged temperature.

Because of the equivalence, the one-equation model can be con-
sidered as a special case of the two-equation model.

4. Implementation of the multi-scale framework

This section provides the numerical implementation of the FE2
framework: the finite element procedures for the macroscale and
microscale problems and the numerical scheme for the calcula-
tion of the upscaled quantities. We condense the standard finite
element procedures (readers are referred to textbooks [43,44] for
more details) while elaborate the necessary steps specific to the
FE2 method, i.e., the boundary setting of microscale problem and
extraction of homogenized quantities. Note that all vectors are col-
umn vectors by default.

4.1. Finite element method for macroscale problem

According to standard finite element procedures, the weak form
of the macroscale governing equation (13) is expressed as

f O% suq dv fvau Hy dv f( Rg)8Up dV
— —_— . — +
L, BB g O , VoUs - Hp , \Qp +Rp)OUp

+ ﬁﬁaUB dr =0, (40a)
0Q
oUs
fCo'eO'_5Uo'dV_fv5U0' -Hng—f (QOs + Rs) 6Us dV
a ot Q Q

+ Hy6UydrI =0,
oQ

(40b)

where SUg and §Ug are variations of field variables, ﬁg and Hy are
prescribed heat fluxes at the macroscale boundaries 9Q, and Rg
and Ry are calculated from given microscale heat sources via
Egs. (9) and (15).

The macroscale heat fluxes HB and Hy and the heat sources Op
and Qs due to interfacial heat transfer at an integration point are
calculated from the microscale problem solution and generally de-
pend on temperatures Ug and Us. Because of the coupling of the
two governing equations, they are solved simultaneously; there-
fore, each node in the spatial discretization has two degrees of
freedom, one for Ug and the other for Us.

A standard finite element approximation is used to discretize
the field variables in the spatial domain, and the weak statement
in matrix notation is rewritten as

AU
F :f NTN—ﬁdV—fBTH dv-f + Rg)NT dV
p= | pesN'N— BHg (O + Ry)

+ [ HNTdr-o, (41a)
oQ
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FczfcgecNTNA—UodV—fBTHng—f(QG+R0)NTdV
Q At Q Q

+ HoNTdr =0,
oQ

(41b)

where N collects the shape functions associated with all the
nodes of the discretized macroscale domain and matrix B contains
derivatives of the shape functions.

The backward Euler method is used for the discretization of
the time derivative terms in Eq. (40) (see more details in refer-
ences [3135]). In Eq. (41), the temperature increments AUg and
AUg are evaluated between the current time step and the last
converged time step, and At denotes the time step size; the
macroscale fluxes HB and Hs; and the heat sources O and Qq are
approximated by the values of the current time step.

We now collect the two sets of discrete equations in
Eq. (41) and the two field variables in the format of F = [Fg Fo|",

U= [Uﬁ UG]T, respectively. The Newton-Raphson iteration proce-
dure is then employed to solve the system of discrete equations

F(U,) =0 (42)

at the current time step n (¢ = ¢,). The system of linearized equa-
tions at iteration step k is expressed as

K@U —U% +F@UX) =0, (43)

where the global tangent matrix K is evaluated at iteration step k
as

_r1oF7 _ [Kes  Kgo
K= [Bun]k = [Koﬁ Koo k- (44)

To compute the residual vector F in Eq. (41), the macroscale
fluxes Hy and Ho at each integration point are directly upscaled
from the microscale problem solution and their formulations are
presented in Section 4.3 via Eq. (52); likewise, the macroscale heat
sources Qg and Qo are obtained through Eq. (53). The tangent ma-
trix K is calculated from the upscaled tangent matrices SB' S, TB'
and Ty, and its four components is expressed as

oF oH P
Kgp = 500 = | CﬁiBNTNdv-fBTJdv-fNT&dv,
Q Q

aU; ~ Jo A U, U,
(45a)
OFg Mg 199
Kgo = 55, = - fQ B g, 4V - fQ NS5, 4V (45b)
_ OF; _ TaHU _f TaQG
Kop = 57, = fQ B 5u 4V~ J N 5o av (450)
_ 0F; Co€G T _f 1 OHs _f 1 0Q0
Koo = 5 _fg ZONTN - [ BT dv - [ TR av,
(45d)

where all the stiffness matrices for the macroscale fluxes (Hg and
Hy) and heat sources (O and Qg) can be found in Eqs. (B.13) and
(B.14).

4.2. Finite element method for microscale problem
The weak form of the microscale governing equation (18) is

- Voug - |-kgV dV+f
fvﬁ up ( p ”B) T UTho

- Sugbg dV =0,
j‘;ﬁ upop

5145116 g dr

(46a)
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—f Véug - (ko Vug)dV +f Sushg -ng dr'
Vo Toex UTop

- Sugbs dV =0.
Vo

(46b)

The boundary terms on Ip, U Ig, and Iy U L,g do not rep-
resent any prescribed Neumann boundary conditions but reflect
unknown fluxes caused by the constraints of periodic boundary
conditions (24) and temperature continuity condition (25) at the
interface. The heat source terms containing bg and bg are also
not given but caused by the constraint of consistent temperatures
across the macro- and micro-scales (26). All these constraints are
enforced through the Lagrange multiplier method, and correspond-
ingly we denote the heat fluxes due to the periodic boundary con-
ditions (24) by Ap.p and Aq,p, the heat fluxes due to the tempera-
ture continuity condition (25) by Ag; and Agg (A8 = —4p,), and the
heat sources due to the consistent temperature constraint (26) by
Ap.p and Asp,. The weak form (46) is thus reformulated as

fvv5ug~(kBVuﬁ)dv+f 5uﬁaﬁ,pdr+f SugApy dT
B TBex Tho

- f 511‘5/1&]) dv = 0, (47&)
G
f VSug - (keVuo)dV + f StigAo,p dl + f Sugop dT
Ve Toex Top
— | Sugaspdv =0. (47b)

Vo

The weak form (47) is further supplemented with the varia-
tional forms for the enforcement of the periodic boundary condi-
tions (24) and temperature continuity condition (25):

f SAAdT =0, (48)
rﬁex UTgex U Tﬁ(,

where A represents the left-hand formulations of periodic bound-
ary conditions (24) and temperature continuity condition (25).

Inserting the discrete expressions of the field variables and their
gradients into the weak form (47) gives the discretized system of
governing equations

fv BTkﬁBUB dv + f NTAE‘p dr + NT/lﬁc dr - f NTAﬁ’b dv =0,
B Thex Tpo G

(49a)

B'k,Bu, dV +
Vo l"Oex

N, dl - fr N g, dr - fv N'), »dV = 0.
of o
(49b)

Conductivities kg and ko are in general temperature dependent,
and their derivatives need therefore to be considered in the calcu-
lation of the tangent matrices. The equations in Eq. (49) are solved
in their own domains where each node has one degree of free-
dom. The discretization at the interface between the two phases
is conforming, but two coinciding nodes, rather than a common
node, are assigned with one node for one phase. The temperature
continuity and flux continuity constraints are explicitly enforced
through Lagrange multipliers between the two coinciding nodes.

The discrete version of the constraints of the periodic bound-
ary conditions (24) and temperature continuity condition (25) is
obtained from Eq. (48) by means of the point collocation
method [45] and expressed in Eqs. (A1) to (A.3). The con-
straint (26) is directly discretized by inserting discrete expressions
of the field variables and expressed in Eq. (A.4). These boundary
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conditions and constraints, listed in Eqgs. (A.1) to (A.4), are ex-
pressed in matrix form as

Au+CX=0, (50)

where u = [uﬁ u(,]T collects all the nodal unknowns as concatena-
tion of vectors up and ug, and A and C are constant coefficient
matrices that can be readily obtained after sorting Eqs. (A.1) to
(A.4) consistently with u.

The Lagrange multipliers Ap.pr Ac.ps and Aps Tepresenting heat
fluxes on the boundaries and interface are discretized in the pro-
cess of deriving Egs. (A.1) to (A.3) and stacked together with the
two scalar Lagrange multipliers Ap.b and A, p in the vector form
as A. The vector of Lagrange multipliers is then associated with the
nodal unknowns u: w = [u A]T.

The system of nonlinear equations Eq. (49) augmented by
Eq. (50) is also solved by the Newton-Raphson iteration scheme
as reported in Section 4.1. At iteration step k, the increment of the
solution Aw**1 can be computed from

K AT|[Au N f+ATA _o
A 0]|Ax Au+CX| ™

where f represents the vertical stack of the first term of
Eq. (49a) and first term of Eq. (49b).

(51)

4.3. Upscaling of macroscale quantities

This section details the calculation of the homogenized
fluxes (HB and Hg), the macroscale heat sources (QB and Qgy), and
the tangent matrices (Sg, So, Tg, and Ty) based on the microscale
finite element solution. By comparison of Eqs. (49) and (51), the
Lagrange multipliers A that pertain to the periodic boundary condi-
tions and temperature continuity condition represent the integrals
of heat fluxes over the area of influence of each node at the bound-
ary/interface. According to Eq. (33), the macroscale fluxes can be
calculated through Lagrange multipliers as:

1 T 1 T 1 T
H[—} =y j;ﬁex (XmN )Aﬁ,p dr = me j;ﬁex N Ag.p dr = meA A.ps
(52a)
1 T 1 T 1 T
Ho = o . (xm NT) A6 pdr = 7 Xm . N"do,p I = - Xm AT p.

(52b)

where matrix Xy is a 2-by-ny array listing the coordinates of all
the nm nodes of the microscale mesh, Ag , and Aq,p refer to the
components of A that are associated with the periodic boundary
conditions (Eqs. (A.1) and (A.2)) imposed on Tpex and on Ty, re-
spectively. With an abuse of notation, the coefficient matrix AT in
Eq. (50) needs to be recast here to accommodate A p and Ag p.

The macroscale heat sources due to interfacial heat transfer are
computed according to Eqs. (12) and (16) as

Ti
1 18,7
Qp = -\—/frﬂo Mo dr =y > ATAg, (53a)
1 1
T
QU:—VLB Japdr == > ATAg, (53b)

where Ao denotes components of A related to the temperature
continuity condition (A.3) imposed on nodes on Iy, and Tyg (Agg
not discretized). Also, the coefficient matrix AT in Eq. 50 is shrunk
to accommodate Ao but is different in Egs. (53a) and (53b) be-
cause of different nodes on Iy, and Tg. The coefficient matri-
ces in Egs. (53a) and (53b) however ensures that Op+Qs=0.1In
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Table 1
Nested two-scale solution procedures of the FE2 method.
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Macroscale
1. Discretize the macroscale domain and Assign an RVE to

each integration point

2. Apply initial conditions to obtain solution U of field
variables at t = t;

3. Use Newton-Raphson iteration to solve Eq. (42) for solu-
tionUy, att =t,

(1) Initial guess US = Uy,

VU, U, VU,, U,

Microscale

1. Discretize the microscale domain

2. Set periodic boundary conditions Egs. (A1-A5)

3. Solve microscale problem by Newton-Raphson
iteration

(2) Loop over each element and integration point

« Assemble residual vector «— homogenized fluxes
and heat sources

Hg, Hy, Op, Os

(1) Initial guess: uniform fields < Eq. (19)

(2) Assemble stiffness matrix and residual vector

« Assemble stiffness matrix < tangent matrices

(3) Solve the system of equations (43) to calculate the
correction and get updated solution U,

(4) Repeat (2)—(3) until convergence achieved

4. Repeat step 3 for all the time steps n =1,2,3,.... N

Sp, So, Tp, Tss

(3) Solve Eq. (51) for the increment
(4) Repeat (2)—(3) until convergence achieved

4. Calculate homogenized fluxes and heat sources,
and tangent matrices by Eqs. (52-54)

Egs. (52) and (53), all the Lagrange multipliers take the values at
the converged state of the microscale iteration.

The tangent matrices of the homogenized fluxes (Hg and Ho)
and heat sources (Qg and Qo) with respect to the downscaled
quantities X are derived by applying a small variation to X and
compute the according changes in the flux and source terms. The
detailed derivation can be found in Appendix B and the expres-
sions of the tangent matrices are

5H5 1 T PPN SHy 1 T 14
SB:H:VXmA SB’DK C, So;= 5X :vaA SopK'C,
(54a)
I T
805 1 8 1 oia 8Qs _ 1 tre oop
To=3x =7 LA K'C To= 550 = - DIATS KT,
(54b)

Finally, we summarize the nested two-scale solution procedure
in Table 1 for better understanding of the information flow loop
between the macro- and micro-scales. Note that the downscaling-
upscaling procedure occurs at each iteration step for the solution
at any time step, numerically serving the constitutive relation at
the macroscale.

5. Results and discussion

We first present some numerical examples for the purpose of
validation in Section 5.1 where the FE2 simulation results are com-
pared with the results of the single-scale direct numerical simula-
tion (reference solutions). The numerical examples are tailored to
show noticeable temperature difference between the two phases
and thus to demonstrate the capability of the FE2 framework in
solving the two-equation model. The first example (Section 5.1.1)
focuses on the interfacial heat transfer between the two phases,

which cannot be captured by the one-equation model [27,31], and
ignores the spatial diffusion at the macroscale by having a uni-
form macroscale temperature field. The macroscale spatial heat
fluxes are then considered in the second example (Section 5.1.2)
that considers both the linear and nonlinear conduction and in
the third example (Section 5.1.3) that features a significant conduc-
tivity difference. Finally, the microscale RVE simulation results are
discussed in Section 5.2 to offer some insights into the interfacial
heat transfer coefficient and the microscopic length scale effects.

5.1. Comparison with single-scale simulations

5.1.1. Interfacial heat transfer

Consider the insulated two-phase slab problem studied by
Ramos et al. [31] using a one-equation model. As shown in Fig. 3,
the two-phase slab consists of a regular array of 140 x 70 unit cells,
with each unit cell consisting of an inclusion (o phase) embedded
in a matrix (B phase). Both phases are isotropic and have constant
but different conductivities whose values are listed in Table 2 to-
gether with other simulation parameters. The insulated boundary
condition h=0 for ¢ € (0, tepnq] is imposed at the boundary, and
the initial condition ug = 0°C is enforced in the whole domain. The
simulation time is tepg = 30s.

The insulated boundary condition generates a homogeneous
temperature field at the macroscale. We can therefore safely use
a single square bilinear quadrilateral element with edge length
of 0.1m as the macroscale mesh (Fig. 3c). At each integration point
of the macroscale element, we take one unit cell as the corre-
sponding RVE. For the single-scale simulation we employ a single
unit cell due to the expected homogeneity of the solution fields.
From the single-scale simulation, the intrinsic average of the tem-
peratures of the B and o phases over the unit cell are defined as g
and ug, according to Eq. (2), and serve as references for the two
macroscale solutions Up and Us, respectively. Moreover, the aver-
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(c)
1/140m

macro micro

(d) single-scale 1/140m

Fig. 3. An insulated two-phase slab (a) with width 1m and height 0.5m. The slab consists of a regular arrangement of unit cells (140 x 70); each unit cell (b) with edge
length [z = 1/140m consists of two phases (8 and o). The diameter of the inclusion (o phase) is ¢ = 0.65 Ig. The initial temperature is 0°C everywhere and heat is generated
in the o phase; all the parameters are listed in Table 2. Panel (c) shows the computational mesh for the FE? method: a square bilinear quadrilateral element is used for the
macroscale mesh and 2436 linear triangular elements for the RVE mesh. The single-scale discretization of a unit cell in panel (d) is the same as that of the RVE.

(a) 300
° UP»
o Uy } FE2, two-equation
—_ ﬂﬂ
— iy } single-scale
200
o
=
100
« U, one-equation FE2
—— i, single-scale
0
0 10 20 30

t(s)

(b 1
—— FE2, two-equation

—s=— single-scale

Qs/Rs

20 30
t(s)

Fig. 4. Comparison between the FE2 simulation results and the results of the single-scale simulations. (a) Temperature increases with time due to the heat generation in
the inclusion. The macroscale temperatures Uy and Us are obtained from the two-equation model with the FE? framework, while U is from the one-equation model. The
average temperatures ug and ug are intrinsic averages over the B and o phases of the unit cell, respectively, and u refers to the average over the whole unit cell as defined
in Eq. (55). (b) Volumetric interfacial heat transfer Qg normalized by the given volume-averaged heat source Ry (Table 2).

age temperature z of the whole unit cell, defined as
U = €glip + €l (55)

is compared to the solution of the one-equation model in Eq. (35),
which is independently obtained from the FE2 method and not cal-
culated as the weighted average of Us and Uy by Eq. (39).

The FE2 simulation results are compared with results from the
single-scale simulation in Fig. 4. The macroscale temperature fields
U and Uy, defined in Egs. (7) and (14), agree with the aver-
age temperatures ug and o predicted by the single-scale simula-
tion (Fig. 4a), respectively. The macroscale temperature U obtained
with the one-equation model agrees with the average tempera-
ture u of the whole unit cell obtained with the single-scale sim-
ulation. As @ is the weighted average of ug and us (Eq. (55)), it is
inferred that U matches with the weighted average of Uy and Us:
Eq. (39) holds. This agreement numerically validates the relation
between the two models: the one-equation model is a special case
of the two-equation model, as shown in Section 3.5.

Fig. 4 b shows the temporal evolution of the interfacial heat
transfer Qg (Eq. (12)) normalized by the given heat source
Ry (Eq. (15)): it increases sharply in the beginning and then quickly
stabilizes. In this example, the heat is generated in the o phase
and partially flows into the B phase, increasing the temperatures of
both phases simultaneously. The normalized interfacial heat trans-
fer measures the fraction of the heat generation R, that goes to
the matrix (the B phase). In the plateau stage, the normalized heat
transfer converges to the volume fraction of the f phase, suggest-
ing that the distribution of the heat generation between the two
phases reaches an equilibrium and is determined by the volume
fraction. Again, the agreement between the FE2 simulation results
and results of the single-scale simulation validates the computa-
tional framework for the two-equation model.

Actually, the temperature difference between the two phases, as
shown above, is also of interest to Ramos et al. [31] and shown in
Fig. 12 of their paper. However, since they used the one-equation

' —‘ IZOO
‘s I
(a) (b)

u 0

Fig. 5. Temperature profile at ¢+ = 20s in (a) an RVE from the microscale FE simula-
tion and (b) in the unit cell from the single-scale simulation.

model, the temperature difference at the macroscale was not pre-
sented; instead, they reported the temperatures of a “hot” point in
the o phase and a “cold” point in the B phase of an RVE.

The temperature profile in an RVE (Fig. 5a) by our FE? simula-
tion also resembles the temperature profile in the unit cell (Fig. 5b)
obtained with the single-scale simulation. The temperature varia-
tion in each phase can be reproduced in our two-equation model
thanks to the transfer of the two macroscale temperatures to the
microscale RVE (Eq. (26)) and the microscale boundary conditions.
The one-equation model will however yield a uniform RVE tem-
perature field as shown in Fig. 13a of Ramos et al. [31] unless
the microscale transient effect is taken into account (Fig. 13b of
Ramos et al. [31]).

5.1.2. Nonlinear heat conduction

This example considers the same two-phase medium as in
Fig. 3a and b but with different boundary conditions in order
to allow for heat conduction at the macroscale, as shown in
Fig. 6a. Neumann boundary conditions are enforced at the hori-
zontal edges, while Dirichlet boundary conditions are imposed at
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1m
(b) macro \V 170.05m

micro ]1/140m

(c) single-scale

Fig. 6. (a) The same two-phase slab as in Fig. 3, but with different boundary conditions. In this case the slab is insulated at the upper and lower edges and constant
temperatures are applied at the left- and right-hand edges. The initial temperature is 0°C everywhere. (b) For the FE? simulation, the macroscale mesh consists of 40
bilinear quadrilateral elements and the mesh is denser at the two sides; the microscale RVE mesh is the same as the RVE mesh in Fig. 3. (c) The single-scale simulation is
performed on a mesh consisting of a layer of 140 side-by-side unit cells, each discretized as the RVE.

FE2: o Ug o Us single-scale: ——
(a) 400
linear conduction at t = 72s
300
e
=
122 ff
0
0 0.5 1
x (m)
(c) 400
linear conduction at t = 144s
300
245
0¢
0 0.5 1
x (m)

Uy
(b) 400
nonlinear conduction at t = 72's
300
&
=
122
0
0 0.5 1
x (m)
(d) 400

nonlinear conduction at t = 144s

0 0.5 1
x (m)

Fig. 7. Comparison between the FE? and single-scale simulation results. Panels (a) and (c) show the results for the linear conduction case and panels (c) and (d) for the
nonlinear conduction case. Quantities Us and Us refer to the macroscale solutions (FE2 method), while up and us indicate the intrinsic averages of the temperature in each

phase (single-scale approach).

FE2: o Up o Us single-scale: —— Uy —— iU

(a) 300 ®) 300
271 t=288s
206
< 150 120
=
0 = 0
e = 1 0 0.5 1
X (m) x (m)

Fig. 8. Comparison between the FE? and single-scale simulation results for the conduction problem characterized by a significant conductivity difference in the two phases.
Quantities Ug and Us refer to the macroscale solutions (FE2 method), while up and us indicate the intrinsic averages of the temperature in each phase (single-scale approach).
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Table 2
Parameters of the FE? multi-scale and single-scale simulations for Fig. 4.
quantity symbol unit phase B phase o
Multi-scale macro volume fraction € - 0.67 0.33
volumetric heat capacity c J/(m3K) 3.51 x 108 3.51 x 108
volume-averaged heat source? R W/m3 0.0 2.99x 107
micro conductivity k W/(mK) 1.0 4.0 x 102
Single-scale volumetric heat capacity c J/(m3K) 3.51x 10° 3.51 x 108
volumetric heat source r W/m3 0.0 9.0 x 107
conductivity k W/(mK) 1.0 4.0 x 10?
2 This quantity is calculated according to Eq. (9) or (15).
Table 3
Parameters of the FE2 multi-scale and single-scale simulations for Fig. 7.
quantity symbol unit phase phase o
multi-scale macro volume fraction € - 0.67 0.33
volumetric heat capacity c J/(m3K) 1.76 x 107 1.76 x 107
volume-averaged heat source R W/m3 0.0 2.99 x 107
micro conductivity? k W/(mK) 400 + koT 1+KkT
single-scale volumetric heat capacity c J/(m3K) 1.76 x 107 1.76 x 107
volumetric heat source r W/m3 0.0 9.0 x 107
conductivity? k W/(mK) 400 + kT 1+kT

2 Coefficients ko = k1 = 0 for the linear conduction case while kg =4 and k; = 0.01 for the nonlinear conduction case; T is the value of temperature measured in degrees

Celsius and ranges from 0 to 400.

the vertical edges:

hly:():O, hly:O.Sm =0
Ulorg = 0°C,  tt]yorm = 300°C

where #,,4 = 288s. The initial condition ug = 0°C is enforced in
the whole domain. As these boundary conditions ensure a uni-
form macroscale temperature field along the y direction, we only
consider one row of 40 bilinear quadrilateral elements for the
macroscale mesh (Fig. 6b). For the RVE we use one unit cell,
the same as in Fig. 3c. Considering the insulated top and bot-
tom boundaries, we also simulate one layer of unit cells for the
single-scale simulation (i.e., 140 side-by-side unit cells as shown
in Fig. 6¢). Each unit cell has the same mesh as the RVE.

To have distinct temperature difference between the two
phases, a heat source in the o phase is also contained to maintain
the local thermal non-equilibrium condition [3,12]. This scenario is
analogous to the real transport problem with reaction sources in
the biofilm phase in chemical engineering applications [5,6] where
a local mass non-equilibrium condition arises. As the FE2 method
is advantageous in addressing general constitutive relations, here
we not only simulate the linear conduction problem with con-
stant conductivities but also a nonlinear conduction problem with
temperature-dependent conductivities. The corresponding parame-
ters are listed in Table 3.

As shown in Fig. 7, the FE? simulation results can capture
the temperature distribution and evolution in the two phases and
agree well with the results of the single-scale simulation for both
the linear and nonlinear conduction cases. In Fig. 7a and c for the
linear conduction case, the temperature of the slab continuously
increases because of the heat generated in the o phase but re-
mains constant at the left- and right-hand boundaries as specified.
Two typical time instants are selected to show the evolution of the
temperature profile. At 72s, the temperature increase due to the
heat generation is uniform in the middle (from 0.1 to 0.9m) of the
slab; close to the two vertical edges of the slab, high temperature
gradients develop due to the boundary condition of fixed tempera-
tures. At 144s, a temperature peak is observed near the right-hand
vertical edge because the heat accumulated from the heat source
cannot be fluxed out timely. In the FE2 simulation, the boundary
conditions of fixed temperatures at the two vertical edges (Fig. 6a)
are only applied to the  phase at the macroscale; for the o phase,

and
for t € (0, tendl,

1

the leftmost and rightmost boundaries are also insulated and its
temperature Uy is determined by the interaction with the § phase
as well as the internal heat generation. This setting enables the
FE2 method to capture the phenomenon that the temperatures of
the o phase at the two vertical edges are higher than those of the
B phase.

The arguments exposed above also apply to the case of nonlin-
ear conduction as shown in Fig. 7b and d, with minor differences.
According to Table 3, the conductivities in the nonlinear case are
always higher than those in the linear case, and thus the tempera-
ture differences between the two phases are smaller and the tem-
perature gradients near the two vertical edges are lower (Fig. 7a
vs b and Fig. 7c vs d). At each time instant, the weighted averages
of Ug and Us according to Eq. (39) in the middle of the slab how-
ever remain unchanged for the linear and nonlinear cases because
they are determined by the heat generation and can be manually
calculated and checked.

It is remarked that, for nonlinear conduction problems, the
principle of scale separation needs to be checked more carefully.
According to Quintard et al. [46] and Hager and Whitaker [47],
the length scale of the variation of macroscale field variables has
to be much larger than the characteristic length scale of the RVE
for proper evaluation of the nonlinear constitutive relation at the
macroscale. Similarly, Geers et al. [37] emphasized that “large spa-
tial gradients at the macro-scale cannot be resolved” by the first-
order homogenization due to the restriction of the scale separation
principle.

5.1.3. Significant conductivity difference

We further consider another scenario that does not include a
heat source but features a significant difference in the conductivity
between the two phases, also resulting in a temperature difference.
The same problem setting as in Fig. 6 is used here but a different
set of parameters is taken and listed in Table 4. This situation is
representative of the heat transfer into a composite material com-
posed of a highly conductive matrix but poorly conductive inclu-
sions. A certain amount of time is necessary before both phases
attain the same temperature [15].

Fig. 8 shows the simulation results of the FE2 method and the
single-scale approach. The fixed temperature at the right-hand side
is higher than the initial null temperature of the whole slab, lead-



M. Zhuo International Journal of Heat and Mass Transfer 179 (2021) 121683
Table 4
Parameters of the FE? multi-scale and single-scale simulations for Fig. 8.
quantity symbol unit phase phase o
multi-scale macro volume fraction € - 0.67 0.33
volumetric heat capacity c J/(m3K) 1.76 x 107 1.76 x 107
volume-averaged heat source R W/m3 0.0 0.0
micro conductivity k W/(mK) 4.0x 103 1.0x 107!
single-scale volumetric heat capacity c J/(m3K) 1.76 x 107 1.76 x 107
volumetric heat source r W/m3 0.0 0.0
conductivity k W/(mK) 4.0x 103 1.0x 107!
FE2: o Us o Us LTINE: — @) —
(@ 1
v = 0.00437
Zos
=
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Fig. 9. Comparison between the FE2 method and local thermal non-equilibrium model (LTNM) at two dimensionless time instants z. Quantities Ug and Us refer to the

macroscale solutions (FE2 method), while (u)g1 and (u)y, are the intrinsic averages of the temperature of the two phases obtained from the LTNM as reported in Fig. 24 of

Quintard and Whitaker [1].

ing to heat influx at the right-hand side as time passes. Since the
matrix (f phase) is much more conductive than the inclusion (o
phase), the matrix’s temperature is always higher than the temper-
ature of the inclusion, to the extent that an evident temperature
difference is observed. At two time instants, the FE2 simulation re-
sults agree with those by the single-scale simulation, validating the
FE2 multi-scale framework for the two-equation model.

All the previous comparisons are against the single-scale di-
rect numerical simulations, and next we present the comparison
between the FE? results and the predictions by a two-phase lo-
cal thermal non-equilibrium model (LTNM). In particular, we con-
sider the example shown in Fig. 24 of Quintard and Whitaker [1].
The key parameters are adapted and reported below (readers
are referred to Table II of the reference for further details): the
macroscale length is L =10m while the RVE edge length is [y =
1 m; the volume fraction of the matrix phase f is 0.62; the conduc-
tivity ratio of the two phases is kg/ko = 100 where kg = 1 W/(mK).
The temperature Uy is specified to be Ty at the left-hand bound-
ary and null at the right-hand boundary. The difference from the
LTNM lies in the boundary condition for the temperature Us at the
left- and right-hand boundaries: the FE2 method does not fix Uy at
the boundaries as the LTNM did; instead, it uses insulated bound-
aries. This choice is consistent with the actual geometry that the
inclusions (o phase) only have interfacial boundaries with the ma-
trix (B phase) and the temperature Us is driven by the interaction
with the matrix (see Section 5.1.2 and Fig. 7).

The comparison is shown in Fig. 9 at two scaled time instants.
The results from these two approaches are quite close, except for
the data point denoting temperature Us at the leftmost bound-
ary because of the different boundary settings. The agreement can
be explained by the same heat transfer coefficient value (0.25)
extracted from the tangent matrices for interfacial heat trans-
fer by the FE2 method as the one reported in Quintard and
Whitaker [1] (see Eq. (56) and the following section 5.2 for more
discussions). This comparison further validates the FE2 method in
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terms of the microscale problem simulation and calculation of the
homogenized quantities and their tangent matrices.

In spite of the good agreement with the LTNM, the scale differ-
ence (lﬁ/L =0.1) in this example is too small to be suitable for the
FE2 method: the RVE size and the macroscale element size are al-
most in the same magnitude, which basically does not satisfy the
principle of scale separation. The single-scale direct numerical sim-
ulation is pragmatically more appropriate in such case. The small
scale difference (or relatively too large RVE) may also explain the
discrepancy between the single-scale simulation results of the o
phase and predictions by the multi-scale approaches [1], which is
not shown here as the comparison is not well justified.

5.2. Insights from microscale RVE simulations

In the previous simulations of linear conduction problems, we
observe that in the tangent vector Ty (Eq. (54b)), the third com-
ponent that shows dependence of the interfacial heat flow on Up
is always the additive inverse of the sixth component that shows
dependence on Us: ™ +Té6) = 0. This relation is also observed,

as expected, in Ts. The other components are relatively negligible,
implying almost no temperature gradient dependence of the inter-
facial heat flow. Moreover, the components of Ty themselves are
independent of the macroscale temperatures Ug and Us. These ob-
servations suggest that the volumetric interfacial heat flow Qp as
defined in Eq. (12) linearly depends on the temperature difference
between the two phases according to the relationship

Qp = Tn(Us - Ug), (56)

where T, is usually referred to as the interfacial heat transfer co-
efficient [1,3,4]. The linear dependence in Eq. (56) can also be de-
duced from the results reported in Fig. 4: the ratio between Qp and
Up - Us yields, at each time step, the same coefficient 7;, values.
Although the linear relation (56) has been widely used in the ho-
mogenized transport equations in the two-equation model [1,4,9],
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Fig. 10. Effect of unit cell size: (a) interfacial heat transfer coefficient 7;, decreases quadratically with the unit cell edge length Iy; (b) increase of the interfacial heat transfer
with time at three different unit cell sizes. The values of lg, kg, and R, can be found in Section 5.1.1.

the estimation of the heat transfer coefficient value is however still
challenging [8] either in experimental measurements [4] or by an-
alytical approaches [1]. Our numerical results suggest that the heat
transfer coefficient is indeed constant for a linear two-phase sys-
tem. The microscale RVE simulation thus numerically validates the
widely-used linear relation and, more importantly, offers a conve-
nient way to calculate the heat transfer coefficient.

The relation TS + T® = 0 observed in the linear examples how-

ever breaks down in the nonlinear conduction case and the linear
relation (56) does not hold. The heat transfer coefficient defined
in the linear case actually depends on the specific conductivities
of both phases. In nonlinear conduction problems, the temperature
dependent conductivity naturally leads to temperature dependent
coefficients Tg) and T(;). Compared to the numerical approach by

Quintard and Whitaker [1], the proposed FEZ framework has the
intrinsic advantage of addressing nonlinear conduction problems
because the interfacial heat transfer as well as its dependence on
macroscale field variables are numerically calculated from the mi-
croscale problem, avoiding the postulation of relation (56) and the
wide range of values reported for the heat transfer coefficient [8].

In conventional FE2 frameworks for the one-equation model,
the effective conductivity of the whole RVE is generally not af-
fected by the microscopic length scale, given that material proper-
ties of each phase are fixed. An analogous situation arises in com-
putational solid mechanics: the homogenized stiffness (deforma-
tion gradient dependence of the homogenized stress) does not de-
pend on the unit cell size. This microscopic length scale indepen-
dence is also true for the tangent matrices (Sg and S) characteriz-
ing the temperature gradient dependence of the homogenized flux,
provided that volume fraction and conductivity of each phase are
fixed. However, this conclusion does not apply to the coefficient T;
of the interfacial heat transfer. Figure 10a shows that the coeffi-
cient T;, depends on the edge length of the unit cell Iy that char-
acterizes the microscopic length scale. As Iyc increases, the coeffi-
cient Tj, decreases in a non-linear fashion which can be described
with good approximation by the quadratic expression

Ty 12
b (herly)

between Tj and Iy.. The quadratic relation was also reported in
Table 1 of Quintard and Whitaker [1]. Our simulation results can
be fit by Eq. (57) with the same coefficient (a = 25.8) reported by
Quintard and Whitaker [1] if the same parameters (volume fraction
and conductivity of each phase) are used in our simulations. These
results further indicate that our numerical framework can properly
account for linear conduction effects in a two-phase medium.
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Fig. 11. Effect of RVE size: the interfacial heat transfer coefficient 7, in Eq. (56) re-
mains constant for different RVE sizes Ive.

Fig. 10 b shows the effect of the microscopic length scale on
the evolution of the interfacial heat transfer in the example of
Section 5.1.1. The smaller the unit cell, the faster the interfacial
heat transfer increases with time in the transient stage and the
earlier it begins to level off. The microscopic length scale how-
ever does not affect the magnitude of the normalized interfacial
heat transfer in the plateau stage, which is determined by the vol-
ume fraction. Since a smaller unit cell corresponds to a greater
value of the coefficient T;, (Eq. (57)), the temperature difference
will be smaller according to Eq. (56), in view of the same interfa-
cial heat transfer in the plateau stage. Eventually, with increasingly
smaller unit cells, the temperature difference will be as small as
to the extent that the local equilibrium assumption holds [19]. The
microscale FE simulation can thus provide quantitative guidelines
for the determination of the microscopic length scale at which the
one-equation model can be used with confidence (i.e., by accepting
a controllable error) in place of the two-equation model.

The unit cell size is not to be confused with the RVE size. The
unit cell size characterizes the microscopic length scale and thus is
determined by the material, while the RVE is associated with the
FE2 method and its size is determined so that the RVE is as large
as to be representative but also as small as to satisfy the rule of
scale separation. The difference between a larger unit cell and a
larger RVE can be seen in Figs. 10a and 11. Unlike unit cells, larger
RVEs however do not affect the results for the two-phase medium
used in this study: as shown in Fig. 11, the interfacial heat transfer
coefficient 7;, remains unchanged with the RVE size le. Our nu-
merical results also indicate that the tangent matrices SB and Sy of
the homogenized flux (effective conductivities) do not change with
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the RVE size. Therefore, a single unit cell can be safely used as the
RVE in our studies.

6. Conclusion

For transient heat conduction in a two-phase medium, this
study presents an FE2 two-scale framework that can properly ad-
dress the local thermal non-equilibrium condition thanks to the
use of a two-equation model. The approach has been demonstrated
in simple academic problems with the intention of showing its po-
tential in addressing general problems. The FEZ method does not
explicitly require the definition of constitutive relations or the em-
ployment of other conditions, such as the interfacial heat trans-
fer condition (56), at the macroscale. The microscale problem en-
ables the use of general constitutive relations (e.g., temperature
dependent conductivity) leading to the solution of general non-
linear transport problems. The heat transfer coefficient, express-
ing the macroscale temperature dependence of the interfacial heat
transfer in the linear case, is found to depend on the microscopic
length scale, which is a unique and new feature of the proposed
FE2 method.

The simple numerical examples are limited to two-dimensional
ordered porous media, and three-dimensional disordered porous
microstructures need to be considered for further validation of the
FE2 approach. A two-dimensional setting does not allow both the
matrix and inclusion domains to be path-connected in both the
x and y directions; with path-connected matrix, the inclusions are
often “isolated” from each other. This restriction leads to null effec-
tive transport properties of the inclusion phase at the macroscale.
A three-dimensional geometry can avoid this constraint and thus
is highly anticipated. The present model derivation and finite ele-
ment procedures are actually general regardless of the problem di-
mension and RVE geometrical morphology; they are, in principle,
readily to be applied to three-dimensional porous microstructures
with some modifications of numerical implementation of the peri-
odic boundary conditions in a three-dimensional setting.

This study is also restricted to simple interfacial conditions
(temperature and flux continuities), and more general interfacial
constraints (e.g., Butler-Volmer relation) between the two phases
in terms of field variables and fluxes should be further explored so
that the FE2 approach can be applied to real-life problems such as
the species transport in battery electrodes.
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Appendix A. Microscale problem boundary conditions

1. Periodic boundary conditions As shown in Fig. 1b, we group
the external boundaries into the master boundary Ij, =T UL
and slave boundary I =I; UT;. The enforcement of the pe-
riodic boundary conditions requires a one-to-one correspon-
dence between the master and slave boundaries (I} & I;; I
o I;) for each phase in terms of mesh nodes. The constraint
in Eq. (24) is then applied to each pair of nodes, one node
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on the master boundary and the other on the slave bound-
ary, excluding the four corner nodes. The total number of node
pairs is denoted by Npy,. For each pair of nodes, we assign a La-
grange multiplier A; to the constraint between them, with the
Lagrange constraint equation expressed as

wll = ubl, - VUL - (xf, - xi,) =0, (A1)

where [ ranges from 1 to Ny, and « refers to either § or o
depending on the phase to which the node pair I belongs.

For the four corner nodes, the three Lagrange constraint equa-
tions are

ug) _ u(a]) -VU, - (X(Z) _x(1)) =0,
u(a3) _ u(g}) - VU, - (x(3) _ x(l)) =0, (A.2)
uff) _ ufx]) -VU, (x(4) —X“)) =0,

where « takes the phase (either f or o) containing the corner
nodes.

2. Interfacial boundary conditions
If there are Nj; pairs of interface nodes, there exist Nj Lagrange
constraint equations

ué—uézo,

(A3)

I
p
ture at the interface Iy, and u/ is the temperature of the cor-

responding node on Top-

3. Conservation of the stored heat between the macro- and micro-
scales
This condition is expressed by means of two Lagrange con-
straint equations from Eq. (26):

where [ ranges from 1 to Ny, u, denotes the nodal tempera-

fvﬁNdV“ﬁ‘VB Up =0, fVGNquU—V(, Uy = 0. (A4)
In total, the number of Lagrange multipliers is
Ny = Npp + Nis + 5, (A.5)

i.e., the sum of Lagrange multipliers from Egs. (A.1) to (A.4).

Appendix B. Calculation of tangent matrices

The tangent matrices of the macroscale fluxes and heat sources
with respect to the downscaled macroscale quantities (Section 4.3)
are derived as follows. At a converged state, the increment Aw in
Eq. (51) is zero, and hence the residual vector

& _ [f+ATx

-0 (B.1)

Au + CX
We then apply a small variation §X to the macroscale quantities X
and compute the corresponding change in the microscale solution.
Note that Eq. (B.1) should always hold to get the converged mi-
croscale solution. Therefore, we have

si-0=|X ‘ﬂ [gg] N [g] 5X. (B2)

Rearranging Eq. (B.2), we obtain

8 --[goe ws
To solve Eq. (B.3), we rewrite it as

Kow = €5X (B.4)

and thus the variation sw is expressed as

sw = K 1CsX, (B.5)

where K-! must be evaluated at the converged state of the mi-
croscale iteration. The solution A is extracted from Sw by means
of the gather matrix &:

SA = S5wW. (B.6)



M. Zhuo

According to Egs. (B.5) and (B.6), the variations of the homoge-
nized fluxes (52) can be formulated as

1 1 N
SHg = & Xm AT g, = - Xm AT6y , K71 COX, (B.7a)
1 T 1 T i7-1¢ b
SHy = - Xm A6 20, = 1 Xm AT85,, K'CoX, (B.7b)

where 65»[’ and &g,p are the gather matrices used to retrieve AB,P
and A p, respectively, from A. The variations of the macroscale
heat sources (53) due to interfacial heat transfer are calculated as

I I
1 & 1 & NEP
50y = -5 ZATCSM}G =7 ZAT(SSO‘ K-1CsX, (B.8a)
T, T,
1 & T 1 & T ii-1¢
Qs =~ D ATSAp, = - > Ao, K1CoX, (B.8b)

where &g, is the gather matrix used to retrieve Ag, from A. The
tangent matrices for the macroscale heat fluxes are calculated as

sH o
Sp = Txﬁ - %xmATsB,pK-lc, (B.9a)
So = 20 = L X AT, K1E (B.9b)

and the tangent matrices for the macroscale heat sources due to
interfacial heat transfer are expressed as

I
50p 1 O ars potp
Ty=—x = v ZA 8, K€, (B.10a)
T
_5Qc_ 1 - T i7-1¢
To=~% =7 ZA 8, K1C. (B.10b)

The above-derived tangent matrices are formulated with re-
spect to the downscaled macroscale quantities X (Eq. (17)) as an
ensemble of the macroscale nodal solutions. While in Eq. (45) the
tangent matrices with respect to Ug and Uy are needed. To this
end, we express X in the matrix form as

BUg
_ |NUg
X = BU. (B.11)
NU,
and thus define
B 0
N 0
=50, = [o| A" ®o =35, = |- (B12)
0 N

The tangent matrices for macroscale fluxes and macroscale sources
in Eq. (45) can therefore be computed as

oH

Al L B

aUg BT pu, TR

OH; oH;

6_llﬁ = ch)ﬁ, an. = S()—(I)g, (B‘13)
and

0Qg 0Qp

—aUS = Tﬁd)ﬁ’ aU, = Tﬁq)o‘,

0Qs _ Qs _

6U5 = ch’ﬁ, U, =To®o, (B.14)
respectively.
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