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Developments in discrete elementmodelling (DEM) enable detailedmodelling of granular flows in bulk handling
equipment (BHE) but due to the computational expense of DEM, wide use in analysing equipment performance
is not yet feasible. Metamodels are a viable option to effectively use DEM in analysing BHE performance.
Metamodels are able to approximate the behaviour of BHE efficiently for a wide range of design parameter
values. We present a methodology to construct and validate DEM-based metamodels as well as a discharging
hopper case study illustrating the use and benefits of metamodels in combination with DEM. For three different
metamodels trained on a DEMdata set, the results show that themetamodel quality highly depends on the num-
ber of samples and finding proper hyper-parameter values. The constructedmetamodels are found capable of ad-
equately representing the relation between performance and design parameters. It is concluded that
methodically constructed metamodels are a valuable addition in describing BHE behaviour.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
1. Introduction

Recent developments in modelling of large scale particle systems
and an increase in computing power enable researchers and engineers
tomodel behaviour of bulk and powder handling equipment in increas-
ing detail. A powerfulmodelling technique for particulate systems is the
discrete element method (DEM) [14]. While this method enables de-
tailed modelling it still requires a large amount of computational re-
sources, especially when the number of particles increases. Typically,
DEM simulations can take hours or even days for large particle assem-
blies. Therefore, in modelling bulk handling equipment (BHE) these
techniques are typically used to evaluate how small design changes af-
fect the behaviour of the particles in the equipment. This is defined as
local optimization and has proven to be a successful approach in devel-
opment of equipment. However, local optimization is concerned with a
specific design and only explores a small section of the design space.
Therefore it is likely tomiss superior designs that can be found if the en-
tire design space was evaluated. To bridge the gap between local and
global evaluation of behaviour of bulk handling equipment,metamodels
are an excellent option. These data-driven models of a computationally
expensivemodel such asDEM,which can beused as an inexpensive sur-
rogate. Metamodels can be used at a global level for model
.

. This is an open access article under
approximation, design space exploration, problem formulation, and op-
timization support [52].

In the past decade the applicability of DEM increased significantly due
to the introduction of GPU and parallel computing [16,19]. Using a GPU
results in a speed-up up to ten times [16], which makes it feasible to
study large scale industrial systems and complex flows with DEM
[29,31,32]. Strategies to further increase efficiency of DEM simulations in-
clude the use of hierarchical grid [20,21], stiffness reduction [34] and
coarse graining or particle upscaling [33,43]. Still, there are limits to
the speed-up that can be achieved. In design problems the amount of
model evaluations is high which makes it computationally expensive de-
spite speed-up measures. Moreover, bulk handling equipment (BHE) be-
haviour involves structural and kinematic responses for which coupling
with numerical methods such as finite element (FE) and multibody dy-
namics (MBD) is required ([2,3,12,15,23,35,42,54,56]. Such coupling
leads to a further increase in computational costs. Therefore, metamodels
show great potential in facilitating usage of DEM in bulk handling equip-
ment design procedures.

There are two main types of metamodeling approaches. The first is
model fitting MFð Þwhere amathematical relation between scalar design
parameters and key performance indicators (KPIs) is defined. Well
known methods for model fitting are response surface methodologies
(RSM) [25,52] and surrogate models [27]. The second approach is re-
duced order modelling (ROM) [4,36,44], where physical phenomena
present in the system aremodelled in a simplifiedmannerwhile includ-
ing spatial and transient information. Common methods in reduced
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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ordermodelling are projection based reduced ordermodels (PROM) [5],
balanced truncation [4], andmomentmatching [44]. The computational
effort required to construct ROMmodels varies significantly depending
on the nature and complexity of the modelled system.

In contrast to theirwidespreaduse in otherfields, in literature on de-
sign of bulk handling equipment with DEM, metamodeling techniques
are rarely used. A few related studies for bulk handling can be found
within the chemical engineering field. These are focussed on opera-
tional parameters rather than on design [1,6,30]. In this field an increase
of the use of metamodels is observed because these models can be in-
cluded in flow sheet descriptions of chemical processes [40,46]. A com-
bination of metamodeling techniques with computationally expensive
particle basedmodels such as DEM has been applied. Boukouvala [6] fo-
cussed on predicting the velocity profiles in a rotating drum by using a
reduced order model. Rogers & Ierapetritou [46] suggest integration of
reduced order andmodel fittingmetamodels in flowsheets for unit pro-
cesses in chemical engineering [46]. Barrasso et al. [1] studied the colli-
sion frequency in a continuously stirred reactor with a model fitted
metamodel based on an artificial neural network (ANN). [57] used re-
sponse surfaces to map segregation of particles based on DEM data.
However, the scale, material properties, and shape of the materials
modelled in these studies is far different from the materials used in
bulk material handling where irregular shapes and wide, gapped parti-
cle size distributions are common.

These studies show the potential of metamodeling in combina-
tion with particle based models to predict behaviour of bulk han-
dling equipment designs. Given the high potential of these
techniques and the presently limited use for BHE applications,
there is need for a metamodel construction or training procedure
that ensures that accuratemetamodels are obtained for a design pur-
pose. Model fitting and reduced order modelling are difficult to
combine in one training procedure. In design of BHE scalar design
parameters and KPIs are commonly used. To find a mathematical re-
lation between those, model fitting is the most adequate approach.
Therefore the focus of this study is on a training procedure for
model fitted metamodels.

Fig. 1 depicts the proposed framework for the use of DEM-based
metamodels. First a DEM object model is developed after characterisa-
tion of the bulk handling problem. Instead of directly using this model
Bulk handling equipment

design problem

Object Model

Development

Characterisation

Metamodel

Training

Design Optimization

Optimal Design

r

resampling

Fig. 1. Framework for bulk handling equipment design based on metamodeling, with t
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in optimizing the equipment design, metamodels could be constructed
after the DEM model development and before design optimization, as
shown in Fig. 1. Here the DEM model is used to generate training data
for the metamodel. The metamodel training procedure is shown on
the right of Fig. 1. This startswith defining the design space and creating
a sampling set for which the DEMmodelwill generate the training data.
Secondly, a suitable type of metamodel is chosen based on the distribu-
tion and expected trends in the data. Thirdly, hyper-parameters of the
metamodel, i.e. additional parameters that affect the resulting shape,
are optimized to obtain the most accurate metamodel for this data set.
Finally, the model is validated using a validation strategy. Together,
these steps form a systematic metamodel training methodology. After
training of the metamodels is completed, they can be used in design
space exploration, analysis, and optimization at low computational cost.

The aim of this study is to present, analyse and demonstrate the
steps involved in methodically training DEM-based model fitting
metamodels, with particular attention for intricacies related to the be-
haviour of bulk handling equipment. To illustrate the use ofmetamodels
the training procedure is applied to a hopper design case. In this case
study three commonmetamodels are evaluated: Polynomial Regression
(PR), Radial Basis Function Interpolation (RBFI), and Kriging. Secondly,
the design space is sampled, the effect of sample size is analysed and
data is filtered. Next, the third step involves optimization of the
hyper-parameters to obtain the most accurate metamodel. Lastly, in
the fourth step the applied validation strategies are the validation set
approach (VSA), k-fold cross-validation (K-fold CV) and leave one out
cross-validation (LOOCV) with repetitions. Based on the results for
these models recommendations for the use of metamodels in design
with DEM models are are given.

Following this introduction, Chapter 2 starts with a general intro-
duction to metamodeling and a detailed description on building a
model fitting based metamodel. Additionally, the theory for the three
metamodels used in the test case is described. Chapter 3 introduces
the DEMmodel of the hopper used in this study and presents the anal-
ysis of the generated data. After sampling, hyper-parameter optimiza-
tion, and validation techniques for the hopper case are evaluated.
Subsequently, in Chapter 4 the results obtained from the metamodels
are discussed, after which Chapter 5 presents, the conclusions and rec-
ommendations for further research.
DEM model

1. Sampling and Data

generation

2. Metamodel type

Selection

3. Training and hyper-

parameter optimization

4. Validation/Verification

(Experimental/Numerical)
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esampling
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he various steps involved in methodical metamodel training outlined on the right.
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2. Metamodeling

2.1. Sampling and data generation

Development of a MF metamodel starts by identifying the design
space in which the metamodel must be valid. The size and bounds of
the design space are defined by the limits of the design problem.
After choosing a suitable design space the general procedure to ob-
tain training data is to perform a design of experiments (DoE) or de-
sign of simulations (DoS) as it is called if one uses a numerical model
for data generation. In these processes sampling locations are gener-
ated for the defined design space, using methods such as Sobol sam-
pling, Latin Hypercube Sampling (LHS), Hammersley Sequence
Sampling (HSS), Monte Carlo Sampling (MCS), or Direct Sampling
(DS) [52]. There are many methods to sample design spaces which
all have their own benefits and pitfalls. The reader is referred to
[58] for further details.

The type ofmethod that should beused depends on thedesired sam-
ple size and properties. However, the sampling set does not have to be
generated in one single step. To reduce the computational costs of gen-
erating data, the sample set can be gradually expanded by resampling or
adaptive sampling [39]. These have become popular methods to find a
sufficient sampling while minimizing training data generation costs
[18,52]. Especially in relation to DEM the use of adaptive and iterative
sampling has been included in several studies [9,10]. To sample the de-
sign space further, supervised or unsupervised techniques can be used.
In supervised adaptive sampling, new points are added based on evalu-
ating the performance of the metamodel for the previous sampling set.
Unsupervised sampling is based on adding samples according to a
method such as LHS or grid sampling to improve the model by simply
increasing the size of the sampling set. However, in case of DEMdata, re-
sampling with many iterations might not be convenient. DEM simula-
tions take a considerable amount of time, and multiple resampling
steps would increase the duration of sample generation. Therefore, it
should be considered how many resampling iterations are acceptable
and how many sample points are added in each iteration. It can be
more efficient and faster to have fewer iterations with more sample
points than adding a single sample point each iteration.

Moreover, it needs to be considered thatmetamodels tend to behave
poorly at the edges of the design space because most metamodeling
techniques are not able to extrapolate well. To improve the metamodel
at the boundaries, either sample points should be chosen slightly out-
side of the domain of interest, or one has to densify the training data
on the boundaries of the design space such that they are better defined
[52]. However, because DEM simulations are computationally intensive
densification of the sampling set is inconvenient. Therefore, sampling a
space bigger than the domain of interest is the recommended way to
ensure sufficient accuracy in boundary regions.

After the data has been generated for the sample set, itmust be proc-
essed and analysed before continuing with the second metamodel
training step. To increase the quality of the sample set the results from
the simulationsmight require an intermediate stepwhere the data isfil-
tered. Invalid and inaccurate simulation results must be identified and
removed, so that the metamodel training is not adversely affected by
this data. Of course caution has to be taken when filtering data because
there is a risk of leaving out data that is actually representative for the
modelled system.

2.2. Metamodel selection

The second aspect of metamodel development is training of the
metamodel. For the model fitting approach, this starts at construct-
ing the function space or basis. The functions space contains basis
functions such as polynomials, splines, or radial basis functions
(RBF) [25,52]. The chosen basis functions should together be able
to represent the trends that are present in the data. Methods such
207
as Kriging [26,48], Gaussian process regression [45], artificial neu-
ral networks (ANN) [1] and radial basis function interpolation
(RBFI) are suitable for capturing highly nonlinear trends and flexi-
ble in interpolation and filtering of data. A downside of polynomial
regression (PR) is that these methods are based on less flexible
polynomial basis functions [25]. On the other hand, this reduced
flexibility of a polynomial basis can be exploited when dealing
with irregular and noisy data, as it can provide a smoothing effect
instead of exact interpolation. It must also be noted that compared
to the computational expense of generating the DEM data the cost
of training a metamodel is low. After defining the function space
the task is to find the coefficients of these functions for which the
metamodel fits the data best. Well known fitting methods are
least squares regression, best linear predictor, log-likelihood, and
multipoint approximation. The type of fitting method depends on
how the optimal fit is defined and which technique is most suitable
to find this fit.

In chapter 3 a numerical test case is presented involving two design
parameters and two performance parameters. The three metamodels
are built based on data obtained from aDEM simulation of a discharging
hopper. Considered are a Polynomial Regression (PR), Radial Basis Func-
tion Interpolation (RBFI), and Krigingmetamodel. These have been cho-
sen because of their common use in engineering practice and because
they are regression based, interpolation based, and a combination of in-
terpolation and regression respectively. In the following subsections the
foundation of these methods is discussed, including the basis-functions
used to construct the models.

2.2.1. Polynomial regression
In Polynomial regression a polynomial function is fitted to a set of

data points such that a response surface for the design domain is ob-
tained. Even though this is a classical method it is still commonly used
in developing response surfaces [17] because of its simplicity and
smoothing capability. In this two-dimensional case study a response
function f is represented as,

f x1, x2ð Þ ¼ ∑m
k¼0∑

n
l≤kaklx

k
1x

l
2 ð1Þ

where x1, x2 are the polynomial dimensions andm and n are the order of
the polynomial in dimensions x1 and x2, respectively. The polynomial
which is fitted to the data consists of multiple terms which each have
a coefficient akl. In the regression process the values for these coeffi-
cients are determined by finding the least squares solution of the mean
squared error between the reference value and the predicted value of
the polynomial in these training points.

2.2.2. Radial basis function interpolation
Radial basis function interpolation was first presented in [22] and

was focussed on representing irregular surfaces with multi-variate
functions. In RBF interpolation, a response function is represented by a
summation of N radial basis functions ϕ(||x − di||) located at the train-
ing data points, di. We consider the commonly used inversemulti quad-
ric radial basis function which is a full rank function which has a high
information content,

ϕ j x−dij jjð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϵj x−dij jjð Þ2

q ð2Þ

Here the ||x− di|| term is the distance from a location x to a training
point di. ϵ is the shape factor of the RBF and determines thewidth of the
radial basis function. Tomake the RBFs represent the reference values ui

at the training points the correlation between each RBF must be calcu-
lated and the coefficients bi need to be determined. This results in the
following system,
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Φijbi ¼ uj

ϕ r11ð Þ ⋯ ϕ r1Nð Þ
⋮ ⋱ ⋮

ϕ rN1ð Þ ⋯ ϕ rNNð Þ

2
64

3
75

b1
⋮
bN

2
64

3
75 ¼

u1

⋮
uN

2
64

3
75 ð3Þ

which if solved, results in the coefficients bi. With the coefficients the
following interpolation function can be formulated,

f xð Þ ¼ ∑N
i¼1biϕ j x−dij jjð Þ ð4Þ

The predictor function f(x) calculates the correlation between the
points x and the training points and bymultiplyingwith the coefficients
bi and summation of all contributions, the function value at locations x is
predicted. The resulting function exactly reproduces the reference
values at the training points, and smoothly interpolates between those.

2.2.3. Kriging
A Kriging model is a model based on both regression and interpola-

tion. The concept of kriging has been developed by Krige [13,28] and
finds its origins in geotechnical sciences. Currently there existmany var-
iants and Kriging is a common technique to construct predictivemodels.
A well-known Kriging toolbox is the DACE toolbox [49], which is also
used in this study. Kriging is very flexible in fitting nonlinear data
trendsbecause the covariances can be tuned by the sample data [25].
The Kriging predictor can be defined as follows

f xð Þ ¼ ∑k
i¼1cigi xð Þ þ Z xð Þ, ð5Þ

and consists of a sum of regression components which are second order
polynomials in the first term and a realization of a random stochastic
process Z(x) in the second term.

Z xð Þ ¼ σ2
l ϕ x−dij jj jð Þ ð6Þ

Here ϕ(||x− di||) gives the covariances between the training points
based on their Euclidian distance and σl is the process variance. Similar
to RBF, various choices for ϕ are possible. In the Kriging model in this
study the squared exponential Gaussian is used for calculating the co-
variance between the data points and the points that need to be pre-
dicted, given by:

ϕ x−dij jj jð Þ ¼ e−θi x−dij jj j ð7Þ

Kriging is more computationally expensive than the RBFI and PR
method because it needs to find a fit for the regression and the interpo-
lation components of themodel. Finding a good is generally achieved by
maximizing the likelyhood of thefit which is a hyper-parameter optimi-
zation technique that is discussed in the next section.

2.3. Hyper parameter optimization

To improve the fit of a metamodel the parameters of the used basis
functions can be optimized, commonly called hyper-parameter optimi-
zation. For the threemodels described in this section three different ap-
proaches are taken to optimize the parameters. For the polynomial
regression model the parameter that needs to be optimized is the
order of the polynomial in x and y direction, Nx, Ny respectively. It can
be argued that this order should be as high as possible such that the
more detail can be captured by themodel. However, beside the possibil-
ity of overfitting, adding higher orders might result in oscillations in the
response surface which decreases the accuracy of the metamodel, also
known as the Runge phenomenon. Therefore it is recommended that
metamodels based on polynomial regression are checked for these arte-
facts and base the order of the polynomial on the accuracy of the
resulting metamodels. In this case the metamodels are built for zeroth
to fifth order polynomials for both design parameters and the optimal
208
coefficients correspond to the combination with the lowest root mean
squared error.

In the RBFImodel the optimization parameter is the support radius c
of the RBF. Because the RBFs are located at the training points there will
be exact interpolation. The only error at these points is themachine pre-
cision error of the system. Therefore the parameters need to be opti-
mized using a different strategy. To identify the error of the
metamodel, the RSME is determined by Leave One Out Cross Validation
as used by [51]. The support radius c is optimized such that the RMSE is
minimized.With thismethod itmust be noted that it is computationally
expensive.

The Krigingmodelwhich is based on theDACE toolbox [49] uses log-
likelihood maximization of the metamodel to determine the optimal
shape factor values. In the case of this Krigingmodel there is a shape pa-
rameter for each dimension, θ1 and θ2. The optimization of these param-
eters is implemented in the toolbox. This approach minimizes the
process variance is which ensures that the reliability of the metamodel
in between the training points is maximized.

2.4. Metamodel validation

A next essential step is validation of the metamodel. The goal of
metamodel validation is to verify their ability to predict values in the de-
sign domain. There are three frequently used methods for validation:
the validation set approach (VSA), k-fold cross validation (k-CV), and
leave-one-out cross validation (LOOCV) [41]. In each method, the sam-
pling set is divided into a training and validation subset, andmetamodel
predictions at the validation points based on the training set are com-
pared against the validation values. The three approaches mainly differ
in the way the samples are divided. In the VSA the sampling set is di-
vided into a training and validation set according to a user-defined
ratio. The k-CV divides the samples into k subsets of equal size which
are combined to form k different cross validation sets. Finally, in
LOOCV, a validation set consists of one sample point and all the remain-
ing data points are put in the training set. This is repeated for the total
number of data points. All three validation methods will be considered
in the case study presented in the next section.

The random division of the sampling set in VSA and k-CV introduces
some variability in the results, and additional methods exist to improve
consistency. One method to mention is stratification, which ensures
that the validation and training sets contain data points from every sec-
tion of the domain. However, use of stratification requires heuristic in-
formation on the model. Another method to obtain consistent results
from the validation strategies is to repeat the procedure with new ran-
domized divisions. This gives an insight into the stability of the valida-
tion error prediction. In both the VSA and k-CV approach common
validation set sizes are 10 and 20% of the entire data.

3. DEM-based metamodel test case: discharging hopper

3.1. DEM (object) model

In this case study the object model used is a semi-two-dimensional
silo, shown in Fig. 2. This model has been built in MercuryDPM, an
open source discrete element software package [53], The material prop-
erties that will be used for this study are fictive and only valid for this nu-
merical example. In reality, every bulk material has to be characterized
experimentally to find the correct values for its properties. Bulk proper-
ties are heavily affected by environmental conditions such as the humid-
ity and temperature. Additionally, the particle size distributions and
surface properties can differ between batches of material. As the focus
of this case study is on demonstrating the process of constructing a
DEM-based metamodel, these complications are not taken into account.
The metamodeling techniques described in Sections 2.2.1–3 are applied
to the data generated with the object model. For the hopper example
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the angleα and the discharge openingWo are the design parameters. The
KPIs are the discharge rate and coefficient of variation [50].

3.1.1. Model geometry description
The geometry of the silo is fixed except for the hopper angle α and

discharge opening Wo, which are chosen as the design parameters. A
cross section of the silo and its dimensions are shown in Fig. 2. In
order for the silo model to have a feasible geometry the range for the
hopper angle α is 10 to 100°. The size of the discharge opening ranges
from 15 to 210 mm for a fixed silo width Wh of 0,6m as denoted in
Table 1. The ratio of hopper width to discharge opening approximately
equals 3 whichmeets the conditionWh> 2,5Wo set for having constant
discharge rate during hopper discharge [7].

3.1.2. Material description
The bulk material is modelled by spherical particles for which the

particle size is described by a normal distributionwith an average diam-
eter of 8 mm and a standard deviation of 2,0 mm. Particle sizes in this
range are common in bulk handling applications. However, because
the time-step size depends on the smallest particle size, the particle
size distribution is truncated to the range of 5 to 14mm to limit compu-

tation time. The density of the particles is set to 2500 kg
m3 which is similar

to the density of gravels and sands. The bulk stiffness Eb of the material
is set at 70MPa and is used to calculate the contact stiffness k following
this relation [38],

k ¼ EbV
Cnr2avg

ð8Þ

where V is the average particle volume, Cn the contact number, for loose
packing equal to 4 [55], and the average particle radius ravg of the parti-
cle size distribution.
Table 1
Geometric properties silo

Property Value

α 10 − 100°
Wo 15 − 210 mm
Wh 0,6 m
Hf 0,8 m
d 5,3 × 10−2m

209
The time step Δt is based on the response time tc of the contact be-
tween two particles which is calculated as

tc ¼ πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

meff
− γ

2meff

� �2
r ð9Þ

Here k is the contact stiffness, meff is the effective mass of the two
copies of the smallest particle, and γ is the damping of the contact.

To ensure a stable simulation the time step for integration should be
far smaller than the response time, Δt < < tc [37]. A safe ratio that is
commonly used in MercuryDPM for large scale simulations is Δt ¼ tc

10
[53].

3.1.3. Contact model description
In this study a linear visco-elastic friction contact model has been

used to model particle-particle and particle-wall contact [38]. The
particle-particle contact is shown in Fig. 3 and consists of two spring-
damper combinations and a figure to represent the friction between
the particles. The contact stiffness k has a component kn in normal and
kt in tangential direction. For the damping of the contact normal and
tangential components γn and γt apply. Friction between the particles
is represented by sliding and rolling friction coefficients, μs and μr. The
torsion in this model has been turned off to reduce the complexity of
the contact model. The property values for each contact model can be
found in Table 2. These settingswill ensure that in the simulated hopper
designs the dominant flow mode is core flow. The contact stiffness of
the walls is, P-W1 and P-W2 are set to two times the contact stiffness
of the particle-particle (P-P) interaction [11]. Where the side walls (P-
W1) have a high friction coefficient of 0,5 and the front and back wall
of the hopper (P-W2) have a lower friction coefficient of 0,3. The friction
coefficient for the side wall is in the same range found for bonded iron
particles on steel [8]. The friction value for the front and back walls is
set to a lower value because we assume less friction on this wall. The
damping in the entire system is the same for particles and walls and is
equal to 0,3 Ns

m

� �
. In this case study we have assumed values for the con-

tact properties. However, these properties can be determined with ex-
periments on a micro scale directly and inversely through macro scale
experiments. Examples are the wall friction coefficients by using a
shear cell [24] or an inclined surface tester [8] and the bulk modulus
and internal shear angle by means of a compression test.

3.1.4. Simulation settings
Before the start of the simulation the silo is filled by a randomized

particle generator (Section 3.1.2) while the outlet remains closed.
After starting the simulation the particles are allowed to settle and at t
= 1,5 s all particles above the fill height are removed. The fill height is
0,8 m which ensures that the discharging time of the silo is sufficient
for analysis of the granular flow. At t=1,6 s the outlet opens and allows
particles to discharge from the hopper. The total simulation time is set
kn

γn

Particle 1 Particle 2

μs, μr

Fig. 3. Description of the normal, tangential, rolling, and sliding contact between the
particles which is also used to model particle-wall contact.



Table 2
Properties of the contact between particle-particle, particle-wall 1, and particle-wall 2.

Property P-P P-W1 P-W2

μs 0,2 0,5 0,3
μr 0,2 – –
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to 25 s to ensure that for all configurations emptying of the silo is
achieved. A stopping criterion has been added to the model which
stops when the ratio between the kinetic and elastic energy becomes
smaller than 10−6. This stopping criterion ensures that simulations are
stopped when the flow of material stopped or the hopper is empty.
Therefore unnecessary simulation steps are prevented. For stability of
the simulation the time step is set to 8,7 · 10−6 s which is equal to the
contact time divided by ten, tc

10.

3.2. DEM data analysis

The DEM simulations provide particle location and velocity informa-
tion which are used to identify material flow characteristics in the hop-
per. In this case study the mean discharge rate ϕ and the coefficient of
variation ψ of the discharge rate are used as the KPIs of the hopper.
These values are calculated by using the method described by [50].
The average discharge rate coefficient of variation is determined in the
steadyflow region of the discharge as shown in Fig. 4. The data obtained
from the simulations is filtered after determining the KPIs where the
training points which have no flow are removed from the dataset.

3.3. Sampling

We assume that there is no prior knowledge on the behaviour of the
DEM model. Therefore, it is desired to get a uniformly distributed sam-
pling set which covers the design space equally. To obtain this set, the
Sobol sampling technique is used because one of its properties is that
it produces a highly uniform sampling of the domain. The design
spacewhich ranges from20 to 90° hopper angles and 25 to 200mmdis-
charge opening sizes is the desired domain. In order to obtain sufficient
samples near the boundaries, the design space ranging from 10 to 100°
hopper angles and discharge opening sizes of 15 to 210 mm. Covering
this with 100 samples results in 72 interior points and 28 exterior
points, as shown in Fig. 5.
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Fig. 4. Discharge rate versus time obtained from simulations data, red line is the average
discharge rate and the red dotted lines represent the CoV.
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3.4. Hyper-parameter optimization

In general it is difficult tomanually determine the appropriate values
of the hyper-parameters of the basis-functions which will result in an
accurate metamodel. Therefore optimization of these hyper-
parameters as described in Section 2.3 is an important step in
metamodel construction. To demonstrate the effect these hyper-
parameters have on the resulting metamodels a set of metamodels
with predefined hyper-parameter values and a set with optimization
hyper-parameter values are compared. Our aim is to highlight, by
means of this example, that hyper-parameter optimization is important
to construct high quality metamodels. In the case study initial models
have been built with the set of hyper-parameter values shown in
Table 3. Here, N1 and N2 are the order of the polynomials, c is the
value for the shape factor of the multi-quadric radial basis function,
and θ1 and θ2 are the shape factors of the basis functions of the Kriging
model for the two design parameters.

3.5. Verification

For the metamodels in this paper the VSA, k-CV, and LOOCV valida-
tion strategies are performed where the root mean squared error
(RMSE), given as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i¼1 f−f ∗ð Þ2
N

s
ð10Þ

between themetamodel predictions and validation values is used as the
error measure. For the VSA a 20 and 10% validation set size of all data
points is evaluated. For k-CV the values k = 5 and k = 10 are used
which means an equal subset size of 20 and 10% respectively. Both the
approaches are repeated ten times to take the effect of random subset
generation into account. The LOOCVmethod has to be run only one sin-
gle time because it is deterministic, but consists of N = 80 individual
validations. In Table 4 the sizes of the training and validation sets are
Table 3
Initial parameter values used without hyper-parameter optimization

Optimized
parameter

Discharge
rate ϕ

Coefficient
of
variation ψ

PR (polynomial order) N1, N2 2, 2 2, 2
RBFI (Inverse multi-quadric) c 1 1
Kriging (Hyper-parameter correlation
function)

θ1, θ2 1, 1 1, 1



Table 4
Validation strategies and applied settings

Training set Validation set Number of iterations

VSA 10% (90%) (10%) 1
VSA 20% (80%) (20%) 1
k-CV 10 (90%) (10%) 10
k-CV 5 (80%) (20%) 5
LOOCV N-1 data points 1 data point N
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shown for each method and the number of iterations that are included
in the validation strategy.

4. Results

4.1. DEM simulation results

The data for training the metamodels has been obtained by running
simulationswith themodel described in Section 3.1. The systemused to
execute the simulation sample is a DELL Precision 5820 with an Intel
Xeon W-2223 CPU @ 3.60 GHz × 8 cores. The whole set of simulations
took around 28 days in serial model using all 8 cores. The average sim-
ulation time was 53,8 h. However, the simulation time is geometry de-
pendent. A simulation with a large discharge opening and low hopper
angle is faster than onewith a small discharge opening and high hopper
angle. In Fig. 6 (a) a screenshot of a discharging hopper with an angle
α = 47,6° and a discharge opening Wo = 108,1mm is shown. With
the current wall friction settings and this specific combination of
angle and discharge opening core flow is observed in the hopper.
Moreover, on the left and right side of the hopper stagnant zones are
visible where the particle velocity stays zero during discharge. Fig. 6
(b) shows the hopper with an angle α=45,3° and a discharge opening
of 30,8 mm which results in arching of the material in the hopper and
consequently no flow. The total number of simulations is 100 corre-
sponding to the Sobol sampling of the design space shown in Fig. 5.
With the simulation data, the discharge rate and coefficient of variation
(CoV) have been calculated and are used for all the models in this sec-
tion. The simulations results are shown as data points and contour
plots in Fig. 7 with the discharge rate in (a, b) and the coefficient of var-
iation in (c, d). These performance parameters are essential in hopper
design, because in general the aim is to achieve continuous flow with
low CoV [47]. In the figures the data points are denoted by dots. The
black dots (80 data points) represent silo designs where there was
(a)

Fig. 6. DEM simulation stills (a) Core flow hopper discharge (α = 47, 6 ° , Wo = 108,1
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flow in the silo, whereas the red dots (20 data points) represent the de-
signs which have no flow. In this case study the aim is to develop
metamodels that can predict flow conditions of hopper designs with a
discharge rate of 2 kg/s and up. To avoid the steep transition from no-
flow to flow regime, based on this analysis the model is trained only
for the data points having flow and is only valid for discharge rates
higher than 2 kg/s.

As seen in Fig. 7 (a), the discharge rate increases monotonically
with the discharge opening Wo. Along the α-axis the hopper angle
is shown where the data seems to follow a more constant level. This
indicates that the discharge rate mainly depends on the size of the
discharge opening and that the hopper angle has a limited effect.
This is in line with the theory on hopper flow by Schulze [47]. In
Fig. 7 (b) the data in (a) is represented by a contour plot where the
isolines show the same trend. Moreover, in the 25 to 60mm zone for
all angles the transition from flow to no-flow is visible by the change
from black to red dots. Decreasing the size of the discharge opening
causes the formation of arches in the hopper. These arches continu-
ously collapse until they become stable at the transition from no-
flow to flow. This can also be seen in the CoV which increases when
the discharge opening becomes smaller. To prevent arch formation
in designs a minimum discharge opening is used which is equal to
8–10 times the average particle size [47]. We use a truncated particle
size distribution with an average particle diameter ravg = 10,2 mm.
Using the lower bound of 8 times, would result in a discharge opening
of 81,6 mm which safely ensures flow of the material even above the

2 kg
s threshold as can be seen in Fig. 7 (b).
In Fig. 7 (b) a dependency of the discharge rate on the hopper angle

is visible by a curve shape in all isolines. In the transition area between
50 and 70° hopper angles and above the 150mm discharge opening a
shift in discharge behaviour is observed where discharge rate for 9, 11,

and 13 kg
s isolines show a move in the upward direction which is differ-

ent from the smoother curves at lower discharge rates. This behaviour
can be explained by the behaviour at the walls for the lower hopper an-
gles. In the hopper model a wall friction coefficient, μp, w1 = 0,5, be-
tween particles and wall is defined which corresponds to a wall
friction angle of 26,6°. We would expect that sliding of the material
along the wall will stop or decrease at hopper angles 63,4° and higher.
When the angle stays below 63,4° the wall friction force is likely to
be lower than the force exerted by the particles on the wall, which en-
ables flow along the walls. If the hopper angle becomes higher than
63,4°, stagnant zones will form which shifts the sliding interface from
(b)

mm) and (b) an example of no flow due to arching (α = 45,3°,Wo = 30,8 mm).
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particle-wall to particle-particle and therefore changing the flow
behaviour.

Fig. 7 (c) shows the data points for the second KPI, the coefficient
of variation ψ for the discharge rates in Fig. 7 (a). The fluctuations in
the discharge rate show a different dependency on the design pa-
rameters than the discharge rate. However, the area in Fig. 7
(b) depicting the change in flow behaviour also shows changes in
the CoV because of the accumulation of isolines in that area. As
with the discharge rate this can be attributed to the change from
particle-wall to particle-particle interface. Based on the CoV data it
can be seen that for angles below the transition area the CoV be-
comes lower and therefore the discharge rate becomes more stable.
In the transition area the CoV starts to increase for increasing hopper
angles which results in unstable discharge. In the 60 to 150mm re-
gion we can see a valley in which the CoV increases when the dis-
charge opening becomes smaller for all angles although at a
212
different rate. With smaller discharge openings and at higher hopper
angles the flow becomes less stable.

4.2. Effect of hyper-parameter optimization on metamodel quality

In Fig. 8 the threemetamodels for the discharge rate without hyper-
parameter optimization are shown. The PR metamodel in Fig. 8 (a) has
been built with a second order polynomial for the two design parame-
ters. This figure shows a curved surface fitted through the data, which
is below the data points for a hopper angle between 45° and 90° and
lies above the data points for lower angles. The ability of a PR model
to fit to the data highly depends on the trends in the data, distribution
of samples over the design space and the order of the polynomial [52].
In Fig. 8 (b) and (c) the RBFI and Kriging metamodels are shown
where irregularities in the surface are present between 150 and 200
mm and hopper angles between 50 and 70° and for the Kriging model



Fig. 8.Metamodels without hyper-parameter optimization for the average discharge rate (a) Polynomial Regression (b) Radial Basis Function Interpolation (c) Kriging

Table 5
Optimized Hyper-parameters

Optimized
parameter

Discharge
rate

Coefficient
of
Variation

PR (polynomial order) N1, N2 5, 5 5, 5
RBFI (Inverse multi-quadric) c 2.05 4.09
Kriging (Hyper-parameter correlation
function)

θ1, θ2 7.98,
10.16

4.19, 19.04
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we seefluctuations at the 50mm and 20° point. These undulations pres-
ent in the RBFI and Krigingmetamodelmight be caused by the inappro-
priate values for the shape parameters of the basis-functions.
Concluding, with polynomial regression a smooth surface is obtained.
The RBFI and Kriging models in (b,c) show more local fluctuations
when the distance between data points increases but are capable of cap-
turing both the nonlinear behaviour at smaller discharge openings and
the global trend of the dataset.

The metamodels based on the CoV data are shown in Fig. 9. In
Figure (a) the PR metamodel shows that the fit of the polynomial sur-
face is able to capture the trend of the data on a global level but the re-
gression function is not able to capture local detail in the data set. The
RBFI and Kriging models show the same behaviour as with the dis-
charge rate. Several fluctuations are visible along the 200 mm line for
all angles as well as for the 20° line, which indicate that the shape pa-
rameter is too small to capture the actual curve.

To obtain the best possible metamodels, hyper-parameter optimiza-
tion was carried out for 50 random initial guesses where the best
performing parameter values were chosen as the optimal hyper-
parameter values (Table 5). For the PR metamodel it was found that
the fifth order polynomial should be used for both design parameters
and the KPIs. The optimal RBF shape parameter of the CoV is larger
than the one for the discharge rate, because of the presence of flat
Fig. 9.Metamodels without hyper-parameter optimization for the coefficient of variat
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areas in the CoV surface, which requires an RBF with a larger radius.
For the Kriging model we can see the same behaviour as for the RBFs,
where a smaller value for theta results in a narrow Gaussian whereas
a larger value gives a wider Gaussian. Unlike the RBF, the Gaussian has
two shape parameter values for each performance parameter, one in
the direction of each design parameter.

Using the results of the hyper-parameter optimization, new
metamodels have been trained for the hopper data set. Fig. 10 shows
the results for the discharge rate, together with the data points. While
based on the same data, the three models are different compared to
the default metamodel results. The higher order polynomial enables
the PR metamodel to fit better to the trend in the data. With the RBFI
ion (a) Polynomial Regression (b) Radial Basis Function Interpolation (c) Kriging



Fig. 10. Metamodels for average discharge rate (a) Polynomial Regression (b) Radial Basis Function Interpolation (c) Kriging
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and Kriging metamodels, the fluctuations in the surface are reduced or
absent. All three models show a transition zone for large discharge
openings (>150mm) and angles between 50 and 70°. However, the PR
model is less able to describe this transition zone compared to RBFI
and Kriging models because it is less capable to capture local changes
in the trend.

The dataset containing the CoV at the data points and the correspond-
ingmetamodels are shown in Fig. 11. All metamodels are able to capture
the global trend. However, the PR model is not able to capture the local
changes in the data set but produces a smooth trend surface. In addition,
at the 20° and 200mm point the PR model will predict negative CoV
values which are infeasible. The RBFI and Kriging models do show a
more irregular surface but are able to capture the local behaviour better.
The effect of hyper-parameter optimization on the resultingmetamodels
can also be achieved by adjusting the hyper-parameters through trial and
error until the quality of the model is maximized. However, hyper-
parameter optimization with the described methods is far more efficient
and will become even more convenient when the number of design and
performance parameters increases.

To a certain extent, metamodels are able to predict the behaviour of
the discharge rate and CoV within the bounds of the design space. It
needs to be realized that all models developed on a data set need to
be evaluated on their ability to predict the actual behaviour. In the
Fig. 11.Metamodels for the coefficient of variation (a) Polynomial
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case of low dimensional problems it is possible to visualize the data
but when the dimensionality increases this becomes more difficult.
Therefore, quantitative measures are required, which will be discussed
in the following section.

4.3. Metamodel validation

The validation strategies introduced in Section 2.4 have been evalu-
ated to determine the accuracy of the PR, RBFI, and Kriging metamodel
in predicting values at unknown design points. The three models used
to evaluate the validation strategies are trained with the optimized pa-
rameters presented in Table 5 using the percentages of the 80 sample
dataset denoted in Table 4. All the strategies have been repeated 10
times to get a measure on the reliability of the measured errors. All of
these strategies give insight on how well the metamodels performs at
predicting KPI values at new design points.

The bar charts in Fig. 12 and Fig. 13 show the average RMSE between
the validation set values and the metamodel predictions for the dis-
charge rate and coefficient of variance, respectively. As a results of the
10 repetitions the variance of the average RMSE can be shown. For the
discharge rate results in Fig. 12 it can be seen that for the VSA and kCV
approaches the prediction error is in the order of 4 to 7,5% and for the
LOOCV is below 0,2%. In terms of the variance it can be seen that it is
Regression (b) Radial Basis Function Interpolation (c) Kriging
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nearly absent for the LOOCV approach but that it is larger for the VSA ap-
proach then for the kCV approach. For the CoV results in Fig. 13 we see
that the average error is much higher and ranges from 15 to 20% which
can be explained because the trends in the CoV data are more complex
than those in the discharge rate data. If data near the validation points is
not included in the training set it becomes more difficult to predict, es-
pecially when the behaviour is non-linear. For the LOOCV approach we
see a small error of atmost 1,5%. In terms of variance the same effect can
be observed as with the discharge rate where the variance of the VSA
approach is higher than the kCV variance. Results for both KPIs show
that prediction errors are large if a data set of 72 (90%) or 64 (80%)
points are used. This suggests that additional data points should be
generated.

Asmentioned, themajor difference that can be observed for both re-
sults is that the variance of the kCV approach is smaller than of the VSA
approach. This indicates that the kCV approach ismore reliable in giving
insight on the validity of a metamodel than the VSA approach. Com-
pared to the kCV and VSA approach the LOOCV shows that the errors
given by the metamodels is very small. Here it is important to consider
that with the LOOCV approach more data points are used for training a
metamodel compared to the kCV and VSA approach. As a consequence,
if the ratio between number of validation points and training points be-
comes too small the effect of leaving one data point out will reduce and
therefore lead to low validation errors.
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To evaluate the validation error the LOOCVmethod can be used if the
training data set is small, in the order of 50 data points. For larger data
sets one should use the VSA or kCV approach where the kCV approach
gives the most reliable validation error. In terms of time consumption
the LOOCV approach is the most expensive looping through all the
data points. Next is the kCV approach which uses k iterations in deter-
mining the validation error, therefore computational expenses increase
with k. Followed by the VSA approach which only evaluates the valida-
tion error of a single division of the data into a training and validation
set. With respect to DEM-based metamodels the computing time of
these validation errors is irrelevant due to the cost of DEM-data gener-
ation. Evaluating metamodels by multiple validation strategies leads to
a more complete insight on their accuracy and allows a designer to
make a better choice for the type of metamodel that is going to be used.

4.4. Effect of sample size on accuracy

Generating DEM data is computationally expensive, therefore in-
sight on the effect of sample size on the quality of the metamodel is re-
quired. To study the effect of sample size on the RMSE of themetamodel
we gradually build the three models by increasing the sample size from
1 to 80 by 1. These 80 samples are the points in the data set representing
material flow. After each increase in sample size a training set is drawn
from the full dataset to train the three models, using the metamodel
ldCV 5 kfoldCV 10 LOOCV
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r the coefficient of variation ψ.
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Table 6
Minimum amount of data points required for 2 and 5% accuracy levels

Discharge rate ϕ PR RBFI Kriging

2% – 75 70
5% 45 45 32

Coefficient of variation ψ PR RBFI Kriging

2% – 78 78
5% – 70 70
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training procedures discussed in Section 2.2. To avoid any bias of the
order of the subset, this process has been repeated 1000 times where
for each repetition the order of the subsets is changed randomly. Finally,
the average RMSE is calculated. In Fig. 14 the development of the aver-
aged RMSE is shown for the Polynomial Regression, RBFI, and Kriging
metamodels of both the discharge rate and CoV.

Note that some models cannot be built beneath a certain sample
size. The PR metamodel uses a 5th order polynomial fit, which can
only be determined when more than 21 data points for a two-variable
problem are available because that equals the amount of coefficients.
However, Jin [25] suggests that the amount of samples should be at
least twice or three times the amount of coefficients of the polynomial
to obtain accuratemetamodels. Building an RBFI model is already possi-
ble from a single sample. However, low sample numberswill not lead to
representative metamodels. The Kriging model built with the DACE
toolbox requires a minimum of 5 data points for training based on the
number of undetermined coefficients for the second order regression
part of the model. For the RBFI and Kriging models it can also be seen
that the error goes to zero at a sample size of 80. This occurs because
bothRBFI andKriging have almost exact interpolation at thedata points,
therefore the error in the data points is at machine precision.

Fig. 14 (a) and (b) show that in all models the error reduces for in-
creasing sample sizes. For the discharge rate, the Kriging model per-
forms better over the entire range compared to the PR and RBFI
models. It can be observed that the RBFI model outperforms the PR
model over the entire range but performs similarly at a sample size of
50 data points. The results for the coefficient of variation data show
that the PR model is not able to get an accurate prediction of the CoV
while, both the RBFI and Kriging model show a large increase in quality
when the sample size increases. Note also that the PR fit quality with
lower sample numbers shows a larger standard deviation, indicating a
stronger dependence on the selected design points.

For DEM-based metamodels it is essential to know the amount of
samples required to reach a certain quality level of a metamodel. This
depends on the accuracy that is required for the prediction ofmean per-
formance parameters. Table 6 shows the number of points required to
reach a 2 and 5% error of the model. The PR model only reaches the 5%
error limit for the discharge rate but is not able to get to 2%. The RBFI
and Kriging model perform similar and are able to reach the thresholds
with this dataset. However, the Kriging model requires less data points
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to reach the 5% and 2% threshold than the RBFI model for the discharge
rate. For the CoV they require the same amount of data points. The bet-
ter performance of the Krigingmetamodel can be related to the basis of
training the model which is minimizing the global process variance of
the Kriging model whereas for the RBFI model the error in the data
points is used which does not imply global optimality.

Based on the results of this test case it is advised to start with a suf-
ficient sample size of 50 data points and gradually expand the amount
of data points until the desired quality is reached. However, this number
changeswhen the number of design parameters and KPIs changes. If the
dimensionality (number of variables) increases the sample size should
be increased accordingly to maintain a sufficient sampling density. To
determine if more points need to be added the effect of sample size
should be used. The process of expanding the sample set is referred to
as adaptive or sequential sampling in literature [39,52]. In the case of
DEM-based metamodels the time required for generating data is
much higher compared to training, validating, and updating of the
metamodel itself. Therefore an approach where some time is invested
in determining the quality of the metamodel based on the sample size
before additional simulations are started is most efficient.
4.5. Summary of findings

The three metamodels used in this study showed that hyper-
parameter optimization is an essential step for obtaining accurate
metamodels, regardless of the metamodel type. Hyper-parameter opti-
mization can be performed on a trial and error basis but automatic
hyper-parameter optimization is preferred.
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The results in this section show that it is necessary to determine
which data is useful and relevant before building ametamodel. Filtering
or excluding specific data might lead to more accurate metamodels but
caution has to be taken because the data set may become less represen-
tative for the process.

In order to acquire accurate metamodels a representative error
measure should be used to assess the quality. The results show that
the use of k-fold CV gives reliable information on the validity of the
metamodels. A single metamodel type that fits all datasets is not
found which makes it worthwhile to test several metamodels and
even have a different type for each performance parameter. Although
this is time consuming the time spent is small compared to the time
spent on developing the DEMmodel and generating the data through
simulations.

To determine if the size of the sampling set is sufficient the effect of
sample size and the validation error should be evaluated. Based on these
errors the need for more data can be determined. To start metamodel
construction, a sufficiently large data set should be trained to have a
basis, in this hopper case study with two design parameters this is 50
data points. In additional resampling steps the size of the sampling set
can be expanded.

The results for the threemetamodels used in this case study showed
that the Polynomial Regressionmodelwas the least accuratemodel and
could not reach validation errors less than 3% for the discharge rate and
12% for the CoV. The Kriging model performed better for the discharge
rate than the RBFI model while both models performed nearly identical
for the CoV. Therefore, unless a particular polynomial trend is expected,
RBFI and in particular Kriging should be preferred for their efficiency
and generality. A 5% error for the discharge rate was reached with a
small amount of data points whereas the models for the CoV required
at least 70 points. Based on the results it can be seen that increasing
complexity of the trends in the data requires larger data sets if accurate
metamodels are desired.

5. Conclusion

In this study a methodology for constructing DEM-based meta-
models has been presented and demonstrated on a case study. Different
metamodels were trained and the effect of hyper-parameter optimiza-
tion, sample size, and validation strategy was analysed for the first
time in context of DEM. From this study it can be concluded that
DEM-based metamodels can aid in revealing and understanding trends
in the performance of bulk handling equipment in relation to selected
design parameters, at acceptable computational cost. In using meta-
models combined with DEM it is not advised to universally apply one
single type of metamodel. The behaviour of performance parameters
might match certain metamodel types better than others. Moreover,
metamodel training is far less computationally demanding compared
to the DEM data generation phase. Therefore it is advised to evaluate
several types of metamodels and use the most adequate type for each
performance parameter. To further increase the quality of metamodels
hyper-parameter optimization should be applied to obtain the best pos-
sible metamodel for a given data set.

As a proof of concept, we analysed and validated the application of
three model fitting metamodeling techniques using a representative
BHE example: polynomial regression, radial basis function interpola-
tion, and Kriging, and showed the ability of these methods to capture
the discharge behaviour and the coefficient of variation of a silo in a
wide design space. In this study the Kriging model performed best in
predicting the discharge rate whereas the Kriging and RBFI models
were better in predicting the coefficient of variance. Polynomial regres-
sion showed the strongest smoothing behaviour, whichmay be desired
in case of noisy datasets. The overall results show that metamodels
based on these techniques provide an sufficiently accurate representa-
tion of the bulk handling equipment behaviour for use in the equipment
design process.
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In relation to the design of BHE it is essential that metamodels with
high accuracy can be trained for small or limited data sets because of the
computational burden of DEM simulations. In this study the focus was
on obtaining accurate predictions for average performance values.
However, in bulk handling processes the behaviour of bulk material is
stochastic by nature. Therefore, further research is required in training
of metamodels including stochastic data such that this information
can be included in exploring design options.
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