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A numerically exact non-reflecting boundary condition applied to the acoustic

Helmholtz equation

W. A. Mulder∗,†

ABSTRACT

When modeling wave propagation, truncation of the compu-
tational domain to a manageable size requires non-reflecting
boundaries. To construct such a boundary condition on one
side of a rectangular domain for a finite-difference discretiza-
tion of the acoustic wave equation in the frequency domain,
the domain is extended on that one side to infinity. Constant
extrapolation in the direction perpendicular to the boundary
provides the material properties in the exterior. Domain de-
composition can split the enlarged domain into the original
one and its exterior. Because the boundary-value problem
for the latter is translation-invariant, the boundary Green
functions obey a quadratic matrix equation. Selection of the
solvent that corresponds to the outgoing waves provides the
input for the remaining problem in the interior. The result is a
numerically exact non-reflecting boundary condition on one
side of the domain. When two non-reflecting sides have a
common corner, translation invariance is lost. Treating each
side independently in combination with a classic absorbing
condition in the other direction restores translation invari-
ance and enables application of the method at the expense
of numerical exactness. Solving the quadratic matrix equa-
tion with Newton’s method turns out to be more costly than
solving the Helmholtz equation and may select unwanted
incoming waves. A proposed direct method has a much
lower cost and selects the correct branch. A test on a 2-D
acoustic marine seismic problem with a free surface at the
top, a classic second-order Higdon condition at the bottom,
and numerically exact boundaries at the two lateral sides
demonstrates the capability of the method. Numerically ex-
act boundaries on each side, each computed independently
with a free-surface or Higdon condition, provide even better
results.

∗Shell Global Solutions International B.V., The Netherlands, and
†Delft University of Technology Faculty of Civil Engineering and Geosciences,
Department of Geoscience & Engineering, The Netherlands

INTRODUCTION

Simulation of wave propagation in the earth often requires trun-
cation to a subset of interest, except in global seismology when
modeling the whole planet. Other applications involve infi-
nite or very large domains that have to be reduced in size to
keep computations tractable. The required artificial boundaries
should let outgoing waves pass without generating reflections.
In practice, this turns out to be difficult, as witnessed by the
large number of publications on the subject. Various reviews
and comparison studies have appeared over time Mittra et al.
(1989); Mulder (1997); Tsynkov (1998); Tourrette and Halpern
(2001); Givoli (2004); Hagstrom and Lau (2007); Bérenger
(2015); Antoine et al. (2017); Gao et al. (2017).

In most applications, popular local and approximate schemes
such as those by Engquist and Majda (1977), Higdon (1986) and
various flavors of perfectly matched layers (PML) (Bérenger,
1994; Chew and Weedon, 1994; Komatitsch and Martin, 2007)
perform satisfactorily. In more demanding setting, for instance,
in modeling seismic interbed multiples, conditions that perform
better or that do not require tuning of parameters may be prefer-
able. In those cases, exact non-reflecting boundary conditions
are an option. An example is the method of Ting and Miksis
(1986), which is based on Green’s second identity. Because of a
long-term instability, some dissipation has to be added (Givoli
and Cohen, 1995). A reformulation as a boundary integral
problem (Falletta and Monegato, 2014) does not require extra
dissipation.

A step further are numerically exact non-reflecting boundary
conditions (Ryaben’kii et al., 2001; Sofronov et al., 2015; Mul-
der, 2020a) that are exact for the discretized partial differential
equation(s). A definition for the time domain is: “There is
no difference between a computation on the truncated domain
with this method and one on an enlarged domain with reflecting
boundaries that are placed so far away that their reflections can-
not reach the original domain within the modeled time span”
(Mulder, 2020a). That paper presents an improvement of the
method of Sofronov et al. (2015) by using recursion to com-
pute the elementary kernels, or the boundary Green functions
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as they will be called in this paper. This significantly improves
the efficiency of the method. In spite of that, its convolutional
character makes the approach still costly compared with existing
approximate methods.

The goal of the current paper is to see if going to the frequency
domain instead of the time domain would help to further reduce
cost. In the frequency domain, enlarging the domain may not
help to remove the influence of the boundaries—only if the
solution decays with distance. Adding some attenuation to the
problem helps to accomplish that, especially in 1D where there
is no geometrical spreading that causes amplitude decay with
distance.

The numerically exact non-reflecting boundary conditions
for a finite-difference scheme on a rectangular domain employ
the discrete boundary Green functions, which are the responses
in the extended part of the domain to Kronecker deltas on the
boundary of the original domain. If the material properties
outside the original domain are determined by constant ex-
trapolation in the direction perpendicular to the boundary, the
boundary Green functions can be computed by applying recur-
sion and solving a wave equation in a small strip just outside
the domain and parallel to the boundary.

Because the method assumes translation invariance perpen-
dicular to the boundary, it can only be used of two numerically
exact non-reflecting boundaries do not meet at a corner. This
limits its applicability to cases where open boundaries occur
at opposing ends of the domain. One way to circumvent the
corner problem is the application of a classic non-reflecting
condition in the other coordinate direction (Mulder, 2020b). In
the present paper, the classic second-order Higdon (1986, 1987)
condition is chosen.

The next section describes the finite-difference discretiza-
tion, the numerically exact boundary condition in one space
dimension, its generalization to the 2-D case, how to solve the
quadratic matrix equation, and why a further generalization to
2.5-D modeling is a problem. For the sake of exposition and
as a proof of principle, the paper focuses on a second-order
finite-difference approximation of the 2-D frequency-domain
acoustic wave equation. Higher-order schemes are feasible
(Mulder, 2020a), but are not considered here. A 2-D seismic
marine example serves as a test problem for the method. A con-
vergence study on a homogeneous problem provides accuracy
and cost estimates.

METHOD

Discretization

The acoustic wave equation is adopted for seismic simulations
as a simplification of the elastodynamic equations by setting
the shear velocity to zero. In the frequency domain on a spatial
domain Ω, it reads

−
l2

d22
? − ∇ ·

(

1

d
∇?

)

= B, in Ω, (1)

where the pressure ?(l, x) depends on the angular frequency
l and position x ∈ Ω, d(x) is the density, 2(x) the sound speed,
and B(l, x) a forcing function or source term, typically a delta

function in seismic applications. In the presence of attenuation,
the complex sound speed also depends on frequency (Aki and
Richards, 2002, e.g.):
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where &(x) is the quality factor and the logarithmic term with
reference frequency 5ref , typically 1 Hz, accounts for causal-
ity. In the following, the complex wavenumber is defined by
: (l, x) = l/2(l, x).

Equation 1 should be augmented with suitable boundary con-
ditions, usually consisting in a zero Dirichlet condition at the
surface Γ0 of the earth or, in marine applications, of the water.
At the rest of the boundary Γ= = mΩ\Γ0, non-reflecting bound-
aries of the form n · ∇? = �? are imposed, where n denotes the
normal to Γ= and � represents the Dirichlet-to-Neumann map
(Deakin and Dryden, 1995; Keller and Givoli, 1989).

A grid for a finite-difference discretization on a domain Ω =

{(G, I) | G ∈ [Gmin, Gmax], I ∈ [Imin, Imax]} is defined by G8 =

Gmin + (8 − 1
2 )ΔG for 8 = 1, . . . , #G with a spacing ΔG = (Gmax −

Gmin)/#G , and likewise in the I-direction with I 9 = Imin + ( 9 −
1
2 )ΔI for 9 = 1, . . . , #I and a spacing ΔI = (Imax − Imin)/#I .
With the lowest-order finite-difference scheme in 2D, this leads
to

−:2
8, 9 ?8, 9 −

d8, 9

ΔG2

[

?8+1, 9 − ?8, 9

d8+1/2, 9
−

?8, 9 − ?8−1, 9

d8−1/2, 9

]

−
d8, 9

ΔI2

[

?8, 9+1 − ?8, 9

d8, 9+1/2
−

?8, 9 − ?8, 9−1

d8, 9−1/2

]

= d8, 9 B8, 9 .

(3)

The average densities can be determined by d8+1/2, 9 =
1
2 (d8, 9 +

d8+1, 9 ) and similarly for the other averages (Kummer et al.,
1987; Moczo et al., 2002; Vishnevsky et al., 2014). Outside the
computational domain, the material properties are assumed to
be defined by constant extrapolation in the direction perpendic-
ular to the boundary. If this is done one coordinate at the time,
corner regions are automatically handled.

Before turning to the numerically exact non-reflecting bound-
ary condition in 2D, various boundary conditions will be dis-
cussed for the 1-D case.

Boundary conditions in one dimension

Consider the boundary at Gmax in the 1-D case. A zero Dirichlet
boundary condition is defined by setting ?#+1 = −?# , where
#G has been replaced by# . With the opposite sign, ?#+1 = ?# ,
a zero Neumann boundary condition is imposed. The Sommer-
feld radiation condition (Sommerfeld, 1964) at this boundary on
the right sets d?/dG = i: ? and lets waves of the form 4i(:G−lC)

pass through from the interior to the exterior, where C denotes
time. If discretized by a first-order scheme, (?#+1 − ?# )/ΔG =

i: ?# , resulting in ?#+1 = ?# (1+ i:ΔG). With a second-order
scheme, (?#+1 − ?# )/ΔG = i: (?#+1 + ?# )/2, providing

?#+1 = 1(:# )?# , 1(:) =
1 + i:ΔG/2

1 − i:ΔG/2
. (4)
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This form of the Sommerfeld radiation condition agrees with the
lowest-order Enquist-Majda (1977) or Higdon (1986) condition.
An exact version would be ?#+1 = ?# exp(i:ΔG).

A numerically exact boundary condition can be based on
domain decomposition. Consider two domainsΩ1 andΩ2. The
first,Ω1 = [Gmin, Gmax], represents the original one. The second,
Ω2 = [Gmax,∞) is the exterior domain stretching to infinity. The
boundary condition at Gmin is, for instance, zero Dirichlet or
Neumann, whereas only outgoing waves are allowed at G → ∞,
or, in the presence of attenuation, the solution should vanish at
infinity. With these boundary conditions, the discrete problem
on Ω1 ∪Ω2 can be expressed as

(

L11 L12

L21 L22

) (

p(1)

p(2)

)

=

(

s

0

)

. (5)

The vector p(1) contains the solution (?1, ?2, . . . , ?# )T. The
vector p(2) = (?#+1, ?#+2, . . .)

T with exterior values is in-
finitely long. The discrete source term is represented by s. The
matrix L11 corresponds to the original problem on Ω1 and L12

describes how the solution p(1) onΩ1 is affected by the solution
values of p(2) in the exterior domain Ω2. With a second-order
discretization, this only involves ?#+1. The infinite matrix L22

corresponds to the exterior Ω2 and L21 describes how the solu-
tion p(2) on Ω2 depends on the interior solution p(1) . With a
second-order discretization, this only involves ?# . Given the
latter, the formal solution can expressed as

p(2)
= −L−1

22 L21?# = G?# , (6)

where G is the boundary Green function, the response in the
exterior of a unit spike on the boundary of the original domain.
In the 1-D case, it is a row vector of infinite length with elements
�: that correspond to the solution ?#+: = �: ?# , : > 0,
evaluated at G#+: = Gmax + (: − 1

2 )ΔG, given the same grid
definition as in the previous section. How to compute G is the
central point of this paper, but before turning to the details, let
us assume that it is known. The first block of rows in equation 5
then becomes

L11 p(1) + L12 �1?# = L̃ p(1)
= s. (7)

With a second-order finite-difference scheme in 1D, L̃ is a tri-
diagonal matrix and can be solved with a direct method.

Next, the solution method for the boundary Green function G

will be presented. If the material properties on Ω2 are obtained
by constant extrapolation from their values at Gmax, i.e., 2(G) =
2(Gmax) and d(G) = d(Gmax) for G > Gmax, the second row of
blocks in equation 5 becomes

−:2?8 −
1

ΔG2
(?8+1 − 2?8 + ?8−1) = 0, 8 > #. (8)

Here, the complex wavenumber : = : (Gmax). With the ansatz
?8 = 68−# ?# , 8 > # , i.e., �8 = 68−# , the second row of
equation 5 becomes

−
1

ΔG2

(

:2
ΔG2 + 6 − 2 + 1/6

)

68−# ?# = 0, 8 > #. (9)

The resulting quadratic equation in 6 has two solutions:

6 = 1 − 1
2 (:ΔG)2 ± i(:ΔG)2

√

1 − 1
4 (:ΔG)2. (10)

One corresponds to an incoming and one to an outgoing wave.
The plus sign selects the outgoing wave. The solution 6

is the frequency-domain equivalent of the discrete boundary
Green function of Mulder (2020a) or the elementary kernels of
Sofronov et al. (2015). The result matches the earlier lowest-
order Enquist-Majda or Higdon condition up to second order.
The number of points per wavelength, =_ = _/ΔG = 2c/(:ΔG),
should be $ (10) for sufficient accuracy with a second-order
spatial discretization. In that case and in the absence of damp-
ing, the square root is real-valued.

Appendix A provides an alternative derivation in which the
exact solution is adjusted to contain the discretization error,
which is required if one wants a numerically exact boundary
condition instead of an exact one for the underlying partial
differential equation.

With the boundary condition of equation 10, there is no differ-
ence between the numerical solution on the domain [Gmin, Gmax]

and one on an much larger domain, other than numerical round-
off errors, at least, if there is some attenuation that causes the
1-D solution to decay with distance.

The two-dimensional case

For the generalization to 2D, assume for the moment that all
boundaries are reflecting, that is, zero Dirichlet or Neumann,
and only the one on the right, at G = Gmax, is non-reflecting.
Domain decomposition as in equation 5 now involves the en-
larged domain Ω1 ∪ Ω2, consisting in the original domain
Ω1 = {(G, I) | G ∈ [Gmin, Gmax], I ∈ [Imin, Imax]} and en-
larged with Ω2 = {(G, I) | G ∈ [Gmax,∞), I ∈ [Imin, Imax]}.
The boundary conditions for Ω2 at Imin and at Imax should be
the same as those for Ω1, whereas at G → ∞, only outgoing
waves are allowed or, in the presence of attenuation, the solution
should vanish at infinity. The material properties, which are the
sound speed, density, and quality factor in the acoustic case,
are obtained in Ω2 by constant extrapolation in the direction
perpendicular to the boundary Ω1 ∩Ω2 at G = Gmax. Because of
that, the block tri-diagonal operator L22 is translation-invariant
in the G-direction, resulting in

−:2
#G , 9

ΔG2?8, 9 −
(

?8+1, 9 − 2?8, 9 + ?8−1, 9
)

−
ΔG2

ΔI2
d#G , 9

[

?8, 9+1 − ?8, 9

d#G , 9+1/2
−

?8, 9 − ?8, 9−1

d#G , 9−1/2

]

= 0,

8 > #G , 9 = 1, . . . , #I .

(11)

The boundary condition at Imin is imposed by ?8,0 = ±?8,1, with
the minus sign for a Dirichlet or the plus sign for a Neumann
boundary condition, and the boundary condition at Imax by
?8,#I+1 = ±?8,#I

. For fixed 8, equation 11 can be expressed as
(

Ap[8 ]

)

9
− ?8+1, 9 − ?8−1, 9 = 0, 8 > #G , 9 = 1, . . . , #I , (12)

where p[8 ] is a vector with the solution values ? [8 ], 9 = ?8, 9
and A is a tri-diagonal #I × #I matrix containing the terms
corresponding to ?8, 9 , ?8, 9−1 and ?8, 9+1 in equation 11. Because
of the translation invariance, A does not depend on 8.

To solve the boundary-value problem on Ω2 after domain
decomposition, we start with ?#G , 9 from Ω1 in equation 11 and
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make the ansatz that p[8 ] = G8−#Gp[#G ] , 8 > #G , where G now
is an #I × #I matrix that only describes the response in the
set of exterior points neighboring the boundary and not in all
exterior points as in the 1-D case. Substitution into equation 12
provides

AG − G2 − I = 0, 8 = #G + 1, (13a)
(

AG − G2 − I
)

G8−1−#G = 0, 8 > #G + 1, (13b)

where I is the #I × #I identity matrix. Because G may be
singular, the case with 8 = #G + 1 is listed separately.

Equations 13a and 13b can both be satisfied by solving the
quadratic matrix equation 13a. Its solutions are called solvents
(Dennis et al., 1987; Higham and Kim, 2000; Tisseur and Meer-
bergen, 2001). The related quadratic eigenvalue problem has
2#I eigenvalues, which can be split into two sets (Higham and
Kim, 2000). The largest #I eigenvalues correspond to a sol-
vent that is called dominant, and the smallest #I correspond to
a solvent called minimal. For the wave equation with non-zero
attenuation, the outgoing waves have decaying amplitudes and
should vanish at G → ∞, so the minimal and not the dominant
solvent is needed. Details will be given below.

The resulting matrix G contains the boundary Green function
�8, 9;#G , 90 at 8 = #G + 1, defined as the response in the point
(G8 , I 9 ) ∈ Ω(2) for a unit solution value at the point (G#G

, I 90) ∈

Ω(1) and zero in all other (G#G
, I 9 ) ∈ Ω(1) for 9 ≠ 90. The

solution in the domain Ω2, corresponding to the second part
of the domain-decomposition problem in equation 5 but then
generalized to 2D, is given by

?
(2)
8, 9

=

#I
∑

90=1

(

G8−#G

)

9; 90
?
(1)
#G , 90

, 8 > #G , 9 = 1, . . . , #I .

(14)
The superscripts (1) and (2) are redundant but still included to
emphasize in which domain the solution resides. The remaining
part in Ω1 of the domain-decomposition problem becomes

L11 p
(1)

+ L12 G p
(1)
[#G ]

= L̃ p(1)
= s, (15)

representing the acoustic wave equation in Ω1 with a numeri-
cally exact boundary condition at G = Gmax. This 2-D problem
with matrix L̃ is still amenable to a direct sparse-matrix solver,
although the occurrence of G causes a loss of sparsity on the
boundary.

If non-reflecting boundaries meet at a corner, translation in-
variance breaks down and it is not clear how to determine the
boundary Green functions in an efficient manner. A work-
around is the independent treatment of each boundary sepa-
rately. Instead of zero Dirichlet or Neumann boundary condi-
tion at Imin and Imax, as assumed above, we can impose a classic
non-reflecting boundary condition such as those of Sommer-
feld (1964), Engquist and Majda (1979), Higdon (1986, 1987)
or Bérenger (1994). In the frequency domain, the perfectly
matched layer (PML) of the latter is nothing but a complex
coordinate stretching (Chew et al., 1997).

Here, I will use the classic second-order boundary condition
of Higdon (1986, 1987). The main reason is that it preserves
the sparsity pattern of the discrete Helmholtz operator and that

it is easy to implement. The last is also true for a PML, but that
condition requires an additional strip of grid points.

The second-order Higdon boundary condition at Imax in the
time domain reads

[

2
∏

<=1

(

m

mC
+ 2<

m

mI

)

]

? = 0. (16)

where 2< = 21/cos \< and 21 is the sound speed at the bound-
ary. Equation 16 lets incoming waves at angles \<, < = 1, 2,
pass without reflections. In the example later on, the chosen
angles are \1 = 0◦ and \2 = 60◦. Define the shift operator
)I by )I ?8, 9 = ?8, 9+1. A discrete form of equation 16 in the
frequency domain is

[

2
∏

<=1

(

−i:<
)I + 1

2
+
)I − 1

ΔI

)

]

)−1
I ?8,#I

= 0, (17)

where :< = l/2<. With 1< = 1(:<) as defined in equation 4,
this simplifies to

?8,#I+1 = (11 + 12)?8,#I
− 1112?8,#I−1. (18)

This expression for the extrapolated value enables the elimina-
tion of ?8,#I+1 in terms of ?8,#I

and ?8,#I−1 from the Helmholtz
operator in equation 3 as well as equations 11 and 12. The re-
sulting expression for A will differ from the one for a Dirichlet
or Neumann boundary condition at Imax; hence, equation 15
will lead to a different boundary matrix G and operator L̃.

A non-reflecting boundary condition at Gmin follows from a
similar approach, with its own matrix A, similar to equation 12
but with 8 < 1, providing another boundary Green’s function
G. A further step is the use of the boundary Green functions
on each side of the original domain independently, including
Imax and, in the absence of a free surface, Imin. In this way, the
Higdon boundary conditions only appear in each matrix A that
corresponds to a 1-D problem on a line just outside and parallel
to one side of the domain. As a result, the Higdon conditions are
no longer explicitly present in the modified Helmholtz operator
L̃, but only implicitly via the boundary Green functions.

Because the resulting boundary Green functions G are decou-
pled by treating them independently for each side of the domain,
the net result is different from the true boundary Green function
for the entire boundary consisting of all the non-reflecting sides
taken together. The latter provides a truly numerically exact
non-reflecting boundary condition, but an affordable numerical
method for its computation has not yet been found for problems
in which the model parameters are not constant in the exterior.

Quadratic matrix equation

An obvious choice for the solution of the quadratic matrix equa-
tion 13a is Newton’s method. To reduce the risk of convergence
towards the wrong solution, G is initialized as a diagonal ma-
trix with the 1-D result with the plus sign in equation 10 for
each 9 . Newton’s method requires the Jacobian of the nonlinear
problem, which is a sparse matrix of size #2

I × #2
I . Initially,

it contains #I copies of A, so about 3#I non-zero entries, but
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after a few iterations that increases to $ (#3
I ) non-zero entries.

More precisely, it fills up to #I square block diagonals, each
of size #I × #I , and #I off-diagonals, each a horizontal or
vertical distance #I apart, resulting in just below 2#3

I non-zero
entries. This is usually much larger than the nearly 5#G#I

non-zero entries of the interior operator L11. The cost of solv-
ing for the Jacobian matrix in a number of iterations, typically
approximately 8 to reach 10−15, rapidly exceeds that of solving
the interior Helmholtz problem if the number of grid points
increases. Although the resulting boundary Green function can
be reused for multiple problems as long as the grid points and
wavenumbers on the boundary at Gmax do not change, this does
not make the method attractive.

Another iterative method, equation (26) of Higham and Kim
(2000), in the current setting reads

I − AG(<+1) + G(<)G(<+1)
= 0, (19)

where the iteration count < starts at G(0) = 0, and becomes

G(0)
= 0, G(<+1)

= (A − G(<) )−1, < ≥ 0. (20)

This fixed-point iteration provides the minimal solvent, as re-
quired for outgoing waves. The repeated matrix inversions are
still costly, given the fact that G(<) becomes a full matrix.

A more robust and efficient approach uses the eigenvalues and
eigenvectors of A. Because A is tri-diagonal, though not com-
plex symmetric and not hermitian, its eigenvalues and eigenvec-
tors can be computed at relatively low compute cost. Let Q be
the matrix with the eigenvectors as columns and � = Q−1AQ a
diagonal matrix with the corresponding eigenvalues of A. The
quadratic matrix equation can be transformed to

0 = Q−1 [G2 −AG+ I]Q = �
2 −�� + I, � = Q−1GQ. (21)

The solution of this set of #I equations is the diagonal matrix
� with elements

W 9 , 9 = (_ 9 , 9/2) + i
√

1 − (_ 9 , 9/2)2, 9 = 1, . . . , #I , (22)

where the _ 9 , 9 are the diagonal elements of �. This procedure
avoids the risk of selecting the wrong branch. The boundary
Green functions for each of the boundary points are the columns
of

G = Q�Q−1. (23)

With this approach, the cost of finding G is of the same order
but lower than that of solving the Helmholtz equation 3 with any
of the classic boundary conditions. In addition, the boundary
condition based on G changes the original Helmholtz operator
L11 in 15. The resulting operator L̃ has a different sparsity
pattern with a full instead of a sparse matrix on the boundary,
which increases the cost of solving the interior problem.

2.5D

An interesting generalization of the method is the 3-D problem
with model parameters that are constant in the H-direction. Let
L(2D) represent the earlier 2-D operator in the (G, I)-plane at
H = 0. A grid in H with spacing ΔH is defined by Hℓ = ℓΔH for

integer ℓ ∈ [−∞,∞]. The 3-D operator at H = 0 or ℓ = 0 has
additional off diagonals−1/ΔH2 at ℓ = −1 and ℓ = 1 and an extra
2/ΔH2 on its main diagonal. Define A = ΔH2L(2D) + 2I as the
subset of the 3-D operator acting on solution values at ℓ = 0 and
multiplied by ΔH2. Here, the identity operator I has the same
size as the 2-D operator L(2D), the latter equipped with classic
non-reflecting boundary conditions. With this scaling, the off
diagonals in H become −I and the boundary Green function G

for the H-direction obeys AG − G2 − I = 0, as previously, but
now predicts solution values at ℓ = 1 from those at ℓ = 0.

Using mirror symmetry in the H-direction, the Helmholtz
equation in 3D at H = 0 becomes Au − 2Gu = ΔH2s′, with
B′
8,0, 9 = d8, 9 B8,0, 9 defined as the source term at (G8 , H0, I 9 ) with

the density included. If the matrix Q contains the eigenvectors
of A and the diagonal matrix � the corresponding eigenvalues,
the quadratic eigenvalue can be solved in the same way as before
and Helmholtz’s equation has the solution u = QMQ−1ΔH2s′,
where the diagonal matrix M has entries ` 9 , 9 = 1/(_ 9 , 9−2W 9 , 9 ),
9 = 1, . . . , #G#I . Choosing a spacing ΔH smaller than ΔG and
ΔI will help to reduce the size of the discretization error in the
H-direction.

Although this extension to 2.5D requires little additional cod-
ing and looks deceptively simple, the eigenvalue and eigenvec-
tor computation makes it too costly to be of practical use, un-
fortunately. A better choice is a spatial Fourier transform in the
H-direction with repeated computations of 2-D Helmholtz prob-
lems (Zhou and Greenhalgh, 1998; Novais and Santos, 2005;
Xiong et al., 2011).

EXAMPLES

Inhomogeneous problem

Figure 1a displays the sound speed, 20 (x) in equation 2, and
Figure 1b the density, d(x), for a marine example with a salt
diapir. Here, I increases with depth. The model consists of
a water layer just below the free surface at the top, at I = 0,
followed by sediment layers. The salt diapir has a high sound
speed but lower density. Close to the boundaries at the left
and right, the layers are flattened to avoid diffractions when
the model is extended in the direction perpendicular to the
boundary by constant extrapolation. The proposed method can
only work if the medium is translation invariant in the direction
perpendicular to the boundary. Dipped layers on the boundary
require a transition region towards a model with that property,
perhaps with smoothed contrasts.

The finite-difference grid has a spacing of 5 m, resulting in
1200 × 600 points. The quality factor for attenuation was set
to 1010 in the water layer and to 100 elsewhere. A non-zero
value for 1/& is generally advised to stabilize the solution of
Helmholtz’s equation, which is close to indefinite.

A point source located at (502.5, 7.5) m generated the wave-
field shown in Figure 2 for a frequency of 24 Hz. The source
amplitude was set to 1/(ΔGΔI) to mimic a delta function. Note
that the amplitude range for the real part is larger than for the
imaginary part and both have been reduced to 20% of their
maximum to bring out the weaker parts of the signal. To as-
sess the performance of the boundary conditions, a reference
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Figure 1: (a) Velocity model. (b) Density.
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Figure 2: (a) Real and (b) imaginary part of the reference solution, each clipped at 20% of its maximum amplitude.

solution was computed on a larger domain, using the earlier
classic second-order Higdon boundary conditions combined
with a rather thick PML layer (Bérenger, 1994; Chew and Wee-
don, 1994) in the part outside the original domain. Figures 2a
and 2b were actually obtained from a subset of that solution.

Figure 3 show the difference between the wavefield obtained
with the second-order Higdon boundary conditions at the left,
right, and bottom, and the reference solution. In this case, the
full amplitude range is shown. Since the source is located near
the left boundary, its reflections are strongest. With the numer-
ically exact boundary conditions at the left and right, combined
with the classic condition at the bottom, the results of Figure 4a
and 4b are obtained. These only show reflections from the bot-
tom, which are much smaller than those from the sides as is
evident from the much larger amplitudes in Figure 3. Finally,
Figure 5 combines the numerically exact boundary conditions
at the left and right with the same at the bottom, but with a

free-surface condition at Imin = 0. The second-order Higdon
boundary conditions now only enter at the endpoints in the 1-D
problems for the computation of the boundary Green functions
on each side. The resulting difference with the reference solu-
tion is smaller than the one in Figure 4, except at the left bottom
corner. Note that Figures 4a, 4b, 5a, and 5b were all plotted
with the same amplitude scale. Reflections from the two cor-
ners at the bottom remain because waves that travel around the
corner were ignored in the computation of the boundary Green
functions.

Homogeneous problem

The reference solution in the previous example was a very ac-
curate approximation to the numerical solution with the same
grid spacing on an infinite half space, because the goal was to
examine how close the proposed method could come to a truly
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Figure 3: (a) Real and (b) imaginary part of the difference between a solution computed with the second-order Higdon boundary
conditions and the reference solution.
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Figure 4: (a) Real and (b) imaginary part of the difference between a solution computed with the numerically exact boundary
conditions at the left and right and the second-order Higdon boundary condition at the bottom and the reference solution.

numerically exact non-reflecting boundary condition. In the
current example, the reference solution is the exact one of a ho-
mogeneous problem with a free-surface boundary condition at
zero depth. The difference between the numerical solution and
the reference solution will then consist in the combined effect
of the discretization error and the deviation for the numerically
exact boundary condition.

The domain is 1.0 km wide and 0.4 km deep, the sound speed
2 is 1 km/s and the density 2 g/cm3. A point source is placed at a
grid point nearest to GB = 400 m and IB = 100 m. Its amplitude
is 1/(ΔGΔI), as in the previous example. The frequency is
20 Hz and the wavenumber : =

l
2
(1 + 10−5 i). The small

imaginary part helps to avoid numerical instabilities on fine
grids.

The proposed boundary condition will be compared to the

second-order Higdon and to a PML boundary condition. The
last had the simplest quadratic form of complex stretching
(Collino and Tsogka, 2001; Zhang and Shen, 2010). In the
G-direction with a strip of width !G = #PMLΔG at the right
boundary, at Gmax, this leads to a stretched coordinate G̃ defined
by

dG̃ =

(

1 −
3 (G)

il

)

dG, 3 (G) = 30

(

G − Gmax

!G

)2

. (24)

The minus sign accounts for the opposite sign convention. The
PML layer ends at Gmax + !G with a zero Dirichlet boundary
condition. Collino and Tsogka (2001) suggest a parameter

30 = −
3

2

2

!G

V0 log('0), (25)
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Figure 5: (a) Real and (b) imaginary part of the difference between a solution computed with the numerically exact boundary
conditions independently at the left, right and bottom and the reference solution.
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Figure 6: (a) Relative rms error as a function of the grid spacing ΔG = ΔI for a homogeneous problem. Convergence with the
second-order Higdon condition levels off at a much larger value of ΔG than with the proposed method, which maintains second-order
accuracy to much finer grids, whereas the PML condition with the chosen parameters ends up in between. (b) Measured wall clock
time as a function of the square root of the number of grid points. The horizontal axis has its direction reversed to follow (a).

with V0 = 1 for the 1-D case. In the current example, the choice
of parameters is #PML = 20, '0 = 10−4, and V0 = 2.

Figure 6a compares the relative root-mean-square (rms) error
of the solution as a function of the grid spacing ΔG = ΔI. The
rms error is taken as the square root of the summed squared
absolute values of the errors on the interior domain, divided
by the summed squared absolute values of the exact solution,
excluding the values at the source position where the solution
is singular. The error behaves as $ (ΔG2) for the larger grid
spacings in this test, consistent with the approximation error
of the finite-difference discretization, but flattens out on finer
grids because of the boundary reflections. With the second-
order Higdon condition applied to the sides and the bottom,

this already happens on fairly coarse grids. With the proposed
scheme, applying the numerically exact conditions indepen-
dently along each side, the unwanted reflected waves start to
dominate the error only on much finer grids.

This comes at a cost. Figure 6b shows the observed wall
clock time as a function of (#G#I)

1/2, with #G the number of
grid points in the G- and #I in the I-direction. The horizontal
axis is reversed to follow Figure 6a. The computations were
carried out in MATLAB® [version 9.6.0 (R2019a)] with only
a single thread. On the finer grids, elapsed wall-clock time
scales roughly as (#G#I)

2.5 with the Higdon condition and
as (#G#I)

2.7 with the proposed one. The higher cost is due
to three times solving the quadratic matrix equation, once per
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side of the domain, and to the loss of sparsity at the boundaries,
which increases the cost of solving the Helmholtz problem. The
Higdon condition is less costly than the PML, but on finer grids,
the difference becomes smaller because the number of extra
points for the PML conditions is kept constant. The proposed
method is 1.4 to 4.0 times more costly in this example.

DISCUSSION

Numerically exact non-reflecting boundary conditions have a
considerable computational cost in the time domain. The
present study shows that, in the frequency domain, the addi-
tional cost in 2D is roughly of the same order as that of solving
the Helmholtz equation, making these boundary conditions a
viable option.

Still, the computation of the boundary Green functions and
the loss of sparsity at the boundary of the discrete Helmholtz
operator make the method more expensive than the local Higdon
or PML boundary conditions. Note that the boundary Green
functions can be reused if the model parameters at the boundary
and the grid stay the same, thereby allowing for a further cost
reduction. Nevertheless, a PML boundary condition can reach
the same accuracy at a lower cost after careful tuning. The
proposed method has the advantage that it is simple to code and
does not require extensive tuning.

When modeling multiple shots or running full-waveform in-
version, the frequency-domain formulation is more efficient
than the time domain for 2-D problems (Marfurt and Shin,
1989; Štekl and Pratt, 1998; Mulder and Plessix, 2002). In
3D, that is no longer true because computation of the boundary
Green functions becomes too expensive.

CONCLUSIONS

Numerically exact non-reflecting boundary conditions in the
time domain have a substantial computational cost even with
the use of recursion. In the frequency domain with a finite-
difference discretization of the 2-D acoustic wave equation on
a rectangular domain, the computation of the eigenvalues and
eigenvectors of a 1-D Helmholtz equation can bring down the
cost to the same order as that of solving the 2-D Helmholtz
equation in the interior.

The current approach considers each non-reflecting side of
the rectangular domain separately. After extending the domain
from one side to infinity, domain decomposition splits the en-
larged domain into the original one and its extension. In the
latter, constant extrapolation in the direction perpendicular to
the boundary can provide the material properties such as sound
speed, density, and quality factor in the acoustic case. As a re-
sult, the discrete operator in the exterior is translation-invariant.
The boundary Green functions then follow from a quadratic
matrix equation. Its solution with Newton’s method has an
associated computational cost that soon exceeds that of solv-
ing the Helmholtz equation in the interior. In addition, there
is the risk of selecting incoming instead of outgoing waves.
Instead, we can compute the eigenvalues and eigenvectors of
a 1-D Helmholtz equation and explicitly choose the outgoing
wave. With that approach, the computational cost becomes

acceptable.
The boundary Green functions only depend on the material

properties next to the boundary. Therefore, they can be reused
for other problems as long as the grid and the properties on the
boundary remain the same.

Treating each side independently causes a loss of exactness
when two non-reflecting boundaries meet at a corner. With
a classic boundary condition applied in the other coordinate
direction, the method becomes only partially exact but remains
useful, as a 2-D acoustic example representing a marine seismic
problem demonstrates.

APPENDIX A

ALTERNATIVE DERIVATION IN ONE DIMENSION

As mentioned for the 1-D case, an exact boundary condition
at Gmax would let ?#+1 = ?# exp(i:ΔG), but this expression
is not numerically exact. For the latter, we have to reinsert
the discretization error. If the solution is of the form 6 =

4i^ΔG , then the discrete partial differential equation (PDE) lets
(6 − 2 + 6−1)/ΔG2 = −:2, providing 4 sin2(^ΔG/2) = (:ΔG)2

or sin(^ΔG/2) = :ΔG/2. This means that the discrete PDE
models the 1-D Helmholtz equation exactly, but at a different
wavenumber : = ^ sinc(^ΔG/2), where sinc(G) = sin(G)/G.
Then

6 = 4i^ΔG
= 4±2i arcsin( 1

2 :ΔG)

= 1 − 1
2 (:ΔG)

2 ± i(:ΔG)
√

1 − 1
4 (:ΔG)

2,
(A-1)

which is the same as equation 10. The branch with +i provides
a wave travelling to the right. Its series expansion is 6 = 1 +

i(:ΔG)− 1
2 (:ΔG)

2+$
(

(:ΔG)3
)

and agrees with the Sommerfeld
or lowest-order Enquist-Majda or Higdon condition up to the
second-order term.
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