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Metamodelling for geotechnical reliability analysis with noisy and incomplete
models
A. P. van den Eijnden a,b, T. Schweckendiek a,c and M. A. Hicks b

aDeltares, Geo Engineering Unit, Delft, Netherlands; bDepartment of Geoscience and Engineering, Faculty of Civil Engineering and
Geosciences, Delft University of Technology, Delft, Netherlands; cDepartment of Hydraulic Engineering, Faculty of Civil Engineering and
Geosciences, Delft University of Technology, Delft, Netherlands

ABSTRACT
A kriging-based metamodelling approach for analysing the structural reliability of a sheetpile wall
in a dyke is formulated. This specific problem is characterised by high target reliabilities (Pf � 10−7)
in combination with a noisy and incomplete numerical model response. Starting from the original
formulation of active learning kriging-based Monte Carlo simulation (AK-MCS), a robust two-stage
metamodel framework is formulated in combination with adaptive multiple importance sampling,
Gaussian process classification and kernel enhancements. Learning functions and convergence
criteria are revised to maintain consistency with the metamodel enhancements. The developed
metamodel is applied in the reliability analysis of a soil-structure interaction problem involving
a sheetpile wall in a dyke body, which is representative of a class of problems encountered in
engineering practice. Low dimensional example studies demonstrate the workings of the model
and give insight into the model response. Full probabilistic analyses are then performed to
estimate the probabilities of structural failure in a reliability updating context. The results show
that after several necessary enhancements of the classical formulations, metamodelling
approaches can be used successfully in combination with noisy and incomplete computational
models as are often encountered in geotechnical engineering practice.
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1. Introduction

Reliability analysis of geotechnical structures enables
cost-effective design and is particularly attractive for
the assessment of existing structures, as it allows for
incorporating performance observations and monitor-
ing data. Despite recent advances in reliability analysis
methods, applications in real-life designs and assess-
ments remain scarce and challenging. The approach
proposed and demonstrated in this article aims to
improve the computational robustness and efficiency
for a class of typical geotechnical problems encountered
in practice, involving (moderately) complex soil-
structure interaction such as sheetpile retaining walls.
For such problems:

. numerical modelling (e.g. finite element modelling)
is used in evaluating the occurrence of a limit state;

. the number of relevant random variables is approxi-
mately 10 to 20;

. the target reliability index is in the range of
3 & bT & 6 (implying target probabilities of failure
in the range of 10−9 & Pf ,T & 10−3); take for example

the Eurocode reliability classes (EN:1997 2004) or the
Dutch safety standards for flood defenses (Schweck-
endiek et al. 2013).

The low target probabilities of failure, combined
with computation times of the order of minutes for
numerical models, make analyses with crude Monte
Carlo (MC) practically infeasible. Also, importance
sampling-based approaches still require long compu-
tation times for this combination. Furthermore,
numerical modelling implies two additional challenges
for reliability analysis: (a) numerical noise in the per-
formance function can lead to convergence problems
(e.g. in the case of gradient-based FORM solvers) and
(b) certain parameter combinations (or better sub-
regions of the joint probability distribution) may not
result in equilibrium and, hence, lead to non-conver-
gence of the computational model of the performance
function. The aim of this paper is to propose an
approach that is robust and computationally efficient
under these conditions. In practical terms, this means
that the proposed algorithm should converge to the
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correct solution with a high degree of confidence, with
total computation times not exceeding several hours,
which seems a reasonable requirement for practical
engineering application.

Reliability analysis aims at calculating the probability
of failure (not) to occur, with failure defined as not
meeting a certain performance criterion. Such a cri-
terion is usually reformulated in a performance function
g(�x), such that g(�x) ≤ 0 indicates failure. When �x is a
realisation of a stochastic multivariate �X, characterised
by a joint probability density function (PDF) p�X(�x),
the probability of failure is defined as

Pf =
∫
�x[Rn

If (�x)p�X(�x) d�x (1)

where If (�x) is the failure indicator function, which is
equal to 1 when g(�x) ≤ 0 and 0 when g(�x) . 0.
Reliability analysis involves solving this integral, for
which a closed-form solution is generally not available.

Numerical strategies for solving Equation (1) require
evaluating If (�x), which can be computationally expens-
ive, and rigorous solution by MC integration is often
infeasible. Indeed, due to the computational expense of
numerical modelling software, this is also generally true
for other sampling-based strategies that use variance
reduction methods, such as importance sampling, direc-
tional sampling (Melchers and Beck 2018) and subset
simulation (Au and Beck 2001). Approximate methods
such as FORM (Hasofer and Lind 1974) can be extremely
efficient and often yield sufficient accuracy in practical
applications but can have great difficulties with noise in
the model response, which hinders the (gradient-based)
search algorithm needed to find the design point. More-
over, limit state functions with strong non-linearities in
multiple parameter-dimensions can be difficult to cap-
ture based on a single design point.

Metamodelling (surrogate modelling) strategies have
been proposed to tackle both the computational expense
and, to some extent, the non-linearity of the compu-
tational model response for slope stability problems
(see Li et al. (2016) for an overview), tunnel excavation
(Mollon, Dias, and Soubra 2009) and foundation foot-
ings (Sivakumar Babu and Srivastava 2007). In this
type of approach, the model performance function
g(�x) is replaced by an approximate model ĝ(�x) that pro-
vides a model prediction in parameter space based on a
concise set of model evaluations. This metamodel can
then be used as a proxy for the true model response to
make predictions of the reliability of the structure.
There are different approaches to formulating the meta-
model model, such as response surfaces, polynomial
chaos expansion (PCE), support vector machines

(SVM), Gaussian processes (GP) and artificial neural
networks (ANN). The reader is referred to Teixeira,
Nogal, and O’Connor (2021), and the references
therein, for an in-depth evaluation and comparison of
the different methodologies in the context of reliability
analysis for design.

A Gaussian process, in geotechnical engineering bet-
ter known as a kriging model (Cressie 1993), is one type
of model that can be used as a metamodel. The method
is particularly well-suited for strong non-linearities
(Teixeira, Nogal, and O’Connor 2021), giving it the
advantage over classical polynomial response functions
and polynomial chaos expansion when dealing with a
strongly non-linear and noisy model response. In
addition, the method is kernel-based and provides pre-
diction uncertainty in a natural way, which is essential
in the formulation of efficient strategies to improve
the metamodel. To this end, Echard, Gayton, and
Lemaire (2011) linked Gaussian process metamodelling
to MC integration for reliability analysis, outlining an
iterative scheme for optimal sequential selection of
new samples for model evaluations, known as the
“Active learning reliability method combining Kriging
and Monte Carlo Simulation” (AK-MCS). This scheme
forms the blueprint for a series of active learning
schemes for reliability analyses, and is used as the start-
ing point of this work.

Many variations of AK-MCS have been proposed,
changing the underlying kriging metamodel by, for
example, universal or polynomial chaos kriging (Schöbi,
Sudret, and Marelli 2016) or a support vector machine-
based metamodel (Bourinet 2016). Other variations use
alternative learning functions (Hu and Mahadevan
2016), convergence criteria (Schöbi, Sudret, and Marelli
2016) and/or domain integration approaches based on
subset simulation (Dubourg, Sudret, and Bourinet
2011), importance sampling (Dubourg, Sudret, and
Deheeger 2013; Balesdent, Morio, and Marzat 2013;
Cadini, Santos, and Zio 2014), or line sampling (Depina
et al. 2016). Applications of kriging-based metamodelling
in geotechnical engineering include limit equilibrium
slope stability problems (Kang et al. 2015), finite element
strip footing problems on spatially variable soils (Al-Bit-
tar, Soubra, and Thajeel 2018; Soubra et al. 2019) and
monopile foundations (Depina et al. 2016).

In this work, a complex and strongly non-linear soil-
structure interaction model for analysing the reliability
of a sheetpile wall in a dyke is studied. The specific chal-
lenges for its successful evaluation are the noisy and
incomplete structural response of the model, in combi-
nation with very small target probabilities of failure
Pf , 10−6. Although the noisy aspect of numerical
methods in geotechnical engineering is usually only
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accounted for as part of model uncertainty factors in
design (e.g. Phoon and Tang 2019) and has received
limited attention in advanced reliability analysis
(Teixeira, Nogal, and O’Connor 2021), it is naturally
included in kriging-based metamodelling (Rasmussen
and Williams 2006). Incomplete model response refers
to the computational model not having a solution for
some combinations of the input parameters. Not only
does this represent scenarios that may be unrealistic
and for which distribution and probability updating
may be necessary, an incomplete model response may
also interfere with the active learning algorithm. The
impact of incomplete model response has only received
attention in the context of model response missing at
random (Forrester, Sobester, and Keane 2008). In this
work, an incomplete model response with a physically
tractable origin is addressed. Its detrimental effects on
the active learning algorithm are alleviated and the
resulting conditional probabilities are interpreted in
the context of reliability updating.

To tackle the challenges of small probabilities in
combination with noisy and incomplete model
response, several enhancements of the classical formu-
lation of AK-MCS are combined in this paper. In Sec-
tion 2, the theoretical basis of kriging-based
metamodelling is presented as a summary of the rel-
evant state of art, after which the specific enhancements
of AK-MCS for dealing with noisy and incomplete geo-
technical models are discussed in Section 3. These
enhancements are novel contributions in the form of
problem-specific variations and improvements on the
existing metamodelling techniques. Specifically, these
novel contributions are a two-stage metamodelling
approach, an improved learning function accounting
for random noise, and a procedure to account for mul-
tiple design points for multiple importance sampling. In
Section 4, the method is applied on the sheet pile wall
problem in a series of simulations. These simulations
serve to (1) demonstrate the workings of the adapted
two-stage AK-MCS scheme, (2) perform the reliability
analysis of the sheetpile problem at hand, and (3) extend
the reliability analysis with reliability updating by
implicit distribution updating. The latter can be seen
as a way of incorporating the information of past survi-
val in the assessment of an existing structure.

2. Gaussian process regression for
metamodelling and reliability analysis

2.1. Gaussian process modelling

The response of a physical or computational model
F (�x) can be approximated by a numerical or analytical

metamodel y(�x) ≈ F (�x). Such a metamodel y(�x) is
defined as a Gaussian process (GP) model if (Santner
et al. 2003) “for any L ≥ 1 and any choice of
�x1, . . . , �xL, [. . .] the vector (y(�x1), . . . , y(�xL)) has a
multivariate normal distribution”. Accordingly, y(�x) is
here written as a GP, defined by its mean function,
m(�x) = E[y(�x)] and its covariance function, or kernel,
k(�x, �x′ | �u) = E[(y(�x)−m(�x)))(y(�x′)−m(�x′))], such
that the GP at a finite number of locations x is given by:

y(x) = m(x)+ K1/2�j (2)

with kernel matrix K = k(x, x|�u) and standard normal
multivariate �j � N (�0, I). Hyperparameters �u are
internal parameters that define the shape of the kernel.

In the context of reliability analysis, variables �x are
realisations of stochastic variables �X with a joint prob-
ability distribution. For convenience, the GP is formu-
lated in standard normal space with uncorrelated
variables �U = T(�X), where T is a transformation map-
ping from parameter space to standard normal space.
Moreover, the model response is expressed in terms of
a performance function g(�u) and is described by the
GP metamodel such that y(�u) ≈ g(�u).

Although the trend of the performance function can
be included in the general formulation of universal
kriging (Cressie 1993; Sacks et al. 1989; Santner et al.
2003), simple kriging is used here, such that m(�u) = 0.
This fits well with the application of metamodelling
on the performance function, in which the final goal is
a classification into failing and non-failing realisations
(i.e. the sign of the performance function). The bias of
simple kriging towards the prior mean (i.e. 0) thereby
introduces a conservative estimate of the prediction
uncertainty, with the metamodel regressing to g=0
in regions with no training data. As such, the
prediction of the performance function by the metamo-
del ĝ(�u) is used to solve the integral of Equation (1)
by MC integration over a sample set uMC. The
performance function metamodel is thus formulated
as a Gaussian process with Gaussian prior
�g = g(u) � N (�0, k(u, u|�u)). When a certain number
of data on g(�u) are known, splitting the vector �g into
known (training) data �gt and unknown (predicted)
data �gp gives:

�gp
�gt

[ ]
� N 0,

Kpp K`
tp

Ktp Ktt

[ ]( )
(3)

Rewriting leads to �gp � N (�̂g , s2
ĝ), with the best esti-

mate �̂g and variance s2
ĝ defined as:

�̂g = K`
tpK

−1
tt �gt (4)

s2
ĝ = Kpp − K`

tpK
−1
tt Ktp (5)
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The choice of kernel k(�u, �u′|�u) can be based on the
expected behaviour of the approximated function and is
generally expressed in terms of an a-priori variance and
the Matèrn correlation function rM(�u− �u′|�u, n), with �u
representing the internal parameters (hyperparameters)
and ν a shape function controlling the GP smoothness.
The Matèrn correlation function is used instead of the
classical radial basis function as it is better able to approxi-
mate models with non-differentiable mean functions (Ras-
mussen and Williams 2006). The variance term is here
considered as one of the kernel hyperparameters, facilitat-
ing a straightforward extension in Section 2.4.

The hyperparameters �u are optimised using the
quasi-Newton optimisation scheme L-BFGS-B (Zhu
et al. 1997) to maximise the log-likelihood of the train-
ing data. Once the GP is trained, the GP forms a predic-
tor or metamodel of the performance function.

2.2. GP metamodelling for reliability analysis

The metamodelling approach to reliability analysis
involves replacing the computational model with an
approximative metamodel when performing the time-
consuming (Monte Carlo) integration in evaluating
the probability of failure. To this end, the metamodel
prediction ĝ(�u) is used in the MC integration in
Equation (1) to approximate Pf . As a result, any uncer-
tainty in ĝ(�u) propagates through the MC integration
and leads to uncertainty in the prediction of the prob-
ability of failure Pf . Conservative upper and lower
bounds P+

f related to metamodel prediction uncertainty
are given by Schöbi, Sudret, and Marelli (2016) as:

P̂+
f = P ĝ(�u)+ 1.96sĝ(�u) ≤ 0

[ ]
(6)

These bounds are used here to assess the metamodel-
related uncertainty in the predictions, without having
to evaluate the propagation of the uncertainty explicitly
(see e.g. Hu and Mahadevan 2016), which is computa-
tionally demanding.

Although the MC sample set uMC typically contains
NMC . 105 samples, uncertainty in the MC integration
itself remains. This is quantified in terms of the coeffi-
cient of variation:

dPf ,MC =
sP̂f

P̂f
=

								
1− P̂f
NMCP̂f

√
(7)

These measures can be used to formulate convergence
criteria for the active learning scheme of the metamo-
del as

P̂+
f − P̂−

f

P̂f
= 1Pf ,M , rM (8)

and for the MC integration as

dPf ,MC = 1Pf ,MC , 0.05 (9)

Equation (9) is a well-established convergence cri-
terion generally accepted in a probabilistic context
and, when aiming for the same level of accuracy in
the metamodel prediction itself, can be used to define
rM. Considering Equation (8) to represent a confi-
dence range of a normal distribution leads to:

1Pf ,M = 2kdPf ,M (10)

where k = −F−1(0.025) = 1.96 is the standard score
when considering the 95% range centred on the
mean. Taking dPf ,M = 0.05 then leads to the metamo-
del convergence criterion parameter rM = 0.196. This
is less strict than rM = 0.05 as proposed in Schöbi,
Sudret, and Marelli (2016), but generally more strict
than the global sensitivity convergence criterion of
Hu and Mahadevan (2016).

For the case when 1Pf ,M . rM, the metamodel has
not converged and the training data need to be
expanded with additional evaluations of the compu-
tational model on learning samples �ulearn. A learning
function Lp(uMC) is used, which aims at selecting the
most informative next realisation �ulearn to be evaluated.
The most common learning function is the U-learning
function, which selects the realisation for which the per-
formance (i.e. If ) is the most likely to be predicted incor-
rectly (Echard, Gayton, and Lemaire 2011):

�ulearn = Lp(uMC) = arg min
�u[uMC

|ĝ(�u)|
sĝ(�u)

( )
(11)

The performance function is evaluated for the selected
learning sample and added to the training data. The
enhanced training data are used to train the metamodel
which, now being based on more training data, tends to
yield a better prediction. This iterative procedure of
metamodel prediction, learning and training is known
as active learning and forms the basis of AK-MCS.

2.3. Importance sampling

Although the metamodelling approach to reliability
analysis provides a computationally inexpensive way of
performing MC integration over the sampling space,
very small probabilities (e.g., 10−6) still cannot be eval-
uated efficiently by brute-force MC integration alone. A
common variance reduction method to tackle this pro-
blem is importance sampling (IS) (Melchers 1989), in
which the samples are drawn from an importance distri-
bution q(�u). A common choice for the selection of q(�u) is
a standard normal distribution centred at the design
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point (Melchers 1989). The importance distribution
defines sample importance weights wimp(�u) = p/q, in
which p = p(�u) is the standard normal probability den-
sity function. The importance weights are accounted
for in calculating the probability of failure:

P̂IS
f = 1

NMC

∑NMC

i=1

wimp,iÎf ,i (12)

The convergence of P̂IS
f is expressed in terms of the coeffi-

cient of variation:

dISPf =
ŝIS
Pf

P̂IS
f

(13)

sIS
P̂f

2 = 1
NMC − 1

1
NMC

∑NMC

i=1

w2
impÎf ,i − P̂2

f

( )
(14)

The combination of IS and AK-MCS is known as
AK-IS, introduced by Echard et al. (2013). They centred
the distribution of the sampling pool uMC at the design
point determined by an initial FORM analysis on the
performance function. To account for multiple design
points and strong non-linearity of the limit state surface,
Cadini, Santos, and Zio (2014) proposed importance
sampling based on multiple quasi-design points deter-
mined through clustering of the initial failure domain
as characterised by the MC sampling set. Parts of this
concept are used in this work to formulate a new adap-
tive importance sampling strategy with multiple impor-
tance regions, to come to a converged MC integration.
This adaptive multiple importance sampling procedure
is outlined in Section 3.3. In addition to providing a
more efficient convergence of the MC integration,
importance sampling can also improve the effectiveness
of the active learning procedure, by providing a
sampling pool with more relevant candidate points
located near the relevant parts of the limit state.

Note that the terms “MC integration” and “MC
sampling pool” are used here for random sample-
based integration in general, including importance
sampling.

2.4. Noisy data metamodel

Although observations from computer experiments
such as finite element analyses were initially considered
noise-free (e.g. Sacks et al. 1989), the precision of com-
plex numerical models is finite. The resulting numerical
errors may appear as random noise in the compu-
tational result of the analysis. Even though these
numerical errors are generally small compared to the

computed result, they can have a strong impact on the
further use of the model response in, for example,
optimisation or probabilistic interpretation.

A discussion on the problem of noisy data in the con-
text of global optimisation with GP metamodels is given
in Forrester, Sobester, and Keane (2008), demonstrating
that noise in the data prevents convergence (of the
optimisation) and hinders the training algorithm. The
same mechanisms work in active learning for reliability
analysis, where the overfitting of a Gaussian process to
noisy model response data leads to an increase in uncer-
tainty with added data.

The computational model of the sheetpile wall intro-
duced below shows a level of noise in the calculated
response up to approximately 1% of the total variation
in system response. This noise can be attributed to
both the required convergence tolerance and the stab-
ility of the numerical procedures of the finite element
software. To account for this numerical noise and to
avoid overfitting by the metamodel, a noise term is
added to the kernel (Rasmussen and Williams 2006):

kwn(�u, �u′) = s2
wnd�u�u′ + k(�u, �u′ |s2, �u) (15)

Noise variance s2
wn now becomes an additional hyper-

parameter, which is included in the hyperparameter
optimisation scheme discussed above.

The noise term is only added to the kernel when it is
applied on training data (i.e. in matrix Ktt in Equations
(4) and (5)). As a result, the metamodel predictions are
smooth, although the prediction uncertainty by
Equation (5) at training data locations is non-zero due
to the training data uncertainty.

The effect of including training data uncertainty s2
wn

on the metamodel is demonstrated in Figure 1, where a
series of samples is taken from a smooth mean function
with an additional noise term. In Figure 1(a), a metamodel
with a noise-free kernel is trained on the samples, result-
ing in overfitting. In Figure 1(b), a metamodel with a
noise component in the kernel is trained on the same
data. This leads to a better representation of the under-
lying function and a metamodel prediction that includes
the uncertainty in the training data �gt. The prediction
uncertainty at the training datapoint locations is non-
zero and locally reduces when more local training data
are available as an effect of spatio-statistical averaging.

3. Two-stage metamodelling of noisy and
incomplete models

3.1. UNIS learning function

TheU-learning function of Equation (11) was formulated
for noise-free training data and MC integration with

Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards 5



equal sample weights. Under these conditions, Equation
(11) is equivalent to selecting the sample which contrib-
utes most to reducing the prediction uncertainty when
adding that sample to the training data, since this will
reduce its probability of mis-classification to zero. In
the case of importance sampling, with unequal weights
over the samples, this equivalence no longer holds and
the sample weight should be included. In the case of
noisy metamodelling, the probability of mis-classification
of the sample added to the training data does not reduce
to zero. To account for both effects, a novel learning
function is formulated here. It is based on the concept
of utility maximisation, in which the utility is formulated
as the most likely reduction in the expected prediction
uncertainty when adding the sample to the DoE. The
sample selection for learning then comes down to select-
ing the sample that maximises utility. The utility function
is here formulated per sample. A global utility (e.g. Hu
and Mahadevan 2016; El Haj, Soubra, and Al-Bittar
2019) would require a global sensitivity analysis, which
is computationally impractical due to excessive compu-
tational costs.

The utility function is based on the most likely
difference in the probability of mis-classification
F(− |ĝ|/sĝ) before and after adding a learning candi-
date sample �ui to the training data:

UNIS(�ui) = F − |ĝ(�ui)|
sĝ

( )
−F − |ĝ(�ui)|

sĝ+1

( )( )
wimp,i

(16)

The left-hand probability is the current probability of
mis-classification based on the current prediction

variance s2
ĝ(�ui) given by Equation (5). The right-hand

probability is based on the model response expectation
E[g(�ui)] = ĝ(�ui) and the prediction variance s2

ĝ+1 after
adding candidate �ui to the training data. Under the
assumption of unchanged hyperparameters in the ker-
nel during training, this term is given by (see Appendix
2 for a derivation):

s2
ĝ+1 = s2

ĝ
s2
wn

s2
ĝ + s2

wn
(17)

Maximising the utility leads to the learning function
being defined as:

�ulearn,P = LP(uMC) = arg max
�u[uMC

UNIS(�u)( ) (18)

Note that it is the difference in classification uncertainty
which is important here, since the local uncertainty does
not reduce to zero upon adding a point to the training
data due to the inherent noise in the training data. In
the case where the noise is negligible, the difference in
uncertainty equals the initial total uncertainty (since
all uncertainty would be reduced upon adding the
point to the training data) and the UNIS-learning func-
tion reduces to the classical U-learning function with an
importance weight correction.

3.2. Classification metamodelling: Gaussian
process classification

Computational models do not always provide a response,
which can lead to incomplete training data. This is some-
times due to numerical issues such as non-convergence

Figure 1. Example of training a metamodel on a noisy model response with and without a noise term in the kernel. (a) Overfitting and
(b) noise term in kernel.
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of the computational model, but also as a result of the
inconsistent formulation of the problem. In these cases
where numerical or software issues lead to data missing
at random, while the true model response does exist,
the missing data can be imputed (i.e. temporarily filled-
in) based on the metamodel prediction (Little and
Rubin 2002; Forrester, Sobester, and Keane 2008). This
allows the active learning algorithm to continue learning
based on realisations that do provide a model response.

In other cases, a solution may be non-existent
because the prior formulation of the input parameters
is partly inconsistent with respect to the computational
model. This may lead to regions in parameter space for
which no solution to the problem exists, referred to here
as incompatible domains. Incompatible realisations
sampled from such a domain thus lead to missing
response data. In the case of the sheet pile bending
moment analysed in Section 4, incompatible realisations
exist when the combination of input parameters leads to
slope failure in the initialisation phase, before installa-
tion or loading of the sheet pile wall, preventing the
evaluation of the bending moments.

The incompatible domains in parameter space have a
significant impact on the application of active learning,
as they form pitfalls for the learning algorithm. Without
proper measures, the learning algorithm is likely to get
stuck on these missing data and an enhancement is
clearly needed to deal with incompatible domains.
This is done here by combining the GP predictive meta-
model Mp with a GP classification metamodel Mc,
which classifies the parameter space into an incompati-
ble domain (with missing data) and a feasible domain
(where solutions can be found). The predictive metamo-
del then predicts the performance function in the feas-
ible domain, based on which the reliability analysis is
performed and the learning function is applied.

Because no response data exist in the incompatible
domain, a classification model is used, based on binary
data Ic for feasible (Ic = 0) and incompatible (Ic = 1)
realisations. Many approaches can be applied for binary
classification, ranging from simple nearest neighbour to
kernel-based support vector classification. Here, Gaussian
process classification (GPC) (Rasmussen and Williams
2006) is used, with training data {ut, �Ic,t}. GPC is formu-
lated as a probabilistic classification, using a Gaussian pro-
cess f (�x) as a so-called latent function, which is scaled
down to a class probability p(�u) using a sigmoid function:

p(�u) = 1
1+ exp (− f (�u))

(19)

An optimisation scheme is applied to calibrate the latent
function hyperparameters to maximise the correct

classification of the binary training data by p(�u), similar
to the optimisation scheme for the prediction metamodel,
following Algorithms 3.1 and 3.2 in Rasmussen and Wil-
liams (2006).

After training of the GP classifier, the classification of
the sample pool uMC is done by means of the class prob-
ability:

Îc(�u) =
{
1 if p(�u) . 0.5
0 if p(�u) ≤ 0.5

(20)

This provides the subset of samples uMC(Îc = 1) that is
classified as incompatible. When incompatible realis-
ations are observed, the probability of incompatibility
P1 = P[Ic = 1] can be estimated from the class prediction:

P̂1 = 1
NMC

∑NMC

i=1

Îc,iwimp,i (21)

Using GPC for the classification metamodel provides
a probability of (in)correct classification �p(�u) when
integrating out the Gaussian posterior distribution of
latent function f (�u) in the expression of p(�u) (see Ras-
mussen and Williams 2006 for details). This probability
is used here to define a learning function for the classifi-
cation metamodel, selecting the highest probability of
mis-classification. This is conceptually identical to
Equation (11), which now becomes:

�ulearn,Ic = Lc(uMC) = arg min
�u[uMC

0.5− �p(�u)| |( ) (22)

Two criteria are used for the convergence of the
classification model: the first looking at the convergence
of P̂1 itself, by comparing the maximum relative differ-
ence in P̂1 between the latest (Nc) and the 4 preceding
(Nc − i, ∀ i [ {1, 2, 3, 4}) learning iterations related to
the classification model; the second based on the rel-
evance of the missing data in the determination of P̂f :

max
i[{1,2,3,4}

|P̂(Nc−i)
1 − P̂(Nc)

1 |
P̂(Nc)
1

( )
, 1P1 = 5% or

P̂1
P̂f

, 0.01

(23)

with (.) containing the iteration counter for theNc learn-
ing iterations for which classification learning (Equation
(22)) was used.

3.3. Adaptive multiple importance sampling

The evaluation of the reliability uses Monte Carlo inte-
gration of the failure indicator function If , over (the feas-
ible domain of) the parameter space, using the sampling
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pool uMC containing NMC samples. At the beginning of
the analysis, uMC is sampled with increased variance
from a normal distribution q with zero mean and covari-
ance s2I. To guarantee sufficient candidate points for
learning in the sampling pool, σ needs to be sufficiently
large in order to cover the potential failure domain. At
the same time, σ needs to be small enough to have
sufficient sampling points close to the limit state. Here,
the initial value for σ was set at b0/2, with b0 being the
initial estimation of the reliability prior to the analysis.
This value has proven effective in starting the adaptive
importance sampling scheme and has led to an accepta-
ble compromise between MC integration convergence
and failure domain coverage. Nevertheless, the initial
importance distribution could easily be improved based
on more prior knowledge of the performance function
(e.g. sensitivity, location of limit state). The increased var-
iance sampling pool is used for the active learning algor-
ithm of the metamodel until metamodel convergence.

If, after convergence of the metamodel, increased
variance sampling over NMC samples is insufficient to
obtain MC convergence (i.e. if dISPf . 0.05), the sampling
pool uMC is updated by resampling from a distribution
qmult(�u). This distribution is defined as a weighted aver-
age of k isotropic normal distributions qi(�u) with unit
variance, and means �mi located at a series of k quasi-
design points �udesi :

qmult(�u | �u des
i=1..k) =

∑k
i=1

liqi(�u) (24)

The quasi-design points are estimated from the cur-
rent estimates of the limit state and the incompatible
domain. The quasi-design points are distributed such
that they span all directions in U-space in which a fail-
ure or incompatible domain is predicted by the current
metamodel. In this way, multiple design points are natu-
rally accounted for in the multiple importance sampling
procedure. Details of the selection of the k quasi-design
points and weights li are given in Appendix 1.

The distribution qmult(�u) is in essence a Gaussian
mixture model with isotropic distributions. It is used
to resample the new sampling pool uMC, with corre-
sponding importance weights wimp(�u) = p(�u)/qmult(�u).

With an updated sampling set, the active learning of
the metamodel continues until metamodel convergence,
after which the integration convergence is evaluated
again (see Figure 2).

3.4. Combined two-stage metamodel learning
algorithm

The classification metamodel Mc and the prediction
metamodel Mp are combined into one two-stage

Figure 2. Flowchart of the two-stage metamodel learning algor-
ithm. The evaluations of F(u) are the parts of high compu-
tational cost, the training blocks are the parts of moderate
computational cost.
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metamodel {Îc, ĝ} � M(�u), which subsequently clas-
sifies into incompatible/feasible data Îc = Mc(�u) and
predicts the performance function in the case of feasi-
bility ĝ = Mp(�u | Îc = 0). This means that the two-
stage metamodel needs two stages of training, and the
training data are expanded with class data Ic into
{ut, �gt, �Ic,t}. Active learning is based on the learning
functions for both metamodels as outlined above. The
only difference is that in the presence of an incompatible
domain, only the feasible data are considered for the
learning function.

The combination of the established methods dis-
cussed in Section 2, together with the enhancements
and extensions proposed in Section 3.1–3.4, leads to
the following algorithmic description of the metamodel-
ling approach for reliability analysis with complex noisy
and incomplete numerical models:

(1) Define an initial training data set (DoE), and
evaluate the corresponding model response
{ut, �Ic,t, �gt}.

(2) Define an importance distribution using the cri-
terion in Section 3.2 and generate a Monte Carlo
sampling pool uMC (Section 3.2).

(3) Choose between active learning forMp or forMc.
In the case where only Mc has converged, the
learning function Lp is selected; in the case
where only Mp has converged, the learning func-
tionLc is selected. In the case where neither model
has converged, learning function Lp is selected if
P̂f | 0/(P̂f |0 + P̂1) . prnd, and learning function Lc

is selected otherwise, with prnd being a random
number sampled from a standard uniform distri-
bution in each iteration, and P̂f |0 and P1 are as
defined in Section 3.5.

(4) Select the next training point �ulearn from uMC using
the selected learning function (Equation (18) or
(22)).

(5) Evaluate the computational model F (�ulearn) and
use the result {�ulearn, Ic, g} to augment the training
data {ut, �Ic,t, �gt}.

(6) Train the classification metamodelMc on {ut, �Ic,t}
and evaluate the classification index
�̂Ic = Mc(uMC) (Section 3.2).

(7) Train the prediction metamodel Mp on
{ut, �gt}|�Ic,t=0

and evaluate the performance function
prediction �̂g = Mp(uMC |�Ic) (Section 2.1).

(8) Evaluate the updated probabilities P̂f |0 and P1
(Equations (12) and (21)).

(9) Evaluate the convergence of the classification
model (Equation (23)) and prediction model
(Equation (8)) in terms of the prediction of P1

and Pf |0. Continue if both converged, otherwise
return to (3).

(10) Evaluate the convergence of the Monte Carlo inte-
gration. Continue if converged, otherwise return
to (2).

(11) End with results Pf |0, P1, etc.

This algorithmic two-stage metamodel approach is
summarised in the flowchart of Figure 2.

3.5. Two-stage model interpretation

The presence of the incompatible domain in combi-
nation with the performance of the sheet pile wall
expressed in the performance function ĝ results in
different probability definitions:

. P1 := P(Ic = 1): Probability of data incompatibility.
This is the probability of failure in the initial conditions
prior to the final loading stage, such that the final stage
(i.e. performance function g(�u)) cannot be evaluated.

. P∗
f := P(g , 0): This is the imputed unconditional

probability of failure where any potential incompat-
ibility (either observed or unobserved) is imputed
by Mp). This is the prior probability of failure
when no information is available on survived initial
states.

. Pf |0 := P(g , 0 | Ic = 0): This is the probability of
failure conditional on compatible data. This is the
probability of failure conditional on the survival of
the initial conditions prior to the final loading stage.

Note that, with complete knowledge on data incom-
patibility (for example because of evidence of survival of
the initial stages of the structure), P∗

f forms a prior esti-
mation and becomes obsolete since the updated, con-
ditional probability Pf | 0 should be used. This is
because P∗

f corresponds to the case where information
on incompatible domains or survived stages is not or
only partly available, as would for example be the case
in FORM, point-estimate or semi-probabilistic analyses.
This aspect of the imputed probability of failure P∗

f is
discussed further in Section 5 to highlight the impor-
tance of the two-stage model in the evaluation of
reliability in the context of reliability updating. Aside
from this specific context for which P∗

f is used, Pf | 0 is
the probability of primary interest in the analysis.

4. Application and evaluation

The computational model of a Dutch river dyke cross-
section with a sheet pile wall reinforcement is evaluated
herein. This model is based on Noordam (2019) and
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represents an existing dyke with representative distri-
butions for typically available site data and design
requirements. The dyke body rests on a foundation of
soft soil blanket layers, underlain by Pleistocene sand
(see Figure 3). During flood conditions, the increase of
pore water pressures in the sand and in the soft soil
blankets can lead to instability of the landside slope;
hence the insertion of the sheetpile wall as a reinforce-
ment measure.

The Soft Soil constitutive model (Vermeer and
Neher 1999; Brinkgreve et al. 2018) is used for the
soft soil layers, with the friction ratio tanf′, yield stress
sy, and inverse of the modified compression index l−1

as stochastic parameters, following Noordam (2019).
The yield stress indirectly represents the isotropic pre-
consolidation stress Pp in the Soft Soil model, from
which the pre-overburden pressure (POP) is calculated
via equivalent isotropic stress states per layer, as input
in PLAXIS (Brinkgreve et al. 2018). The swelling index
κ is related to the compression index by k = l/10. All
other parameters are deterministic, and have no direct
influence on this work. The Hardening Soil model
(Schanz, Vermeer, and Bonnier 1999) with determinis-
tic soil parameters is used for the sand layers. The
sheetpile wall is modelled as a zero-thickness elastic
plate.

Starting from an initial situation, the model evaluates
the sheetpile wall performance under high water con-
ditions in combination with a traffic load. Threemodelling
phases are identified, each consisting of two model stages:

. Phase 1. An initialisation stage based on a K0 pro-
cedure followed by a stress redistribution stage to
attain initial equilibrium conditions;

. Phase 2. A sheetpile wall installation stage, followed
by a long-term settlement stage;

. Phase 3. A first loading stage in which the water level
is raised to the high water condition, followed by a
second loading stage in which the crest traffic load
is applied.

Two types of failure are considered in the analysis:
Geotechnical failure is defined as slope failure in the
initialisation phase, when the dyke fails under normal
conditions. Structural failure is defined as the excee-
dance of the bending moment capacity TMmax in the
final stage. In this model, geotechnical failure in the
initialisation phase is the only type of failure that pre-
vents the evaluation of the maximum bending moment
in the sheetpile wall in the final stage. Other modes of
failure, such as geotechnical failure without interaction
with the sheetpile wall in phases 2 or 3, were not
observed.

The model is formulated as the computational model
Mmax = F (�X) = FU(�U), in which �X is the vector of sto-
chastic input parameters, �U is the standard normal trans-
form of �X andMmax is the calculated maximum bending
moment in the final stage. In the case of geotechnical fail-
ure, Mmax is undetermined. An indicator function Ic is
defined such that Ic = 1 when Mmax is undetermined
and Ic = 0 when a solution of F (�X) exists.

The stochastic soil parameters given by Noordam
(2019) are summarised in Table 1. Transformation
into standard normal equivalent parameters Ui allows
the problem to be reformulated based on 10 standard
normal variables U1–U10. Due to the full correlation
between the degrees of overconsolidation of the

Figure 3. Model geometry with soil stratification and active
loading conditions (water levels, crest load), as defined in Noor-
dam (2019). Far-field boundary conditions (left, right, below)
were chosen sufficiently far away from the zone of interest
and are not depicted.

Table 1. Soil property distribution parameters and their independent stochastic standard normal variables Ui.
tan (f′) l−1 sNC

y (kPa) sOC
y (kPa)

�LN(m, d = 0.10) �LN(m, d = 0.10) �N (m, d = 0.21) �N (m, d = 0.21)

Layer μ Ui μ Ui μ Ui μ Ui

Soil 1 (dyke clay) 0.562 U1 21.9 U5 34.4 U9 99.3 U9
Soil 2 (sandy clay) 0.500 U2 35.4 U6 34.4 U10 191.0 U9
Soil 3 (peat) 0.918 U3 6.4 U7 91.7 U10 236.8 U9
Soil 4 (heavy clay) 0.419 U4 15.8 U8 183.3 U10 275.0 U9

Distribution type (N for normal, LN for log-normal); coefficient of variation δ is constant per parameter type; mean value μ is different for each parameter. Yield
stresses are considered fully correlated due to the loading history and are effectively controlled by only two independent stochastic variables related to the
overconsolidated (U9) and normally consolidated (U10) regions (Noordam 2019).
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different layers, variables U9 and U10 are considered to
control the degree of overconsolidation of all four layers
for, respectively, the overconsolidated and normally
consolidated domains.

A semi-probabilistic calculation is performed first,
using design values derived from the lower 5 percentile
of the parameters and application of a partial factor of
1.18 to tanf′

i, based on a target reliability index
bT = −F−1(Pf ,T) = 5.11 (Noordam 2019; Kanning
et al. 2017). The resulting semi-probabilistic standard
normal design values udesi are −3.304 for tanf′

i and
−1.645 for the other stochastic variables.

Averaging out the numerical noise over 100 closely
sampled realisations, the semi-probabilistic maximum
bending moment is estimated at Mmax = 279.2 kNm/m’,
and is used in the following as the threshold TMmax

as the basis for a probabilistic analysis using
metamodelling.

The performance function is formulated relative to
the computational model response for mean variables
FU(�u = �0) ≈ 90 kNm/m′ and the performance
threshold TMmax , such that failure is associated with
g(�u) , 0. Normalisation is applied for convenience:

g(�u) = TMmax −FU(�u)

TMmax −FU(�u = �0)
(25)

In the following, the MC integration sampling pool
uMC contains N = 500, 000 points, all of which are
used in the Monte Carlo integration. In addition,
these points serve as potential candidates for training
data, which is iteratively extended in the active learning
scheme. A maximum of 100 learning iterations is per-
formed before updating the MC sampling set. The
Matèrn correlation function is used with a constant
shape parameter n = 2.5.

4.1. Metamodel simulations with 1 stochastic
variable

To demonstrate the model behaviour and the kriging-
based metamodelling, a series of simulations is per-
formed with a single stochastic variable, while all
other variables are set to the semi-probabilistic design
values. Figure 4 shows the metamodel response surfaces
from 10 simulations (corresponding to U1 to U10 in
Table 1), as well as the respective training data and
the 95% confidence bounds. The response surfaces cor-
rectly reach the limit state g = 0 at the semi-probabilis-
tic design points (indicated by arrows) and the
uncertainty bounds are narrow at these limit state cross-
ings, indicating the correct metamodel convergence.

The 1-D response surfaces also show the sensitivity of
the model response to the individual variables, locally
via the response surface slope around the design point
and more globally by the range of model responses cap-
tured by the 1-D surfaces. The model response appears
most sensitive to tanf′

2, followed by tanf′
1 and tanf′

4
and, to some extent, to tanf′

3, l
−1
3 , sOC

y and sNC
y . The

other variables seem to have a marginal influence on
the variation of the (local) model response. Another
important observation is that some parameters
(tanf′

3, l
−1
4 and sOC

y ) have an inverse effect on the

Figure 4. 1D metamodels through semi-probabilistic design
point for sensitivity analysis. Arrows indicate the location of
the semi-probabilistic design point for reference.
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performance (i.e. increasing strength and stiffness lead-
ing to decreasing performance). Furthermore, Figure 4
demonstrates the (sometimes strongly) non-linear
behaviour of the computational model, combined with
a modest noise level. This is most evident in the
response surface of sNC

y , between u10 = −2 and
u10 = −1, where many model evaluations are per-
formed in order to reduce the prediction uncertainty
stemming from numerical noise.

Finally, incompatible realisations were encountered
only in the metamodel learning for variable tanf′

1 for
values u1 , −4.4, with the resulting missing data
domain indicated by the grey shaded area. Domains
with missing data might also exist for other parameters,
but, without incompatible realisations in the training
data, no evidence for this domain is available and no
missing data are predicted as a result.

4.2. Metamodel simulation with 2 stochastic
variables

Figure 5 shows the results of a simulation with tanf′
1

and tanf′
4 as stochastic variables, while all other vari-

ables are set at the design values. For TMmax = 279.2
kNm/m’, the predicted response surface ĝ(�u) is given
as a contour plot, together with the training data and
the incompatible domain as predicted byMc. Including
the 10 evaluations of the initial training data, a total of
46 function calls were required for convergence of
both parts of the metamodel. Increasing the variance
of the initial sampling pool uMC was sufficient to
reach convergence of the MC integration, and no
importance sampling refinement was required.

The resulting limit state function correctly passes
through the semi-probabilistic design point, demonstrat-
ing the consistency between the predictions in Figures 4
and 5. Figure 5(b) shows the bending moment profiles
along the sheetpile wall for different points on the limit
state surface. The profile for Point A, corresponding to a
low value for tanf′

1 and a high value for tanf′
4, shows

a maximum bending moment at the bottom of layer 2,
indicating active loading on the sheetpile wall by layers 1
and 2 and the initiation of a failure mechanism through
layer 2. In contrast, the profile for Point B shows the maxi-
mum bending moment at the bottom of layer 4, indicating
active loading on the sheetpile wall from all four layers.
The incompatible realisation at Point C leads to slope fail-
ure in the initialisation phase, as illustrated in Figure 5(c).
Overall, Figure 5 demonstrates that the contemplated case
clearly includes aspects of non-linearity in the limit state, a
relevant incompatible domain, and a modest level of noise
in the system response.

4.3. Metamodel simulations with 4 and 10
stochastic variables

A series of reliability analyses is performed considering
tanf′ of the four layers as stochastic variables, while all
other parameters are kept at the design values. The

Figure 5. (a) 2D response surface with estimated limit state,
limit state 95% confidence bounds, incompatible domain and
training datapoints. (b) Bending moment profiles corresponding
to Points A and B, with maximum bending moment
Mmax ≈ 279.2 kNm/m’ at both A and B. (c) Deviatoric strain con-
tours indicating the failure mechanism for an incompatible
realisation at Point C, in the initialisation phase before sheetpile
wall installation.
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reliability at different limit state thresholds is evaluated
in 15 independent analyses, leading to the fragility curve
b̂− TMmax shown in Figure 6, which shows the estimates
of the imputed and conditional probabilities. Metamo-
del uncertainty bounds based on P−

f |0 and P+
f |0 (Equation

(6)) are indicated by shaded uncertainty bands, showing
a well-converged model prediction for all 4-variable
simulations.

The 4-variable metamodel gives an estimation of the
probability of failure, conditional on the design values of
the remaining six parameters. The 10-variable predicted
probabilities, also shown in Figure 6, are significantly
higher than the 4-variable predictions, demonstrating
that including variables 5 to 10 as stochastic variables
does not lower the probability of failure and thereby
that the chosen design values for variables 5 to 10 in
the 4-variable simulations are not conservative.

The prediction for the 10-variable analyses shows a
significantly wider uncertainty range than for the 4-vari-
able analyses. In fact, the metamodel learning algorithm
is unable to reduce the prediction uncertainty caused by
the noise in the response sufficiently to reach the
requested convergence criterion of 1Pf ,M , 0.196.

Figure 7(a) shows the evolution of the active learning
prediction and its 95%metamodel confidence bounds as
a function of model evaluations for the 4-variable and
10-variable simulations for TMmax = 270 kNm/m’, esti-
mating a probability of failure of Pf | 0 = 1.1× 10−6

and Pf | 0 = 5.3× 10−6, respectively. Both analyses are
based on initial training data from 30 model evalu-
ations, after which the active learning scheme is per-
formed until convergence of both the metamodels and
MC integration, or until a maximum of 400 model
evaluations is reached. In Figure 7(b), the uncertainties
in the metamodel prediction and the MC integration are
expressed in terms of back-calculated coefficients of

variation. In both cases shown, convergence of the pre-
diction metamodel was not reached after 400 simu-
lations. This non-convergence is due to the noise in
the system response, modelled by the white noise term
in the kernel, and the remaining prediction uncertainty
can only be reduced by statistical averaging over a large
number of training data. Despite this remaining uncer-
tainty, the predictions stabilise after 100 to 150 model
evaluations. The spikes in the 4-variable predictions
are caused by instabilities in the training of the classifi-
cation model, occasionally leading to for example
underfitting and overfitting. These issues can generally
be solved by more careful training of the metamodel
(e.g. by setting constraints on the development of the
hyperparameters, and increasing the number of learn-
ing iterations). The spikes represent artefacts of instabil-
ities in the training of the classification model and are
not representative for the classification uncertainty of
a well-trained classification model. Note that the uncer-
tainty bounds in Figure 7(a) do not account for uncer-
tainty in the classification model.

Importance sampling refinement is performed,
regardless of the metamodel convergence, after each
set of 100 model evaluations, which leads to the jump
in integration uncertainty visible at 100 model

Figure 6. Reliability curves for the 4-variable and 10-variable
simulations. The semi-probabilistic design point is indicated by
the diamond marker.

Figure 7. Model convergence for 4- and 10-variable analyses
with TMmax = 270 kNm/m’. (a) Reliability predictions and (b) pre-
diction uncertainty expressed as equivalent coefficient of vari-
ation δ.
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evaluations. Only in a limited number of simulations
has a second update been required to reach convergence
of the integration accuracy.

4.4. Model verification

For computational models without incompatible
domains and noise-free behaviour, the presented two-
scale model behaves like the classical AK-MCS and
AK-IS models, for which methodological verification
can be found in literature (e.g. Echard, Gayton, and
Lemaire 2011; Echard et al. 2013; Cadini, Santos, and
Zio 2014). In the absence of established computational
models incorporating noise and incompatible domains,
the accuracy of the presented approach is here verified
directly for the 10-variable computational model of
the sheet pile wall problem using importance sampling.
An importance distribution q � N (�m250, I) was defined
as a normal distribution around an approximate design

point �m250 for TMmax = 250 kNm/m’. A total of 10,000
importance sampling realisations were evaluated to esti-
mate the relationship betweenMmax and bf | 0, as well as
separate solutions for b1, to compare with the results of
the two-stage metamodel.

Figure 8 compares the results for the different meta-
model analyses with those based on importance
sampling. From the consistency between the results, it
can be concluded that the proposed method leads to
accurate and consistent estimations of the probability
of failure. Although the potential bias introduced in
the estimation by replacing the computational model
with the metamodel has not been evaluated explicitly,
the good consistency between the results obtained
using metamodelling and importance sampling,
respectively, indicate that the potential bias in the meta-
model prediction is insignificant in comparison with the
inherent metamodel prediction uncertainty expressed
in the (conservative) uncertainty bounds based on
Equation (6). For a more complete quantification of
the potential bias in the estimation, without the need
for many additional model evaluations, the evaluation
of a bias correction term by means of for example
leave-one-out verification could be considered (as for
example suggested by Dubourg, Sudret, and Deheeger
2013). Such an additional verification could also be
included in a stopping criterion, to reduce the potential
for stopping the active learning algorithm too early as a
result of for example underfitting of the limit state
response.

4.5. Convergence and efficiency

The efficiency of the proposed method is assessed in a
comparison against established methods for the
reliability at TMmax = 250 kNm/m’, corresponding to
Pf | 0 ≈ 5.2× 10−6. The efficiency is expressed by the
normalised coefficient of variation dn = d

			
N

√
, where

N is the number of function evaluations required to
reach the coefficient of variation δ. For Monte Carlo
analysis, dn is based on Equation (7). For subset simu-
lation (SS), a lower-bound solution for dn is given,
under the assumption of fully independent samples
and subset probability p0 = 0.10 (Au and Beck 2001;
van den Eijnden and Hicks 2017). For importance
sampling, the analysis presented in Figure 8 is used,
with dn based on d = 0.062 as evaluated by Equation
(13) overN=10,000 realisations. For the two-stage meta-
model presented in this work, the coefficient of variation
of the estimation of Pf | 0 is defined based on Equation
(13) at each active learning iteration, normalised against
the number of function evaluations thus-far. Over the
final 150 out of 200 iterations, dn varied around 1.2,

Figure 8. Verification of two-stage metamodelling approach for
10-variable problem against importance sampling solution, in
terms of estimated reliability index b̂ and estimated probability
of failure P̂f . Vertical line markers indicate the 95% confidence
range of the results.
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with values ranging from 0.9 to 1.4, for the 10-variable
case.

Table 2 summarises the normalised coefficients of
variation for comparison, from which it is clear that
the metamodelling approach is substantially more
efficient than the purely sampling-based methods for
the presented problem. It must be noted that the value
for metamodelling is a conservative error bound as dis-
cussed in Section 2.2, while for subset simulation the
theoretical lower (i.e. unconservative) bound of dn is
shown and the importance sampling analysis was
started based on prior information on the location of
the limit state. Despite this cautious approach towards
quantitative comparison, it can be concluded that the
metamodelling approach is orders of magnitude faster
than the established methods. This is, however, under
the condition that the computational load scales linearly
with d2n, which means that training the metamodel is
relatively fast compared to the computational model.
Also, the metamodelling approach cannot be combined
effectively with distributed parallel computation strat-
egies for massive parallel computations, since active
learning is inherently sequential.

5. Reliability updating

Although the primary focus of the classification meta-
model is to facilitate the learning of the prediction meta-
model, the results presented in Figure 6 are consistent
enough to formulate conditional probabilities. The
classification metamodel is thereby used for condition-
ing to the feasible domain. The distinction between
the feasible and the infeasible domain is not merely an
artefact of the analysis, but can also be attributed a phys-
ical meaning. The infeasible domain represents realis-
ations of the random variables implying loss of
equilibrium of the investigated structure. If this loss of
equilibrium occurs in the analysis of an existing struc-
ture, i.e. in a construction stage which was carried out
with instability of the structure, we can regard the
respective subset of the parameter space as implausible.
In other words, we can update the probability of failure
of the existing structure by taking into account the sur-
vival of observed load conditions during the execution

of the construction works. This is similar to reliability
updating with monitoring data, which typically involves
equality-type information, whereas survival implies
inequality-type information (Straub 2011). The concept
is similar to the reliability updating for internal erosion
of flood defences described in Schweckendiek, Vrou-
wenvelder, and Calle (2014).

In other words, this past performance information is
evidence of feasible data (Ic = 0) and allows updating of
the prediction of structural failure from P̂∗

f to P̂f | 0.
Figure 9 shows details of the reliability curves for the rel-
evant range of bending moment thresholds, with the
difference between P̂∗

f and P̂f | 0 indicating the range for
updating. This difference is up to a factor 20 in the cal-
culated probability in the case of the 10-variable analysis,
as indicated by the arrow. If no past performance infor-
mation can be used, as for example with an entirely new
structure, P̂∗

f reflects the reliability given the current state
of knowledge, and possible failure in intermediate calcu-
lation stages can give information on the probability of
failure during the various stages of construction. How-
ever, after successful construction (i.e. survival of all con-
struction stages) the reliability corresponds again to the
updated probability of failure Pf | 0, with the analysis
possibly enriched by monitoring data or performance
observations obtained during construction.

6. Concluding remarks

The noisy and incomplete system response of a sheetpile
wall has been modelled by means of a two-stage meta-
model in the framework of kriging-based active learning
for reliability analysis. With the successful application of
the method in a reliability analysis that is representative

Figure 9. Details of the reliability curves for the 10-variable
simulations. The arrow indicates the potential for reliability
updating based on knowledge of incompatible modes.

Table 2. Efficiency comparison for the evaluation of Pf | 0 at
TMmax = 250 kNm/m’ on the basis of the normalised coefficient
of variation dn and the relative number of realisations Nrelative.
Method dn Nrelative

Monte Carlo 447 138,880
Subset simulation (theoretical lower bound) 15.9 176
Importance sampling (using prior knowledge) 6.2 26.7
This study ∼ 1.2 1
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for a class of problems in geotechnical engineering prac-
tice, the following can be concluded:

. Although the general concept of AK-MCS is con-
veniently extended to deal with small probabilities
and moderate noise levels through combining with
importance sampling and kernel enhancements, a con-
sistent updating of its learning functions and conver-
gence criteria is needed. A variation of the U-learning
function has therefore been proposed for better con-
sistency with the case of importance sampling and
models with noise components. This variation does
not introduce additional computational complexity.

. The obstructive effects of missing model response data
in kriging-based active learning algorithms can effec-
tively be mitigated by the introduction of an additional
classificationmodel. While the primary objective of this
additional classification is to predict domains of miss-
ing data that are to be avoided in the active learning
of the predicting metamodel, the additional infor-
mation is also valuable in the model interpretation.

. When missing data are linked to incompatibility
between input parameters and model predictions of
observed data, the information of the classification
metamodel can be used in the context of reliability
updating. If incompatible realisations are interpreted
as failures in the computational model, even though
the structure in question has actually survived the
simulated load conditions, the reliability can be
based on the compatible domain only, which is
equivalent to Bayesian updating with survival infor-
mation. Similar approaches can be considered for
including other types of monitoring data or perform-
ance observations. Depending on the type of data or
evidence, a classification or a predictive model can be
more appropriate, for example in the case of equality
or inequality information (Straub 2011).

. Although the white noise component in the numeri-
cal model prevents complete convergence of the pre-
dictive model uncertainty, the consistency between
results in different (independent) simulations
demonstrates the accuracy of the proposed method.
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Appendices

Appendix 1. Multiple design point Gaussian
mixture importance sampling

Starting from a metamodel and a sample pool uMC with cor-
responding metamodel predictions �̂Ic and �̂g , the importance
resampling distribution is generated as follows:

(1) select uS as the subset of all points uMC for which
(Îc = 1 _ ĝ , 0)

(2) select design point �udes1 from uS as the point with lowest
norm |�u|

(3) define angle vi as the radial angle between a sample �u and
quasi-design point �udesi as

vi = cos−1 �u · �udesi

|�u‖ �udesi|

( )
(A1)

(4) iteratively select new design points �udesk+1 from uS for
which vi=1..k . vT, until no more design points can be
found

(5) repeat step 4 for different threshold angles vT to find the
smallest vT such that exactly k quasi-design points are
found (k=20 is used here)

(6) compute normalised weights wi as

li = F(− | �udesi|)∑k
j=1 F(− | �udesj|)

(A2)

(7) define a multiple importance distribution model with
PDF

qmult(�u) =
∑k
i=1

liqi(�u) =
∑k
i=1

lip(�u|�m = �udesi, s
2

= I) (A3)

where p(�u|�m, s2) is the multivariate normal PDF.
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The multiple importance distribution model qmult(�u) is
then used for the importance sampling of a new MC inte-
gration sampling pool uMC, with corresponding importance
weights defined as:

wimp = qmult(�u)

p(�u | �m = �0, s2 = I)
(A4)

Appendix 2. Variance after updating

Starting from an experimental design {�gt, ut} and a prediction
gp(�up) at sample location �up, the GP metamodel is formulated
as a realisation of a multivariate normal distribution, as for-
mulated in Equations (4) and (5):

ĝ = K`
tpK

−1
tt �gt (A5)

s2
ĝ = s2 − K`

tpK
−1
tt Ktp (A6)

When gp is evaluated and added to the training data, the var-
iance at �up reduces, giving a new non-zero prediction var-
iance. For evaluating the new prediction variance at this
point, the updated situation is written in terms of its multi-
variate normal distribution with a subsequent prediction at

the same point �up:

�gt
ĝ
gp

⎛
⎝

⎞
⎠ � N �0,

Ktt Ktp Ktp

K`
tp s2 + s2

wn s2

K`
tp s2 s2

⎡
⎢⎣

⎤
⎥⎦

⎛
⎜⎝

⎞
⎟⎠ (A7)

In the same way as above, the variance is written as

s2
ĝ+1 = s2 − K`

tp s2[ ] Ktt Ktp

K`
tp s2 + s2

wn

[ ]−1
Ktp

s2

[ ]
(A8)

Some algebraic manipulations and using Equation (A6) then
leads to

s2
ĝ+1 = s2 − K`

tp s2[ ] K−1
tt Ktp 1− s2

ĝ

s2
ĝ+s2

wn

( )
s2
ĝ

s2
ĝ+s2

wn

⎡
⎢⎢⎣

⎤
⎥⎥⎦

= s2
ĝ

s2
wn

s2
ĝ + s2

wn
(A9)

This means that the relative variance reduction at any added

point is given by s2
wn

s2
ĝ+s2

wn
.
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