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Abstract
In this paper, tin oxidation (SnOx)/tin-sulfide (SnS) heterostructures are synthesized by the
post-oxidation of liquid-phase exfoliated SnS nanosheets in air. We comparatively analyzed the
NO2 gas response of samples with different oxidation levels to study the gas sensing mechanisms.
The results show that the samples oxidized at 325 ◦C are the most sensitive to NO2 gas molecules,
followed by the samples oxidated at 350 ◦C, 400 ◦C and 450 ◦C. The repeatabilities of 350 ◦C
samples are better than that of 325 ◦C, and there is almost no shift in the baseline. Thus this work
systematically analyzed the gas sensing performance of SnOx/SnS-based sensor oxidized at 350 ◦C.
It exhibits a high response of 171% towards 1 ppb NO2, a wide detecting range (from 1 ppb to
1 ppm), and an ultra-low theoretical detection limit of 5 ppt, and excellent repeatability at room
temperature. The sensor also shows superior gas selectivity to NO2 in comparison to several other
gas molecules, such as NO, H2, SO2, CO, NH3, and H2O. After x-ray diffraction, x-ray
photoelectron spectroscopy, scanning electron microscopy, transmission electron microscope, and
electron paramagnetic resonance characterizations combining first principle analysis, it is found
that the outstanding NO2 sensing behavior may be attributed to three factors: the Schottky contact
between electrodes and SnOx/SnS; active charge transfer in the surface and the interface layer of
SnOx/SnS heterostructures; and numerous oxygen vacancies generated during the post-oxidation
process, which provides more adsorption sites and superior bandgap modulation. Such a
heterostructure-based room-temperature sensor can be fabricated in miniaturized size with low
cost, making it possible for large-scale applications.

1. Introduction

Air pollution is amajor problem that severely impacts
human health and ecosystems around the world.
Nitrogen dioxide (NO2), one of the most abundant
air pollutants, is mainly emitted by fossil fuel burn-
ing, road traffic, indoor combustion source [1], and
biomass burning [2]. The World Health Organiz-
ation (WHO) recommends an ambient air quality

guideline of 40 µg m−3 (21 ppb) annual average
NO2 concentrations [3, 4]. With the application of
the Internet of Things (IoT), the possibility arises
to deploy a grid of sensors based on semiconductor
devices to detect multiple sources of pollution, and
subsequently wirelessly transmit the collected data in
real-time [5–8]. Under this context,many efforts were
focused on developing a miniaturized highly sensit-
ive and reversible NO2 gas sensor with a low limit
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of detection (LOD) operating at room temperature
[9]. Various high sensitivity NO2 gas sensors based
on metal oxide semiconductors like SnO2 [10], WO3
[11], ZnO [12, 13], In2O3 [14], V2O5 [15], andMoO3
[16] have been developed. However, their limits of
detection are mostly at the ppm-level, and the oper-
ating temperature is high (100 ◦C–300 ◦C). To realize
high working temperature, heaters are mostly integ-
rated with metal oxide-based sensors, which would
lead to high power consumption undesired in IoT
applications [17, 18].

To overcome the shortcomings of metal oxide-
based devices, many groups have developed room-
temperature NO2 gas sensors based on 2D materi-
als or heterostructures constructed with two or more
semiconductors [19–23]. The SnO2–ZnO hybrid
nanofibers-based sensor reported by Park et al [24]
exhibited a high sensing response to NO2 with a low
concentration of 400 ppb at 200 ◦C. Li et al [25] fab-
ricated a sensor based on p–n SnO2–SnO heterojunc-
tions, which had a LOD of 0.1 ppmNO2 at a relatively
low operating temperature (50 ◦C). To further reduce
operating temperature, junction with metal sulfide
has been employed because its narrower bandgap can
promote the catalysis of the surface reaction with
gas molecules. Cui et al [26] reported a SnO2/MoS2
hybrids NO2 gas sensor that has a lower detection
limit of 0.5 ppm. Hao et al [27] demonstrated that
SnS2/SnO2 nanocomposites have enhanced NO2 gas
sensing behaviors, which showed a high response
of ∼90% towards 125 ppb at 100 ◦C. As a typical
metal sulfide, tin-sulfide (SnS) is a layered mater-
ial, which has black phosphorus-like puckered struc-
tures [28–30]. Due to its anisotropic crystal struc-
tures, the charge transfer between polar gases and
SnS is strong which leads to outstanding gas sens-
ing properties [31]. SnS nanoflakes have been used
for detecting humidity [32], volatile compounds [33],
and noxious gas, such as NO2, acetone, and alcohol
[34]. SnS2/SnS p–n heterojunctions were construc-
ted to detect NO2 at room temperature, whose LOD
is 75 ppb [35]. In addition, the groups of Epifani
[10] and Li [36] have proved that SnO2 with oxygen
vacancies (OVs) for NO2 gas detection exhibited an
ultrahigh response at room temperature. They also
found that at higher operating temperatures the gas
sensing responses are reduced. These previous results
indicate that introducing OVs is an efficient way of
enhancing gas sensing performance.

Here, we present a high-performance gas sensor
using a tin oxidation (SnOx)/SnS heterostructure that
is synthesized by oxidizing pristine SnS in air at dif-
ferent oxidization temperatures and times. Benefiting
from the unique nanostructure surface morphology,
including the Schottky nature of metal–SnOx/SnS
heterostructure, the heterostructure of SnOx and SnS,
its large area, and the abundances of OVs, the fab-
ricated gas sensor owns a high response, ultra-low
theoretical LOD, and high selectivity towards NO2

Figure 1. TGA profiles of SnS nanosheets from room
temperature to 500 ◦C in air.

while operating at room temperature. The proposed
sensor is low-cost and easy to fabricate, which has
great potential application in the mass production
of miniaturized room-temperature sensors for IoT
applications. The gas sensing mechanism can be effi-
ciently recognized by the analysis method combin-
ing experiments and density functional theory (DFT)
simulations.

2. Methods

2.1. Preparation of SnS nanosheets
SnS nanosheets are liquid-phase exfoliated (LPE)
from SnS powder to obtain a large surface area [37].
The SnS nanomaterial was purchased from six car-
bon Corp, China. SnS (mg) was mixed with ethanol
(ml) thoroughly after stirred the mixture solution for
20 min [38]. The obtained suspensions were ultra-
sonicated in a KH-500B benchtop ultrasonic bath
(250 W) operating at 40 kHz frequency and 100%
power for 12 h. The bath temperature wasmaintained
below 30 ◦C during sonication through a water-
cooling coil. The dispersion was then centrifuged at
a rate of 500 rpm for 1 h and 10 000 rpm for 35 min
sequently to remove the remaining bulkmaterial. The
top two-thirds of the supernatant was collected for
further process.

2.2. Design and fabrication of gas sensor
Oxidation not only increases the surface area of the
functional materials but also introduces many defects
during oxidation. For instance, the OVs and step
edges are the most reactive sites on the surface of
metal oxides. To know the thermal stability of SnS
nanosheets in air, TGA is carried out from room tem-
perature to 500 ◦C in air. The oxidation of SnS to
SnOx occurred through the reaction SnS+ (1+ x/2)
O2 → SnOx + SO2 (1/2 < x < 8/3) [39]. As shown
in figure 1, the weight decreases by 2.2% from room
temperature to 252 ◦C, where the x= 1.82. After that,
the weight gradually increases again. From 325 ◦C,
the weight increase rapidly, and the x = 2.18 in the
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Figure 2. Fabrication process of the SnOx/SnS heterostructure-based gas sensor.

peak of 450 ◦C because of the generation of higher
oxidation states, e.g. SnO2 and Sn3O8. The weight
decreases again from 450 ◦C, which may be induced
by the decomposition of heavy oxides. Since 325 ◦C
and 450 ◦C are critical temperatures of materials
compositions change in SnOx, we set four temper-
ature levels: 325 ◦C, 350 ◦C, 400 ◦C, and 450 ◦C.
There are nine groups of samples, including oxidized
at 325 ◦C for 1, 2, and 5 h, oxidized at 350 ◦C for 1,
2, and 5 h, oxidized at 400 ◦C for 1, 2 h, and oxid-
ized at 450 ◦C for 1 h. In the present work, gold inter-
digitated electrodes (IDEs) with electrode width of
10 µm and a gap of 5 µm were fabricated using pho-
tolithography technologies before dip coating and the
oxidation of SnS nanosheets. After dip coating SnS
nanosheets on the IDEs, the SnS-based gas sensors
can be obtained by drying at 70 ◦C for 2 h in air. To
fabricate SnOx/SnS-based gas sensor, we oxidized the
SnS-based gas sensor at different oxidization temper-
atures and times in air, as shown in figure 2.

2.3. Characterizations
The morphologies of the SnOx/SnS were character-
ized by a field-emission scanning electronmicroscopy
(FESEM) (JEOL JSM-7610FPlus) using an acceler-
ation voltage of 5 kV with a working distance of
8 mm. The chemical mappings of the SnS nanosheets
and SnOx/SnS heterostructure were also obtained by
energy-dispersive x-ray spectroscopy (EDS) (Oxford
X-MaxN-50) using an acceleration voltage of 20 kV
with a working distance of 10 mm. The crystalline
microstructure was characterized by a transmission
electron microscope (TEM) (JEOL JEM-2100). The
crystal structures of SnS nanosheets and SnOx/SnS
heterostructure were measured by a Bruker D8 x-ray
diffraction (XRD) with Cu Kα1 radiation in the 2θ
range from 10◦ to 80◦. X-ray photoelectron spectro-
scopy (XPS) studies were performed with a Ther-
mofisher Nexsa to investigate surface modification.

The electron paramagnetic resonance (EPR) plots
were recorded by using a Bruker EMX spectrometer
operating in the X band frequency at room tem-
perature. The gas sensing performances were meas-
ured by a digital controlled gas mixing (dry air
and target gas) and data recording systems in real-
time. The bias voltage, testing time, and concen-
tration of gases in the chamber were controlled
by the computer. The electrical resistance of the
sensors was recorded by a source meter (Keithley
2450). The gas sensing responses of devices (S) are
defined as the relative change in the resistance of the
sensors in the background and those in the tested gas
S = (Rgas − Rair)/Rair × 100%, where Rgas and Rair
are the resistance in the tested gases and air, respect-
ively. The response time is defined as the time taken
to achieve 90% of the total response of the device.
The recovery time is defined as the time required
for recovering 90% of the initial value of the gas
response.

3. Results and discussion

3.1. Characterization
The crystallographic information of SnS nanosheets
and nine types of SnOx/SnS is confirmed by XRD as
shown in figure 3. The structures and stabilities of
intermediate compounds, such as Sn2O3, Sn3O4, and
Sn5O6, are still open to debate [40, 41]. All samples
display peaks at 26◦, 27.5◦, 30.5◦, 31.5◦, 32◦, 39.3◦,
45.5◦, 48.5◦, 51◦, and 66.8◦ are indexed to the (120),
(021), (101), (111), (040), (041), (002), (211), (112)
and (080) planes of SnS (JCPDS Card No. 39-0354).
All oxidized samples show peaks at 28.6◦, 33.9◦, 54◦,
63.5◦ corresponding to the (112), (113), (132), (117)
planes of SnO (JCPDS Card No. 77-2296), peaks at
26.6◦, 51.8◦ from the (110), (211) planes of SnO2
(JCPDS Card No. 41-1445), peaks at 21.8◦, 25.8◦

from the (020), (011) planes of Sn2O3 (JCPDS Card
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Figure 3. X-ray diffraction patterns of the as-synthesized samples.

Figure 4. Element content of the as-synthesized samples.

No. 25-1259), and peaks at 15◦, 50.1◦ from the (010),
(222) planes of Sn3O4 (JCPDS Card No. 16-737),
respectively. It indicates that all samples have SnO,
SnO2, Sn2O3, Sn3O4, and SnS, while the content is
different due to the different intensity of each peak.
For instance, the samples oxidized at 325 ◦C display
a high-intensity peak at from the (112) plane of SnO;
some peaks at (117) of SnO, (210) of SnO2, and (311)
of Sn2O3, disappear from the XRD pattern of 450 ◦C
samples.

To accurately evaluate the element content of each
SnOx/SnS heterostructures, XPS images are employed
to show their chemical states and chemical composi-
tion (figures 4 and 5). As shown in figure 4, the oxygen

content increases as the temperature increases. The
longer the oxidation time, the higher the oxygen con-
tent. The 450 ◦C sample has the highest oxygen con-
tent, 61%. Furthermore, figure S1(a) (available online
at stacks.iop.org/2DM/8/045006/mmedia) shows the
deconvolution of the Sn 3d spectra, the peaks at 486.8
and 495.0 eV are ascribed to the Sn 3d5/2 and Sn 3d3/2
of Sn2+ species [42, 43], respectively, while the bind-
ing energies at 487.3 and 495.7 eV correspond to the
Sn 3d5/2 and Sn 3d3/2 of Sn4+ species [42, 44, 45]. The
O 1s spectrum is fitted with two peaks at 530.7 and
531.9 eV, corresponding to the O–Sn2+ and O–Sn4+

groups, respectively (figure S1(b)) [46, 47]. The S 2p
spectrum can be split into four peaks at 161.4, 162.7,

4
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Figure 5. XPS curves of nine types SnOx/SnS samples. (a) The survey spectra of the samples. (b) The oxygen core level (O 1s)
spectra of the samples, (c) score level (S 2p) spectra of the samples, (d) the Sn core level (3d) of the samples.

168.7, and 169.9 eV, which are ascribed to the S 2p3/2
and 2p1/2 peaks (figure S1(c)) [48].

Figure 6 shows the EPR results, which reveals that
there are symmetrical resonance lines in the spectra
located at g ≈ 2.00 in SnOx/SnS and SnS nanosheets
samples, which is assigned as surface superoxide cen-
ters Sn4+–O2−. The electrons are trapped in OVs,
and then transfer between the surface adsorbed O2
molecule in SnO2, and finally formed surface super-
oxide centers (Sn4+ + VO− +O2 ↔ Sn4+–O2−). The
superoxide radicals are firmly attached to Sn4+ or
Sn2+ species on the surface, increasing adsorption
sites for gas molecules [36, 49]. After LPE and 70 ◦C
annealing process, there are few vacancies on the sur-
face of SnS. It is seen that the intensity of signals in
the samples of 325 ◦C and 350 ◦C are much stronger
than those observed in 400 ◦C and 450 ◦C. It indicates
that it is a relatively much larger oxygen deficiency in
325 ◦C and 350 ◦C.

3.2. Gas sensing performances
3.2.1. The effects of UV light on the gas sensing
performance
Figure 7(a) shows the test set-up for SnOx/SnS
heterostructure-based gas sensor. To analyze the
effect of UV irradiation on gas sensitivity, we com-
pared and analyzed the gas response of 350 ◦C-1 h

samples under different UV illumination conditions.
The first one is applying UV light (1.3 W UV
lamp with 365 nm wavelength, light intensity is
19 mW cm−2) from gas in to gas out, the second one
is setting dark from gas in to gas out, the third one
is applying UV light only for the recovery process.
To make a quick comparison, we set 100 ppb NO2
gas in for 15 min and gas out for 15 min, respect-
ively. In this paper, the ‘baseline’ is defined as the
response value that when the device recovers to stabil-
ity after each injection of dry air (the response value
before injecting NO2 gas is also included). The higher
the slope of baseline, the larger it shifts. As shown in
figure 7(b), in the case of full darkness, the device can-
not be recovered to the initial state, and the baseline
is severely shifted (see figure S2(b)); in the case of full
UV illumination, the response and recovery speed are
very fast, but the responsivity is low. Obviously, the
device withUV illumination only in the recovery pro-
cess has a high gas response as well as a fast recovery
time. Therefore, the gas responses in this work were
tested in this mode.

3.2.2. The effect of oxidation content on gas sensing
performances
From the previous analysis results, it is found that
different oxidation temperatures and oxidation times

5
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Figure 6. EPR spectra comparison of SnS nanosheets and SnOx/SnS heterostructure.

Figure 7. (a) Schemitic test setup of SnOx/SnS heterostructure-based gas sensor. (b) Dynamic response of SnOx/SnS gas sensor
toward 100 ppb NO2 gas concentration at room temperature (25 ◦C). Gas in for 15 min, gas out for 15 min.

can generate different proportions of oxygen element
content and form different OVs. Thus we conduc-
ted gas response tests for each group of SnOx/SnS
heterojunctions. To make a quick comparison, we
set 3 ppm NO2 gas in for 10 min and gas out
for 10 min, respectively. As shown in figure 8, it
is found that the samples oxidized at 325 ◦C have
the highest gas response among all samples while
the shift of baseline is large; the gas responses of
samples oxidized at 350 ◦C are lower than that of
samples oxidized at 325 ◦C but much higher than
that of samples oxidized at 400 ◦C and 450 ◦C.
Moreover, the repeatability of samples created at
350 ◦C is much better than the other fabricated
samples, and there is almost no shift in the baseline.
Thus, we systematically analyze the gas responses and
gas sensing mechanism for the samples oxidized 1 h
at 350 ◦C.

3.2.3. Gas sensing performances of the 350 ◦C-1 h
SnOx/SnS gas sensor
The current-voltage (IV) curves of pure SnS-based
and 350 ◦C-1 h SnOx/SnS heterostructure-based gas
sensors are shown in figure 9(a), which reveals that
the conductivity of the device increases after oxida-
tion. Moreover, it shows the rectifying output char-
acteristics, indicating a Schottky contact between the
sensing materials and the electrodes. Figure S2(a)
shows that the lower the operating temperature the
higher the gas response, which is attributed to rich
OVs according to the previous work [10, 36]. In figure
S2(b), the resistance changes of SnS and SnOx/SnS
sensors toward differentNO2 gas concentrations were
measured under two conditions: without UV and
with UV illumination at the recovery phase only. To
recover to the initial value, we applied UV illumina-
tion for the first 15 min, and then in dark for 15 min

6
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Figure 8. Dynamic response of nine types of SnOx/SnS gas sensor toward 3 ppm NO2 gas concentration at room temperature.
Gas in for 10 min, gas out for 10 min.

remaining. Figure 9(b) shows five cycles of meas-
urements of SnS nanosheets-based and SnOx/SnS
heterostructures-based gas sensors. It is found that
the repeatability of them is good, and the response
of the SnOx/SnS device is much higher than that of
the SnS device. The superior gas sensing perform-
ance is determined by the large amount of Sn4+–O2−

centers in the heterostructures. Figure 9(c) shows the
dynamic sensing performance of 350 ◦C-1 h sample
detected from 1 ppb to 1 ppm gas concentrations. It
notes that the recovery time of gas sensors after apply-
ing UV illumination is only 36 s, which is much faster
than that of most SnO2-based sensors (SnO2 modi-
fied carbon nanotubes (CNTs), 408 s @ 100 ppb, and
SnO2 NPs, 2400 s @ 100 ppb) [10, 50].

Figure 9(d) illustrates the responses of SnOx/SnS
heterostructures as a function of the NO2 concen-
trations range from 1 ppb to 1 ppm. The fitted
experimental data shows an exponential relationship
with the gas concentration of NO2 (C), as Response
(S) = 83.24 × C0.34. The inset image of figure 9(d)
shows the linear fitting log(S) − log(C) plot, reveal-
ing a Freundlich adsorption relation between theNO2
molecules and SnOx/SnS heterostructure, which is
the most important multisite adsorption isotherm
for rough surfaces [51]. Moreover, our device exhib-
its a response of ≈171% to the 1 ppb NO2 (lower
concentrations cannot be reached due to limitations

imposed by our gas mixture system). It is much lower
than the recommended ambient air quality guidelines
of WHO (20 ppb). As shown in figure S3 and tables
S1, S2, the signal of the as-fabricated sensor is three
times more than the noise (0.39 × 10−3), thus the
theoretical LOD can be calculated according to the
International Union of Pure and Applied Chemistry
[52, 53]. The LOD is as low as 5 ppt, which is much
lower than that of carbon nanotubes-based, metal
oxide-based, and metal sulfide-based sensors (see
table 1)[25, 35, 54–58].

Furthermore, we investigated the selectivity of
the sensors in air for finding more practical applic-
ation capability (see figure S5). The responses of
the SnOx/SnS heterostructures-based device toward
other gases, including NH3, H2, NO, CO, and
SO2 were measured. With the gas concentration of
500 ppm, the sensor response toward NO and CO
are 377% and 181%, respectively, while for NH3 and
H2 are −63% and −55%, respectively. The sensor
shows response of 47% towards 1 ppm SO2. Besides,
it shows a response of−700% at 11% relative humid-
ity (RH) and high response of −10 870% at 75%
RH. Thus it is known that SnOx/SnS gas sensors have
high selectivity at low RH environments. Therefore,
the SnOx/SnS heterostructure is an ideal sensing plat-
form with excellent selectivity, response, reversibility,
ultra-low LOD, and low operating temperature.

7
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Figure 9. (a) I–V curve of SnS-based and 350 ◦C-1 h SnOx/SnS heterostructures-based gas sensor measured at room temperature
in air. (b) Time-dependent response current of five cycles of NO2 gas switching between the air and 100 ppb. (c) Dynamic sensing
performance of 350 ◦C-1 h sample under different gas concentrations. (d) The sensor response as a function of the concentration
of NO2 gas. (The bias voltage is 10 V.).

Table 1. Comparison of various gas sensor technologies with respect to reported NO2 ranges, operating temperature, response and
recovery times, and response.

Sensing C(NO2) LOD Temperature Response Recovery Response
materials (ppb) (ppb) (oC) time (s) time (s) (%) Reference

WO3 500 10 200 ∼3600 ∼1800 150 [58]
HOF 100 40 25 17.6 19.1 ∼6.9 [57]
CNT 1 0.1 25 120 — ∼25 [59]
SnO2 1 0.2 25 ∼1800 ∼900 ∼90 [56]
SnO2–SnO 100 100 50 ∼150 ∼400 26 ppm−1 [25]
SnO2–ZnO 400 — 200 ∼300 ∼300 600 [24]
SnO2/graphene 10 0.024 150 43 408 200–300 [55]
MoS2/SnO2 500 — 25 408 162 0.6 [26]
SnS2/SnO2 125 — 100 299 143 ∼90 [27]
SnS2 10 000 — 120 ∼170 ∼140 ∼3600 [60]
SnS 1000 — 25 ∼25 ∼25 60 [34]
SnS2/SnS 400 75 25 365 1216 660 [35]
SnOx/SnS 1 1000 0.005 25 1800 36 (UV) 171 2735 This work

CNT: carbon nanotube, HOF: hydrogen-bonded organic framework material.

3.2.4. Gas sensing mechanism
The possible gas sensing mechanism of SnOx/SnS
heterostructure-based sensors are the Schottky nature
of SnOx/SnS–metal contact, SnOx and SnS hetero-
structures, and OVs. The SEM (figure 10(a)) in com-
bination with EDS elemental mapping shown in
figure S2 reveals that there are O, S, and Sn ele-
ments in the SnOx/SnS heterostructure, and all of

them are uniformly distributed, further confirming
the existence and uniform distribution of SnOx nan-
oparticles in the SnS nanosheets. The TEM images
(figures 10(b) and (c)) show that the fringe interval of
0.292 nm corresponds to the d-spacing of (101) SnS,
meanwhile, the fringe interval of 0.334 and 0.176 nm
agreeswell with the d-spacing of (011) and (211) crys-
tal planes of SnO2, respectively. The fringe interval of

8



2D Mater. 8 (2021) 045006 H Tang et al

Figure 10. SEM characterization of (a) SnOx/SnS heterostructures, TEM image of (b) SnOx/SnS heterostructures, high-resolution
TEM (HRTEM) image of (c) SnOx/SnS heterostructures, the inset images is selected area electron diffraction (SAED) rings. Band
structure of (d) SnS and (e) SnOx with first-principles calculations. (f) Calculated band alignment between SnS and SnOx, and
the position of the work function of Au. The black dashed lines represent the Fermi level, which is a Schottky contact. Energy
band structure of the SnOx/SnS heterojunction contact with Au in (g) air and (h) a NO2 atmosphere.

0.299 nm corresponds to the d-spacing of (101) SnO.
DFT calculations were conducted to study the band
structure of SnS, SnOx, and SnOx/SnS, the charge
transfer and energy distribution between NO2 gas
molecule and SnOx/SnS heterostructures. The oxid-
ation process between the top SnS layer and the O2
gas molecule in the unit cell are shown in figure S6.

The calculated band structures of SnS and SnOx

are shown in figures 10(d) and (e). The band structure
provides the bandgap values of metal electrodes, SnS,
and SnOx (see figure 10(f)). The work function of Au
and SnS are 5.1 and 4.88 eV, respectively [44]. Thus,
it is Schottky contact between Au and SnS. The sur-
face of SnS is free from Fermi level pinning, thus the
Schottky barrier height (SBH) of the device can follow
the trend of the Schottky–Mott limit [61]. The SBH
is equal to the sum of the bandgap of SnS (Eg) and
electron affinity (χ) minus the work function of the
metal (WM). NO2 absorption moves the Fermi level
(Ef) toward the valence band (Ev), increases the build-
in potential (Vbi), consequently shifts the Schottky
barrier (SB) by∆SB, and decreases the device current
(see figures 10(g) and (h)).

Based on the first principle analysis results,
it is found that SnS and SnOx are p-type and
n-type semiconductors respectively. The response
of the SnOx/SnS-based sensor is much higher than
that of SnS, because of the formed heterojunction
between SnS and SnOx, and the numerous defect-
ive microstructures (e.g. OVs) at the surface of SnOx.
Figures 10(g) and (h) shows the band diagrams of
SnS and SnOx before and after equilibrium, which
reveals a higher Ef of SnS compared to that of SnOx.

Therefore, electrons flow from the SnS to the SnOx

can induce the energy band bending in the deple-
tion region at the interface between them [62]. When
the sensor is in air, oxygen species are adsorbed on
the surface and the interface layer of SnOx/SnS, the
extraction of the electrons from the Ec can form ionic
oxygen species (O2− or O−). When NO2 is intro-
duced, the NO2 molecules react with ionic oxygen
species and trap electrons from the heterostructures,
produce NO3− or NO2−. Due to the non-equilibrium
built-in electric field, extra electrons slip from SnS
to SnOx, inducing a wider depletion layer and the
decreased conductivity of the device consequently.

According to the EPR results, it is known that
it is a much larger oxygen deficiency in the samples
of 325 ◦C and 350 ◦C, thus the NO2 gas responses
are higher than in other samples. In order to fur-
ther investigate the effects of OVs, we analyze the
adsorption energy (EA) and change transfer (∆Q) of
NO2 on SnOx/SnS heterojunction with OVs, which
are−0.314 eV and−0.283 e, respectively. The charge
density difference CDD presented in figure 11(b)
confirms that NO2 acts as a charge acceptor with
a larger charge transfer. The bandgap before and
after adsorbed NO2 is 0.037 and 0.219 eV, respect-
ively. According to the classical relation between Eg
and electrical conductivity (σ) of materials [63],
σ ∝ e(−Eg/2kT), where k and T are the Boltzmann’s
constant and the temperature respectively. Thus the
resistance increases when the gas sensor is exposed
to the NO2 gas molecules. Furthermore, ELF plots in
figure 11(c) show that few electrons share between
NO2 gas molecules and substrates (SnS, SnOx/SnS),
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Figure 11. (a) The formation of OV-rich SnOx/SnS heterostructure. The charge density difference (CDD) plots for NO2 on
(b) SnOx/SnS heterostructure. The blue and yellow regions show charge accumulation and depletion, respectively. The electron
localization function (ELF) plots for NO2 on (c) SnOx/SnS heterostructure. The isosurface is taken as 0.015 e Å−3.

which proves a chemical adsorption nature. Thus
NO2 gas molecule is difficult to be desorbed from the
surface of SnOx/SnS heterostructures, inducing a long
recovery time, as shown in figure 7(b).

Therefore, UV irradiation was applied during
the desorption (recovery) process in the gas sens-
ing measurement. The ultra-narrow bandgap of
SnOx/SnS heterostructures with OVs means that the
photoinduced electrons can transfer from the valence
band to the conduction band much easily. It leads
to the absorption of more photons in the UV light
(λ = 365 nm) to produce more electron–hole pairs,
resulting in more O2− and NO2− is photoexcited to
be O2 and NO2 [64, 65]. Finally, it accelerates the
gas desorption from the surface of SnOx/SnS. If we
apply UV light for the gas in and recovery process,
NO2 first absorbs UV light and then decomposes into
NO and an O2. The O2 generated by this reaction
can also combine with molecular O2 to formO3. Due
to the products of these two reactions (NO and O3),
the response of the sensor is reduced according to
the selectivity results in figure S6. Therefore, as men-
tioned before, the response of UV light for the gas in
and recovery process is weak.

4. Conclusions

In this work, SnOx/SnS heterostructures with large
surface area and rich OVs were synthesized by
the post-oxidation of LPE-SnS nanosheets in air at
different oxidation levels. The gas response of the
samples oxidized at 350 ◦C are lower than that of

samples oxidized at 325 ◦C but much higher than
that of samples oxidized in 400 ◦C and 450 ◦C. The
350 ◦C-1 h samples exhibit excellent sensing per-
formance with a high response of 171% at 1 ppb
and 2735% at 1 ppmNO2 gas concentration, respect-
ively, excellent repeatability, selectivity, ultra-low the-
oretical LOD of 5 ppt, and a wide detecting range
from 1 ppb to 1 ppm at low humidity environment.
Through XRD, XPS, SEM, TEM, and EPR character-
izations and first principle analysis, the heterostruc-
tures with OVs contribute a large response to the
gas molecules possibly due to the Schottky nature
of metal–SnOx/SnS, a large number of adsorption
sites, bandgapmodulation, and active electrons trans-
fer in the sensing interface layer. The EPR results
reveal that the intensity of signals in the samples of
325 ◦C and 350 ◦C are much stronger than those
observed in 400 ◦C and 450 ◦C, indicating higher
content of OVs in 325 ◦C and 350 ◦C. Thus the
samples of 325 ◦C and 350 ◦C have higher gas
responses. However, NO2 is chemisorbed on the sur-
face of SnOx/SnS heterostructureswithOVs, themore
OVs on the surface of samples, the more difficult
to desorb gas molecules. Thus the gas response of
325 ◦C samples are hard to recover to the initial
state. Both experimental and DFT simulation results
support that these factors conduce to the superior
gas sensing properties in terms of higher sensitivity
and ultra-low theoretical LOD toward ppt-level NO2
at room operating temperature. UV illumination is
applied during the recovery process to accelerate
recovery time. This study provides a new and low-cost
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approach for highly sensitive ppb-level gas detection
and can extend to other nanomaterials.
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