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Car-Following Described by Blending
Data-Driven and Analytical Models: A
Gaussian Process Regression Approach

Ignasi Echaniz Soldevila1 , Victor L. Knoop2 , and
Serge Hoogendoorn2

Abstract
Traffic engineers rely on microscopic traffic models to design, plan, and operate a wide range of traffic applications. Recently,
large data sets, yet incomplete and from small space regions, are becoming available thanks to technology improvements and
governmental efforts. With this study we aim to gain new empirical insights into longitudinal driving behavior and to formu-
late a model which can benefit from these new challenging data sources. This paper proposes an application of an existing for-
mulation, Gaussian process regression (GPR), to describe individual longitudinal driving behavior of drivers. The method
integrates a parametric and a non-parametric mathematical formulation. The model predicts individual driver’s acceleration
given a set of variables. It uses the GPR to make predictions when there exists correlation between new input and the train-
ing data set. The data-driven model benefits from a large training data set to capture all driver longitudinal behavior, which
would be difficult to fit in fixed parametric equation(s). The methodology allows us to train models with new variables with-
out the need of altering the model formulation. And importantly, the model also uses existing traditional parametric car-
following models to predict acceleration when no similar situations are found in the training data set. A case study using radar
data in an urban environment shows that a hybrid model performs better than parametric model alone and suggests that traf-
fic light status over time influences drivers’ acceleration. This methodology can help engineers to use large data sets and to
find new variables to describe traffic behavior.

Since the introduction of powerful micro-simulation tools
in the last decades of the 20th century, the way that
experts approach traffic modeling has changed. Fast
computers have made it possible to use advanced traffic
micro-simulation software packages which describe the
individual agent’s driving behavior. Today, the number
of traffic microscopic simulation models is vast and the
simulation approaches and model applications are
diverse. Traffic engineers rely on microscopic traffic soft-
ware to examine signalized roundabouts, optimize signa-
lized intersections, to test a wide range of traffic
management measures such as ramp metering or high-
occupancy lanes measures, to estimate individuals vehicle
traffic emissions, and to design and test control algo-
rithms for autonomous vehicles. Individual driver beha-
vior in microscopic traffic models is based on a
combination of mainly three models: car-following (CF)
models, lane-changing models, and gap acceptance mod-
els. CF models are the sub-models that describe the inter-
actions with preceding vehicles in the same lane (1). Lots
of research has been carried out on this topic, from the

Gazis–Herman–Rothery model at the General Motors
research labs in the fifties and earlier sixties to modern
models such as the Intelligent Driver Model in the cur-
rent century (2). Good examples of literature review on
historical CF models can be found in Brackstone and
McDonald (2) and Treiber and Kesting (3).

During the past decades, existing parametric CF mod-
els have been enumerated and calibrated using tradi-
tional techniques and small yet accurate data sets.
Traditional optimization calibration techniques simply
consist of maximizing the fit of a particular parametric
equation to the data, given a set of parameters and an
objective function. During recent years, large data sets
are becoming available thanks to technology improve-
ments and governmental efforts such as the Next
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Generation Simulation data sets (4). Contrary to the tra-
ditional data sets, these data sets contain large amount
of data, for example, thousands of trajectories.
Nonetheless, they may have errors, noise, and could only
represent small data space regions. Calibration of para-
metric models using these large data sets can encounter
several difficulties. First, large amounts of data represent
a challenge to traditional optimization schemes because
of computational time issues. Second, parametric traffic
models will always be constrained by their specific model
parameters. A lot of work has been done already in rela-
tion to model calibration and sensitivity analysis on
parameters, such as Daamen et al. (5). Moreover, studies
such as Ossen (6) have shown that drivers might behave
significantly differently in identical situations. Therefore,
it is challenging to shape driver behavior in a fixed con-
strained parametric model. Finally, traditional para-
metric models might suffer from overfitting or wrong
estimations outside calibration data space regions.

Alternatively to parametric formulation, non-
parametric models derived from data-driven techniques
are rapidly becoming popular; an overview is presented
in the next section. The main benefit of such models is
that any kind of data can be easily used to try to predict
the behavior of drivers, without the need of a specific
model enumeration. At the same time, a weakness of
data-driven models is that data for all driving conditions
in all driving conditions are necessary, which is often
lacking for rare situations. To benefit from data-driven
formulation and at the same time be able to predict
unknown situations, we propose an application of an
existing formulation, Gaussian process regression (GPR)
with a fixed deterministic mean, to enumerate a CF
model. The proposed model relies on a non-parametric
data-driven formulation when there are historical data.
Its non-parametric formulation gives freedom to the
model to capture drivers’ behavior, and at the same time,
it enhances fast optimization calculations. The model
also uses parametric formulation for data regions outside
the historical data. Combining both parametric and non-
parametric formulation allows us to make adequate pre-
dictions inside and outside training data set regions.

Thus, the aim of the paper is twofold:

I. Explore whether GPR formulation can be
applied to describe longitudinal behavior of
cars;

II. Explore new variables that could help to
describe the longitudinal behavior of cars. By
applying GPR, we get the chance of getting
insights in new variables relationships to
describe this behavior. The formulation allows
us to easily add or subtract variables to check
its relevancy.

To the best of our knowledge, it has not being
explored if GPR formulation can be used to elaborate a
CF model. Moreover, traffic engineers have not tradi-
tionally explored variables such as the traffic light or the
distance to the traffic light to describe the behavior of
drivers at signalized intersections. Reasons for this are
the lack of data, added complexity to (parametric) for-
mulation, or difficult transition of the formulation
between environments with and without traffic lights.
Overall, using a large data set from new traffic data-
collection techniques with non-parametric model formu-
lation is challenging and represents a new line of research
in the traffic field. This is elaborated further in the next
section. After that, the paper is set up as follows. The fol-
lowing two sections illustrate the problem definition that
has inspired this study and propose a methodology to
build hybrid GPR models. Then, the paper explains the
set up of the case study. Finally, the paper depicts the
simulation results and draws the conclusion driven from
this study.

Literature Review on Data-Driven
Techniques in CF Models

Data-driven techniques such as machine learning, deep
learning, or data mining are becoming more popular in
the transportation field as they can benefit from a large
amount of information. Academic research in machine
learning techniques has mainly focused on traffic appli-
cations. For instance, Karlaftis and Vlahogianni pro-
vide a list of studies using machine learning techniques
in traffic operations (traffic forecasting, incident detec-
tion, etc.), planning (route and mode choice, analysis of
travel behavior, trip generation, etc.), and safety and
human behavior (accidents analysis, fitness to dri-
ve,,etc.) (7). Hofleitner et al. propose a hybrid approach
of traditional flow modeling techniques and machine
learning to forecast urban travel time with streaming
GPS probed data (8). Elfar et al. explore the use of
three machine learning techniques—logistic regression,
random forests, and neural networks—for short-term
traffic congestion prediction using vehicle trajectories
available through connected vehicles technology (9). Lv
et al. describe a deep learning approach to predict traf-
fic flows (10).

The potential use of data-driven techniques in micro-
scopic traffic modeling and in particular CF models is
starting to be widely adopted to predict the longitudinal
movement of automated vehicles. Artificial neural net-
work (ANN) was one of the first machine learning tech-
niques to be studied. For example, Panwai and Dia
describe a CF model using reactive agent techniques
based on a neural network approach for mapping percep-
tions to actions (11). It classifies five driver modes (e.g.,
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free driving, following, danger, etc.) with ANN according
to speed difference and spacing inputs, to later on apply
response rules according to the driver mode. Khodayari
et al. describe a complete ANN model given four inputs
(spacing, speed difference, speed, and reaction time), one
output (acceleration), and only one hidden layer (12).
Unlike other models, the reaction time is not considered
fixed and it is linearly dependent on the spacing and the
current acceleration of the driver. Recently, deep learning
and reinforcement learning are new lines of research.
Wang et al. detail a new deep neural network rather than
conventional neural networks to establish a CF model
(13). It uses speed, speed difference, and position differ-
ence observed in few time intervals as inputs, and it is
built in a data-driven way. Zhu et al. (14) use the same
explanatory variables as Wang et al. (13) and deep learn-
ing to enumerate a framework for human-like autono-
mous vehicle CF planning. The model is trained from
trial-and-error interactions based on a reward function.
Similarly, Gao et al. establish a reward function for each
driver data based on the inverse reinforcement learning
algorithm to model complex traffic conditions (15). Lee
et al. combine a stochastic CF models and deep learning
architecture to determine if a driver attempts lane chang-
ing in a multi-lane freeway (16).

Few studies attempt to build a hybrid model combin-
ing parametric and non-parametric formulation. Yang
et al. try to improve the machine learning-based CF
models by combining them with a kinematics-based CF
model (i.e., parametric model) (17). It uses machine
learning-based models such as Back-Propagation
Neural Networks and Random Forest models together
with the well-known Gipps model (parametric model).
The study shows that both machine learning CF models
have better performance when are combined with a
parametric model than alone. This proves that combin-
ing both parametric (kinematic models) and non-
parametric models (data-driven models) is an interest-
ing line of research. To the best of our knowledge there
are no studies aiming to use a GPR approach to derive
CF models. This is therefore addressed in the current
paper.

Problem Definition

CF models aim to simulate the longitudinal driving agent
behavior along the road. Existing models aim to mimic
the acceleration of a driver, that is, response variable, in
time step t, based on a set of predictor variables at time
step t-1. As in many other CF studies, this study suggests
to predict acceleration of a vehicle n at time step t, that is,
a n t

. The proposed predictor variables to describe accel-
eration are listed as follows:

Figure 1 depicts the response and predictor variable
proposed in this project to describe drivers behavior.

The Proposed Methodology

Large data sets brings the opportunity to investigate new
data-driven oriented forms of deriving CF models to cap-
ture driving behavior, which may be difficult to describe
in fixed parametric equations. At the same time, the CF
model should be able to predict the acceleration of the
driver in any driving situation, even if this situation is
outside the training data set. Therefore, we propose a CF
model based on GPR with a fixed parametric basis func-
tion. The GPR model formulation benefits from the non-
parametric formulation in those space regions where
there is historical data. Therefore, the model relies on the
data correlation instead of on fixed underlying equations
if there is a correlation with the training data set. By
doing so, we aim to gain new empirical insights into
longitudinal driving behavior by capturing all attributes
in this data-driven process. The GPR formulation gives
flexibility to include and exclude new variables and study
their relationships. Finally, the GPR model formulation
shifts to an existing parametric model in those space
regions with no correlation with the training data set.
Model predictions made by the exiting parametric model
are not assessed in this paper. This is because the para-
metric formulation used has not been validated inside or
outside space regions of the available data. However, the
proposed formulation can be used when there is already
a validated parametric formulation in outside space
regions of the data. In any case, we ensure the

v n t�1
The own speed of vehicle n at time step t-1

s(n, n�1) t�1
The spacing distance between vehicle n and its

leader vehicle n-1 at time step t-1
Dv(n, n�1) t�1

The speed difference between vehicle n and its
leader vehicle n-1 at time step t-1

xnt�1 The distance of vehicle n to the downstream
traffic light at time step t-1

STAT t�1 The status of the downstream traffic light of
vehicle n at time step t-1

Figure 1. Proposed response and predictor variables to derive a
CF model.
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completeness of the model. The next sections describe
the formulation of the model and the proposed metho-
dology to train CF models.

Gaussian Process Regression

A Gaussian process (GP) is a type of continuous stochas-
tic process which defines a probability distribution for
functions (18). Consider a training set: f(xi, yi);
i= 1, 2, :::, ng, where~xi 2 R

d and yi 2 R, drawn from an
unknown distribution. A GPR model, it addresses the
question of predicting the value of a response variable
y�, given a new input vector x� and the training data set.
Also known as kriging, GPR it is a well-known applica-
tion enumerated by the French mathematician Georges
Matheron and the Russian meteorologist L. S. Gandin
in the beginning of the 1960s, based on previous work
done of Danie G. Krige (19). GPR has been widely used
in fields such as mining, meteorology, and statistics
among others to optimally predict in space, using obser-
vations taken at known nearby locations.

The contribution of this paper is to apply this existing
method, that is, GPR, to enumerate a CF model.
Therefore, ~xi contains the predictor variables such as
speed and spacing in the training data set and yi repre-
sents the observed acceleration. When a new input vector
is given x�, the model calculates a predicted acceleration
y�.

Now suppose that we pick a particular finite subset of
set of random variables indexed by a continuous vari-
able: f (x), f = ff1, f2, :::, fng, with indices xi. In a GP, any
such set of random function variables are distributed
multivariate Gaussian (20):

P(f jX );N (m,K) ð1Þ

where m : X ! R is the mean function and K : X2 ! R

is the co-variance function of a real process f (x):

m(x)=E½f (x)� ð2Þ

K(x, x0)=E½(f (x)� m(x))(f (x0)� m(x0))� ð3Þ

Thus, a GPR is completely specified by its mean func-
tion and co-variance. The latter can be defined by vari-
ous kernel functions. The kernel co-variance function
describes how far apart the given training data points
from each other, that is, correlated between each other.
A mathematical description of the GPR and kernel func-
tions can be found in Rasmussen and Williams (21).

Training observations typically incorporate noise
(y= f (X )+ e). Assuming additive independent identi-
cally distributed Gaussian noise e with s2

n, the prior on
the noisy observations becomes:

cov(y)=K(X ,X )+s2
nI ð4Þ

Usually, the mean function m(x) is assumed to be zero.
However, we suggest using a deterministic (fixed) mean
function m(x). There exist several reasons to include a
mean function into the GPR formulation such as includ-
ing interpretability of the model or convenience of
expressing prior information, among others (21). In our
case, we aim that the basis function is able to predict all
those situations lacking in the training data.

f (x);GP(m(x), k(x, x0)) ð5Þ

Thus, assuming the training set, (X , y), with additive
independent identically distributed Gaussian noise e with
variance s2

n, a new input point x� and the desired y�, and
the deterministic fixed mean basis function m, the co-
variance function and the joint distribution of the
observed target values and the function values at the test
locations under the prior are:

P(y�jy,X , x�);N (y�j�f�, cov(f�)) ð6Þ

where the predictive mean is

�f�=m(x�)+K(x�,X ) K(X ,X )+s2
nI

� ��1
(y� m(X ))|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

a

ð7Þ

and the predictive variance is

cov(f�)=K(x�, x�)� K(x�,X ) K(X ,X )+s2
nI

� ��1
K(X , x�)

ð8Þ

Note that when x� is uncorrelated with X , the predic-
tive mean m� tends to zero as K(xT

� ,X ) is small. Thus, the
resultant mean function of the predictive distribution is
the underlying mean function of the explicit basis func-
tion evaluated in the new input m(x�).

The GPR models need to be trained. This means find-
ing the best parameter values that best fit the training
data. The parameters to be optimized, commonly called
hyper-parameters, are:

� u set of parameters from the kernel co-variance
function K(X ,X ).

� s2 variance noise of the training data.

To get insights into what does GPR model looks like, a
theoretical example is illustrated in Figure 2. Imagine that
we train a GPR with a data set (see Figure 2a). Then, we
use the GPR trained to make prediction using a new data
input point x�. Note that for this single data point input,
the GPR prediction is a Gaussian normal distribution with
mean m� and predictive variance as depicted in Equation
8. Consequently, the blue line in Figure 2a represents the
predictive mean function evaluated to all x axis. As can be
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observed in the same figure, the predicted mean tends to
the data when observations are close and to zero where
there are no data nearby. Furthermore, the variance is
small when the given input is close to training data points.
The kernel co-variance function evaluated into the new
input data point x�, that is, K(x�,X ) describes how the
new data point is correlated to the training data. The var-
iance noise of the training data, that is, s2, also plays a
major role. It highly affects the total variance of the GPR
prediction, that is, the width of the prediction confidence
interval, dashed line. The next step is to incorporate a m

basis function as mean in the GPR. By doing so, the GPR
relies on data points in those space regions correlated with
the training data, and it relies on a specific basis para-
metric function where new input data points are uncorre-
lated with the training set (see Figure 2b). This is possible
by incorporating a basis function as a mean function of
the GPR. Then, when making a prediction of a new data
point, that is, x�, the predictive mean is the sum of the eva-
luation of the new point in the basis function ( m(x�)) plus
the GPR term ( K(x�,X )a), which depends on how this
point is correlated with the training set. If K(x�,X )= 0,
no correlation, the predicted mean will be the basis func-
tion. If K(x�,X ).0, correlation, the predicted mean will
deviate from the basis function according to the kernel co-
variance function. There are two main key points when a
basis function is incorporated: (1) the transition between
data points and basis function, and (2) how far apart are
those two functions originally.

Implementation

We propose the following scheme depicted in Algorithm
1 to derive the optimal hyper-parameters, (u,s2). This

approach can be seen as a traditional optimization using
GPR formulation.

The following points provide a description of the ele-
ments used in the optimization of the hyper-parameters
to build the GPR models:

� The training subset consists of the response vari-
able measurements (i.e., ~A acceleration measure-
ments) and the explanatory variable measurements
(i.e., ~y=(~v,~s,~Ds,~X , ŜTAT) speed, spacing, speed
difference, distance to the traffic light, and status
of the traffic light).

� Initial hyper-parameters are:
- Kernel parameters in the kernel function,

u0 =(sl,sf ) are set to mean(std(predictors)))
and std(response)=

ffiffiffi
2
p

respectively. We use the
squared exponential kernel.

- Initial variance noise of the training data is
assumed s2

0 = ½std(response)=
ffiffiffi
2
p
�.

The optimal velocity model (OVM) is chosen as a
fixed deterministic basis function. This time-continuous
model describes acceleration of a driver based on its own
speed and the spacing with its predecessor. Originally
introduced by Bando et al. (22), the model adapts the
actual speed v, to the optimal velocity vopt on a time scale
given by the adaptation time t. The optimal speed vopt
increases while spacing increases until the desired speed
v0 is reached on a certain spacing and afterwards it keeps
constant:

_vOVM(s, v)=
(vopt(s)� v)

t
ð9Þ

where

Figure 2. Theoretical interpretation of Gaussian processes regression (GPR) with basis function. (a) GPR with zero mean. (b) GPR with
basis function.
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vopt(s)= v0

tanh( s
Ds
� g)+ tanhg

1+tanhg
ð10Þ

All OVM parameters t, v0, Ds and g are defined by posi-
tive values. OVM parameters values have been set
according to Treiber and Kesting (3). The two main rea-
sons to choose this model among other linear or non-
linear parametric CF models are:

(i) OVM predicts the acceleration of a driver. This is
the same response variable as in this study.

(ii) OVM is one of the simplest CF models. It only
uses two explanatory variables (i.e., speed and spacing).
The mathematical formulation of the GPR shows that
the variables included in the basis function must be also
included as a predictor variable in the GPR. This means
that by using the OVM as basis function, all GPR

models should at least have speed and spacing as predic-
tor variables. Speed and spacing are two main variables
in any CF model. Thus, it is not a significant drawback.

Case Study

Training Data Set

We used data collected by roadside units radars at signa-
lized intersections in Amsterdam (NL). The radars were
used in one of the first worldwide large-scale field opera-
tional tests testing coordinate network-wide deployment
of traffic management in practice (23). Radar devices
were used to track vehicles at intersections. Each radar
measured x and y position and speed with a frequency of
4.4Hz, that is, 0.2275 s time interval. Furthermore,
radars automatically assigned IDs to each vehicle for
each measurement based on an internal algorithm using
past observations. Traffic light data were also available
and used in this project. Figure 3 depicts several tracked
vehicle trajectories tracked by radars.

The quality of the raw data collected by the radars
presented two main challenges:

(i) The raw data was full of gaps and, thus, incom-
plete. Occlusion of the radars and interference
and reflections from the city environment were
frequently observed, leading to incomplete and
split trajectories. These data quality issues rep-
resented a major issue as it was not straightfor-
ward to assign preceding vehicles to other
vehicles, which becomes essential for any CF
model formulation.

Algorithm 1 Hyper-parameters optimization

Input: Training Subset (X̂, ŷ), (u0,s2
0) (Initial hyper-parameters)

(m) Basis Function
1: Objective Function: û, ŝ2 = argmin u,s Fmix½ssim�(u,s2)
2: Build the GPR with the training data- Equation 5: Calculation of

a= K(X,X)+s2
nI

� ��1
(y � m(X))

3: Prediction of following trajectories. Input: the first point of
each trajectory and the trajectory of the leader (from the
validation data set). Trajectories are calculated from the mean
prediction of acceleration:
E(y�jy,X, x�, u,s

2,m)=m(x�)+K(x�,X)a
4: Calculation of Fmix comparing each simulated trajectory to

the observed trajectories in the validation training set
5: Average Fmix

Output: (u,s2) (Hyper-parameters)

Figure 3. Overview of radars and tracked vehicle trajectories. City background and city map of Amsterdam were retrieved from
GoogleMaps (24).
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(ii) (ii) The data location and speed measurements
were noisy because of the radars’ nature and
also because it was not guaranteed that consec-
utive measurements of a vehicle were using
same vehicle reference position.

To solve all the above-mentioned main issues, several
data processes have been carried out; a full description
can be found in Echaniz (25). In short, trajectories have
been independently smoothed per x and y position using
the moving average method. Then, split trajectories have
been mapped using a linear assignment problem solved
by the Hungarian method (26) with position, temporal,
and lane constraint to assign weights to the trajectory
candidates. Later, missing trajectories have been linearly
estimated. Those estimations have not been included in
the final data set, but they have been used to identify in
which order vehicles were driving. If an interpolated (esti-
mation) of a vehicle was either a follower or a leader, the
data were discarded. Despite losing 2% of reliable data
through wrong estimation, it is avoided that 10% of all
reliable points present a wrong preceding assignment.

Finally, from all combinations of reliable consecutive
trajectories, that is, leader plus following vehicles, 275
complete coupled trajectories have been randomly
selected from the Tuesday 7 and Wednesday 8 June,
2016 from 6 a.m. to 8 p.m. This specific data size is cho-
sen because of computational time constraints of the
implementation. Nevertheless, in total more than 32.000
measurements are included into the training set for the
GPR, which is considered a big data set.

The quality of the processed data is satisfactory, yet is
not ideal for our aim to derive a CF model. First, the
vehicle length is unknown. Thus we assume a standard
length of 5m. Second, consecutive radar measurements
might not belong to identical vehicle points. For instance,
the traffic radar can measure the location of a vehicle
taking as a reference the front windows of a vehicle,
whereas the consecutive measurement takes the front
bumper as a reference. This issue is even worse if the road
is not completely perpendicular to the radar, as in this
case. These two aspects have a great influence in the cal-
culation of the spacing in between vehicles. By smoothing
the trajectories in the data processing the impact of these
data peculiarities has been reduced. However, still rela-
tively small spacing ( \ 0.5m), and collisions are even
observed in real observations. Collisions have been
excluded from the data. Nonetheless, the dilemma
remains whether small spacing should be deleted or not.
In this study, we use all positive spacing measurements as
we cannot ensure that small spacing measurements
are not reliable. This data aspect has had a great influ-
ence on the results, as explained in the simulation results
section.

Assessing the Model’s Quality

The reliability and robustness of the different GPR vari-
able combinations fits are assessed by applying specific
performance criteria, which measure the deviations
between the GPR simulated predictions and the real
data. To find the robust model, one main key perfor-
mance indicator (KPI) is used to benchmark the different
set of models: the spacing mixed error. This is presented
as follows:

Fmix½ssim�=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

h sdataj ji
ssim � sdatað Þ2

sdataj j

* +vuut ð11Þ

As introduced in implementation of the methodology,
the mixed error, that is, Fmix, is also used in the optimi-
zation scheme. This error measures the percentage differ-
ence between consecutive trajectories in relation to
spacing (27). Each simulated trajectory is initialized by
the initial position and speed of the observed trajectory
from the validation data. From the second time step, the
simulated trajectory becomes independent from the
observed trajectory and exclusively depends on itself and
the observed leader. Each time step, the difference in
spacing between the observed and the simulated trajec-
tory is computed. Later, a temporal average is done
according to the amount of the data points of the trajec-
tory. Finally, the average from different mixed error of
every specific trajectory is calculated. As shown in the
formulation of this KPI, sdata is partially excluded from
the main term. Kesting and Treiber (27) suggest this
approach to avoid overestimation errors for large gaps
at high velocities, and to avoid systematic overestimates
of deviations of the observed headway in the low velocity
range. The conceptual interpretation of the mixed error
is the percentage error between the simulated and the
observed trajectory. Previous studies show that best fit-
ting models present a mixed error in a range of 10%–
30% (27–30).

The GPR models are not collision free; that is, its
mathematical formulation does not explicitly ensure no
collisions. Thus, the number of collisions observed in the
simulated trajectories is also used as a KPI.

A complete day data set of one lane is exclusively used
for validation purposes. Thus, this data set is not
included in the training data set. Specifically, data from
June 9, 2016 are used. Examples of these trajectories can
be seen both in Figures 3 and 4. Dry weather conditions
were observed that specific day. In total, 2,790 individual
following trajectories with a minimum of 10 continuous
measurements are used to assess the models. Note that
both consecutive following trajectories and leader trajec-
tories are needed. These trajectories are exclusively used
for validation purposes (i.e., not training). The data set
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size for training purposes is smaller than the data set
used to assess the model’s quality (279 versus 2,790 tra-
jectories). The main reason for this is computation time.
A larger training set would be infeasible to compute.
However, note that in the 279 trajectories in the training
set, there are more than 32,000 observation points in
total. We could have used a smaller validation data set
following traditional division of data sets (e.g., 80/20);
however, we believe that testing for a larger data set can

lead to a more reliable validation process, particularly to
assess the collisions. By performing an empirical valida-
tion with the before mentioned KPI, we are exclusively
assessing the validity of the model inside the data space
region of the validation (and training) data, for example,
a road section of 100m in an urban signalized
intersection.

Case Study Set-up

We have trained several GPR models using different pre-
dictor variables combinations. These combinations of
variables can be found in Table 1. As a constraint for
using a basis function, spacing s(n, n�1) t�1

and speed v n t�1

need to be always included in all combinations. After
training all GPR models with the training data, we have
simulated a full day of trajectories and validated each
GPR model individually, as depicted in the previous sub-
section. By doing so, we can assess the validity of each
model and also the influence of each predictor variables
on the driver behavior. As is depicted in Algorithm 1, we
assume the predictive mean acceleration of the GPR to
predict the vehicle’s trajectories. Finally, we have com-
pared the best GPR fitted model with a calibrated OVM
using the same training set. Therefore, we check whether
adding non-parametric formulation to an existing para-
metric model improves the accuracy of the predictions.
Unfortunately, we are not able to compare the GPR
model with other data-driven techniques, as it not feasi-
ble because of the lack of formulation studies available
and its complexity. It is left for future research.

Results

GPR Models and Variables Relationships

Table 1 depicts a set of GPR models trained combining
different predictor variables: spacing s(n, n�1) t�1

, speed
v n t�1

, speed difference Dv(n, n�1) t�1
, the distance to the

traffic light x n t�1
, and status of the traffic light STAT

t�1. In total, eight models are tested and evaluated in an
arbitrary order according to the KPIs and validation
data described in previous section. Generally speaking,
the results show that several GPR models are able to
make accurate predictions, that is, Fmix smaller than
20%. However, all GPR models present collisions. For
example, there are nearly 200 collisions in the best mod-
els. This represents a collision in 6% of the trajectories in
the validation set. Spacing and speed are two major vari-
ables in all CF models. We cannot study their influence
independently because of the constraints of the basis
function. The GPR model with both variables has a mix
error of 30%, showing that there is the need to include
more explanatory variables. Adding speed difference
seems essential to describe driver behavior at urban

Figure 4. Simulated versus observed trajectories. Gaussian
process regression (GPR) model trained with spacing, speed,
speed difference and status of the traffic light as predictor
variables and a fixed basis optimal velocity model function. (a)
Example of a good trajectory estimation by the GPR
(deceleration). (b) Example of a good trajectory estimation by the
GPR (deceleration + acceleration). (c) Example of a good
trajectory estimation by the GPR (deceleration). (d) Example of a
wrong trajectory estimation by the GPR leading to a collision.

8 Transportation Research Record 00(0)



signalized intersections. When this variable is added,
both the number of collisions and the Fmix are drasti-
cally reduced. Similarly, adding traffic light status
improves the model accuracy; that is, lower Fmix and
fewer collisions. Finally, distance to the traffic light
seems to not influence the acceleration of drivers. This
variable even worsens the results. Note that these results
only refer to the space region of the data set. Therefore,
assessment is performed according to how similar the
model is compared with the validation data.

Even in the best GPR trained models, simulation
shows that collisions still occur (6% of the simulated tra-
jectories). Figure 4 shows several simulated trajectories.
The GPR model is able to predict accurate deceleration
of drivers until standstill, as depicted in sub-figures 4, a
or b. Moreover, when the traffic light turns green and
the leader vehicle starts accelerating, the GPR model
predicts positive acceleration values (e.g., sub-figure 4b).
Collisions are mainly predicted by the GPR model when
following drivers are driving relatively close to the leader
(small spacing values), such as in sub-figure 4c. When
the leader stops at a traffic light, the model is sometimes
not able to predict high deceleration values. This leads to
situations in which vehicles are not able to brake in time.
The main hypothesis to explain the collisions is that
spacing measurements are sometimes not reliable
because of the noisy position measurements collected by
the radar. In the training set, very small spacing mea-
surements (i.e., smaller than 0.5m) with a great variabil-
ity of speeds and speed difference values can sometimes
be observed, which seems unrealistic. All these lead to
high variance and an inaccurate predicted mean accelera-
tion when spacings are relatively small (ł 2m), which
are usually found in deceleration phases. In this study we
assumed that each measurement belonged to the front
part of a vehicle. Furthermore, we assumed a length of
5m for all vehicles. To obtain the net spacing, the length
of a vehicle was subtracted from the distance measured

between consecutive drivers’ position measurements.
However, in reality, the radar might be measuring other
parts of the vehicle, such as the side part of a vehicle
instead of the front point. Also, the vehicle length in The
Netherlands varies significantly among vehicles.
Typically this varies from 3.5 to 5.4m for passenger cars
and vans. Trucks and semi-trucks measure up to 12m
and 18.75m, respectively. Moreover, by smoothing the
position measurements in the data-processing section we
are altering the reference point. With all these issues, we
might be committing an error of dozens of centimeters
or even few meters. Therefore, if the predicted trajec-
tories are also off by a couple of dozen centimeters, this
will lead (directly or indirectly) to predicted collisions.
Therefore, reliable spacing measurements are essential
for any CF to simulate stop-and-go traffic conditions
and to avoid collisions. Having more reliable training
data would presumably lead to models with no colli-
sions. To avoid model collisions we could include an
extra parametric formulation to enforce a collision-free
model. Another approach to improve the performance
of the model could be using clustering methods as a basis
for a (meta-)model, whose variables are not either of the
base variables but some combined ones.

Performance of GPR Formulation versus Parametric
Formulation Stand-Alone

This section compares the performance of GBR formula-
tion versus a parametric model stand-alone. This is done
to see if there is a benefit of using GBR formulation
compared with traditional models and techniques. We
have used the OVM as a parametric model. In other
words, we are actually checking whether adding non-
parametric formulation to an existing parametric model
improves the accuracy of the acceleration predictions.
The OVM has been separately calibrated using a

Table 1. Gaussian Process Regression Models’ Results Trained Combining Different Predictor Variables

Variables

Results

Fixed basis function

s v Dv x STAT Fmix½spacing� (%) Collisions �

1 2 Variables � � - - - 38 811
2 3 Variables � � � - - 19 177
3 3 Variables � � - � - 35 774
4 3 Variables � � - - � 33 659
5 4 Variables � � � � - 21 634
6 4 Variables � � � - � 17 256
7 4 Variables � � - � � 31 267
8 5 Variables � � � � � 18 192

NOTE: � = selected; - = Not selected. *Collision out of the total number of following trajectories in the data set (2,790).
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traditional nonlinear optimization problem and a classic
optimization algorithm, that is, interior point. We have
used the same training of the GPR models to calibrate
the OVM stand-alone. Initial parameters and parameters
constraints in the optimization were set to the values
according to Treiber et al. (31).

Results show that OVM stand-alone scores worse
than the best GPR model in relation to the mixed error,
that is, 17.4 % versus 18.6%. Nonetheless, OVM stand-
alone presents no collisions, whereas the best GPR model
presents around 175 collisions out of 2,790 trajectories.
Figure 5a shows the acceleration predicted by the OVM
given spacing and speed values and using the optimal
parameters found in the calibration. According to the
results, the calibrated OVM is quite accurate in similar
space regions of the data set and presents typical mixed
error ranges found in the literature (27). Yet, outside
space regions of the data set, the acceleration predictions
are poor. The model seems to suffer of overfitting in the
space regions of the calibration data. According to the
results of the OVM stand-alone, if spacing is big enough,
drivers accelerate until achieving a desired speed of
28 km/h. Afterward, drivers keep their speed constant
(zero acceleration). A desired speed of 28 km/h represents
a low value to describe the desired speed in a signalized
intersection with a speed limit of 50 km/h. Therefore, it
represents a wrong model estimation in relation to
completeness.

Figure 5 exemplifies both options: traditional calibra-
tion of the OVM (basis function) stand-alone versus
GPR formulation. The figures show the acceleration pre-
dicted by the calibrated OVM and by the GPR built with

the same explanatory variables (speed and spacing).
Figure 5a shows the simple prediction shape of the
OVM, which results in a relatively low desired speed.
Figure 5b clearly depicts the space regions where there is
historical data (complex shape) and the regions where
the model relies in the OVM (similar to left figure). To
highlight, the transition between the parametric and
non-parametric model plays a major role in this kind of
GPR model. Note that the GPR model trained with only
speed and spacing as in this figure presents a poor mixed
error—38%—as shown in Table 1. The OVM stand-
alone presents a mixed error of 18.6%. Higher accuracy
models, which score better than the OVM stand-alone,
are achieved with four predictive variables, which would
be challenging to represent in a graph. Overall, this
example shows the importance of the GPR formulation
to ensure a complete model and avoid overfitting issues
of the traditional parametric calibration techniques.

Conclusions

This paper has proposed a methodology to derive a CF
model based on GPR formulation with a basis function.
The main scientific contribution of this paper is to
explore the application of the GPR formulation to
describe longitudinal driver behavior to benefit from
large data sets that are yet incomplete and from small
space regions. The main weakness of data-driven models
to describe driving behavior is that data for all driving
conditions in all driving conditions are necessary, which
are often lacking for rare situations such as collisions or
strange driver behavior. This gap is filled by combining

Figure 5. Gaussian process regression (GPR) results. Predicted acceleration of calibrated optimal velocity model (OVM) and GPR
results using speed and speed difference. Red line shows the speed–spacing combinations where acceleration is zero. (a) Calibrated OVM;
(b) GPR results.
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traditional parametric models and non-parametric in the
GPR formulation.

This paper shows that this methodology is able to
provide accurate acceleration predictions. By using GPR
formulation we obtained new variables relationships to
describe longitudinal behaviors of cars. This represents a
major benefit, particularly for formulation of CF mod-
els, as traditionally traffic engineers have not extensively
explored variables such as the traffic light or the distance
to the traffic light. In this paper, we show that given the
data set we possess (Amsterdam NL), the status of the
traffic light influences the acceleration of drivers. This
would have been difficult to check with other formula-
tions and techniques. Next to the status of the traffic
light, spacing, speed, and speed difference with the leader
are the other explanatory variables included in the most
accurate GPR model.

Despite results showing that GPR models are as good
as traditional CF models (27), collisions are still occur-
ring. Therefore, it is expected that with full non-
parametric approach, rare events would occur even more
often because of extreme and wrong acceleration predic-
tion. This highlights the need to design hybrid models
with good transitions to parametric models to guarantee
that certain rare and unexpected events do not occur. In
any case, if new data sets with new predictor variables or
from other space regions become available, the model
can be easily upgraded.

We have analyzed if there is an improvement by
applying GPR formulation to turn a parametric model
into a hybrid parametric and non-parametric model. We
have calibrated the optimal velocity CF model (OVM)
used in the basis function of the GPR with the same
training data used to trained the GPR models. A GPR
model with fixed basis function scores better results than
OVM in relation to mixed error. However, still the origi-
nal OVM ensures no collisions, whereas the GPR model
occasionally predicts collisions. The GPR solution is the
predictive mean and the variance of the acceleration.
Trajectories are estimated from the predictive mean only.
How the variance can be included in the estimation of
trajectories and how to improve the accuracy of the
acceleration predictions is an interesting line of research
for future studies. The solution is directly derived from
the hyper-parameters, which includes the noise of the
measurements. The noise and measurement errors from
the spacing might be too significant to ensure a collision-
free model, especially given that spacing is one of the
most important variables in CF formulation to replicate
stop-and-go traffic conditions.

This modeling methodology allows us to build accu-
rate models in space regions where we possess data and,
at the same time, ensure completeness in all space
regions. This study shows a methodology to describe

driving behavior which can be updated over time with-
out new enumerations of the model as soon as new data
become available. This proves how strong this formula-
tion can be for the transportation field.
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