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Abstract
Wind observations collected at citizen weather stations (CWSs) could be an
invaluable resource in climate and meteorology studies, yet these observations
are underutilised because scientists do not have confidence in their quality.
These wind speed observations have systematic biases, likely caused by improper
instrumentation and station sitings. Such systematic biases introduce spatial
inconsistencies that prevent comparison of these stations spatially and limit the
possible usage of the data. In this paper, we address these issues by improving
and developing new methods for identifying suspect observations and adjusting
systematic biases. Our complete quality control and bias adjustment procedure
consists of four steps: (a) performing within-station quality control tests to check
the plausible range and the temporal consistency of observations, (b) adjust-
ing the systematic bias using empirical quantile mapping, (c) implementing
between-station quality control to compare observations from neighbouring sta-
tions to identify spatially inconsistent observations, and (d) providing estimates
of the true wind when CWSs falsely report zero wind speeds, as a complement
to the bias adjustment. We apply these methods to CWSs from the Weather
Observation Website (WOW) in the Netherlands, comparing the crowdsourced
data with official data, and statistically assessing the improvements in data qual-
ity after each step. The results demonstrate that the crowdsourced wind speed
data are more comparable with official data after quality control checks and
bias adjustment steps. Our quality assessment methods therefore give confi-
dence in CWSs, converting their observations into a usable data product and an
invaluable resource for applications in need of additional wind observations.
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bias adjustment, crowdsourcing, citizen weather stations, data quality, quality control, Weather
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1 INTRODUCTION

Wind is an important meteorological component for reg-
ular weather forecasts, as well as being the source of
many weather warnings (KNMI, 2019). Observations of
small-scale wind features can help meteorologists to iden-
tify extreme wind events and enable them to issue skilful
warnings. However, the official wind observing network
in the Netherlands is sparsely distributed, partially due to
the high costs of construction and maintenance. The grow-
ing popularity of citizen weather stations (CWSs) provides
wind observations at many more locations than the offi-
cial observing network. For example, the network of CWSs
used in this research had more than 900 stations in the
Netherlands between 2015 and 2019 compared to the 47
official sites operated by the Royal Netherlands Meteoro-
logical Institute (KNMI 2020a). The weather observations
collected by CWSs, also known as the crowdsourced obser-
vation data (Muller et al., 2015), have the potential to
greatly increase the spatial density of the official network.
However, their data quality is not known or guaranteed
because of their non-standard equipment settings and sit-
ings. For instance, many urban CWSs have nearby obstruc-
tions, such as buildings and trees, which might block the
wind from certain directions. Also, while lower manufac-
turing costs make CWSs accessible to the general public,
these lower costs are often associated with lower preci-
sion instruments. The lower quality of the devices and
the common problem of substandard station siting have
meant that the quality of crowdsourced observations is
viewed with scepticism. To date this has inhibited the use
of crowdsourced observations in meteorological studies, as
also addressed by Chapman et al. (2017).

The attention on crowdsourced observations has
become more prominent in recent years, triggering
researchers to assess the data quality and analyse poten-
tial uses (Bell et al., 2013; 2015; Muller et al., 2015; De
Vos et al., 2020). Bell et al. (2015) developed field studies
to investigate the quality of CWS observations of tem-
perature, rainfall and humidity. They concluded that the
crowdsourced data could contain significant instrument
biases, and therefore any application of those observations
would require a quality control (QC) system that can both
remove errors and correct biases. Other recent studies into
the QC of crowdsourced observations showed that there
is much potential for the application of temperature data
(Meier et al., 2017; Napoly et al., 2018; Nipen et al., 2019),
precipitation data (de Vos et al., 2017; 2019), and surface
wind data (Droste et al., 2020). Droste et al. (2020) were
the first to assess the quality of wind observations from
CWSs located in urban areas, based on devices from the
same manufacturer Netatmo. This first attempt for assur-
ing wind data quality benefited from the homogeneity of

device settings and a relatively small and smooth study
region, where the systematic biases were adjusted in a lin-
ear way. To date, there has been no comprehensive study
on the quality assurance of crowdsourced wind observa-
tions from a large-scale, inhomogeneous network. This
research aims to increase the spatial density of the offi-
cial observing network by making use of crowdsourced
wind speed observations by application of a detailed QC
procedure.

For official automatic weather stations, the QC of
observations is common practice and there is a great deal
of research into the QC methods for official meteorological
observations (Shafer et al., 2000; Durre et al., 2010; Fiebrich
et al., 2010; Estévez et al., 2011; Taylor and Loescher,
2013; Otop et al., 2018). Some researchers studied the QC
for official wind observations in detail (DeGaetano, 1997;
Jiménez et al., 2010; Lucio-Eceiza et al., 2018a; 2018b).
In an early study, DeGaetano (1997) built a QC routine
based on hourly wind speed and direction data which
focused on examining the variation of wind with time,
identifying excessively varying or inordinately constant
observations. Jiménez et al. (2010) proposed more detailed
quality assurance procedures for surface wind speed and
direction observations, and their output dataset had been
proved helpful in wind climatology studies. They mainly
considered three aspects – range limits, temporal consis-
tency, and systematic biases – together with some neces-
sary manual checks (Jiménez et al., 2010). Zahumenskỳ
(2004) summarised general QC steps for wind observa-
tions measured at automatic weather stations in the WMO
guidelines, including range and temporal checks. In our
QC system for CWS wind speed observations, we build the
first part of the procedure based on these classical steps,
and we refer to them as ‘within-station QC’ as the checks
are performed on individual stations.

The use of only within-station QC methods, which
were developed for official stations, is not sufficient to
guarantee the quality of crowdsourced data. According to
WMO standards for automatic weather stations and wind
observations, the wind sensor should be placed at 10 m
above ground, and the measurement site should be flat
and unobstructed by trees or buildings (WMO, 2014). CWS
users generally do not follow these standards rigorously in
practice, and this introduces widespread systematic biases
in their recorded wind speed observations. An additional
bias adjustment (BA) step is therefore needed as part of the
quality assurance of crowdsourced data. While this is not
common practice for official wind data, there are numer-
ous other studies within the climate literature (Terink
et al., 2009; Gudmundsson et al., 2012; Ho et al., 2012;
Teutschbein and Seibert, 2012; Hawkins et al., 2013; Fang
et al., 2015; Navarro-Racines and Tarapues, 2015; Akhter
et al., 2017; Luo et al., 2018). These are mainly developed
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for correcting the bias of climatological model output, par-
ticularly for temperature and precipitation data. We extend
the traditional empirical quantile mapping method found
in the literature to adapt the method to be suitable for bias
adjustment of crowdsourced wind data.

While the within-station QC cannot detect all inaccu-
rate observations, some could be identified by comparing
with nearby concurrent observations. A ‘between-station
QC’ is therefore needed to assess the spatial consistency
of wind observations at an individual station based on
surrounding stations. The between-station QC is partic-
ularly advisable for quality assurance of crowdsourced
data which have a denser observation network but are
of lower quality. However there have been no such stud-
ies for crowdsourced wind data to date. Many researchers
developed methods to check spatial consistency in their
QC studies, mostly for official temperature observations
(Eischeid et al., 1995; Daly et al., 2004; Hubbard and You,
2005; Durre et al., 2010; Fiebrich et al., 2010; Lussana et al.,
2010; Estévez et al., 2011). In addition to seasonal and diur-
nal variability, wind observations can change rapidly in
space and time due to both small-scale and synoptic-scale
effects. Droste et al. (2020) noted that urban wind speed
and direction are particularly hard to quantify because of
the strong turbulent nature of wind. All these features
of wind make it difficult to assess the quality, compared
to more slowly varying variables such as temperature. To
address these unique issues for crowdsourced wind data
and assess the spatial consistency, we extend the classi-
cal inverse distance weighting method for official stations
(Eischeid et al., 1995).

Finally, we develop a novel approach to interpolate
the inflated zero wind speeds that typically appear in
crowdsourced data during periods of low wind speeds.
This approach is an extension of the bias adjustment,
and it attempts to fill the missing gaps in the underesti-
mated zero-valued observations. The inflated zero wind
speeds were excluded from analysis in previous research
on crowdsourced wind quality assurance (Droste et al.,
2020), given that light winds are of less interest for cli-
matology studies. Our novel approach provides estimates
for the censored observations instead of excluding them,
and that is advantageous in a robust QC procedure and
its evaluation. The combination of within-station QC and
between-station QC, together with BA and the estimates of
zero-valued censored data, makes our four-step QC system
applicable to wind speed observations from any CWSs.

The remainder of the manuscript is structured as fol-
lows. In the next section, we introduce the data required.
In Section 3, we develop the four-step QC and BA pro-
cedure, which results in a new quality controlled and
bias adjusted crowdsourced dataset. Then in Section 4,
we compare the output crowdsourced data with official

wind speed observations, and we use statistical evaluation
metrics to quantify the improvements in the data quality.
Finally in Section 5, we outline our conclusions, discuss
the limitations of the study and propose avenues of further
research.

2 DATA

We focus on wind speed observations during the three
years 2016–2018 (times reported in UTC) from CWSs
mainly located in the province of Utrecht, a land area
of about 1,500 km2 with relatively smooth terrain. The
crowdsourced wind data are provided by the third-party
platform, Weather Observations Website (WOW-NL 2020),
and we refer to these CWSs as WOW stations throughout
the paper. There are 93 WOW stations in our raw dataset.
We exclude stations that do not have enough wind data,
and so our study is based on 39 WOW sites that report wind
observations for more than one year. For the WOW data
obtained for this study, the wind measurements were pro-
vided in knots rounded to one decimal place regardless of
whether the original unit of measurement was knots or
m⋅s−1. An additional column exists in the dataset to show
wind speed in m⋅s−1 adjusted from knots. We also use wind
observations from official weather stations as a reference
indicating true wind. The official data are accessed from
the data centre at KNMI (KNMI, 2020b), and we refer to
the 47 official sites spread over the Netherlands as KNMI
stations. These stations follow the standard guidelines in
WMO (2014), and they report wind speed every 10 min
in m⋅s−1, rounded to two decimal places. We show the
locations of 47 KNMI stations in the Netherlands and 39
WOW stations considered in this study in Figure 1, and
it clearly demonstrates the higher spatial density of the
WOW stations compared to the KNMI sites.

The WOW dataset also contains some metadata infor-
mation, including longitude, latitude, and sensor height
for each station. It is necessary that we trust the location
information on longitudes and latitudes as the basis of our
QC research. The sensor height information is not always
correct as we have found cases of one station having multi-
ple height values, which might indicate an inhomogeneity
in the station associated with a change in location and/or
sensor height, or it could simply indicate that the meta-
data have been changed. However, a summarised analysis
on the sensor heights suggested that most WOW wind sen-
sors (around 76.7%) are placed at 0–6 m above ground,
and those low sensor heights could cause underestimation
of wind speed relative to the official 10 m. On the WOW
website of each station, there are artificial grades for loca-
tions and weather variables, and some stations include an
additional description of instrument brand and placement.
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F I G U R E 1 Locations of the 39 WOW stations considered in
this study (circles) and the 47 KNMI stations (squares and triangles).
Squares represent KNMI stations in or around the study region, and
triangles are the rest of the KNMI stations in the Netherlands. The
two KNMI and WOW stations with filled colour are for the
case-study in this work. Grey lines show the provinces of the
Netherlands [Colour figure can be viewed at wileyonlinelibrary.com]

All the information is contributed by CWS owners. A
previous analysis report on WOW data suggested that
the grades for station location and measurement are not
always reliable and have little association with the average
error (Koole, 2016). Only a few CWS owners provide the
manufacturer information, and that makes it impossible to
tailor a QC approach to different types of stations. Given
this lack of dependable metadata, we develop a data-driven
QC and BA procedure that is flexible enough to adjust
individual station biases, and is not hindered by a lack of
metadata.

According to WMO (2014), the standard reporting fre-
quency is every 10 min with integer time indices (MM:SS;
00:00, 10:00, 20:00, 30:00, 40:00, 50:00), but most WOW
stations do not follow such a frequency or timestamp. Pop-
ular brands like Netatmo and Davis report observations
every 5 min, while some others report every 2 or 10 or
15 min, etc. To pre-process WOW data to be matched with
the standard, we aggregate observations every 10 min and
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F I G U R E 2 Density frequency histograms of wind speed
observations from a KNMI station (Cabauw) and an example WOW
station (serial number: 956296001). The two stations are
highlighted with filled colour in Figure 1 [Colour figure can be
viewed at wileyonlinelibrary.com]

take the average as the wind speed at the nearest standard
time index. The number of aggregated observations in each
10 min interval depends on the time resolution at differ-
ent stations, and for stations that report every 15 min or
longer we have to match the observation with its nearest
standard timestamp. This pre-processing step is necessary
as our QC and BA procedure requires 10 min wind speed
observations. The within-station QC checks are devel-
oped for 10 min average wind speeds, and comparisons
with simultaneous official observations are involved in
the bias adjustments and between-station QC. The bene-
fits of pre-processing WOW data outweigh any drawbacks,
such as the introduction of rounding errors during the
averaging.

We notice three kinds of erroneous or suspicious obser-
vations in the WOW data based on a first comparison
of wind speed density histograms at a KNMI station
(Cabauw) and an example WOW station (serial number
956296001), shown in Figure 2. First is the underesti-
mation of the WOW data compared to the KNMI data;
we develop a bias adjustment step to address this in
Section 3.2. Second is the inflated zero observations in
light-wind cases which are reported as zero as a result of
underestimation. We introduce a novel step to provide esti-
mates for these censored observations in Section 3.4. Last
is the suspect observations that are usually invisible in his-
tograms because they could take on any values. However
in our example histogram (Figure 2) the overlarge density
peak of WOW wind speed at around 2 m⋅s−1 might indicate

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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F I G U R E 3 Diagram of the overall quality control and bias
adjustment system for WOW wind speed observations. The four
parts correspond to the four sections in the Methodology; The first
and third parts are quality control checks that can be performed on
any wind speed data, including official observations; The second
and fourth parts are additional bias adjustment steps required for
crowdsourced data [Colour figure can be viewed at
wileyonlinelibrary.com]

some suspect observations. We identify these suspect val-
ues using multiple QC checks in Section 3.1 and 3.3. In
addition, WOW wind speed data typically have stratified
values (Figure 2). This is likely caused by the low-quality
devices, as values from cheap wind sensors are more likely
to be rounded. In our study, we focus on detecting inac-
curate wind speeds and adjusting instrumentation biases
to address these three erroneous types. Correcting for the
stratification in the data is left to future work.

3 METHODOLOGY

In this section, we introduce the standard QC checks for
official wind speed observations and extend these steps so
they can be applied to crowdsourced observations. Our QC
and BA procedure takes the following steps (Figure 3):

(a) within-station (or intra-station) QC (Section 3.1),
(b) bias adjustment (Section 3.2),
(c) between-station (or inter-station) QC (Section 3.3),

and
(d) addressing the censored data (Section 3.4).

Following existing QC methods for official obser-
vations, we seek to perform both within-station
and between-station QC on the WOW data. In the
within-station QC, we follow the guidelines by Zahu-
menskỳ (2004) to check the plausible range and temporal
consistency of WOW wind speeds. However, direct appli-
cation of existing methods to check spatial consistency
is not possible due to differences in how WOW data
are recorded. WOW stations are typically positioned at

different heights, and are usually lower than 10 m. This
means WOW observations systematically underestimate
the actual wind at 10 m, are not comparable in space with
KNMI data which report wind at 10 m. Adjusting the
underestimated WOW data is therefore necessary before
checking the spatial consistency, which is addressed in
the BA step. Once the WOW data have been adjusted, the
between-station QC can be performed among neighbour-
ing stations. The systematic underestimation in WOW
data feeds into a secondary censoring problem – most
WOW stations fail to record low wind speeds and instead
report a zero observation. In the last step of our QC and
BA procedure, we provide estimates for the missing low
wind speeds by spatial interpolation which is specifically
developed for WOW wind data.

3.1 Within-station quality control

The standard within-station QC steps for automatic
weather stations check the plausible range and the tem-
poral consistency of observations, where the temporal
checks consist of a step test and a persistence test (Zahu-
menskỳ, 2004). These steps can be applied to WOW
data without alteration from the standard guidelines, and
we summarise these in Table 1. If an observation fails
one of these within-station QC checks, it is flagged and
will be filtered, i.e., it is not considered in any further
analysis.

3.1.1 Plausible range check

The range check examines whether an observation is
within acceptable limits and detects implausible values.
For instance, a WOW wind speed observation higher than
the world record, or a negative value should be flagged
and rejected. We set the upper bounds based on histori-
cal KNMI highest wind speed records in the Netherlands
(red triangles and squares in Figure 1). This serves as an
intelligent upper bound as WOW stations systematically
underestimate the actual wind speeds.

3.1.2 Temporal consistency check – Step
test

The step test is part of the temporal consistency check and
aims to identify excessive variability with time. Wind speed
observations that have an overly large rate of change could
indicate erroneous recording values of the wind sensor. For
example, a WOW station might report an observation with
an incorrect decimal place, making the value ten times

http://wileyonlinelibrary.com
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Within-station QC Conditions to pass

Plausible range check Between 0 and 35.0 m⋅s−1

Temporal consistency check – step test Changes of no more than 13.88 m⋅s−1 in 10 min

Temporal consistency check – persistence test Changes of at least 0.05 m⋅s−1 in 160 min

T A B L E 1 Summarised
within-station quality control
steps for WOW wind speed
observations

0

5

10

15

00:00 01:00 02:00 03:00

Time of date "2017−11−10"

W
in

d
 s

p
e

e
d

 (
m

/s
)

(a) Step test:

0.0

2.5

5.0

7.5

10 raM51 beF10 beF

Date of year 2016

W
in

d
 s

p
e

e
d

 (
m

/s
)

(b) Persistence test:

F I G U R E 4 Examples of accepted (dot points) and failed (triangle points or bar) wind speed observations in the two parts of the
temporal consistency checks: (a) the step test, and (b) the persistence test [Colour figure can be viewed at wileyonlinelibrary.com]

larger than it should be, e.g., from 1.698 to 16.98 m⋅s−1, as
shown in Figure 4a. There are two parameters needed for
the step test – the length of the time window and the max-
imum variation. We determine these parameters from the
wind data of ten KNMI stations in and around the study
region (squares in Figure 1). The biggest step change in the
standard 10 min KNMI wind data during the three years
2016–2018 is 13.88 m⋅s−1. WOW wind speeds are expected
to change less rapidly than KNMI data due to the low pre-
cision of cheap devices. We therefore take 13.88 m⋅s−1 and
10 min as the two parameters.

3.1.3 Temporal consistency
check – Persistence test

The final step of within-station QC is the persistence test
which aims to detect abnormally low variability in wind
observations with time, particularly consecutive constant
values over a long period. In Figure 4b we show an example
of WOW observations keeping constant for about 15 days,
which is likely caused by an equipment error. To perform
the persistence test, we require two parameters, a time
window and the minimum change acceptable during this
time window. The WOW wind speeds are given in knots
rounded to one decimal place, meaning that the minimum
gap between two different observation values is 0.1 knot
(≈ 0.05 m⋅s−1). We therefore use 0.05 m⋅s−1 as the mini-
mum change. The time window is determined based on
wind data at the ten KNMI stations which are also used in
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F I G U R E 5 The lengths of persistent periods (wind speed
change of less than 0.05 m⋅s−1) in KNMI data

the step test. We analyse the time periods in which KNMI
wind speeds fluctuate less than 0.05 m⋅s−1, and show the
frequency regarding the persistent time length in Figure 5.
We find that the persistent periods are mostly less than
30 min, and the frequency drops to zero at 160 min (i.e.,
sixteen 10 min intervals). A corresponding window length
of 160 min is therefore conservatively chosen based on our
analysis of KNMI data.

For the persistence test, there are two situations that
need to be treated differently. One is spurious data, likely
caused by equipment errors, and the other is censored
data, as a result of censoring of low wind speeds. Persistent
spurious wind speed observations are usually non-zero
or extensive long-lasting zeros, while persistent censored

http://wileyonlinelibrary.com
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wind speed observations are consecutive zeros over short
time periods. We reject only the first case in our per-
sistence test, flagging non-zero observations that fail the
condition, and flagging consecutive zero observations if
the period lasts for more than 2 days. The 2-day time period
comes from our investigation of the same ten KNMI sta-
tions during light-wind periods. The time periods when
KNMI wind speed observations are below 2.5 m⋅s−1 are
mostly shorter than 2 days, with only ten cases exceed-
ing 2 days. Therefore, WOW zero observations repeated for
more than 2 days are much more likely to be erroneous
rather than underestimated. Differentiation of these two
cases is important, as the different mechanisms behind the
missing data need to be treated differently in the later BA
step. The spurious data should be excluded while the cen-
sored data should be kept as they hold an indispensable
probability mass in the WOW wind speed distribution
(Section 3.2.1).

3.1.4 Filtering low-quality stations

After the plausible range and temporal consistency checks,
the quality of some WOW stations is too low to be con-
sidered further. We identify those stations by considering
three aspects:

(a) the Pearson correlation with nearby KNMI stations
(less than 0.5),

(b) the percentage of failed observations in the persis-
tence test (more than 15%), and

(c) the percentage of zeros after the persistence test
(more than 35%).

Also we manually check the selected low-quality sta-
tions to determine whether they should be excluded from
further analysis. The 0.5 correlation threshold and 15%
percentage threshold are determined based on a gen-
eral inspection of the data, and we find that most WOW
stations and all KNMI stations satisfy these conditions.
A station has either poor association with the true cli-
matology or low-quality data in terms of temporal per-
sistence if these conditions are not met. The 35% zero
percentage threshold is determined based on the per-
centage of low wind speeds (less than 2.5 m⋅s−1) at two
KNMI stations in the study region. We consider it is nor-
mal that WOW stations report 0 m⋅s−1 during low wind
speeds, but the >35% situation indicates excessive cen-
sored data. For a different dataset or another observ-
ing region, one could change the thresholds accordingly.
After the manual checks, we removed seven low-quality
WOW stations out of the original 39 stations, leaving
32 WOW stations with acceptable quality for further
analysis.
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F I G U R E 6 The violin plot shows the mean wind speed
observations at WOW stations (right) and ten nearby KNMI
(squares in Figure 1) stations (left) during the 2016–2018 period.
The solid lines show the distribution of each group, while the
square points indicate the average of each group [Colour figure can
be viewed at wileyonlinelibrary.com]

3.2 Bias adjustment

Many WOW stations measure wind speeds that are sys-
tematically lower than those observed by KNMI stations,
as can be seen from the mean wind speed at each sta-
tion in Figure 6. This underestimation is likely caused
by the typically low siting of the wind sensors (usually
about 0–6 m above ground compared to the 10 m stan-
dard recommended by WMO (2014)) and surrounding
obstructions, especially in urban locations. In order to
complement the KNMI official network with WOW wind
speed observations, WOW data should be adjusted so that
their climatology is comparable to that of KNMI stations.
This is important for the spatial consistency check and
for any future uses of WOW data. The step is commonly
known as bias-correction in meteorological studies, and
has been largely developed for temperature and precipita-
tion data output from climate models (Terink et al., 2009;
Gudmundsson et al., 2012; Ho et al., 2012; Teutschbein
and Seibert, 2012; Hawkins et al., 2013; Fang et al., 2015;
Navarro-Racines and Tarapues, 2015; Akhter et al., 2017;
Luo et al., 2018). We call it bias adjustment in our study
because there are no truth data as a correct reference at the
WOW locations.

Among existing methods for BA, there are both para-
metric and non-parametric models developed. We inves-
tigated multiple parametric methods but found that they
were not well-suited for WOW wind data, partially due to
poor distributional assumptions (Chen, 2020). We there-
fore use the non-parametric method of empirical quantile

http://wileyonlinelibrary.com
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mapping (EQM). EQM has been applied for temperature
and precipitation data in previous research (Gudmunds-
son et al., 2012; Fang et al., 2015; Navarro-Racines and
Tarapues, 2015; Akhter et al., 2017; Luo et al., 2018), and
we adapt the method here for crowdsourced wind speed
observations.

3.2.1 Empirical quantile mapping

EQM is used to map the quantiles from the WOW cumula-
tive probability distribution to the corresponding quantiles
in a target distribution that represents the true 10 m wind
speed. In this way, we calibrate the climatology but retain
day to day variability. Let the empirical cumulative distri-
bution function (CDF) of the WOW observations be F̂X (x),
and let the empirical CDF of the true 10 m observations be
F̂Y (y). The WOW data are bias adjusted using the mapping

x̃ = F̂−1
Y

(
F̂X (x)

)
. (1)

Note that the 10 m wind speed is not observed at the
WOW locations, and therefore the target distribution is not
given directly. Instead, we determine the target distribu-
tion by interpolating the climatological quantiles, details
of which are given in Section 3.2.2. We use empirical CDF
for WOW data to avoid distributional assumptions, and to
easily address the presence of the inflated zeros. Manual
inspection reveals that the zero inflation holds a distri-
butional mass representing the cumulative probability of
actual low wind speeds. This probability mass cannot be
ignored when estimating the empirical CDF. However,
EQM maps all the zeros to the same value that corresponds
to the appropriate quantile in the true distribution, despite
the fact that they actually represent various low wind
speed values. We develop a supplementary step after the
between-station QC to provide estimates for these missing
low wind speeds (Section 3.4).

The wind climatology of the Netherlands suggests that
wind varies seasonally and diurnally, and so it is necessary
to perform the EQM bias adjustment for different seasons
and times of day as the statistical distributions would be
different. Investigation of the wind speed distributions for
both WOW and KNMI in different months and hours of
the day confirmed that wind speed is typically lower dur-
ing the night than the day and it is stronger in winter
than in summer. Based on inspection, we concluded that
splitting the data into three seasons and two diurnal peri-
ods is a suitable choice. We set December to March as
the extended winter season, and June to September as the
extended summer season, and the remaining months as
the transition season; we also define 0700–1800 UTC as

the daytime period, and the remainder as the night-time
period. Following such division, we perform EQM BA on
six different periods separately and combine the output
data afterwards. This extra splitting step introduces minor
discontinuities, but manual inspection reveals that gen-
eral trends in observations are retained. We intend to avoid
these discontinuities in future work, using approaches
such as quantile regression, but it was beyond the scope
of this study. A quantile regression approach could also be
adapted to account for variation in sunrise time through-
out the year. For WOW observations in each period, we
apply five-fold cross-validation to avoid overfitting, divid-
ing the observations into five consecutive groups, each
containing the same length of valid data. In each round,
we take four groups as the training set to train the EQM
model, and then use this to perform BA on the remaining
one group. We aggregate the results of those five groups,
and in this way, the biases in WOW data are adjusted not
entirely according to the true climatology to be compared
afterwards. The six implementing periods together with
five-fold cross-validation ensure the EQM BA is able to be
generalised to any observation dataset.

3.2.2 Spatial interpolation of the wind
speed climatology

In EQM BA, the true wind speed at a WOW location is
required to estimate the target distribution. However, the
sparsely distributed KNMI stations are not capable of pro-
viding a true wind reference at the locations of many WOW
stations. We therefore interpolate spatially the wind speed
climatology of KNMI stations to estimate the true wind
that accounts for spatial variability at WOW stations. We
interpolate the quantiles of KNMI wind speed distribu-
tions rather than every single observation in the wind
speed time series as it is more stable with much lower
computational cost. This approach also fits with the EQM
method.

We take 100 quantiles (the 1st to 100th percentile)
from wind speed distributions at 46 KNMI stations (sta-
tions drawn in triangles and squares with no filled colour
in Figure 1, i.e., KNMI stations excluding Cabauw) in
the three years 2016–2018, and spatially interpolate the
46 data points to estimate a smooth surface of each per-
centile in wind climatology over the Netherlands. We then
extract the corresponding percentile at a WOW location
from the estimated quantile surface. Occasionally, there
are crossovers among these 100 quantiles. We reorder
them to avoid crossing quantiles, and the resulting empiri-
cal CDF is used as the true target distribution at the WOW
location in EQM.
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To interpolate the spatial quantile surface, there
are multiple geostatistical approaches, including kriging,
inverse distance weighting, and thin-plate spline regres-
sion, which have been tested and compared on tempera-
ture or precipitation data (Stahl et al., 2006; Hofstra et al.,
2008; Moral, 2010; Contractor et al., 2015). We choose the
ordinary kriging method for this application, as our test-
ing demonstrated it reliably captured the wind behaviour
along the coasts of the Netherlands, generating smooth
interpolated surfaces. Ordinary kriging is an approach to
provide unbiased linear estimates for unsampled values
(Wackernagel, 2003). It predicts the target observation at
an unknown location by taking a weighted average of sur-
rounding reference data, where the weights are based on
the spatial variance of the input data with location infor-
mation. To fit the relationship between the spatial vari-
ances and physical distances, we need a variogram model.
We use the exponential model for the variogram due to its
stability in optimisation. To perform the ordinary kriging
we use the function autoKrige in the R package automap
(Hiemstra et al., 2008). Within the kriging method, a
roughness map could be incorporated to account for ter-
rain or urban effects, but it is beyond the scope of this
work.

In Figure 7a we show an example interpolated surface
of the 50th percentile from wind speed distribution during
the transition season in the daytime period. We see that
wind speed is higher in coastal areas as well as around the
inland bay IJsselmeer, which agrees with the known clima-
tology of the Netherlands. The 50th percentile of observed
wind speeds at the 46 KNMI stations are also shown, and
it can be seen that most KNMI percentiles are very close
to the interpolated estimates. In this way, we can obtain
a sequence of 100 estimated quantiles that indicate the
true climatological wind speed distribution at any loca-
tion given the longitude and latitude. We leave one KNMI
station (Cabauw) out of the analysis to illustrate the agree-
ment between the kriging interpolated and real quantiles,
shown in Figure 7b.

3.3 Between-station quality control

The between-station QC compares simultaneous obser-
vations between multiple neighbouring stations to detect
observations that are spatially inconsistent. It should be
performed when the BA has mapped WOW observations
at various heights to match the wind climatology of KNMI
stations, meaning the observations are now comparable
in space. The between-station QC for crowdsourced wind
data has not been studied before, to our knowledge, likely
due to a lack of robust BA. We adapt and extend exist-
ing methods developed for temperature and official wind

F I G U R E 7 (a) The interpolated 50th percentile surface of the
wind speed distributions during the transition season in the
daytime period, which are estimated with ordinary kriging from 46
KNMI stations (excluding Cabauw). (b) Estimated quantiles at the
location of Cabauw returned by interpolation (triangles) and
quantiles of the observed wind speed distribution (circles) at
Cabauw, both during the transition season in the daytime period
[Colour figure can be viewed at wileyonlinelibrary.com]

observations to check the spatial consistency of WOW
data.

In the between-station QC, we refer to the WOW
station to be examined as the candidate station and its
observation as the target observation. To check spatial con-
sistency, we estimate a confidence interval for the target
observation based on a set of its neighbouring observa-
tions, and identify the target as spatially inconsistent if it

http://wileyonlinelibrary.com
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lies outside the confidence interval. Two challenges there-
fore arise; one is to select comparable neighbouring sta-
tions, the other is to estimate reliable confidence intervals.

3.3.1 Selecting neighbouring stations

The most common way to choose the reference neigh-
bouring stations for a candidate station is to select nearby
sites by geographical distance. However, local terrain and
nearby obstructions have an impact on wind speed mea-
surements (Fiebrich et al., 2010), which is more fre-
quently seen for WOW stations with non-standard sitings.
Another uncertainty comes from the coastal areas, where
wind behaves differently from inland locations (Gatey and
Miller, 2007). These factors suggest that simply choosing
nearby stations using geographical distance for a candi-
date’s reference will not always be suitable. Instead it is
prudent to consider the statistical similarity between the
wind speed distributions at two stations.

The neighbouring stations for a candidate site should
be both geographically close and distributionally simi-
lar. We limit the potential neighbouring stations to those
within 75 km and consider two statistical indicators of
similarity. The two indicators are Pearson correlation
and Earth mover’s distance (EMD; the shaded area in
Figure 8). We introduce the EMD in selecting neighbour-
ing stations for the first time, while Pearson correlation
has been considered to determine reference stations for
spatial consistency check on temperature data in pre-
vious work (Hubbard and Sivakumar, 2001). The EMD
considers the scaling and shifting differences between
two distributions. Additionally, the EMD is a distance
metric while the Pearson correlation is not. The dis-
tance metric property is advantageous in replacing the
Euclidean distance in the later inverse distance weighting
(Section 3.3.2).

The EMD, also known as the transportation distance
or Wasserstein distance, is a mathematical metric that
measures the total costs in transporting a distribution of
mass into another distribution with an optimal strategy
(Kantorovich, 1960). The EMD indicates the total dis-
tance between two probability distributions, as shown in
Figure 8. Given empirical CDF of two wind speed distribu-
tions, F̂X (⋅) and F̂Y (⋅), the EMD is given by

EMD(X ,Y ) = ∫
∞

−∞

|||F̂X (x) − F̂Y (x)
||| dx. (2)

We use the function Wasserstein1d in the R package
transport to compute the EMD (Schuhmacher et al., 2020).

Use of EMD and Pearson correlation ensures
both statistical closeness in distributions and a linear
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F I G U R E 8 Two cumulative probability distributions,
together with their Earth mover’s distance (the shaded area
between two lines) and their KS distance (the vertical bar, i.e., the
maximum vertical distance between the two lines) [Colour figure
can be viewed at wileyonlinelibrary.com]

association for two stations. Our criteria for selecting
neighbours could therefore be stated as: taking nearby
stations (within 75 km) that hold a correlation >0.7 and
an EMD <1 between the candidate site and its reference
neighbours. The constraints for correlation and EMD are
determined based on the ten KNMI stations nearby or in
our study region (squares in Figure 1). The correlation of
wind speed observations between any two KNMI stations
is higher than 0.7. The EMD of wind speed distributions
between any two KNMI stations is lower than 2, with 80%
lower than 1. Occasionally some WOW stations do not
have enough neighbours that satisfy our criteria. If the
number of selected neighbouring stations is less than 10,
we relax the correlation constraint from 0.7 to 0.6. Ideally,
the nearest reference stations are chosen as neighbours,
but it is not always the case for WOW stations or stations
near the coast which may have different wind regimes;
this is why we do not choose neighbours based only on
geographical distances.

3.3.2 Estimating confidence intervals

By considering three factors, the geographical distance, the
Pearson correlation, and the EMD, we get a list of com-
parable neighbouring stations for each candidate WOW
station. The confidence interval for the target observation
can then be estimated based on simultaneous wind speed
observations at neighbouring stations. We extend previous
work on the spatial consistency checks for temperature
data, by first investigating the classical inverse distance
weighting (IDW; Eischeid et al., 1995; Peterson et al., 1998)
and the spatial weighted regression test (SRT; Hubbard

http://wileyonlinelibrary.com
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et al., 2005, 2007; You and Hubbard, 2006; Estévez et al.,
2018), but find that their adaptations to wind speed data
are not satisfactory. The classical IDW depends on only
geographical distance making it not suitable for wind vari-
ables with directional dependence, and the SRT is not
suitable for wind as it is a more stochastic variable than
temperature. The ordinary kriging method introduced in
Section 3.2.2 is not suitable here either, because it is com-
putationally intensive and the high variability of wind does
lead to unstable interpolated surfaces.

We develop the inverse EMD weighting (IEMDW)
method, as an adjusted version of the classical IDW. IDW
estimates the mean of the target by a weighted average
of its neighbouring observations, where the weights are
inversely proportional to their geographical distance from
the target. In IEMDW we incorporate statistical similar-
ity into the equation to avoid shortages of IDW that assign
more weights to the nearest stations regardless of the
actual climatology difference. We replace the geographical
distance with EMD, and so the weights are determined by
statistical similarities, giving larger weights to neighbours
that are distributionally similar with the target. Compared
to SRT and kriging, the IEMDW is computationally cheap
and generates results efficiently in real-time processing,
since the weight for each neighbouring station is fixed and
recycled.

A neighbouring station with a small EMD, meaning
statistically similar with the target station, is assigned with
a large weight, and vice versa. Given a target observation y
and its neighbouring observations {xn ∶ n = 1, 2, …}, the
expression of the estimated target mean ŷ is

ŷ =
∑

n 𝜔nxn∑
n 𝜔n

, (3)

where 𝜔n is the weight for each neighbouring station.
We use the Cressman method to assign the inverse EMD
weights (Cressman, 1959),

𝜔n = r2 − EMD2(n0,n)
r2 + EMD2(n0,n)

, (4)

where EMD(n0,n) is the EMD between the candidate sta-
tion n0 and a neighbouring station n. We set r = 1 to ensure
the weights are positive real numbers, as the selected
neighbouring stations are restricted to having an EMD
value less than 1.

We also need the standard deviation to determine a
confidence interval, and that is estimated from the vari-
ance of neighbouring observations. To avoid non-physical
negative wind speed values, we use a truncated normal
distribution which truncates the left-side lower tail of the
normal distribution at zero and is restricted to positive

values, as seen in other studies of wind speed data (Tho-
rarinsdottir and Gneiting, 2010). The confidence interval
is between the 0.005-quantile and 0.995-quantile of the
truncated normal distribution. If the target observation lies
outside this confidence interval, it is considered spatially
inconsistent and is rejected by the between-station QC.

We want to start with WOW stations that have more
high-quality neighbouring stations, and after checking
spatial consistency, these WOW stations are more reliable
as a reference. In practice, we define a rating for each
candidate station that indicates the average quality of its
neighbours, and the implementation order for WOW sta-
tions is then determined by descending order of their rat-
ings. KNMI stations are assigned the highest quality grade
of 2, along with WOW stations that have been assessed for
spatial consistency. WOW stations that are not yet assessed
are assigned quality grades based on their highest corre-
lation with KNMI stations; those with correlation larger
than 0.8 get a quality grade of 2, those with correlation
larger than 0.7 get 1, while the rest get 0. The rating for a
candidate station is given as the mean of its neighbours’
quality grades. We keep updating the WOW data with
observations that have passed the between-station QC for
subsequent rounds, ensuring the reliability of reference
neighbouring observations.

3.4 Interpolating the missing low wind
speeds

A common issue with the WOW wind speed data is the
inflated zero observations. There are two types of zero
observations that we deal with differently. The observa-
tions that keep constant zeros for more than 2 days are
rejected by the temporal persistence test in Section 3.1.3.
The remaining inflated zeros are censored data that results
from an underestimation during periods of light winds.
This could be caused by poor exposure of devices (e.g., near
a building or tree), overly low siting (e.g., at 2 m above
ground), or measurement devices that are not sensitive
enough. We provide estimates for these censored low wind
speeds by interpolation, rather than mapping them to a
fixed value in the EQM BA. We apply a similar approach
as in the IEMDW method to estimate the wind speed at
the times when WOW stations recorded suspect zero val-
ues. Addressing the censored low wind speeds is the final
step in our QC and BA procedure, and can be treated as an
extension of the EQM BA. For each zero wind speed obser-
vation, we extract the existing selected neighbouring sta-
tions together with corresponding inverse EMD weights,
and estimate the mean (weighted average) to fill in the cen-
sored zero values. A few IEMDW estimates are higher than
the EQM bias adjusted values, suggesting the observations
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are not caused by systematic underestimation. These esti-
mates are therefore not accepted, and labelled as missing
data in the final output.

4 RESULTS

We assess the quality of crowdsourced wind data and the
overall performance of our complete QC and BA proce-
dure (Figure 3) in two ways. First, we assess the percent-
age of observations that fail each step of the QC checks.
Second, we apply three statistical evaluation methods to
quantify the improvements in data quality after imple-
menting the procedure. To demonstrate the method, we
leave one KNMI station (Cabauw) out of all stages in
the QC and BA procedure so that we have a more fair
assessment of the improvement of WOW stations. Later
in this section, we compare Cabauw with one nearby
WOW station (about 6 km away) as an example to illustrate
that WOW observations are more comparable after QC
and BA.

Few observations are rejected by the range check and
the temporal step test compared to the temporal persis-
tence test, as the left two light grey bars of each station are
barely visible in Figure 9. This demonstrates that one of the
main error sources on wind speed observations by WOW
stations is the constant recordings. The results show that
many WOW stations have less than 5% of their observa-
tions flagged by the within-station QC, which means more
than 95% of the WOW wind data have plausible ranges and
acceptable variability over time. There are some WOW sta-
tions with too many flagged observations (Figure 9). We
manually check those stations and find that two of them
(serial numbers 923556001 and 951366001) kept record-
ing zero wind speed for more than one month. However,
the remaining observations that pass the within-station
tests are useful to consider. These two stations are there-
fore retained in the dataset for further steps by truncating
their constant observations. We do remove seven other sta-
tions from further analysis because of their low quality (the
starred stations in the grey box in Figure 9), as outlined in
Section 3.1.4.

Based on the percentage of wind speed observations
that fail the between-station QC (black bars in Figure 9),
we find that for most WOW stations, about 2% to 8%
of observations are rejected for spatial inconsistency. We
examine the locations of WOW stations, and find that sites
in the open countryside tend to reject fewer observations,
which suggests that surrounding obstructions especially
in urban areas might be a cause of spatially inconsistent
observations. For most WOW stations that are considered
in our study, more than 85% of wind speed observations
pass all QC checks. This is a promising outcome showing

that WOW wind data after QC can provide an informative
dataset.

We consider three statistical evaluation indicators, root
mean square error (RMSE), Kolmogorov–Smirnov statistic
(KS distance; Figure 8), and Pearson correlation, to anal-
yse the similarity of wind speeds between stations and
quantify improvements in data quality. We match each
WOW station with the KNMI station that has the high-
est Pearson correlation with the WOW station’s final data.
In this way, every WOW station is compared to an official
site with credible wind speed observations as a reference.
We plot the change of the three statistical indicators at
each station after performing the QC and BA procedure
in Figure 10. In addition, we calculate the same indica-
tors for each KNMI station (ten sites located nearby or
in our study region, squares in Figure 1) with its highest
correlated KNMI station, so we have a benchmark of nat-
ural variability. All three indicators are greatly improved
after our QC and BA steps, and they are much closer to
the KNMI benchmarks. For most WOW stations, the final
Pearson correlation is higher than 0.7 (Figure 10c), indicat-
ing a solid linear association between the final WOW data
and the official KNMI data. Both RMSE and KS distance
are much reduced in the final WOW data, and they are
close to the KNMI benchmarks (Figure 10a,b). A detailed
analyses (not shown) finds that the two indicators achieve
their greatest improvement after EQM BA and estimating
the inflated zeros, as the systematic underestimation is one
of the primary sources of biases. The results on the three
evaluation indicators show that the final WOW data, after
the QC and BA procedure, are statistically similar to the
official data and that they can be used in climatological and
meteorological studies.

We choose an example WOW station to demonstrate
each step of the QC and BA procedure. We compare this
WOW station1 (serial number: 956296001) to its nearby
KNMI station (Cabauw), which is also the most correlated
KNMI station. In Figure 11a we compare the cumula-
tive density distributions of WOW wind speeds at differ-
ent stages of the QC and BA procedure, together with
the KNMI Cabauw distribution as a reference. There is
a substantial horizontal gap in cumulative distributions
between the raw WOW data and KNMI data (Figure 11a),
indicating a sizeable systematic bias. Our EQM BA elimi-
nates the gap, as the WOW distribution after BA coincides
with the distribution of KNMI data, although the left cen-
soring with zeros is still evident. After estimating those
zeros in the final step of the QC and BA procedure, the
lower tail in the cumulative distribution is interpolated

1The station (serial number 956296001) can be visited at https://wow.
knmi.nl/#956296001 and https://wow.metoffice.gov.uk/observations/
details/20210520o7tw4cf3jre6znxqyyb96scefw

https://wow.knmi.nl/#956296001
https://wow.knmi.nl/#956296001
https://wow.metoffice.gov.uk/observations/details/20210520o7tw4cf3jre6znxqyyb96scefw
https://wow.metoffice.gov.uk/observations/details/20210520o7tw4cf3jre6znxqyyb96scefw
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which are excluded before checking spatial consistency. We truncate the serial number of WOW stations to the first five letters for a better view

and is found to be similar with the KNMI lower tail, sug-
gesting the censored low wind speeds are estimated nicely
in terms of climatology. The stratification in the raw WOW
data has been reduced after EQM BA (Figure 11a). This is
mainly because we perform BA in six periods separately,
and so the same wind speed in different periods could then
be calibrated to distinct values due to their separate quan-
tile mappings. We also compare the simultaneous relation-
ship between WOW and KNMI wind speeds before and
after performing the QC and BA procedure in Figure 11b.
There is a bias towards lower wind speeds in the raw WOW
data than in the KNMI data, as most data points are below
the diagonal. After the QC and BA steps, the final WOW
data points are mostly spread around the diagonal, sug-
gesting the final WOW wind data are comparable with
KNMI data.

Finally, we plot the cumulative probability distribution
of all 32 WOW stations in the final dataset in Figure 12,
for a comparison of the climatologies. The distributions of
the raw WOW wind speed are quite dissimilar, with empir-
ical CDFs of various shapes, stemming from various levels
of systematic biases and stratified values. Our generalised
QC and BA procedures that are customised for individual
stations improves the distribution of the raw WOW wind
speed data considerably. We choose ten KNMI stations
that are located nearby or in our study region (squares
in Figure 1) to represent the true climatology of wind in
that area. The cumulative distributions of the final WOW
data are mostly inside the range of the KNMI wind speed

distributions, showing that WOW wind speeds after the
QC and BA procedures have a similar climatology to the
KNMI stations. This is a promising outcome suggesting
that the final WOW data coincide well with KNMI wind
climatologies, and it demonstrates that WOW data have
the potential to be of added value in a climatology analysis.

5 CONCLUSION AND
DISCUSSION

In this study, we developed a comprehensive procedure
to improve the data quality of crowdsourced wind obser-
vations. This is the first study to examine the quality of
wind speeds observed by many citizen weather stations
from a heterogeneous network comprised of various man-
ufacturers’ devices, distributed over a large area (about
1,500 km2). The procedure includes both QC and BA, as
summarised in Figure 3. The QC follows from existing
methods for official data, and we made essential adapta-
tions and enhancements to make the methods applicable
to crowdsourced data. We performed both within-station
and between-station QC tests, identifying observations
with implausible ranges, too much or too little temporal
variability, and spatial inconsistencies. The BA step is an
extension specifically for crowdsourced wind data, due to
the systematic underestimation of wind at citizen weather
stations. We applied different approaches to adjusting
zero and non-zero wind speed observations separately.
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F I G U R E 10 Improvements in (a) the RMSE, (b) the KS distance, and (c) the Pearson correlation between WOW stations and their
reference KNMI stations after the complete quality control and bias adjustment. The dot plots (left) show the evaluation indicators for each
WOW station. The indicators are evaluated for the raw WOW data (square points) and final WOW data (dot points). The violin plots (right)
show the distribution of indicators of all WOW stations, including their average (dot points), together with KNMI benchmarks [Colour figure
can be viewed at wileyonlinelibrary.com]
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F I G U R E 11 QC and BA results of an example WOW station (serial number: 956296001) compared with a KNMI station (Cabauw). (a)
Cumulative density distribution of WOW wind speed in raw data (solid line), after the within-station QC and the EQM BA (dashed line), and
after the between-station QC and estimating censored low wind speeds (dotted line), with KNMI wind speed (grey thick line) as a reference.
(b) Scatter plot of simultaneous observations between the WOW and the KNMI stations, showing both the raw WOW data (circles) and final
WOW data (squares) [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 12 Cumulative distribution of all WOW stations
with raw data (solid lines) and after the overall QC and BA
procedure (dotted lines), with the distribution of ten nearby KNMI
stations (grey thick lines) as reference [Colour figure can be viewed
at wileyonlinelibrary.com]

For non-zero wind speeds, we used the empirical quan-
tile mapping (EQM), a common BA method for climate
models’ outputs (Gudmundsson et al., 2012). For the cen-
sored low wind speeds that are falsely reported as zero, we
provide estimates of the true values by interpolating from
surrounding observations. This is a necessary extension
of the EQM BA as otherwise the zeros would be mapped

to a fixed value. Our methods are more data-driven than
in classical approaches, making them notably appropriate
when lacking metadata information.

Our research is the most comprehensive study of
crowdsourced wind data to date, following on from the
pioneering work of Droste et al. (2020) who examined
wind speed observations in a single city with an urban
setting. Their study had the advantage that CWSs are from
the same brand (Netatmo) and a network of high-quality
stations in the city is provided as a reference, and so there
are lower root mean square errors in their results. The
quality assurance protocol by Droste et al. (2020) filters
implausible locations and unfavourable meteorological
circumstances, and it truncates all the low wind speeds.
In comparison, our QC system is more data-driven and
can reject inconsistent observations temporally or spa-
tially, with the capability to be applied to various brands
of devices. We perform the spatial interpolation to correct
falsely inflated zeros, which improves upon their method
which truncates the censored low wind speeds. Overall,
our results show a more generalised and comprehensive
assessment of crowdsourced wind data.

Our results show that the quality controlled and bias
adjusted wind speed observations are more comparable
with official data, whereas the raw WOW data are not
always reflective of wind speed at 10 m. We find that
the processed crowdsourced wind data are much closer
to official observations in terms of Pearson correlations,
RMSE, and KS distances. There are 32 high-quality WOW

http://wileyonlinelibrary.com
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stations in the remaining wind speed data from the initial
93 sites in the dataset, with the systematic biases adjusted
and around one-sixth of observations rejected as suspect.
These results show that our WOW dataset has the poten-
tial to complement the official observing network with
higher spatial resolution. Compared to traditional down-
scaling approaches, the crowdsourced observations allow
more stochastic variability in space since the observations
are actually measured by devices, which could be informa-
tive in wind field analysis. For example, during a regional
thunderstorm there can be strong winds in regions that are
unobserved by the KNMI stations. A spatial interpolation
is not able to detect these winds, while detection is pos-
sible with the CWS data. An enhanced, dense observing
network with high-quality data is advantageous for cap-
turing small-scale extreme wind events. The crowdsourced
data are also valuable to be an extra input for numer-
ical weather prediction models, as seen in other recent
research (Hintz et al., 2019; Nipen et al., 2019).

This work is a very promising first attempt at ensur-
ing the quality of crowdsourced wind data for operational
usage, but there is still scope to improve the methods in
future work. Our methods are developed based on a lack
of metadata, and so they could be generalised to any CWS
without knowing the type of device. However we could
expect a more accurate quality assurance if the methods
could be tailored to different types of device in terms of
specific measurement settings. Future work could try to
extract more information from the metadata, such as infer-
ring device type from the measurement frequency or strati-
fication, and then to adapt our QC and BA methods accord-
ingly. The inflated zero-valued observations is a common
issue in crowdsourced wind speeds. Our approach rejected
erroneous zeros that are persistent for longer than two
days, and estimated the actual wind speed for the cen-
sored zeros. It is worthwhile to see in future studies if there
are better solutions to deal with the problem, for instance
comparing with the nearest official observation to decide
whether to reject zeros. Another issue is about splitting dif-
ferent periods to perform EQM BA. Our approach splits
different seasons and day or night times in a fixed way, but
it is highly recommended that a more flexible splitting cri-
terion be set up such as quantile regression since sunrise
times differ throughout the year.

We will extend our study region to the whole Nether-
lands in a subsequent study. When applying this methodol-
ogy to other regions, users should be aware that all parame-
ters in the within-station QC and the neighbours selection
step need modification according to local climatology and
the specific crowdsourced data. The spatial interpolations
in our QC and BA procedure would need to be adapted
to areas with more complicated terrain, although we have
considered the statistical similarities between stations. For

instance, when performing kriging in the bias adjustment,
it is advisable to incorporate roughness maps as an extra
input. When selecting neighbouring stations to check spa-
tial consistency in the between-station QC, it is suggested
that more components be considered such as wind direc-
tion to pick more reliable neighbours and generate more
precise estimates. Users should be aware that the interpo-
lation of the censored zero-valued observations is limited
under complicated situations, and necessary adjustments
such as extra inputs are required in some cases. Further,
future researchers can explore the value of other wind
speed climatologies as the target for the bias adjustment,
such as a climatology from a reanalysis product or a more
advanced spatial interpolation that incorporates surface
roughness. Our QC and BA procedure has been developed
for wind speed only, but it would be worthwhile in future
work to extend our methods to wind gusts and direction,
and bias adjust the wind speed by wind direction.

Performing our four-step QC and BA procedure for
crowdsourced wind speed data gives confidence in obser-
vations collected at citizen weather stations. The final
product is a high-quality, spatially dense observing net-
work that has many possible applications in meteorologi-
cal studies.
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