

Delft University of Technology

Time-Varying Convex Optimization
Time-Structured Algorithms and Applications
Simonetto, Andrea; Dall'Anese, Emiliano; Paternain, Santiago; Leus, Geert; Giannakis, Georgios B.

DOI
10.1109/JPROC.2020.3003156
Publication date
2020
Document Version
Final published version
Published in
Proceedings of the IEEE

Citation (APA)
Simonetto, A., Dall'Anese, E., Paternain, S., Leus, G., & Giannakis, G. B. (2020). Time-Varying Convex
Optimization: Time-Structured Algorithms and Applications. Proceedings of the IEEE, 108(11), 2032-2048.
Article 9133310. https://doi.org/10.1109/JPROC.2020.3003156

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/JPROC.2020.3003156
https://doi.org/10.1109/JPROC.2020.3003156

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Time-Varying Convex
Optimization:
Time-Structured Algorithms
and Applications
This article reviews a broad class of algorithms for time-varying optimization with an
emphasis on both algorithmic development and performance analysis.

By ANDREA SIMONETTO , Member IEEE, EMILIANO DALL’ANESE , Member IEEE,

SANTIAGO PATERNAIN , Member IEEE, GEERT LEUS , Fellow IEEE,
AND GEORGIOS B. GIANNAKIS , Fellow IEEE

ABSTRACT | Optimization underpins many of the challenges

that science and technology face on a daily basis. Recent years

have witnessed a major shift from traditional optimization

paradigms grounded on batch algorithms for medium-scale

problems to challenging dynamic, time-varying, and even

huge-size settings. This is driven by technological transforma-

tions that converted infrastructural and social platforms into

complex and dynamic networked systems with even perva-

sive sensing and computing capabilities. This article reviews

a broad class of state-of-the-art algorithms for time-varying

optimization, with an eye to performing both algorithmic devel-

opment and performance analysis. It offers a comprehensive

overview of available tools and methods and unveils open chal-

lenges in application domains of broad range of interest. The

real-world examples presented include smart power systems,

Manuscript received December 14, 2019; revised March 31, 2020; accepted
June 9, 2020. Date of publication July 3, 2020; date of current version
October 27, 2020. The work of Emiliano Dall’Anese was supported in part by the
National Science Foundation (NSF) under Grant 1941896. The work of
Georgios B. Giannakis was supported in part by NSF under Grant 1711471
and Grant 1901134. (Corresponding author: Andrea Simonetto.)

Andrea Simonetto is with the Optimization and Control Group, IBM Research
Ireland, Dublin 15, Ireland (e-mail: andrea.simonetto@ibm.com).

Emiliano Dall’Anese is with the College of Engineering and Applied Science,
University of Colorado Boulder, Boulder, CO 80309 USA (e-mail:
emiliano.dallanese@colorado.edu).

Santiago Paternain is with the Department of Electrical and Systems
Engineering, University of Pennsylvania, Philadelphia, PA 19104 USA (e-mail:
spater@seas.upenn.edu).

Geert Leus is with the Faculty of Electrical, Mathematics and Computer
Science, Delft University of Technology, 2628 CD Delft, The Netherlands (e-mail:
g.j.t.leus@tudelft.nl).

Georgios B. Giannakis is with the Digital Technology Center, University of
Minnesota, Minneapolis, MN 55455 USA (e-mail: georgios@umn.edu).

Digital Object Identifier 10.1109/JPROC.2020.3003156

robotics, machine learning, and data analytics, highlighting

domain-specific issues and solutions. The ultimate goal is to

exemplify wide engineering relevance of analytical tools and

pertinent theoretical foundations.

KEYWORDS | Convergence of numerical methods; optimization

methods.

I. I N T R O D U C T I O N
Optimization is prevalent across many engineering and
science domains. Tools and algorithms from convex opti-
mization have been traditionally utilized to support a
gamut of data-processing, monitoring, and control tasks
across areas as diverse as communication systems, power
and transportation networks, medical and aerospace engi-
neering, video surveillance, and robotics, just to name
a few. Recently, some of these areas—and, in particular,
infrastructures such as power, transportation, and com-
munication networks, as well as social and e-commerce
platforms—are undergoing a foundational transformation,
driven by major technological advances across various
sectors, the information explosion propelled by online
social media, and pervasive sensing and computing capa-
bilities. Effectively, these infrastructures and platforms
are revamped into complex systems operating in highly
dynamic environments and with high volumes of het-
erogeneous information. This calls for revisiting several
facets of workhorse optimization tools and methods under
a different lens: the ability to process data streams and
provide decision-making capabilities at time scales that
match the dynamics of the underlying physical, social, and
engineered systems using solutions that are grounded on

2032 PROCEEDINGS OF THE IEEE | Vol. 108, No. 11, November 2020

0018-9219 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on August 27,2021 at 11:23:47 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2923-3361
https://orcid.org/0000-0002-6486-7477
https://orcid.org/0000-0001-6310-6345
https://orcid.org/0000-0001-8288-867X
https://orcid.org/0000-0002-0196-0260

Simonetto et al.: Time-Varying Convex Optimization: Time-Structured Algorithms and Applications

conventional optimization methods can no longer be taken
for granted. Let us consider power grids, as a representa-
tive example: economic optimization at the network level
was performed using batch solvers at the minute or hour
level to optimally dispatch large-scale fossil-fuel genera-
tion based on predictable loads; on the other hand, novel
optimization tools are now desirable to carry network
optimization tasks with solvers capable of coping with
volatile renewable generation while managing the oper-
ation of a massive number of distributed energy resources
(DERs). These considerations have spurred research and
engineering efforts that are centered around time-varying
optimization, a formalism for modeling and solving
optimization tasks in engineering and science under
dynamic environments.

Continuously varying optimization problems represent
a natural extension of time-invariant programs when
the cost function and constraints may change continu-
ously over time [1]–[4]. Recently, time-varying optimiza-
tion formalisms and the accompanying online solvers
have been proposed both in continuous-time [5], [6]
and in discrete-time settings [7], [8]. Their main goal
is to develop algorithms that can track trajectories of
the optimizers of the continuously varying optimization
program (up to asymptotic error bounds). The resul-
tant algorithmic frameworks have demonstrated reliable
performance in terms of convergence rates (CRs) with
error bounds that relate tracking capabilities with com-
putational complexity; these features make time-varying
algorithms an appealing candidate to tackle dynamic opti-
mization tasks at scale, across many engineering and
science domains.

This article overviews key modeling and algorithmic
design concepts, with emphasis on textittime-structured
(structured for short) time-varying algorithms for con-
vex time-varying optimization. The term “structured” here
refers to algorithms that take advantage of the inherent
temporal structure, meaning they leverage prior infor-
mation (such as Lipschitz continuity or smoothness) on
the evolution of the optimal trajectory to enhance con-
vergence and tracking. In contrast, the term “unstruc-
tured” refers to time-varying algorithms that simply rely
on current information of cost and constraints. This also
differentiates the present “time-structured” class from
interactive algorithms (that belong to the unstructured
class), which are tailored to learner-environment or player-
environment settings; for example, the popular online
convex optimization (OCO) setup [9], where online algo-
rithms decide on current iterates (using only information
of past cost functions), and subsequently the environment
reveals partial or full information about the function to be
optimized next.

Fig. 1 depicts a typical time-varying optimization set-
ting. Streaming data are generated from time-varying
systems, as in renewable generation that is intermit-
tent, traffic conditions that change in transportation sys-
tems, or drop-off points for drone delivery that are mobile.

Fig. 1. Setup of time-varying optimization algorithms. Streaming

data generated by time-varying systems are input to an optimizer.

The optimizer can employ a predictor (that could be an oracle or a

well-defined model), which feeds the optimizer with predictions of

how the optimization problem will change. The optimizer then

delivers a decision stream that is used to take actions that could be

possibly fed back to affect the dynamical system operation.

Such settings inherit time variability in the optimization
problem at hand. The optimizer can leverage a predictor
(an oracle or a well-defined model), which feeds the opti-
mizer with predictions of how the optimization problem
may evolve over time. The optimizer then delivers a deci-
sion stream (i.e., an approximate optimizer) that is used to
take operational actions such as committing a generator,
or, adopting an optimal routing schedule for ridesharing
vehicles. These actions could also affect and are therefore
fed back to the system (e.g., the optimal ridesharing sched-
ule alters traffic and availability of vehicles in the future).
When the input data streams are of large scale and/or the
decisions need to be made at a high frequency, traditional
batch algorithms (that exactly solve the optimization prob-
lem at each time) are not viable because of underlying
computational complexity bottlenecks. Hence, an online
computationally frugal optimization becomes essential to
produce solutions in a timely fashion.

To further motivate structured time-varying methods,
Fig. 21 illustrates the asymptotic tracking error (asymptotic
difference between optimal decisions and decisions deliv-
ered by some algorithms that will be described shortly) for
different sampling periods (h) of discrete-time algorithms,
for a robot-tracking problem (see [10] for the setting).
The value of exploiting the temporal structure of the
problem can be appreciated. Even keeping computational
time fixed, structured algorithms outperform unstructured
ones (here by several orders of magnitude). Exploiting this
structure may lead to a reduction of the computational cost
of the algorithms. This is the case, for instance, when using
model predictive control (MPC) on the Hicks reactor [12]
(see Fig. 3 adapted from [13]).

1Unstructured algorithms 0, 1, and 2 are, in this case, online versions
of the proximal gradient method, for which we perform 5, 7, and
9 passes of the methods, respectively. Structured algorithms here employ
either a first- or a second-order Taylor model (for structured 1 and 2,
respectively), and 5 and 20 passes of an online version of the proximal
gradient method on a simplified quadratic problem (see [11] for further
details).

Vol. 108, No. 11, November 2020 | PROCEEDINGS OF THE IEEE 2033

Authorized licensed use limited to: TU Delft Library. Downloaded on August 27,2021 at 11:23:47 UTC from IEEE Xplore. Restrictions apply.

Simonetto et al.: Time-Varying Convex Optimization: Time-Structured Algorithms and Applications

Fig. 2. Structured algorithms can outperform unstructured ones,

even keeping the computational time fixed: here for a robot-tracking

problem. See text and footnote for description of the algorithms and

[10], [11] for the problem setting. This figure will be referred to mul-

tiple times in this article and the different elements will be clarified.

The main goal of this overview article is threefold:

1) to expose models and algorithms for structured time-
varying optimization settings, from both analytical
and an application-oriented perspectives;

2) to demonstrate applications of structured time-
varying optimization algorithms (and deep
dive into two, namely a robotic and a power
system application);

3) to draw links with the growing landscape of unstruc-
tured algorithms for dynamic optimization problems.

Setting and notation: We deal with convex optimization
problems [14], [15], as well as first-order algorithms [16].
Vectors are represented with x ∈ R

n, and the Euclidean
norm is denoted as ‖ · ‖. We mainly deal with strongly
convex and smooth functions. A function f : R

n → R is
m-strongly convex for a constant m > 0, that is, f(x) −
m/2‖x‖2 is convex, and L-smooth for a constant L > 0

iff its gradient is L-Lipschitz continuous or equivalently
iff f(x) − L/2‖x‖2 is concave. Sometimes, we deal with
extended real-valued functions ϕ : R

n → R ∪ {+∞}
(which can explicitly admit infinite values, e.g., the indi-
cator function). We define the subdifferential of ϕ as the
set x �→ {z ∈ R

n | ∀y ∈ R
n : 〈y − x, z〉 + ϕ(x) ≤ ϕ(y)} .

Given a convex set X , projX {x} denotes a closest point to
x in X , namely projX{x} ∈ arg miny∈X ‖x − y‖. We also
use O(·) to represent the big-O notation.

II. T I M E - V A R Y I N G O P T I M I Z AT I O N
Let f : R

n × R+ → R be a convex function parametrized
over time, that is, f(x; t), where x ∈ R

n is the decision
variable and t ≥ 0 is time. Let X(t) ⊆ R

n be a convex set,
which may also change over time. We are interested here
in solving

min
x∈X(t)

f(x; t), for all t ≥ 0. (1)

To simplify exposition, we assume that the cost function
f is m-strongly convex for all t (this is nevertheless

a standard assumption in most prior works) and that
the constraint set is never empty. With these assump-
tions in place, at any time t, Problem (1) has a unique
global optimizer. This translates to finding the optimal
solution trajectory

x�(t) := argmin
x∈X(t)

f(x; t), for all t ≥ 0. (2)

As an example, for the robot-tracking problem for which
the results have been shown in Fig. 2, f(x; t) is a time-
varying performance metric for the tracking performance
of a robot formation that is following a robot leader, for
example, f(x; t) = ‖x − b(t)‖2 + R(x), where R(x) is
some pertinent regularization function and b(t) encodes
the tracking signal. On the other hand, X(t) represents
some physical or hardware constraints for the robots.
At each t′, the information available is {f(x; t), t ≤ t′}
and {X(t), t ≤ t′}; on the basis of a possibly limited
computational complexity, and without any information
regarding future costs and constraints, the next decision
x(t′) has to be made; the objective is to produce a decision
x(t′) that is as close as possible to x�(t′).

If Problem (2) changes slowly and sufficient compu-
tational power is available, existing batch optimization
methods may identify the optimal trajectory x�(t); for
example, if the parameter b(t) mentioned above exhibits
step changes every 10 s, and a distributed batch algorithm
converges in 5 s, then x�(t) can be identified (within a
given accuracy). On the other hand, in highly dynamic
settings, computational and communication bottlenecks
may prevent batch methods to produce solutions in a
timely manner [e.g., b(t) changes every 0.5 s, and a
distributed batch algorithm converges in 5 s]; the problem
then becomes related to the synthesis of computation-
ally affordable algorithms that can produce an approx-
imate optimizer trajectory x̂(t) on the fly; accordingly,
a key performance of these algorithms is the “distance”

Fig. 3. Histograms with the total number of Hessian inversions

required to control the Hicks reactor [12] for structured and

unstructured MPC solvers. Exploiting the temporal structure reduces

the computational complexity, measured by the number of

inversions of the Hessian, in solving the MPC.

2034 PROCEEDINGS OF THE IEEE | Vol. 108, No. 11, November 2020

Authorized licensed use limited to: TU Delft Library. Downloaded on August 27,2021 at 11:23:47 UTC from IEEE Xplore. Restrictions apply.

Simonetto et al.: Time-Varying Convex Optimization: Time-Structured Algorithms and Applications

between the approximate solution trajectory x̂(t) and the
optimal one x�(t).

A. Time-Structured and Time-Unstructured
Algorithms

The term “structured” refers to algorithms that, at time t,
exploit a (learned) model to predict how the optimizer
trajectory x̂(t) evolves, say from t to t′, and then correct
the prediction by approximately solving the optimization
problem obtained at t′. Unstructured algorithms instead
have no evolution model and use only the optimization
problems that are revealed at each time. A useful par-
allelism is the Kalman filter versus the recursive least-
squares (RLSs) estimator. Although the Kalman filter is
endowed with a model to predict how the state evolves
in time and then corrects the prediction with new up-to-
date observations, RLS relies solely on the observations.
Structured time-varying algorithms leverage an evolution
model to predict and observe new problems to correct their
predictions. Unstructured ones rely only on observations.

B. Performance Metrics

Different performance metrics can be considered for
online algorithms that generate approximate trajectories
for Problem (2). They all capture the fact that the com-
putation of x̂(t) is time-limited, computationally limited,
or both, and therefore x̂(t) is an approximate optimizer
at time t. Here, it is more fruitful to look at the compu-
tation of x̂(t) as limited by time: to compute x̂(t), one
has at most Δt.

An immediate performance metric is the asymptotical
tracking error (ATE), defined as

ATE := lim sup
t→∞

‖x̂(t) − x�(t)‖ (3)

which captures how the algorithm performs in an asymp-
totic sense. In general, one seeks asymptotic consistency of
the algorithm, that is, if x�(t) is asymptotically stationary,
then the ATE should be zero. However, if x�(t) is time-
varying, the ATE cannot be zero for unstructured algo-
rithms, while it could be zero for structured algorithms.2

A second metric that is relevant for time-varying opti-
mization problems is the time rate (TR), defined as

TR :=
time required for the computation of x̂(t)

time allowed for the computation of x̂(t)
. (4)

Here, we define “time required,” as the time needed for
the computation of an approximate x̂(t), which delivers
a predefined ATE. TR is a key differentiator for time-
varying optimization: online algorithms need to be able
to deliver an approximate x̂(t) in the allocated time.

2A dynamic regret notion based on the cost function is also available,
but we do not discuss this here. The interested reader is referred to [17]
and [18].

Data streams generate decision streams with the same
frequency, and the online optimization algorithm needs to
have a TR less than 1 to be implementable. The TR also sets
an important tradeoff between ATE and implementabil-
ity. One typically cannot expect a very low ATE and
implementable solutions.

The third metric is the CR, which can be informally
defined as

CR := “how fast” an algorithm converges to the ATE. (5)

CR will be formalized for discrete-time algorithms and
continuous-time algorithms shortly. For discrete-time algo-
rithms, under current modeling assumptions, it will be
possible to derive Q-linear convergence results (definition
given later on); on the other hand, for continuous-time
algorithms, the CR will be exponential and related to the
exponent of a carefully constructed Lyapunov function.

Typically, the algorithmic design will involve a tradeoff
between the ATE and CR; for instance, lower levels of ATE
may be achievable at the expense of a higher CR. CR is
then important, not only at the start, but also when abrupt
changes happen (and then the CR captures how fast the
algorithm responds to those changes and disturbances).

An additional metric is a measure that distinguishes
between the structured and unstructured algorithms, here
referred to as structure gain (SG). It could be defined
as the ratio between the ATE obtained with a structured
method divided by the ATE obtained with a competing
unstructured method, that is,

SG :=
ATE for selected structured method

ATE for competing unstructured method
. (6)

Of course, both algorithms are constrained to use the same
computational time for x̂(t). This metric assists in the
decision as to whether to use the selected structured or the
competing unstructured algorithm for a given time-varying
optimization task. We have already seen in Fig. 2 that the
value of structure can lead to an SG greater than 1, further
motivating the use of structured methods.

In Fig. 4, a general overview of the algorithms that will
be presented in this article is given together with their
connections.

C. Discrete-Time Algorithms

This section surveys discrete-time algorithms. Consider
sampling Problem (2) at defined sampling times {tk =

kh, k ∈ N}, with h being the sampling period; thus, one
arrives at a sequence of time-invariant problems

x�(tk) := argmin
x∈X

f(x; tk), tk = kh, k ∈ N. (7)

For simplicity of exposition, we drop the time dependence
of the constraints and consider static sets. As long as one

Vol. 108, No. 11, November 2020 | PROCEEDINGS OF THE IEEE 2035

Authorized licensed use limited to: TU Delft Library. Downloaded on August 27,2021 at 11:23:47 UTC from IEEE Xplore. Restrictions apply.

Simonetto et al.: Time-Varying Convex Optimization: Time-Structured Algorithms and Applications

Fig. 4. Algorithms presented in this article.

can solve each (time-invariant) Problem (7) within an
interval h using existing algorithms, then a “batch solu-
tion mode” is sufficient to identify the optimal trajectory
{x�(tk), k ∈ N}. This batch approach is, however, hardly
viable, except for low-dimensional problems that can be
sampled with sufficiently long sampling periods (i.e., when
the problem changes sufficiently slowly). We focus here on
the case where one can afford only one or a few steps of
a given algorithm within an interval h, that is, an online
approach. This setting can then be cast as the problem
of synthesizing online algorithms that can track {x�(tk),

k ∈ N}, within a given ATE.
A key assumption for any online approach is that

the difference between solutions at two consecutive
times is bounded.

Assumption 1: The distance between optimizers at sub-
sequent times is uniformly upper bounded as

‖x�(tk) − x�(tk−1)‖ ≤ K, ∀k > 0, K < ∞.

The constant K will play a key role in the ATE, as shown
shortly. Assumption 1 is general, inasmuch it does not
forbid the underlying trajectory x�(t) to have finite jumps.3

A stronger assumption, often required in time-structured
optimization, is that the time derivative of the gradient of
the cost function,4 that is, ∇txf(x; t), is bounded.

Assumption 2: For all t and all x: ‖∇txf(x; t)‖ ≤
Δ0 < ∞.
Assumption 2, along with m-strong convexity of the cost
function, guarantees that the trajectory x�(t) is globally
Lipschitz in time [19], [20], and in particular

‖x�(t′) − x�(t)‖ ≤ Δ0

m
|t′ − t|. (8)

This is key for structured time-varying algorithms and
typically not required in unstructured algorithms or in
OCO [9]. Note further that Assumption 2 implies Assump-
tion 1 with the choice K = Δ0 h/m.

In this discrete-time setting, an online algorithm will
generate a sequence of approximate optimizers. Hereafter,
we will denote the output of the algorithm at time tk

for simplicity as x̂k, while we denote the sequence as

3Meaning that x�(t) can be discontinuous in time, but the discon-
tinuity has to be bounded, so that Assumption 1 holds for the choice of
sampling period.

4This can be generalized for a nonsmooth cost function of the form
f(x; t) + g(x), as long as f(x; t) is differentiable, e.g., ‖x − t‖2 +
|x| [11].

(x̂k)k∈N+ . Different algorithms will be distinguished based
on which predictor they use and how they generate x̂k.

1) No-Predictor Algorithms: In this case, online algo-
rithms do not have a “prediction” step; rather, they
only perform “corrective” steps once the cost function
is acquired. These algorithms are called in different
ways (among which catching up, running, correction-
only, and unstructured) and probably firstly appeared with
Moreau [1]. For example, a running projected gradient to
approximately solve (7) is given by the recursion

x̂0 = 0, x̂k = projX{x̂k−1 − α∇xf(x̂k−1; tk)}, k ∈ N

(9)

where projX{·} denotes the projection operator and α is
a carefully chosen step size (that could be time-varying
as well). In (9), the projected gradient is applied once
per time step k, but one could also apply multiple gra-
dient steps, say C, per time step. Notwithstanding this,
in general, these unstructured discrete-time algorithms
achieve a high ATE. To formalize this result, we focus on
a class of algorithms that exhibit a Q-linear convergence.
In particular, let M be an algorithm that when applied to
x̂k at time tk+1 for function f(x; tk+1) produces an x̂k+1

for which

‖x̂k+1 − x�(tk+1)‖≤�‖x̂k − x�(tk+1)‖, � ∈ (0, 1) (10)

then algorithm M is called Q-linear convergent. This class
is common in time-varying optimization (e.g., projected
gradient (9) is Q-linear on a m-strongly convex and
L-smooth cost function [16]). When the algorithm M
is then applied C times [as e.g., in (30)], we obtain
‖x̂k+1 − x�(tk+1)‖ ≤ �C‖x̂k − x�(tk+1)‖. The following
general result is in place.

Theorem 1 (Informal): Let M be an optimization algo-
rithm that converges Q-linearly as in (10). Then, under
Assumption 1, the same algorithm M applied C times for
each time tk, converges Q-linearly to the optimizer trajec-
tory of a time-varying problem up to an error bound as

‖x̂k+1 − x�(tk+1)‖ ≤ �C(‖x̂k − x�(tk)‖ + K)

and lim supk→∞ ‖x̂k − x�(tk)‖ = �CO(K) =

(Δ0/m)�CO(h) where the last equality is valid under
Assumption 2.

2036 PROCEEDINGS OF THE IEEE | Vol. 108, No. 11, November 2020

Authorized licensed use limited to: TU Delft Library. Downloaded on August 27,2021 at 11:23:47 UTC from IEEE Xplore. Restrictions apply.

Simonetto et al.: Time-Varying Convex Optimization: Time-Structured Algorithms and Applications

Proof (Sketch): At time tk, if algorithm M is applied
C times, starting on x̂k and ending at x̂k+1, by Q-linear
convergence of M, we can write

‖x̂k+1 − x�(tk+1)‖
≤ �C(‖x̂k − x�(tk+1)‖)
≤ �C(‖x̂k − x�(tk)‖ + ‖x�(tk+1) − x�(tk)‖)

and by using Assumption 1 the first claim is established.
The second claim is proven by recursively applying the first
claim, and by geometric series summation.

The results of the theorem are general and assert that
the sequence (x̂k) tracks the solution trajectory up to a ball
of size �CO(K). If C → ∞, the time-invariant problem
is solved exactly and we are back to the batch mode
(and the error is 0), that is, the time-varying algorithm is
asymptotically consistent. If Assumption 2 holds true, then
the asymptotic error is proportional to the sampling period
h (see Fig. 2). In addition, for fixed � ∈ (0, 1), C < ∞,
and if the path-length

�T
k=1 ‖x�(tk) − x�(tk−1)‖ grows at

least linearly in T , no unstructured method of this type can
reach a zero ATE [21], [22].

2) Predictors: We now focus on discrete-time algorithms
that are endowed with a prediction. Various predictors are
considered, and we will call as x̂k+1|k the predicted deci-
sion variable for time tk+1 with information up to time tk.

3) Clairvoyant Oracles and Expert Oracles: Clairvoyant
oracles offer an exact prediction, that is, they provide a
x̂k+1|k, for which ‖x̂k − x�(tk)‖ = ‖x̂k+1|k − x�(tk+1)‖,
as if they knew the function f(·; tk+1) and its gradient
at time tk. In this context, clairvoyant oracles completely
remove the time effect in the optimizer and the optimizer
can proceed as if the cost function were not varying in
time. Clairvoyant oracles are impractical (they need to
have a perfect knowledge of the future), but they offer
good performance lower bounds (since one cannot do
better than them). A noteworthy example of when one can
use a clairvoyant oracle is when the cost function has a
time drift, that is, f(x; t) = f(x + αt), and the oracle can
estimate the drift vector α exactly based on historical data.

Expert oracles, hints, or predictable sequences are con-
sidered, for example, in [23]–[25]. In [24], one has access
to a sequence (mk)k∈N+ of gradient approximators. When
mk = 0, that is, meaning no knowledge or predic-
tion about the future, we recover an unstructured algo-
rithm. When mk = ∇xf(x; tk) at time tk, then one
recovers the online algorithm of [26]. Finally, when mk =

∇xf(x; tk+1), one recovers a clairvoyant oracle. Based
on the error ‖mk − ∇xf(x; tk+1)‖, one can then derive
dynamic ATE results.

4) Model-Based Predictors: These predictors are built on
a model of the variations of the cost function, or of its
parameters.

a) Prediction based on first-order optimality condi-
tions [4], [7], [8], [27]–[29]: A large class of predictors
comes from deriving models based on first-order optimality
conditions. We could call these predictors environment-
agnostic, since they are not interested in modeling how
the environment changes, but only how the optimiza-
tion problem is affected. To introduce these predictors,
let us consider an unconstrained problem [easier than
Problem (7)] as

x�(tk) = argmin
x∈Rn

f(x; tk). (11)

To derive a model for how the problem is changing from tk

to tk+1, we look at the first-order optimality conditions at
time tk, which can be framed as

∇xf(x; tk) = 0. (12)

To predict, how this first-order optimality condition
changes in time, with information available up to tk,
we use a Taylor expansion around (x̂k; tk) as

0 = ∇xf(x; tk+1) ≈ ϕk(x) := ∇xf(x̂k; tk)

+∇xxf(x̂k; tk)(x − x̂k) + h∇txf(x̂k; tk) (13)

where it is assumed that the Hessian ∇xxf(x̂k; tk) exists,
as well as the time derivative of the gradient ∇txf(x̂k; tk),
leading to the prediction model5

ϕk(x̂k+1|k) = 0 =⇒
x̂k+1|k = x̂k −∇−1

xxf(x̂k; tk)

× [∇xf(x; tk) + h∇txf(x̂k; tk)]. (14)

The prediction (14) represents a nonlinear discrete-time
model to compute xk+1|k. Note that ϕk(x) can be inter-
preted as a specific choice for the gradient approximator
mk in [24] (see the discussion in the oracles paragraph).
Let us now consider a slightly more general setting than
Problem (7) as

x�(tk) = argmin
x∈Rn

f(x; tk) + g(x) (15)

where g : R
n → R ∪ {+∞} is a convex closed and proper

function (e.g., g(x) = ‖x‖1). Problem (7) is a special case
of (15), when g(x) is the indicator function of the set X.
Once again, we look at the first-order optimality condi-
tions at time tk, which can be framed as the generalized
equation [19]

∇xf(x; tk) + ∂g(x) � 0. (16)

5The time derivative ∇txf(x; tk) can be obtained via first-order
backward finite difference, if not available otherwise (see [20] and [27]).

Vol. 108, No. 11, November 2020 | PROCEEDINGS OF THE IEEE 2037

Authorized licensed use limited to: TU Delft Library. Downloaded on August 27,2021 at 11:23:47 UTC from IEEE Xplore. Restrictions apply.

Simonetto et al.: Time-Varying Convex Optimization: Time-Structured Algorithms and Applications

To predict how this first-order optimality condition
changes in time (with information up to tk), one can
use a Taylor expansion around (x̂k; tk), leading to the
prediction model

ϕk(x̂k+1|k) + ∂g(x̂k+1|k) � 0. (17)

Thus, the prediction step requires the solution of this
approximated generalized equation with initial condition
x̂k, which can be obtained, or approximated, cheaply
with, for example, a few passes of a proximal gra-
dient method [30] (cheaply since ϕk is a quadratic
function). The formulation (17) represents the predic-
tion model for the presented class of optimization prob-
lems (15), for a first-order Taylor expansion. Other
prediction models exist for other classes of optimiza-
tion problems [27], [28], for higher-order Taylor expan-
sions [4], and for more complex numerical integration
methods [29], [31]–[34].

b) Prediction based on parameter estimation [35]:
When the time dependence hides a parameter dependence,
then models obtained via filtering are a viable alterna-
tive. Let b(t) ∈ R

l be a parameter, and let the function
f(x; t) = f(x; b(t)): for example, the cost depends on the
data stream b(t) representing, for example, the position of
a robot to track. Then b(t) at time tk+1 can be estimated
via, for example, a Kalman filter based on the linear time-
invariant model

b(tk+1) = Γb(tk) + wk, yk = Φb(tk) + nk (18)

for the given matrices Γ ∈ R
l×l, Φ ∈ R

q×l, observations
yk ∈ R

q, and noise terms wk ∈ R
l, nk ∈ R

q . Then the
prediction model requires the (approximate) solution of
the problem

x̂k+1|k ≈ argmin
x∈X

f(x; b̂k+1) (19)

with b̂k+1 being the forecast b(tk+1) based on the
model (18) via, for example, a Kalman filter. Other models
can be thought of based on nonlinear models, more com-
plicated forecasters, and even neural networks.

5) Prediction–Correction Algorithms: We have presented
a few predictors for discrete-time time-varying optimiza-
tion algorithms. No general result exists to encompass all
the predictors. However, for a particular class of predictors
(the one that employs first-order optimality conditions as
the prediction model), some general results can be derived.
These methods are known as prediction–correction meth-
ods (since they predict how the optimization problem
changes and then they correct for the errors in predictions
based on the newly acquired cost [8], [27]) and have roots
in nonstationary optimization [2], [36], parametric pro-
gramming [4], [7], [19], [37], and continuation methods
in numerical mathematics [38].

Consider Problem (15) for simplicity (although argu-
ments are generalizable). Let P be a predictor method
that approximates x̂k+1|k based on (17), in a Q-linear
convergent fashion: one application of P acting on x̂k

delivers a x̂′
k+1|k for which

‖x̂′
k+1|k − x̂k+1|k‖ ≤ �1‖x̂k − x̂k+1|k‖, �1 ∈ (0, 1). (20)

For example, P could be a proximal gradient algorithm,
in which case

x̂′
k+1|k = proxαg{x̂k − α∇xϕk(x̂k)} (21)

where proxαg{·} is the proximal operator for function g

and step-size α, which could be applied one or multiple,
say P , times for time step. Let now M, belonging to the
same algorithm class of (10), be applied to the update
(correction) step after function acquisition at tk+1, for
which one application on x̂′

k+1|k, delivers

‖x̂k+1 − x�(tk+1)‖ ≤ �2‖x̂′
k+1|k − x�(tk+1)‖, �2 ∈ (0, 1)

(22)

for example, another proximal gradient step as

x̂k+1 = proxαg{x̂′
k+1|k − α∇xf(x̂′

k+1|k; tk+1)}. (23)

Then the following result is in place.
Theorem 2 (Informal): Consider the time-varying Prob-

lem (15) and two methods P and M for which (20)–(22)
hold. Let the predictor P be applied P times during the
prediction step, and the corrector M be applied C times.
Consider Assumption 2 to hold and additionally, let f(x; t)

be L-smooth (in addition to be m-strongly convex), with
a well-defined Hessian ∇xxf(x; t). Then, there exists a
minimal number of prediction and correction steps P, C

for which globally (i.e., starting from any initial condition)

lim sup
k→∞

‖x̂k − x�(tk)‖ =
Δ0

m
�C
1 O(h).

In addition, if we consider the assumption that higher-
order derivatives of the cost function are bounded6 as

max{‖∇xxxf(x; t)‖, ‖∇txxf(x; t)‖, ‖∇ttxf(x; t)‖} ≤ Δ1

uniformly in time and for all x ∈ R
n, then locally (and for

small h), there exists a minimal number of prediction and
correction steps P, C so that

lim sup
k→∞

‖x̂k − x�(tk)‖ = O(Δ1�
C
1 h2)� �� �

prediction gain

+ O(Δ0�
C
1 �P

2 h)� �� �
approximation error

.

6Where induced Euclidean norms are considered for tensors.

2038 PROCEEDINGS OF THE IEEE | Vol. 108, No. 11, November 2020

Authorized licensed use limited to: TU Delft Library. Downloaded on August 27,2021 at 11:23:47 UTC from IEEE Xplore. Restrictions apply.

Simonetto et al.: Time-Varying Convex Optimization: Time-Structured Algorithms and Applications

Proof (Sketch): The proof here proceeds as follows:
we first bound the error arising from the prediction
[see (21)], and second bound the one from the cor-
rection [see (23)], and then finally combine them. For
the error arising from the prediction, two errors must
be considered, one arising from the model (due to the
Taylor expansion error), whereas the other arising from
the P prediction steps. When considering exact predic-
tion (P → ∞), the leading error is the Taylor expan-
sion error [namely the error in (13)], which is O(h),
in general, and O(h2) when higher-order derivatives are
bounded.

The results of Theorem 2 are fairly general and apply to
different problem classes [27], [28]. Theorem 2 indicates
that tracking is not worse than correction-only methods in
the worst case. If the function has some higher degree of
smoothness, and we are interested in a local result, then
a better ATE can be achieved, provided some (stricter)
conditions on the number of prediction and correction
steps are verified. The ATE is composed of two terms:
one which is labeled as approximation error, which is
due to the early termination of the prediction step (if
P → ∞ and prediction is exact, this term goes to 0). The
other, called the prediction gain, is the gain resulting from
using a prediction step, which brings the error down to a
O(h2) dependence on h. This depends on the first-order
Taylor expansion employed; other methods can further
reduce this to O(h4) or less [4], [29], [31]–[34] (look
again at Fig. 2, where we have also employed a Taylor
model up to degree 2 for (13) to obtain an O(h3) error
bound).

The higher degree of smoothness required for the local
results imposes boundedness of the tensor ∇xxxf(x; t),
which is a typical assumption for second-order algorithms
(notice that the predictor requires second-order infor-
mation, see (14)–(17) and its solution is comparable
to solving a Newton step, which is locally quadratically
converging). Moreover, it bounds the variability of the
Hessian of f over time, which guarantees the possibility
of performing more accurate predictions of the optimal
trajectory. Theorem 2 depicts a key result in prediction–
correction methods: the prediction value is fully exploited
with higher smoothness.

D. Continuous-Time Algorithms

We consider now continuous-time prediction–correction
algorithms which, in general, are appropriate in control
and robotics applications.7 The main component of these
algorithms is the ability to track the minimizer by taking
into account its evolution with time. In continuous-time,
this scheme has been used in distributed time-varying

7For these algorithms, time metrics like TR make less sense than in
discrete-time setting. However, continuous-time algorithms are still inter-
esting to investigate, both in theory—as continuous limits to discrete-
time algorithms—and in practice, as good approximation of cases in
which the sampling time is much smaller than other system characteristic
times.

convex optimization (see [5] and [39]–[41]). Since the
objective function is m-strongly convex, the solution of the
problem can be computed by solving the first-order opti-
mality condition (12): for the implicit function theorem,
the time derivative of x�(t) is

ẋ�(t) = −∇2
xxf(x; t)−1∇txf(x; t). (24)

In cases where the problem of interest is static, gradient
descent and Newton’s method can be used, for instance,
to find trajectories such that limt→∞ x(t) = x�. Moreover,
this convergence is exponential, meaning that there exist
positive constants C1 and α1 such that ‖x(t) − x�‖ ≤
C1 e−α1 t (see [42, Definition 4.5]—note that exponential
convergence is the continuous counterpart of the discrete-
time Q-linear convergence). To provide the same guaran-
tees in the case of time-varying optimization, we include
the prediction term (24), which incorporates changes in
the optimizer

ẋ(t) = −∇2
xxf(x; t)−1 (κ∇xf(x; t) + ∇txf(x; t)) (25)

where κ > 0 is referred to as “gain of the controller” in
the literature, and (25) is referred to as “the controller,”
since it controls how the decision trajectory must
change to reach the optimal solution trajectory.
This differential equation defines a nonautonomous
dynamical system which converges exponentially
to x�(t) [43], [6, Prop. 1].

Theorem 3: Under the hypothesis of Theorem 2,
x(t)—the solution of the dynamical system
(25)—converges exponentially to x�(t), solution
to (1).

Proof (Sketch): The proof uses a Lyapunov argument.
Define the error e(t) := x(t) − x�(t) and the function
V (e; t) = ‖∇xf(e + x�(t); t)‖2 /2. Then the proof relies on
establishing that V̇ (e; t) < 0 for all e �= 0 and V̇ (0; t) = 0

(see [42, Th. 4.10]), and in particular

V̇ (e; t) = −κ ‖∇xf(e + x�(t); t)‖2 ≤ 0.

This result indicates that the convergence is exponen-
tial to the optimal trajectory (ATE is zero). The latter is
achieved by including the prediction in the controller, that
is, the time variation of the optimal solution. Without
such a predictor, tracking would be possible only up to
an asymptotic error that depends on the variation of the
gradient with the time and the gain of the controller. This
is a clear benefit of structured algorithms. Note that these
results are the continuous-time counterpart of the results
presented in Theorem 2. However, one of the advantages
of working with continuous-time flows is that it is also pos-
sible to establish asymptotic convergence to the solution
of constrained optimization problems using interior point

Vol. 108, No. 11, November 2020 | PROCEEDINGS OF THE IEEE 2039

Authorized licensed use limited to: TU Delft Library. Downloaded on August 27,2021 at 11:23:47 UTC from IEEE Xplore. Restrictions apply.

Simonetto et al.: Time-Varying Convex Optimization: Time-Structured Algorithms and Applications

methods (see [14, Chapter 11]). Formally, let us define the
following optimization problem:

x�(t) := argmin
x∈R

f(x; t) (26a)

s.t. hi(x; t) ≤ 0 ∀i = 1, . . . , p. (26b)

In [6], inspired by interior point methods, the follow-
ing barrier function is proposed:

Φ(x; t) = f(x; t) − 1

c(t)

p�
i=1

log (s(t) − hi(x; t)) (27)

where c(t) is an increasing function such that
limt→∞ c(t) = ∞ and s(t) = s(0)e−γt for some
γ > 0. The intuition behind the barrier is that it
approximates the indicator function as t increases. This
means that it takes the value 0 when the constraint is
satisfied and +∞ in the opposite case. In that sense,
when minimizing the unconstrained objective Φ(x; t)

constraint satisfaction is promoted. Note that for the
logarithm to be well defined we need s(t) > hi(x; t)

and thus the slack s(t) is introduced just to guarantee
that this is the case at all times t ≥ 0. In particular,
it suffices to choose s(0) ≥ maxi=1,...,p{hi(x(0), 0)} for
this to be the case [6, Th. 1]. The previous intuition
on how minimizing the function Φ(x; t) defined in (27)
resembles to solve (26) can be formally established. Let
x̂(t) be the minimizer of Φ(x; t). Then it follows that
limt→∞ ‖f(x̂(t); t) − f(x�(t); t)‖ = 0 [6, Lemma 1].
This result, along with the idea that the barrier function
promotes constraint satisfaction, suggests that to solve
(26), it suffices to compute the minimizer of the
unconstrained barrier function Φ(x; t) defined in (27).
This result is formalized in the following theorem.

Theorem 4 (Theorem 1 [6]): Consider the constrained
optimization problem defined in (26) with f(x; t) m-
strongly convex, hi(x; t) for all i = 1, . . . , p are convex
functions and Slater’s constraint qualifications hold: that
is, there exists x†(t) such that for all t ≥ 0 and for all
i = 1, . . . , p, it holds that hi(x

†(t), t) < 0. Let Φ(x; t) be
the barrier defined in (27) and let x(t) be the solution of
the dynamical system

ẋ(t) = −∇xxΦ(x; t)−1 (κ∇xΦ(x; t) + ∇txΦ(x; t)) .

Then it follows that limt→∞ ‖x(t) − x�(t)‖ = 0.
Proof: The proof follows that of Theorem 3 with

e := x − x�(t) and Lyapunov function V (e; t) =

‖∇xΦ(e + x�(t); t)‖2 /2.
Working in continuous time allows us to solve con-

strained problems using interior point methods, thus guar-
anteeing feasibility for all time if the initial solution is
feasible. This is especially appropriate for control sys-
tems where the constraints might represent physical con-
straints that need to be satisfied for the system to operate
without failure.

III. A P P L I C AT I O N S
We highlight now application domains where structured
and unstructured time-varying optimization methods have
been or could be applied to. We proceed with a high-level
(and by no means exhaustive) list of areas, presented in
alphabetical order. Note that, given the increasingly cross-
disciplinary nature of the research efforts, clear boundaries
are difficult to delineate.

A. Communications

Problems such as congestion control, resource allo-
cation, and power control have been of paramount
importance in communication networks [44], [45].
Indeed, important questions arise when channel capacities
and noncontrollable traffic flows are time-varying, with
changes that are faster than the solution time of under-
lying optimization tasks, and even more so in the 5G
era [46] (e.g., HD video streaming). This setting can be
tackled with time-varying optimization tools. For example,
in [47], a continuous-time structured algorithm with a
first-order Taylor predictor model is proposed. The recent
work [20] explored structured algorithms for intermittent
time-varying service, a feature important in today’s cloud
computing. Finally, time variations are important when the
communication graph is itself time-varying (see [48] and
references therein).

B. Control Systems

One popular tool in control systems is MPC [49]. MPC
is grounded on a strategy where an optimization prob-
lem is formulated to compute optimal states and com-
mands for a dynamical system over a given temporal
window; once a solution is identified, the command for
the first time instant is implemented and the window
is then shifted. The optimization problem changes over
time, since it is parametrized over the state of a certain
system, and it has to be resolved every time. Recently,
time-varying (and/or parameter-varying) algorithms for
MPC have appeared for large-scale and embedded systems
(see [13] and [50]–[52]), which are a mix of continuous-
time and discrete-time unstructured and structured algo-
rithms. For example, in [51], an unstructured algorithm
(specifically a homotopy-based continuation method) is
used to enhance the tracking performance of the nonlinear
MPC. In [13], a predictor of the form (14) is used to solve
the optimization problem that arises from the receding
horizon problem. Since the solution varies smoothly with
the state of the system, these methods are appropriate to
achieve good tracking accuracy with low computational
cost. In [53], these ideas are extended to problems with
constraints by using a semismooth barrier function.

Other applications in control systems are the sequential
training of neural networks for online system identifica-
tion [43], [54], [55], where predictors of the form (25)
were proposed, as well as recent work at the intersec-
tion of online optimization and feedback control, where

2040 PROCEEDINGS OF THE IEEE | Vol. 108, No. 11, November 2020

Authorized licensed use limited to: TU Delft Library. Downloaded on August 27,2021 at 11:23:47 UTC from IEEE Xplore. Restrictions apply.

Simonetto et al.: Time-Varying Convex Optimization: Time-Structured Algorithms and Applications

the output regulation problem is revisited by posing the
problem of driving the output of a dynamical system
to the optimal solution of a time-varying optimization
problem [56], [57].

C. Cyber–Physical Systems

Cyber–physical systems (CPSs) [58] are engineered sys-
tems with tightly integrated computing, communication,
and control technologies. Because of major technological
advances, existing CPSs (power systems, transportation
networks, and smart cities just to mention a few) are
evolving toward societal-scale systems operating in highly
dynamic environments, and with a massive number of
interacting entities. It is then imperative to revisit informa-
tion processing and optimization tools to enable optimal
and reliable decision-making on time scales that match
the dynamics of the underlying physical systems. Due to
space limitations, we focus here on power systems and
transportation systems.

A time-varying problem for power systems can capture
variations at a second level in noncontrollable loads and
available power from renewables [59]; it can also accom-
modate dynamic pricing schemes. Time-varying problem
formulations (and related online algorithms) can be uti-
lized for tasks such as demand response, optimal power
flow (OPF), and state estimation. Adopting a time-varying
optimization strategy, the power outputs of DERs can be
controlled at the second level to regulate voltages and
currents within limits in the face of volatility of renewables
and noncontrollable loads and to continually steer the
network operation toward points that are optimal based
on the formulated time-varying problem. Examples of
works include real-time algorithms for voltage control,
OPF, as well as DER management for aggregators (see,
for example, [60]–[65] and pertinent references therein).
For some applications, such as the demand response and
the OPF, online algorithms have been designed to leverage
measurements of constraints (e.g., voltages violations) in
the algorithmic updates [18], [61], [66] to relax the
sensing requirements. Real-time measurements were used
in a state estimation framework in [67]. We develop these
ideas with an example in Section IV-A.

In the context of transportation systems, fast time vari-
ations may arise from different factors (and at appropriate
time scales), such as variations in the traffic, pedestri-
ans crossing the roads, car accidents, sport events; these
factors may lead to time-dependent routing and traffic
light control algorithms [68]. Motivated by the recent
widespread use of ridesharing and mobility-on-demand
services [69], spatio-temporal variations naturally emerge
from customer pick-up and drop-off requests as well as
fleet locations. As representative works in context, Alonso-
Mora et al. [69] and Simonetto et al. [70] discussed
unstructured algorithms to achieve long-term (“asymptoti-
cal”) good tracking, while sacrificing short-term optimal-
ity. In [71], an online algorithm based on a structured

problem formulation is presented, where the prediction is
based on historical data and machine learning forecasting.
An unstructured algorithm is also presented in [72], to find
optimal meeting points.

D. Machine Learning and Signal Processing

As a representative problem spanning the broad fields
of machine learning and signal processing, we focus on
the reconstruction of sparse signals via �1-regularization
where we are interested in recovering a sparse signal given
some observations, for example, extract “sparse” features
in images [73]. The time-varying nature of this problem
arises when we want, for instance, to extract features in
videos. Works that explore dynamic �1 reconstruction are,
for example, [74]–[76]. In [35] and [77], two algorithms
are presented, one unstructured using homotopy and one
structured building a model based on methods akin to
Kalman filters. In [78], unstructured methods for the elas-
tic net are discussed.

Other applications in machine learning and signal
processing, where a number of (mainly) unstructured
algorithms have been proposed, include contemporary
approaches for sparse, kernel-based, robust, linear regres-
sion, zeroth-order methods, and learning problems over
networks. Additional lines of work include dynamic clas-
sification under concept drift [79], dynamic beamform-
ing [80], and other dynamic signal processing tasks, such
as maximum a posteriori estimation [81], [82].

E. Medical Engineering

Medical engineering is a growing research field in many
contexts. Here, we focus on the new possibilities offered
by new and fast imaging modalities under magnetic res-
onance (see [83] and [84] for a broader context). Once
confined to static images (due to the high computational
load), magnetic resonance imaging (MRI) is now transi-
tioning to fast imaging and possibly high-definition video
streaming, which could be of invaluable help to clinicians
and researchers alike, not to mention patients, especially
children. In the series of work [85] and [86], the authors
describe an unstructured algorithm to solve a time-varying
subsampled nonlinear regularized inverse problem. The
algorithm allows the clinicians to visualize blood flow, car-
diac features, and swallowing, among many other things.

F. Optimization and Mathematical Programming

Time-varying optimization has been studied for appli-
cations within mathematical programming, for example,
in the context of parametric programming [3], [4], [7],
[37], [87] where a wealth of structured and unstructured
algorithms are presented. Time-varying optimization has
its roots in continuation methods in numerical mathemat-
ics [38] and it resembles path-following methods [88],
so advances in either fields are intertwined.

Another application in mathematical programming
where time-varying optimization could be (and has been)

Vol. 108, No. 11, November 2020 | PROCEEDINGS OF THE IEEE 2041

Authorized licensed use limited to: TU Delft Library. Downloaded on August 27,2021 at 11:23:47 UTC from IEEE Xplore. Restrictions apply.

Simonetto et al.: Time-Varying Convex Optimization: Time-Structured Algorithms and Applications

applied is the field of evolutionary variational inequalities.
Variational inequalities [89] can be framed as optimiza-
tion problems, while evolutionary ones can be framed
as time-varying optimization problems. In [90]–[92],
the authors discuss plenty of interesting applications in
socio-economical sciences (human migration studies, eco-
nomics, time-dependent equilibria in games, etc.), propos-
ing mainly unstructured approaches.

G. Process Engineering

In chemical and process engineering, the body of
work [93]–[95] focuses on real-time optimization for
chemical and industrial processes. The optimization prob-
lem is not time-varying per se, but it becomes time-varying
because the constraints (i.e., the industrial process) are
learned online and adapted. Several real-time optimization
algorithms are proposed, mainly unstructured.

H. Robotics

Time-varying optimization problems—or problems that
depend on a time-varying parameter—appear often in
the context of robotic systems. In the context of safe
navigation, Arslan and Koditschek [96], [97] considered
the problem of using power diagrams to define a local
safe space, which depends on the position of the agent
itself. The control law used to navigate is such that it
aims to track the projection of the goal on the local safe
space. Even in cases where the goal is static, a time-
varying optimization problem needs to be solved due to the
modification of the local free space. In [6], the approach
described in Section II-D is used to compute said solutions.
We develop these ideas more in Section IV-B.

For networks of mobile robots [98], the “communica-
tion integrity” is guaranteed by solving a time-varying
optimization problem. Specifically, since an unstructured
algorithm is used, an asymptotic tracking error that results
in small constraint violation and suboptimality is achieved.

Another interesting application is that of robotic manip-
ulators [32], [99], [100], obtained via zeroing neural
dynamics (ZND) [101]–[103], based on a prediction step
similar to (25).

IV. T W O A P P L I C AT I O N S : D E E P D I V E
A. Example in Power Grids

Consider a power distribution grid serving residential
houses or commercial facilities, featuring N controllable
DERs. The vector xi ∈ Xi ⊂ R

2 collects the active and
reactive power outputs of the ith DER, and Xi models
hardware constraints. A prototypical time-varying opti-
mization problem for real-time management of DERs is

x�(tk) := argmin
{xi∈Xi}N

i=1

N�
i=1

fi(xi; tk) + fN+1(x; tk) (28)

where fi(xi; tk) is a cost function associated with the ith
DER and fN+1(x; tk) is a time-varying cost associated with

the power network operator. Elaborating on the latter,
suppose, for example, that a linearized model for the
power flow equations is utilized to capture the variations
on some electrical quantities y ∈ R

m (e.g., voltages and
power flows on lines) induced by x, that is, y(tk) =

Axx + Aww(tk), where w(tk) is a vector collecting the
powers of noncontrollable devices and Ax, Aw are sensi-
tivity matrices that are built based on the network topology
and the line impedances [61], [65]. A possible choice for
the function fN+1(x; tk) for the network operator can then
be fN+1(x; tk) = γ

2
‖yref(tk) − Axx + Aww(tk)‖2, where

yref(tk) is a time-varying reference point for the electrical
quantities included in y, and γ > 0 is a design parameter
that influences the ability to track the time-varying refer-
ence signal yref(tk). Various models for fi(xi; tk) can be
adopted, based on specific problem settings, for example,
fi(xi; tk) = ‖xi − xref

i (tk)‖2 can minimize the deviation
from a desirable setpoint for the ith DER (that can be
computed based on a slower time-scale dispatch problem);
in the case of photovoltaic systems, xref

i (tk) could be set to
xref

i (tk) = [P av(tk), 0]T , with P av(tk) the maximum power
available, to minimize the power curtailed. Alternatively,
set fi(xi; tk) to a time-varying incentive −πT

i (tk)xi to
maximize the profit of the ith DER in providing services
to the grid.

With reference to Fig. 1, in this application, data
streams include the parameters of the time-varying func-
tion fi(xi; tk) (e.g., the power setpoints {xref

i (tk)} or the
incentive signals {πi(tk)}), the function fN+1(x; tk)

(where set points yref(tk) can rapidly change to pro-
vide various services to the grid), as well as the pow-
ers w(tk) consumed by the noncontrollable devices.
The algorithm produces decisions on setpoints for the
active and reactive power outputs xi(tk) of the DERs,
which are commanded to the devices. Finally, “feedback”
can come in the form of measurements of the actual
power outputs xi(tk) [60], as well as other electrical
quantities [61], [66].

As an illustrative example, we consider the case where
N = 500 DERs are controlled in a distribution feeder; the
set Xi is built so that the ranges of active and reactive
powers are [−50, 50] kW and [−50, 50] kVAr, and fi(xi; tk)

is set to fi(xi; tk) = 1
2
‖xi‖2 for all DERs. This setting is

representative of a case where energy storage resources are
utilized to provide services. We consider the case where
y is a scalar and represents the net power consumed by
a distribution network; in this case, yref(tk) can model
automatic generation control (AGC) signals or flexible
ramping signals. The matrices Ax and Aw are built as
in [61]. We use the real data provided in [61] to generate
the vectors w(tk) with a granularity of 1 s. The parameters
are m = 1, L = 21, and γ = 2; the step size is α = 1/(10 L).
We keep the computational time fixed in our comparison
between the unstructured running projected gradient and
the structured prediction–correction algorithm; in particu-
lar, we consider the cases P = 0, C = 3, and P = 3, C = 1

(see Theorem 2).

2042 PROCEEDINGS OF THE IEEE | Vol. 108, No. 11, November 2020

Authorized licensed use limited to: TU Delft Library. Downloaded on August 27,2021 at 11:23:47 UTC from IEEE Xplore. Restrictions apply.

Simonetto et al.: Time-Varying Convex Optimization: Time-Structured Algorithms and Applications

Fig. 5. Mean cumulative tracking error (1/T)
���T

k=1‖x(tk)− x�(tk)‖
versus time of the day for a choice of structured (P = 3, C = 1) and

unstructured (C = 3) algorithms, having the same computational

time. In green, we report the hypothetical gain in terms of less

utilized power at the average cost of 12 USD cent per kWh.

To outline the steps of the prediction–correction algo-
rithm, recall that x̂k denotes the iterate of the algorithm at
time tk [see Th. 1], and let f(x; tk) :=

�N
i=1 fi(xi; tk) +

fN+1(x; tk) and X = X1 × X2 × · · · × XN for brevity.
A prediction x̂k|k−1 is obtained by running P prediction
steps p = 0, . . . , P − 1:

x̂p+1 = projX {x̂p − α (∇xxf(x̂k; tk)(x̂p − x̂k−1)

+ h∇txf(x̂k−1; tk) + ∇xf(x̂k−1; tk))} (29)

and by setting x̂k|k−1 = x̂P . Starting now from
x̄0 = x̂k|k−1, the correction phase involves the following
C steps:

x̄c+1 = projX {x̂p − α (∇xf(x̄c; tk))} (30)

for c = 0, 1, . . . , C − 1. The iterate x̂k is then x̂k =

x̄C . Note that if P = 0, one recovers the unstruc-
tured running projected gradient method [see also (9)].
In the simulations, the time derivative ∇txf(x̂k; tk) in
(29) is substituted by an approximate version (see,
e.g., [27] and [104]).

To assess the performance of the prediction–correction
algorithm, Fig. 5 depicts the mean cumulative tracking
error (1/T)

�T
k=1 ‖x(tk) − x�(tk)‖. It can be seen that

by leveraging the temporal structure of the problem,
the prediction–correction algorithm offers improved per-
formance. We can now evaluate the performance metrics
presented in Section II. We compute the ATE as the mean
error in the last 20 s of the simulation, yielding an ATE of
∼50 W for the unstructured method, and an ATE of ∼80 W
for the structured method. Since the computational time of
both methods is the same, it follows that SG = 1.6. The CR
can be empirically evaluated by the time it takes to enter
the ATE ball as approximately 1 min for both methods.
On the other hand, the TR is hardware-dependent, since
the denominator of the TR depends on the computational

capabilities of the microcontrollers embedded in the DERs,
where algorithms are implemented.

B. Example in Robotics

Consider a navigation setup of driving a disk-shaped
robot of radius r > 0, whose position is denoted by xr(t),
to a desired configuration xd(t), while avoiding collisions
with obstacles in the environment. Here, we deal with
a closed and convex workspace W ⊂ R

n of possible
configurations that the robot can take. Assume that the
workspace is populated with m nonintersecting spherical
obstacles, where the center and radius of the ith obstacle
are denoted by xi ∈ W and ri > 0, respectively. In general,
this navigation problem is nonconvex due to the presence
of obstacles; however, one can convexify it by looking
at the collision-free convex local workspace around xr,
defined as [96]

LF(xr) =
�

x ∈ W : (xi − xr)
�x−bi(xr)≤0, i = 1 . . . m

�

where bi(xr) are pertinent scalars computed depending
on robot and obstacles positions (see [96]). The collision-
free local workspace describes a local neighborhood of
the robot that is guaranteed to be free of obstacles. Each
obstacle introduces a linear bound and thus the local free
space is convex and yields a polygon as the blue colored
one in Fig. 6 (see [96, Eq. (6)]). The position of the target
xd(t), the location of the robot xr(t), and the local free
space LF(xr) correspond to the data stream of Fig. 1.
Supposing that the robot follows the integrator dynamics
ẋr = u(xr), the controller proposed in [96] is given by
ẋr(t) = −Gc(xr − x�(t)), where Gc > 0 and x�(t) are
the orthogonal projections of the desired configuration
xd(t) onto the collision-free local workspace LF(xr). Since
the local workspace is collision-free, so is the direction
xr − x�(t), and thus the control law is guaranteed to
avoid the obstacles. This controller also guarantees that
the robot converges to xd(t) [96]. It requires computing
the projection of xd(t) onto LF(xr) by solving the time-
varying convex problem

x�(t) := argmin
x∈LF(xr)⊆Rn

1

2
‖x − xd(t)‖2. (31)

By using the barrier function defined in (27) and the
dynamics in Theorem 4, one can compute x̂(t), an estimate
of x�(t) and apply the control law ẋr(t) = −Gc(xr − 	x(t)).
The barrier function in (27) for this application takes the
form

Φ(x, xr; t)=
1

2
‖x−xd(t)‖2− 1

c(t)

m�
i=1

log(bi(xr)−ai(xr)
�x)

with ai = xi − xr. Then estimate x̂(t) is the solution
of the following dynamical system with initial condition

Vol. 108, No. 11, November 2020 | PROCEEDINGS OF THE IEEE 2043

Authorized licensed use limited to: TU Delft Library. Downloaded on August 27,2021 at 11:23:47 UTC from IEEE Xplore. Restrictions apply.

Simonetto et al.: Time-Varying Convex Optimization: Time-Structured Algorithms and Applications

Fig. 6. Left: The red circle represents the desired xd(t). The green

and blue lines represent, respectively, the trajectories of the

estimates of the projected goal �x(t) and the trajectories of the robot

xr(t) for the structured algorithm. Right: Tracking error

‖x(tk)− x�(tk)‖ versus time for a choice of structured and

unstructured algorithm.

x̂(0) = xr(0):

˙̂x(t)=−∇xxΦ(x, xr; t)
−1 (κ∇xΦ(x, xr; t)+∇xtΦ(x, xr; t))

where c(t) = 1 e0.1 t and κ = 0.1. To evaluate the
performance of the proposed controller and optimizer,
we consider a workspace W = [−20, 20] × [−20, 25] con-
taining eight circular obstacles (black circles in Fig. 6-left).
Fig. 6(left) also depicts the trajectories followed by a disk-
shaped robot of radius equal to 1 (blue circle) where
Gc = 2. The red line represents the trajectory of xd(t) and
the green and blue lines represent, respectively, the trajec-
tories of the estimates 	x(t) of the projected goal onto the
collision-free local workspace, and the trajectories of the
center of mass of the robot xr(t).

In Fig. 6(right), we plot the metric defined in (3) for the
algorithm with and without prediction, that is, structured
and unstructured, respectively. Evidently, there is signifi-
cant benefit using the structured algorithm.

V. R E S E A R C H O U T L O O K A N D F U T U R E
C H A L L E N G E S
Time-varying optimization is rapidly arising as an
attractive algorithmic framework for today’s fast-changing
complex systems and world-size networks that entail
heterogeneous and spatially distributed data streams.
This article delineated the framework and underlined
that structured algorithms can offer improved solu-
tions to time-varying problems. In this section, a brief
and certainly nonexhaustive list of the current chal-
lenges for structured and unstructured methods is out-
lined, with due implications in a number of potential
applications.

A. Wider Classes of Problems

It has already been argued that unstructured meth-
ods generally require less functional assumptions than
structured ones. For example, unstructured methods have

been proposed for various nonstrongly convex prob-
lems, as well nonconvex cost functions, where notions
of dynamic regret can be used as performance indicators
(see [17], [18], [65], and [105]–[107]). An attractive
feature of time-varying nonconvex optimization algorithms
is that they can be free of locally optimal trajectories. For
structured methods, these classes of problems are largely
unexplored, since, for example, underlying evolution mod-
els will have to be set-valued for nonstrictly convex time-
varying problems (because the solution trajectory is not
unique). Interesting questions regarding bifurcations and
merging of locally optimal trajectories, as well as the
possibility of escaping isolated locally optimal trajectories
naturally arise in this setting. A few efforts in this direction
are included in [3], [4], and [38], but a comprehensive
framework is lacking. A possible venue in this area could
rely on piecewise linear continuation methods [38].

B. Data-Driven Models

Dynamic means of capturing the underlying opti-
mization trajectory are now largely based on models,
while in the current data streaming era, problems are
often constructed in a data-driven fashion (e.g., via
zero-order/bandit methods [108] or in a Bayesian set-
ting [109]). Constructing and learning dynamic models
for the optimization trajectory (e.g., via historical data)
is a largely unexplored territory, especially for structured
methods, where high-order smoothness is required for
enhanced performance, in contrast with what typically
(noisy) zero-order methods can provide. Unstructured
methods can be found in [110]–[112].

C. Distributed Architectures

Distributed methods to solve time-varying optimization
problems (possibly involving large-scale networks) are key
in many contemporary cyber-physical applications. Both
structured and unstructured methods have been investi-
gated [5], [17], [39]–[41], [48], [80]–[82], [98], [104],
[113], but many challenges remain. As discussed in [114],
most distributed methods rely on diminishing step-size
rules, which might not be an appropriate choice in time-
varying settings when the algorithm runs indefinitely (as
in, for example, video surveillance and monitoring of
critical infrastructure). Another insight from [113], [114],
and [115] is that the convergence behavior of distributed
algorithms in the online setting is different relative to the
batch case: traditional hierarchies in terms of convergence
may be “flipped,” with the slowest algorithm in the static
case being the fastest algorithm in the time-varying one.
In addition, the notion of asynchronous updates assumes
a more prominent position, inasmuch the network of
computing nodes may have access to different evolution
models, sample the optimization problem at different time
steps, at different time scales, or deliver solutions with
different accuracy. All of this hinders standard analysis and
it remains largely unexplored.

2044 PROCEEDINGS OF THE IEEE | Vol. 108, No. 11, November 2020

Authorized licensed use limited to: TU Delft Library. Downloaded on August 27,2021 at 11:23:47 UTC from IEEE Xplore. Restrictions apply.

Simonetto et al.: Time-Varying Convex Optimization: Time-Structured Algorithms and Applications

D. Feedback Loop

As we have seen in the analytical results presented
here, under the assumptions provided, the time-varying
algorithms converge to an error bound. Two key aspects
are that: 1) the error bound can be arbitrarily big, if the
algorithm converges arbitrarily slow, that is, if � is arbi-
trarily close to 1 and 2) the time-varying algorithms are
considered separately, meaning the decision stream x̂(t)

does not influence the optimization problem at future
times. Ensuring “close-loop” stability and performance,
when the decision stream is fed back to the system is a
mostly open challenge, and one can expect that arbitrarily
slow algorithms cause lack of convergence. In this case,
the very notion of ATE may be ill-defined or too hard
to achieve, since typically the cost will be parametrized
also on the approximated optimizer trajectory, and system-
oriented notions of stability and robustness may be more
appropriate. Some initial work can be found in [13], [51],
and [53] in the context of MPC, yet this area remains
largely open.

Another emerging research topic is the development of
online structured and unstructured online algorithms that
effectively act as feedback controlled dynamical systems.
The main goal is to drive the output of a dynamical
system to solutions of time-varying optimization prob-
lems. Initial efforts toward unstructured online algorithms

include [56], [57], where a Lyapunov analysis is also
provided, and the more recent works in [116] and [117]
that provide a pertinent regret analysis).

E. Interactive and Reinforcement Learning (RL)

We close with potential links of the time-varying opti-
mization tools outlined in this article with related contem-
porary thrusts on OCO [9], bandits [118], and RL that
encompasses interactive decision making between agents
and generally dynamic environments [119]. At this stage,
these links are active research thrusts that are pursued
in diverse applications, such as allocation of network
resources, secure mobile edge computing, and manage-
ment of Internet-of-Things (see [120] and [121], and
references therein). Clearly, at the core of OCO, bandits,
and RL are sequential solutions of optimization objectives
that vary as the environment transitions across states
and the agents take actions dynamically. These key ele-
ments prompt one to foresee that the time-varying tools
overviewed in the present article can be fruitfully lever-
aged in interactive optimization. One key challenge to bear
in mind in this direction is that the objective function in RL
changes not only due to time-varying effects, but also due
to actions fed back by the agent (learner). How to broaden
the scope of algorithms presented here in such a wider
context constitutes an exciting open research direction.

R E F E R E N C E S
[1] J. J. Moreau, “Evolution problem associated with

a moving convex set in a Hilbert space,” J. Differ.
Equ., vol. 26, no. 3, pp. 347–374, Dec. 1977.

[2] B. T. Polyak, Introduction to Optimization. New
York, NY, USA: Optimization Software, 1987.

[3] J. Guddat, F. G. Vazquez, and H. T. Jongen,
Parametric Optimization: Singularities,
Pathfollowing Jumps. Chichester, U.K.: Wiley,
1990.

[4] A. L. Dontchev, M. I. Krastanov, R. T. Rockafellar,
and V. M. Veliov, “An Euler-Newton continuation
method for tracking solution trajectories of
parametric variational inequalities,” SIAM J.
Control Optim., vol. 51, no. 3, pp. 1823–1840,
Jan. 2013.

[5] S. Rahili and W. Ren, “Distributed convex
optimization for continuous-time dynamics with
time-varying cost functions,” IEEE Trans. Autom.
Control, vol. 62, no. 4, pp. 1590–1605, Apr. 2017.

[6] M. Fazlyab, S. Paternain, V. M. Preciado, and
A. Ribeiro, “Prediction-correction interior-point
method for time-varying convex optimization,”
IEEE Trans. Autom. Control, vol. 63, no. 7,
pp. 1973–1986, Jul. 2018.

[7] V. M. Zavala and M. Anitescu, “Real-time
nonlinear optimization as a generalized
equation,” SIAM J. Control Optim., vol. 48, no. 8,
pp. 5444–5467, Jan. 2010.

[8] A. Simonetto and E. Dall’Anese, “Prediction-
correction algorithms for time-varying constrained
optimization,” IEEE Trans. Signal Process., vol. 65,
no. 20, pp. 5481–5494,
Oct. 2017.

[9] S. Shalev-Shwartz, “Online learning and online
convex optimization,” Found. Trends Mach. Learn.,
vol. 4, no. 2, pp. 107–194, 2011.

[10] R. Dixit, A. S. Bedi, R. Tripathi, and K. Rajawat,
“Online learning with inexact proximal online
gradient descent algorithms,” IEEE Trans. Signal
Process., vol. 67, no. 5, pp. 1338–1352, Mar. 2019.

[11] N. Bastianello, A. Simonetto, and R. Carli,

“Prediction-correction splittings for nonsmooth
time-varying optimization,” in Proc. Eur. Control
Conf., Napoli, Italy, Jun. 2019, pp. 1963–1968.

[12] G. A. Hicks and W. H. Ray, “Approximation
methods for optimal control synthesis,” Can. J.
Chem. Eng., vol. 49, no. 4, pp. 522–528,
Aug. 1971.

[13] S. Paternain, M. Morari, and A. Ribeiro, “A
prediction-correction algorithm for real-time
model predictive control,” 2019,
arXiv:1911.10051. [Online]. Available:
http://arxiv.org/abs/1911.10051

[14] S. Boyd and L. Vandenberghe, Convex
Optimization. Cambridge, U.K.: Cambridge Univ.
Press, 2004.

[15] R. Rockafellar, Convex Analysis. Princeton, NJ,
USA: Princeton Univ. Press, 1970.

[16] Y. Nesterov, “Introductory lectures on convex
optimization,” in Applied Optimization. Boston,
MA, USA: Kluwer, 2004.

[17] S. Shahrampour and A. Jadbabaie, “Distributed
online optimization in dynamic environments
using mirror descent,” IEEE Trans. Autom. Control,
vol. 63, no. 3, pp. 714–725, Mar. 2018.

[18] A. Bernstein, E. Dall’Anese, and A. Simonetto,
“Online primal-dual methods with measurement
feedback for time-varying convex optimization,”
IEEE Trans. Signal Process., vol. 67, no. 8,
pp. 1978–1991, Apr. 2019.

[19] A. L. Dontchev and R. T. Rockafellar, Implicit
Functions Solution Mappings. New York, NY, USA:
Springer, 2009.

[20] N. Bastianello, A. Simonetto, and R. Carli,
“Prediction-correction splittings for time-varying
optimization with intermittent observations,” IEEE
Control Syst. Lett., vol. 4, no. 2, pp. 373–378,
Apr. 2020.

[21] O. Besbes, Y. Gur, and A. Zeevi, “Non-stationary
stochastic optimization,” Operations Res., vol. 63,
no. 5, pp. 1227–1244, Oct. 2015.

[22] Y. Li, G. Qu, and N. Li, “Using predictions in

online optimization with switching costs: A fast
algorithm and a fundamental limit,” in Proc.
Annu. Amer. Control Conf. (ACC), Jun. 2018,
pp. 3008–3013.

[23] A. Rakhlin and K. Sridharan, “Online learning
with predictable sequences,” in Proc. 26th Annu.
Conf. Learn. Theory, PMLR, vol. 30, 2013,
pp. 993–1019.

[24] A. Jadbabaie, A. Rakhlin, S. Shahrampour, and
K. Sridharan, “Online optimization: Competing
with dynamic comparators,” in Proc. 18th Int.
Conf. Artif. Intell. Statist. (PMLR), no. 38,
pp. 398–406, 2015.

[25] O. Dekel, N. Haghtalab, and P. Jaillet, “Online
learning with a hint,” in Proc. Adv. Neural Inf.
Process. Syst., 2017.

[26] C.-K. Chiang et al., “Online optimization with
gradual variations,” in Proc. 25th Annu. Conf.
Learn. Theory, PMLR, vol. 23, 2012, pp. 6.1–6.20.

[27] A. Simonetto, A. Mokhtari, A. Koppel, G. Leus,
and A. Ribeiro, “A class of prediction-correction
methods for time-varying convex optimization,”
IEEE Trans. Signal Process., vol. 64, no. 17,
pp. 4576–4591, Sep. 2016.

[28] A. Simonetto, “Dual prediction–correction
methods for linearly constrained time-varying
convex programs,” IEEE Trans. Autom. Control,
vol. 64, no. 8, pp. 3355–3361, Aug. 2019.

[29] Z. Qi and Y. Zhang, “New models for future
problems solving by using ZND method,
correction strategy and extrapolation formulas,”
IEEE Access, vol. 7, pp. 84536–84544, 2019.

[30] J. Eckstein, “Splitting methods for monotone
operators with applications to parallel
optimization,” Ph.D. dissertation, Dept. Civil Eng.,
MIT, Cambridge, MA, USA, Jun. 1989.

[31] L. Jin and Y. Zhang, “Continuous and discrete
zhang dynamics for real-time varying nonlinear
optimization,” Numer. Algorithms, vol. 73, no. 1,
pp. 115–140, Sep. 2016.

[32] B. Liao, Y. Zhang, and L. Jin, “Taylor O(h3)

Vol. 108, No. 11, November 2020 | PROCEEDINGS OF THE IEEE 2045

Authorized licensed use limited to: TU Delft Library. Downloaded on August 27,2021 at 11:23:47 UTC from IEEE Xplore. Restrictions apply.

Simonetto et al.: Time-Varying Convex Optimization: Time-Structured Algorithms and Applications

discretization of ZNN models for dynamic
equality-constrained quadratic programming with
application to manipulators,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 27, no. 2, pp. 225–237,
Feb. 2016.

[33] D. Guo, X. Lin, Z. Su, S. Sun, and Z. Huang,
“Design and analysis of two discrete-time ZD
algorithms for time-varying nonlinear
minimization,” Numer. Algorithms, vol. 77, no. 1,
pp. 23–36, Jan. 2018.

[34] B. Qiu, Y. Zhang, J. Guo, Z. Yang, and X. Li, “New
five-step DTZD algorithm for future nonlinear
minimization with quartic steady-state error
pattern,” Numer. Algorithms, vol. 81, no. 3,
pp. 1043–1065, Jul. 2019.

[35] A. S. Charles, A. Balavoine, and C. J. Rozell,
“Dynamic filtering of time-varying sparse signals
via �1 minimization,” IEEE Trans. Signal Process.,
vol. 64, no. 21, pp. 5644–5656, Jun. 2016.

[36] A. Y. Popkov, “Gradient methods for nonstationary
unconstrained optimization problems,” Autom.
Remote Control, vol. 66, no. 6, pp. 883–891,
Jun. 2005.

[37] V. Kungurtsev and J. Jäschke, “A
predictor-corrector path-following algorithm for
dual-degenerate parametric optimization
problems,” SIAM J. Optim., vol. 27, no. 1,
pp. 538–564, Jan. 2017.

[38] E. L. Allgower and K. Georg, Numerical
Continuation Methods: An Introduction. New York,
NY, USA: Springer-Verlag, 1990.

[39] P. Gong, F. Chen, and W. Lan, “Time-varying
convex optimization for double-integrator
dynamics over a directed network,” in Proc. Chin.
Control Conf., 2016, pp. 7341–7346.

[40] C. Xi and U. A. Khan, “Distributed dynamic
optimization over directed graphs,” in Proc. IEEE
Conf. Decis. Control (CDC), Las Vegas, NV, USA,
2016, pp. 245–250.

[41] C. Sun, M. Ye, and G. Hu, “Distributed
time-varying quadratic optimization for multiple
agents under undirected graphs,” IEEE Trans.
Autom. Control, vol. 62, no. 7, pp. 3687–3694,
Jul. 2017.

[42] H. K. Khalil, Nonlinear Systems. Upper Saddle
River, NJ, USA: Prentice-Hall, 2002.

[43] Y. Zhao and M. N. S. Swamy, “A novel technique
for tracking time-varying minimum and its
applications,” in Proc. Conf. IEEE Can. Conf. Electr.
Comput. Eng., vol. 2, May 1998, pp. 910–913.

[44] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan, “Rate
control for communication networks: Shadow
prices, proportional fairness and stability,” J. Oper.
Res. Soc., vol. 49, no. 3, pp. 237–252, Apr. 1998.

[45] S. H. Low, F. Paganini, and J. C. Doyle, “Internet
congestion control,” IEEE Control Syst., vol. 22,
no. 1, pp. 28–43, Feb. 2002.

[46] A. Mehrabi, M. Siekkinen, and A. Ylä-Jääski,
“QoE-traffic optimization through collaborative
edge caching in adaptive mobile video streaming,”
IEEE Access, vol. 6, pp. 52261–52276, 2018.

[47] W. Su, “Traffic engineering and time-varying
convex optimization,” Ph.D. dissertation, Dept.
Elect. Eng., Pennsylvania State Univ.,
Pennsylvania, PA, USA, May 2009.

[48] M. Maros, “Distributed optimization in
time-varying environments,” Ph.D. dissertation,
School Elect. Eng., KTH, Stockholm, Sweden,
2019.

[49] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and
P. O. M. Scokaert, “Constrained model predictive
control: Stability and optimality,” Automatica,
vol. 36, no. 6, pp. 789–814, Jun. 2000.

[50] J. L. Jerez, P. J. Goulart, S. Richter,
G. A. Constantinides, E. C. Kerrigan, and
M. Morari, “Embedded online optimization for
model predictive control at megahertz rates,” IEEE
Trans. Autom. Control, vol. 59, no. 12,
pp. 3238–3251, Dec. 2014.

[51] J.-H. Hours and C. N. Jones, “A parametric
nonconvex decomposition algorithm for real-time
and distributed NMPC,” IEEE Trans. Autom.

Control, vol. 61, no. 2, pp. 287–302, Feb. 2016.

[52] B. Gutjahr, L. Gröll, and M. Werling, “Lateral
vehicle trajectory optimization using constrained
linear time-varying MPC,” IEEE Trans. Intell.
Transp. Syst., vol. 18, no. 6, pp. 1586–1595,
Jun. 2016.

[53] D. Liao-McPherson, M. M. Nicotra, and
I. V. Kolmanovsky, “A semismooth predictor
corrector method for real-time constrained
parametric optimization with applications in
model predictive control,” in Proc. IEEE Conf.
Decis. Control (CDC), Miami Beach, FL, USA,
2018, pp. 3600–3607.

[54] Y. Zhao and W. Lu, “Training neural networks with
time-varying optimization,” in Proc. Int. Conf.
Neural Netw., 1993, pp. 1693–1696.

[55] H. Myeong and J.-H. Kim, “Neural network
learning using time-varying two-phase
optimization,” in Proc. 33rd IEEE Conf. Decis.
Control, 1994, pp. 1881–1882.

[56] M. Colombino, E. Dall’Anese, and A. Bernstein,
“Online optimization as a feedback controller:
Stability and tracking,” IEEE Trans. Control Netw.
Syst., vol. 7, no. 1, pp. 422–432, Mar. 2020.

[57] T. Zheng, J. Simpson-Porco, and E. Mallada,
“Implicit trajectory planning for feedback
linearizable systems: A time-varying optimization
approach,” 2019, arXiv:1910.00678. [Online].
Available: http://arxiv.org/abs/1910.00678

[58] K.-D. Kim and P. R. Kumar, “Cyber–physical
systems: A perspective at the centennial,” Proc.
IEEE, vol. 100, no. Special Centennial Issue,
pp. 1287–1308, May 2012.

[59] J. A. Taylor, S. V. Dhople, and D. S. Callaway,
“Power systems without fuel,” Renew. Sustain.
Energy Rev., vol. 57, pp. 1322–1336, May 2016.

[60] A. Bernstein, L. Reyes-Chamorro, J.-Y. Le Boudec,
and M. Paolone, “A composable method for
real-time control of active distribution networks
with explicit power setpoints. Part I: Framework,”
Electr. Power Syst. Res., vol. 125, pp. 254–264,
Aug. 2015.

[61] E. Dall’Anese and A. Simonetto, “Optimal power
flow pursuit,” IEEE Trans. Smart Grids, vol. 9,
no. 2, pp. 942–952, Mar. 2018.

[62] A. Hauswirth, A. Zanardi, S. Bolognani, F. Dörfler,
and G. Hug, “Online optimization in closed loop
on the power flow manifold,” in Proc. IEEE
PowerTech Conf., Jun. 2017, pp. 1–6.

[63] Y. Tang, K. Dvijotham, and S. Low, “Real-time
optimal power flow,” IEEE Trans. Smart Grid,
vol. 8, no. 6, pp. 2963–2973, Nov. 2017.

[64] H. J. Liu, W. Shi, and H. Zhu, “Decentralized
dynamic optimization for power network voltage
control,” IEEE Trans. Signal Inf. Process. Over
Netw., vol. 3, no. 3, pp. 568–579, Sep. 2017.

[65] J. Liu, J. Marecek, A. Simonetto, and M. Takac, “A
coordinate-descent algorithm for tracking
solutions in time-varying optimal power flows,” in
Proc. Power Syst. Comput. Conf. (PSCC), Dublin,
2018, pp. 1–7.

[66] Y. Tang, E. Dall’Anese, A. Bernstein, and S. H. Low,
“A feedback-based regularized primal-dual
gradient method for time-varying nonconvex
optimization,” in Proc. IEEE Conf. Decis. Control
(CDC), Dec. 2018, pp. 3244–3250.

[67] J. Song, E. Dall’Anese, A. Simonetto, and H. Zhu,
“Dynamic distribution state estimation using
synchrophasor data,” IEEE Trans. Smart Grid,
vol. 11, no. 1, pp. 821–831, Jan. 2020.

[68] M. Gendreau, G. Ghiani, and E. Guerriero,
“Time-dependent routing problems: A review,”
Comput. Oper. Res., vol. 64, pp. 189–197,
Dec. 2015.

[69] J. Alonso-Mora, S. Samaranayake, A. Wallar,
E. Frazzoli, and D. Rus, “On-demand
high-capacity ride-sharing via dynamic
trip-vehicle assignment,” Proc. Nat. Acad. Sci. USA,
vol. 114, no. 3, pp. 462–467, Jan. 2017.

[70] A. Simonetto, J. Monteil, and C. Gambella,
“Real-time city-scale ridesharing via linear
assignment problems,” Transp. Res. C, Emerg.

Technol., vol. 101, pp. 208–232, Apr. 2019.

[71] J. Alonso-Mora, A. Wallar, and D. Rus, “Predictive
routing for autonomous mobility-on-demand
systems with ride-sharing,” in Proc. Conf. Robot.
Intell. Syst., 2017, pp. 3583–3590.

[72] E. Eser, J. Monteil, and A. Simonetto, “On the
tracking of dynamical optimal meeting points,” in
Proc. 15th IFAC Symp. Control Transp. Syst.,
Savona, Italy, Jun. 2018, pp. 434–439.

[73] A. Beck and M. Teboulle, “A fast iterative
shrinkage-thresholding algorithm for linear
inverse problems,” SIAM J. Imag. Sci., vol. 2,
no. 1, pp. 183–202, Jan. 2009.

[74] A. Balavoine, J. Romberg, and C. Rozell, “Discrete
and continuous iterative soft thresholding with a
dynamic input,” IEEE Trans. Signal Process.,
vol. 63, no. 12, pp. 3165–3176, Jun. 2015.

[75] Y. Yang, M. Zhang, M. Pesavento, and D. P.
Palomar, “An online parallel and distributed
algorithm for recursive estimation of sparse
signals,” IEEE Trans. Signal Inf. Process. Over
Netw., vol. 2, no. 3, pp. 290–305, May 2016.

[76] N. Vaswani and J. Zhan, “Recursive recovery of
sparse signal sequences from compressive
measurements: A review,” IEEE Trans. Signal
Process., vol. 64, no. 13, pp. 3523–3549,
Jul. 2016.

[77] M. S. Asif and J. Romberg, “Sparse recovery of
streaming signals using �1-homotopy,” IEEE Trans.
Signal Process., vol. 62, no. 16, pp. 4209–4223,
Aug. 2014.

[78] S. M. Fosson, “Online optimization in dynamic
environments: A regret analysis for sparse
problems,” in Proc. Conf. Decis. Control (CDC),
Dec. 2018, pp. 7225–7230.

[79] S. Das, P. Lade, and S. Srinivasan, “Model
adaptation and unsupervised learning with
non-stationary batch data under smooth concept
drift,” in Proc. NIPS Time Ser. Workshop, 2016,
pp. 1–11.

[80] M. Maros and J. Jalden, “ADMM for distributed
dynamic beamforming,” IEEE Trans. Signal Inf.
Process. Over Netw., vol. 4, no. 2, pp. 220–235,
Jun. 2018.

[81] Q. Ling and A. Ribeiro, “Decentralized dynamic
optimization through the alternating direction
method of multipliers,” IEEE Trans. Signal Process.,
vol. 62, no. 5, pp. 1185–1197, Dec. 2014.

[82] F. Y. Jakubiec and A. Ribeiro, “D-MAP: Distributed
maximum a posteriori probability estimation of
dynamic systems,” IEEE Trans. Signal Process.,
vol. 61, no. 2, pp. 450–466, Jan. 2013.

[83] H. C. M. Clogenson and J. J. van den Dobbelsteen,
“Catheters and guide wires for interventional
MRI: Are we there yet?” J. Imag. Interventional
Radiol., vol. 2, no. 1, p. 28, 2016.

[84] D. Rueckert and J. A. Schnabel, “Model-based and
data-driven strategies in medical image
computing,” Proc. IEEE, vol. 108, no. 1,
pp. 110–124, Jan. 2020.

[85] S. Zhang, M. Uecker, D. Voit, K.-D. Merboldt, and
J. Frahm, “Real-time cardiovascular magnetic
resonance at high temporal resolution: Radial
FLASH with nonlinear inverse reconstruction,”
J. Cardiovascular Magn. Reson., vol. 12, no. 1,
p. 39, 2010.

[86] S. G. Lingala, B. P. Sutton, M. E. Miquel, and
K. S. Nayak, “Recommendations for real-time
speech MRI,” J. Magn. Reson. Imag., vol. 43, no. 1,
pp. 28–44, Jan. 2016.

[87] Q. T. Dinh, C. Savorgnan, and M. Diehl,
“Adjoint-based predictor-corrector sequential
convex programming for parametric nonlinear
optimization,” SIAM J. Optim., vol. 22, no. 4,
pp. 1258–1284, Jan. 2012.

[88] Y. Nesterov, “Towards non-symmetric conic
optimization,” Optim. Methods Softw., vol. 27,
nos. 4–5, pp. 893–917, Oct. 2012.

[89] D. Kinderlehrer and G. Stampacchia, An
Introduction to Variational Inequalities and Their
Applications. New York, NY, USA: Academic, 1980.

[90] P. Daniele, “Time-Dependent spatial price

2046 PROCEEDINGS OF THE IEEE | Vol. 108, No. 11, November 2020

Authorized licensed use limited to: TU Delft Library. Downloaded on August 27,2021 at 11:23:47 UTC from IEEE Xplore. Restrictions apply.

Simonetto et al.: Time-Varying Convex Optimization: Time-Structured Algorithms and Applications

equilibrium problem: Existence and stability
results for the quantity formulation model,” J.
Global Optim., vol. 28, nos. 3–4, pp. 283–295,
Apr. 2004.

[91] M. G. Cojocaru, P. Daniele, and A. Nagurney,
“Projected dynamical systems and evolutionary
variational inequalities via Hilbert spaces with
applications1,” J. Optim. Theory Appl., vol. 127,
no. 3, pp. 549–563, Dec. 2005.

[92] A. Nagurney and J. Pan, “Evolution variational
inequalities and projected dynamical systems with
application to human migration,” Math. Comput.
Model., vol. 43, nos. 5–6, pp. 646–657, Mar. 2006.

[93] B. Chachuat, B. Srinivasan, and D. Bonvin,
“Adaptation strategies for real-time optimization,”
Comput. Chem. Eng., vol. 33, no. 10,
pp. 1557–1567, Oct. 2009.

[94] J. Jäschke and S. Skogestad, “NCO tracking and
self-optimizing control in the context of real-time
optimization,” J. Process Control, vol. 21, no. 10,
pp. 1407–1416, Dec. 2011.

[95] J. E. A. Graciano, J. Jäschke, G. A. C. Le Roux, and
L. T. Biegler, “Integrating self-optimizing control
and real-time optimization using zone control
MPC,” J. Process Control, vol. 34, pp. 35–48,
Oct. 2015.

[96] O. Arslan and D. E. Koditschek, “Exact robot
navigation using power diagrams,” in Proc. ICRA,
2016, pp. 1–8.

[97] O. Arslan and D. E. Koditschek, “Sensor-based
reactive navigation in unknown convex sphere
worlds,” Int. J. Robot. Res., vol. 38, nos. 2–3,
pp. 196–223, Mar. 2019.

[98] M. M. Zavlanos, A. Ribeiro, and G. J. Pappas,
“Network integrity in mobile robotic networks,”
IEEE Trans. Autom. Control, vol. 58, no. 1,
pp. 3–18, Jan. 2013.

[99] P. Miao, Y. Shen, Y. Huang, and Y.-W. Wang,
“Solving time-varying quadratic programs based
on finite-time Zhang neural networks and
their application to robot tracking,” Neural
Comput. Appl., vol. 26, no. 3, pp. 693–703,
Apr. 2015.

[100] J. Li, M. Mao, F. Uhlig, and Y. Zhang, “Z-type
neural-dynamics for time-varying nonlinear
optimization under a linear equality constraint
with robot application,” J. Comput. Appl. Math.,
vol. 327, no. 1, pp. 155–166, Jan. 2018.

[101] Y. Zhang and C. Yi, Zhang Neural Networks and
Neural-Dynamic Method. Hauppauge, NY, USA:
Nova Science, 2011.

[102] Y. Zhang, L. Jin, D. Guo, Y. Yin, and Y. Chou,
“Taylor-type 1-step-ahead numerical
differentiation rule for first-order derivative
approximation and ZNN discretization,” J.
Comput. Appl. Math., vol. 273, pp. 29–40,
Jan. 2015.

[103] Y. Zhang, Z. Qi, B. Qiu, M. Yang, and M. Xiao,
“Zeroing neural dynamics and models for various
time-varying problems solving with ZLSF models
as minimization-type and euler-type special cases
[Research Frontier],” IEEE Comput. Intell. Mag.,
vol. 14, no. 3, pp. 52–60, Aug. 2019.

[104] A. Simonetto, A. Koppel, A. Mokhtari, G. Leus, and
A. Ribeiro, “Decentralized prediction-correction
methods for networked time-varying convex
optimization,” IEEE Trans. Autom. Control, vol. 62,
no. 11, pp. 5724–5738, Nov. 2017.

[105] Y. Tang, E. Dall’Anese, A. Bernstein, and S. Low,
“Running primal-dual gradient method for
time-varying nonconvex problems,” 2018,
arXiv:1812.00613. [Online]. Available:
http://arxiv.org/abs/1812.00613

[106] S. Fattahi, C. Josz, R. Mohammadi, J. Lavaei, and
S. Sojoudi, “Absence of spurious local trajectories
in time-varying optimization,” 2019,
arXiv:1905.09937. [Online]. Available:
http://arxiv.org/abs/1905.09937

[107] A. Akhriev, J. Marececk, and A. Simonetto,
“Pursuit of low-rank models of time-varying
matrices robust to sparse and measurement
noise,” in Proc. AAAI, 2020, pp. 1–8.

[108] A. K. Flaxman, A. T. Kalai, and H. McMahan,
“Online convex optimization in the bandit setting:
Gradient descent without gradient,” in Proc.
ACM-SIAM Symp. Discrete Algorithms, Vancouver,
BC, Canada, Jan. 2005, pp. 385–394.

[109] N. Srinivas, A. Krause, S. M. Kakade, and
M. W. Seeger, “Information-theoretic regret
bounds for Gaussian process optimization in the
bandit setting,” IEEE Trans. Inf. Theory, vol. 58,
no. 5, pp. 3250–3265, May 2012.

[110] A. Slivkins and E. Upfal, “Adapting to a changing
environment: The Brownian restless bandits,” in
Proc. COLT, 2008, pp. 1–12.

[111] I. Shames, D. Selvaratnam, and J. H. Manton,

“Online optimization using zeroth order oracles,”
IEEE Control Syst. Lett., vol. 4, no. 1, pp. 31–36,
Jan. 2020.

[112] I. Bogunovic, J. Scarlett, and V. Cevher,
“Time-varying Gaussian process bandit
optimization,” in Proc. AISTATS, 2016,
pp. 314–323.

[113] N. Bastianello, A. Ajalloeian, and E. Dall’Anese,
“Distributed and inexact proximal gradient
method for online convex optimization,” 2020,
arXiv:2001.00870. [Online]. Available:
http://arxiv.org/abs/2001.00870

[114] E. Dall’Anese, A. Simonetto, S. Becker, and
L. Madden, “Optimization and learning with
information streams: Time-varying algorithms and
applications,” IEEE Signal Process. Mag., vol. 37,
no. 3, pp. 71–83, May 2020.

[115] K. Yuan, W. Xu, and Q. Ling, “Can primal methods
outperform primal-dual methods in decentralized
dynamic optimization?” 2020, arXiv:2003.00816.
[Online]. Available:
http://arxiv.org/abs/2003.00816

[116] M. Nonhoff and M. A. Müller, “Online gradient
descent for linear dynamical systems,” 2019,
arXiv:1912.09311. [Online]. Available:
http://arxiv.org/abs/1912.09311

[117] N. Agarwal, E. Hazan, and K. Singh, “Logarithmic
regret for online control,” in Proc. NeurIPS, 2019,
pp. 10175–10184.

[118] S. Agrawal, S. Bubeck, and A. Malek. (Oct. 2020).
Berkeley Simons Institute Program: Theory of
Reinforcement Learning, Workshop: Mathematics of
Online Decision Making. Accessed: Mar. 2020.
[Online]. Available:
https://simons.berkeley.edu/workshops/rl-2020-2

[119] R. S. Sutton and A. G. Barto, Reinforcement
Learning: An Introduction, 2nd ed. Cambridge,
MA, USA: MIT Press, 2017.

[120] T. Chen, S. Barbarossa, X. Wang, G. B. Giannakis,
and Z.-L. Zhang, “Learning and management for
Internet of Things: Accounting for adaptivity and
scalability,” Proc. IEEE, vol. 107, no. 4,
pp. 778–796, Apr. 2019.

[121] B. Li, T. Chen, and G. B. Giannakis, “Secure
mobile edge computing in IoT via collaborative
online learning,” IEEE Trans. Signal Process.,
vol. 67, no. 23, pp. 5922–5935,
Dec. 2019.

A B O U T T H E A U T H O R S

Andrea Simonetto (Member, IEEE)
received the Ph.D. degree in systems and
control from Delft University of Technology,
Delft, The Netherlands, in 2012.
He spent 3 + 1 years as a Postdoctoral

Researcher, first in the Signal Processing
Group, Electrical Engineering Department,
Delft University of Technology, then in the
Applied Mathematics Department, Univer-
sité catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium.
He joined IBM Research Ireland, Dublin, Ireland, in February 2017,
where he is currently a Research Staff Member with the Optimiza-
tion and Control Group. His research interests include optimization,
control, and signal processing, with applications in smart energy,
transportation, and personalized health.

Emiliano Dall’Anese (Member, IEEE)
received the Ph.D. degree in information
engineering from the Department of Infor-
mation Engineering, University of Padua,
Padua, Italy, in 2011.
From January 2009 to September 2010, he

was a Visiting Scholar with the Department
of Electrical and Computer Engineering,
University of Minnesota, Minneapolis, MN,
USA. From January 2011 to November 2014, he was a Postdoctoral
Associate with the Department of Electrical and Computer
Engineering, University of Minnesota, and from December 2014 to
July 2018, he was a Senior Researcher with the National Renewable
Energy Laboratory, Golden, CO, USA. He is currently an Assistant
Professor with the Department of Electrical, Computer, and
Energy Engineering, University of Colorado Boulder, Boulder, CO,
USA. His research interests include optimization, control, and
signal processing, with applications to networked systems and
energy systems.

Vol. 108, No. 11, November 2020 | PROCEEDINGS OF THE IEEE 2047

Authorized licensed use limited to: TU Delft Library. Downloaded on August 27,2021 at 11:23:47 UTC from IEEE Xplore. Restrictions apply.

Simonetto et al.: Time-Varying Convex Optimization: Time-Structured Algorithms and Applications

Santiago Paternain (Member, IEEE)
received the B.Sc. degree in electrical
engineering from the Universidad de
la República Oriental del Uruguay,
Montevideo, Uruguay, in 2012, the M.Sc.
degree in statistics from The Wharton
School of the University of Pennsylvania,
Philadelphia, PA, USA, in 2018, and the
Ph.D. degree in electrical and systems
engineering from the Department of Electrical and Systems
Engineering, University of Pennsylvania, Philadelphia, in 2018.
His research interest includes optimization and control of

dynamical systems.
Dr. Paternain was a recipient of the 2017 CDC Best Student

Paper Award.

Geert Leus (Fellow, IEEE) received the
M.Sc. and Ph.D. degrees in electrical engi-
neering from Katholieke Universiteit Leu-
ven, Leuven, Belgium, in June 1996 and
May 2000, respectively.
He is currently an “Antoni van Leeuwen-

hoek” Full Professor with the Faculty of Elec-
trical Engineering, Mathematics and Com-
puter Science, Delft University of Technol-
ogy, Delft, The Netherlands. His research interest includes signal
processing, with a specific focus on wireless communications, array
processing, sensor networks, and graph signal processing.
Dr. Leus is a Fellow of EURASIP. He was a Member-at-Large of

the Board of Governors of the IEEE Signal Processing Society and
a member of the IEEE Sensor Array and Multichannel Technical
Committee. He is also a member of the IEEE Signal Processing
Theory and Methods Technical Committee and the IEEE Big Data
Special Interest Group. He received the 2002 IEEE Signal Process-
ing Society Young Author Best Paper Award and the 2005 IEEE
Signal Processing Society Best Paper Award. He was the Chair
of the IEEE Signal Processing for Communications and Network-
ing Technical Committee. He is the Chair of the EURASIP Special
Area Team on Signal Processing for Multisensor Systems. He was
the Editor-in-Chief of the EURASIP Journal on Advances in Sig-
nal Processing. He was also on the Editorial Boards of the IEEE
TRANSACTIONS ON SIGNAL PROCESSING, the IEEE TRANSACTIONS ON

WIRELESS COMMUNICATIONS, the IEEE SIGNAL PROCESSING LETTERS,
and the EURASIP Journal on Advances in Signal Processing. He is
an Associate Editor of Foundations and Trends in Signal Process-
ing and the Editor-in-Chief of EURASIP Journal on Advances in
Signal Processing.

Georgios B. Giannakis (Fellow, IEEE)
received the Diploma degree in electri-
cal engineering. from the National Techni-
cal University of Athens, Zografou, Greece,
in 1981, and the M.Sc. degree in electrical
engineering, the M.Sc. degree in mathemat-
ics, and the Ph.D. degree in electrical engi-
neering from the University of Southern Cal-
ifornia (USC), Los Angeles, CA, USA, in 1983,
1986, and 1986, respectively.
He was a Faculty Member with the University of Virginia, Char-

lottesville, VA, USA, from 1987 to 1998, and since 1999, he has
been a Professor with the University of Minnesota, Minneapolis, MN,
USA, where he holds an Endowed Chair, a University of Minnesota
McKnight Presidential Chair in Electrical and Computer Engineering,
and serves as the Director of the Digital Technology Center. He has
published more than 465 journal articles, 765 conference papers,
25 book chapters, two edited books, and two research mono-
graphs. He is the (co-) inventor of 33 issued patents. His general
research interests include statistical learning, communications, and
networking. His current research interests include data science
and network science with applications to the Internet of Things
and power networks with renewables.
Dr. Giannakis is a Fellow of the National Academy of Inven-

tors, the European Academy of Sciences, and EURASIP. He was a
(co-) recipient of nine best journal paper awards from the IEEE
Signal Processing (SP) and Communications Societies, including
the G. Marconi Prize Paper Award in wireless communications. He
also received the IEEE-SPS Nobert Wiener Society Award in 2019,
the EURASIP’s A. Papoulis Society Award in 2020, the Technical
Achievement Awards from the IEEE-SPS in 2000 and from EURASIP
in 2005, the IEEE ComSoc Education Award in 2019, the G. W. Taylor
Award for Distinguished Research from the University of Minnesota,
and the IEEE Fourier Technical Field Award in 2015. He has served
the IEEE in a number of posts, including that of a Distinguished
Lecturer for the IEEE-SPS.

2048 PROCEEDINGS OF THE IEEE | Vol. 108, No. 11, November 2020

Authorized licensed use limited to: TU Delft Library. Downloaded on August 27,2021 at 11:23:47 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [576.000 782.640]
>> setpagedevice

